v8/src/hydrogen-instructions.cc

4446 lines
133 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "double.h"
#include "factory.h"
#include "hydrogen-infer-representation.h"
#if V8_TARGET_ARCH_IA32
#include "ia32/lithium-ia32.h"
#elif V8_TARGET_ARCH_X64
#include "x64/lithium-x64.h"
#elif V8_TARGET_ARCH_ARM
#include "arm/lithium-arm.h"
#elif V8_TARGET_ARCH_MIPS
#include "mips/lithium-mips.h"
#else
#error Unsupported target architecture.
#endif
namespace v8 {
namespace internal {
#define DEFINE_COMPILE(type) \
LInstruction* H##type::CompileToLithium(LChunkBuilder* builder) { \
return builder->Do##type(this); \
}
HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
#undef DEFINE_COMPILE
Isolate* HValue::isolate() const {
ASSERT(block() != NULL);
return block()->isolate();
}
void HValue::AssumeRepresentation(Representation r) {
if (CheckFlag(kFlexibleRepresentation)) {
ChangeRepresentation(r);
// The representation of the value is dictated by type feedback and
// will not be changed later.
ClearFlag(kFlexibleRepresentation);
}
}
void HValue::InferRepresentation(HInferRepresentationPhase* h_infer) {
ASSERT(CheckFlag(kFlexibleRepresentation));
Representation new_rep = RepresentationFromInputs();
UpdateRepresentation(new_rep, h_infer, "inputs");
new_rep = RepresentationFromUses();
UpdateRepresentation(new_rep, h_infer, "uses");
if (representation().IsSmi() && HasNonSmiUse()) {
UpdateRepresentation(
Representation::Integer32(), h_infer, "use requirements");
}
}
Representation HValue::RepresentationFromUses() {
if (HasNoUses()) return Representation::None();
// Array of use counts for each representation.
int use_count[Representation::kNumRepresentations] = { 0 };
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
Representation rep = use->observed_input_representation(it.index());
if (rep.IsNone()) continue;
if (FLAG_trace_representation) {
PrintF("#%d %s is used by #%d %s as %s%s\n",
id(), Mnemonic(), use->id(), use->Mnemonic(), rep.Mnemonic(),
(use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
}
use_count[rep.kind()] += 1;
}
if (IsPhi()) HPhi::cast(this)->AddIndirectUsesTo(&use_count[0]);
int tagged_count = use_count[Representation::kTagged];
int double_count = use_count[Representation::kDouble];
int int32_count = use_count[Representation::kInteger32];
int smi_count = use_count[Representation::kSmi];
if (tagged_count > 0) return Representation::Tagged();
if (double_count > 0) return Representation::Double();
if (int32_count > 0) return Representation::Integer32();
if (smi_count > 0) return Representation::Smi();
return Representation::None();
}
void HValue::UpdateRepresentation(Representation new_rep,
HInferRepresentationPhase* h_infer,
const char* reason) {
Representation r = representation();
if (new_rep.is_more_general_than(r)) {
if (CheckFlag(kCannotBeTagged) && new_rep.IsTagged()) return;
if (FLAG_trace_representation) {
PrintF("Changing #%d %s representation %s -> %s based on %s\n",
id(), Mnemonic(), r.Mnemonic(), new_rep.Mnemonic(), reason);
}
ChangeRepresentation(new_rep);
AddDependantsToWorklist(h_infer);
}
}
void HValue::AddDependantsToWorklist(HInferRepresentationPhase* h_infer) {
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
h_infer->AddToWorklist(it.value());
}
for (int i = 0; i < OperandCount(); ++i) {
h_infer->AddToWorklist(OperandAt(i));
}
}
static int32_t ConvertAndSetOverflow(Representation r,
int64_t result,
bool* overflow) {
if (r.IsSmi()) {
if (result > Smi::kMaxValue) {
*overflow = true;
return Smi::kMaxValue;
}
if (result < Smi::kMinValue) {
*overflow = true;
return Smi::kMinValue;
}
} else {
if (result > kMaxInt) {
*overflow = true;
return kMaxInt;
}
if (result < kMinInt) {
*overflow = true;
return kMinInt;
}
}
return static_cast<int32_t>(result);
}
static int32_t AddWithoutOverflow(Representation r,
int32_t a,
int32_t b,
bool* overflow) {
int64_t result = static_cast<int64_t>(a) + static_cast<int64_t>(b);
return ConvertAndSetOverflow(r, result, overflow);
}
static int32_t SubWithoutOverflow(Representation r,
int32_t a,
int32_t b,
bool* overflow) {
int64_t result = static_cast<int64_t>(a) - static_cast<int64_t>(b);
return ConvertAndSetOverflow(r, result, overflow);
}
static int32_t MulWithoutOverflow(const Representation& r,
int32_t a,
int32_t b,
bool* overflow) {
int64_t result = static_cast<int64_t>(a) * static_cast<int64_t>(b);
return ConvertAndSetOverflow(r, result, overflow);
}
int32_t Range::Mask() const {
if (lower_ == upper_) return lower_;
if (lower_ >= 0) {
int32_t res = 1;
while (res < upper_) {
res = (res << 1) | 1;
}
return res;
}
return 0xffffffff;
}
void Range::AddConstant(int32_t value) {
if (value == 0) return;
bool may_overflow = false; // Overflow is ignored here.
Representation r = Representation::Integer32();
lower_ = AddWithoutOverflow(r, lower_, value, &may_overflow);
upper_ = AddWithoutOverflow(r, upper_, value, &may_overflow);
#ifdef DEBUG
Verify();
#endif
}
void Range::Intersect(Range* other) {
upper_ = Min(upper_, other->upper_);
lower_ = Max(lower_, other->lower_);
bool b = CanBeMinusZero() && other->CanBeMinusZero();
set_can_be_minus_zero(b);
}
void Range::Union(Range* other) {
upper_ = Max(upper_, other->upper_);
lower_ = Min(lower_, other->lower_);
bool b = CanBeMinusZero() || other->CanBeMinusZero();
set_can_be_minus_zero(b);
}
void Range::CombinedMax(Range* other) {
upper_ = Max(upper_, other->upper_);
lower_ = Max(lower_, other->lower_);
set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
}
void Range::CombinedMin(Range* other) {
upper_ = Min(upper_, other->upper_);
lower_ = Min(lower_, other->lower_);
set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
}
void Range::Sar(int32_t value) {
int32_t bits = value & 0x1F;
lower_ = lower_ >> bits;
upper_ = upper_ >> bits;
set_can_be_minus_zero(false);
}
void Range::Shl(int32_t value) {
int32_t bits = value & 0x1F;
int old_lower = lower_;
int old_upper = upper_;
lower_ = lower_ << bits;
upper_ = upper_ << bits;
if (old_lower != lower_ >> bits || old_upper != upper_ >> bits) {
upper_ = kMaxInt;
lower_ = kMinInt;
}
set_can_be_minus_zero(false);
}
bool Range::AddAndCheckOverflow(const Representation& r, Range* other) {
bool may_overflow = false;
lower_ = AddWithoutOverflow(r, lower_, other->lower(), &may_overflow);
upper_ = AddWithoutOverflow(r, upper_, other->upper(), &may_overflow);
KeepOrder();
#ifdef DEBUG
Verify();
#endif
return may_overflow;
}
bool Range::SubAndCheckOverflow(const Representation& r, Range* other) {
bool may_overflow = false;
lower_ = SubWithoutOverflow(r, lower_, other->upper(), &may_overflow);
upper_ = SubWithoutOverflow(r, upper_, other->lower(), &may_overflow);
KeepOrder();
#ifdef DEBUG
Verify();
#endif
return may_overflow;
}
void Range::KeepOrder() {
if (lower_ > upper_) {
int32_t tmp = lower_;
lower_ = upper_;
upper_ = tmp;
}
}
#ifdef DEBUG
void Range::Verify() const {
ASSERT(lower_ <= upper_);
}
#endif
bool Range::MulAndCheckOverflow(const Representation& r, Range* other) {
bool may_overflow = false;
int v1 = MulWithoutOverflow(r, lower_, other->lower(), &may_overflow);
int v2 = MulWithoutOverflow(r, lower_, other->upper(), &may_overflow);
int v3 = MulWithoutOverflow(r, upper_, other->lower(), &may_overflow);
int v4 = MulWithoutOverflow(r, upper_, other->upper(), &may_overflow);
lower_ = Min(Min(v1, v2), Min(v3, v4));
upper_ = Max(Max(v1, v2), Max(v3, v4));
#ifdef DEBUG
Verify();
#endif
return may_overflow;
}
const char* HType::ToString() {
// Note: The c1visualizer syntax for locals allows only a sequence of the
// following characters: A-Za-z0-9_-|:
switch (type_) {
case kNone: return "none";
case kTagged: return "tagged";
case kTaggedPrimitive: return "primitive";
case kTaggedNumber: return "number";
case kSmi: return "smi";
case kHeapNumber: return "heap-number";
case kString: return "string";
case kBoolean: return "boolean";
case kNonPrimitive: return "non-primitive";
case kJSArray: return "array";
case kJSObject: return "object";
}
UNREACHABLE();
return "unreachable";
}
HType HType::TypeFromValue(Handle<Object> value) {
HType result = HType::Tagged();
if (value->IsSmi()) {
result = HType::Smi();
} else if (value->IsHeapNumber()) {
result = HType::HeapNumber();
} else if (value->IsString()) {
result = HType::String();
} else if (value->IsBoolean()) {
result = HType::Boolean();
} else if (value->IsJSObject()) {
result = HType::JSObject();
} else if (value->IsJSArray()) {
result = HType::JSArray();
}
return result;
}
bool HValue::IsDefinedAfter(HBasicBlock* other) const {
return block()->block_id() > other->block_id();
}
HUseListNode* HUseListNode::tail() {
// Skip and remove dead items in the use list.
while (tail_ != NULL && tail_->value()->CheckFlag(HValue::kIsDead)) {
tail_ = tail_->tail_;
}
return tail_;
}
bool HValue::CheckUsesForFlag(Flag f) const {
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
if (it.value()->IsSimulate()) continue;
if (!it.value()->CheckFlag(f)) return false;
}
return true;
}
bool HValue::CheckUsesForFlag(Flag f, HValue** value) const {
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
if (it.value()->IsSimulate()) continue;
if (!it.value()->CheckFlag(f)) {
*value = it.value();
return false;
}
}
return true;
}
bool HValue::HasAtLeastOneUseWithFlagAndNoneWithout(Flag f) const {
bool return_value = false;
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
if (it.value()->IsSimulate()) continue;
if (!it.value()->CheckFlag(f)) return false;
return_value = true;
}
return return_value;
}
HUseIterator::HUseIterator(HUseListNode* head) : next_(head) {
Advance();
}
void HUseIterator::Advance() {
current_ = next_;
if (current_ != NULL) {
next_ = current_->tail();
value_ = current_->value();
index_ = current_->index();
}
}
int HValue::UseCount() const {
int count = 0;
for (HUseIterator it(uses()); !it.Done(); it.Advance()) ++count;
return count;
}
HUseListNode* HValue::RemoveUse(HValue* value, int index) {
HUseListNode* previous = NULL;
HUseListNode* current = use_list_;
while (current != NULL) {
if (current->value() == value && current->index() == index) {
if (previous == NULL) {
use_list_ = current->tail();
} else {
previous->set_tail(current->tail());
}
break;
}
previous = current;
current = current->tail();
}
#ifdef DEBUG
// Do not reuse use list nodes in debug mode, zap them.
if (current != NULL) {
HUseListNode* temp =
new(block()->zone())
HUseListNode(current->value(), current->index(), NULL);
current->Zap();
current = temp;
}
#endif
return current;
}
bool HValue::Equals(HValue* other) {
if (other->opcode() != opcode()) return false;
if (!other->representation().Equals(representation())) return false;
if (!other->type_.Equals(type_)) return false;
if (other->flags() != flags()) return false;
if (OperandCount() != other->OperandCount()) return false;
for (int i = 0; i < OperandCount(); ++i) {
if (OperandAt(i)->id() != other->OperandAt(i)->id()) return false;
}
bool result = DataEquals(other);
ASSERT(!result || Hashcode() == other->Hashcode());
return result;
}
intptr_t HValue::Hashcode() {
intptr_t result = opcode();
int count = OperandCount();
for (int i = 0; i < count; ++i) {
result = result * 19 + OperandAt(i)->id() + (result >> 7);
}
return result;
}
const char* HValue::Mnemonic() const {
switch (opcode()) {
#define MAKE_CASE(type) case k##type: return #type;
HYDROGEN_CONCRETE_INSTRUCTION_LIST(MAKE_CASE)
#undef MAKE_CASE
case kPhi: return "Phi";
default: return "";
}
}
bool HValue::CanReplaceWithDummyUses() {
return FLAG_unreachable_code_elimination &&
!(block()->IsReachable() ||
IsBlockEntry() ||
IsControlInstruction() ||
IsSimulate() ||
IsEnterInlined() ||
IsLeaveInlined());
}
bool HValue::IsInteger32Constant() {
return IsConstant() && HConstant::cast(this)->HasInteger32Value();
}
int32_t HValue::GetInteger32Constant() {
return HConstant::cast(this)->Integer32Value();
}
bool HValue::EqualsInteger32Constant(int32_t value) {
return IsInteger32Constant() && GetInteger32Constant() == value;
}
void HValue::SetOperandAt(int index, HValue* value) {
RegisterUse(index, value);
InternalSetOperandAt(index, value);
}
void HValue::DeleteAndReplaceWith(HValue* other) {
// We replace all uses first, so Delete can assert that there are none.
if (other != NULL) ReplaceAllUsesWith(other);
Kill();
DeleteFromGraph();
}
void HValue::ReplaceAllUsesWith(HValue* other) {
while (use_list_ != NULL) {
HUseListNode* list_node = use_list_;
HValue* value = list_node->value();
ASSERT(!value->block()->IsStartBlock());
value->InternalSetOperandAt(list_node->index(), other);
use_list_ = list_node->tail();
list_node->set_tail(other->use_list_);
other->use_list_ = list_node;
}
}
void HValue::Kill() {
// Instead of going through the entire use list of each operand, we only
// check the first item in each use list and rely on the tail() method to
// skip dead items, removing them lazily next time we traverse the list.
SetFlag(kIsDead);
for (int i = 0; i < OperandCount(); ++i) {
HValue* operand = OperandAt(i);
if (operand == NULL) continue;
HUseListNode* first = operand->use_list_;
if (first != NULL && first->value()->CheckFlag(kIsDead)) {
operand->use_list_ = first->tail();
}
}
}
void HValue::SetBlock(HBasicBlock* block) {
ASSERT(block_ == NULL || block == NULL);
block_ = block;
if (id_ == kNoNumber && block != NULL) {
id_ = block->graph()->GetNextValueID(this);
}
}
void HValue::PrintTypeTo(StringStream* stream) {
if (!representation().IsTagged() || type().Equals(HType::Tagged())) return;
stream->Add(" type:%s", type().ToString());
}
void HValue::PrintRangeTo(StringStream* stream) {
if (range() == NULL || range()->IsMostGeneric()) return;
// Note: The c1visualizer syntax for locals allows only a sequence of the
// following characters: A-Za-z0-9_-|:
stream->Add(" range:%d_%d%s",
range()->lower(),
range()->upper(),
range()->CanBeMinusZero() ? "_m0" : "");
}
void HValue::PrintChangesTo(StringStream* stream) {
GVNFlagSet changes_flags = ChangesFlags();
if (changes_flags.IsEmpty()) return;
stream->Add(" changes[");
if (changes_flags == AllSideEffectsFlagSet()) {
stream->Add("*");
} else {
bool add_comma = false;
#define PRINT_DO(type) \
if (changes_flags.Contains(kChanges##type)) { \
if (add_comma) stream->Add(","); \
add_comma = true; \
stream->Add(#type); \
}
GVN_TRACKED_FLAG_LIST(PRINT_DO);
GVN_UNTRACKED_FLAG_LIST(PRINT_DO);
#undef PRINT_DO
}
stream->Add("]");
}
void HValue::PrintNameTo(StringStream* stream) {
stream->Add("%s%d", representation_.Mnemonic(), id());
}
bool HValue::HasMonomorphicJSObjectType() {
return !GetMonomorphicJSObjectMap().is_null();
}
bool HValue::UpdateInferredType() {
HType type = CalculateInferredType();
bool result = (!type.Equals(type_));
type_ = type;
return result;
}
void HValue::RegisterUse(int index, HValue* new_value) {
HValue* old_value = OperandAt(index);
if (old_value == new_value) return;
HUseListNode* removed = NULL;
if (old_value != NULL) {
removed = old_value->RemoveUse(this, index);
}
if (new_value != NULL) {
if (removed == NULL) {
new_value->use_list_ = new(new_value->block()->zone()) HUseListNode(
this, index, new_value->use_list_);
} else {
removed->set_tail(new_value->use_list_);
new_value->use_list_ = removed;
}
}
}
void HValue::AddNewRange(Range* r, Zone* zone) {
if (!HasRange()) ComputeInitialRange(zone);
if (!HasRange()) range_ = new(zone) Range();
ASSERT(HasRange());
r->StackUpon(range_);
range_ = r;
}
void HValue::RemoveLastAddedRange() {
ASSERT(HasRange());
ASSERT(range_->next() != NULL);
range_ = range_->next();
}
void HValue::ComputeInitialRange(Zone* zone) {
ASSERT(!HasRange());
range_ = InferRange(zone);
ASSERT(HasRange());
}
void HInstruction::PrintTo(StringStream* stream) {
PrintMnemonicTo(stream);
PrintDataTo(stream);
PrintRangeTo(stream);
PrintChangesTo(stream);
PrintTypeTo(stream);
if (CheckFlag(HValue::kHasNoObservableSideEffects)) {
stream->Add(" [noOSE]");
}
}
void HInstruction::PrintDataTo(StringStream *stream) {
for (int i = 0; i < OperandCount(); ++i) {
if (i > 0) stream->Add(" ");
OperandAt(i)->PrintNameTo(stream);
}
}
void HInstruction::PrintMnemonicTo(StringStream* stream) {
stream->Add("%s ", Mnemonic());
}
void HInstruction::Unlink() {
ASSERT(IsLinked());
ASSERT(!IsBlockEntry()); // Doesn't make sense to delete these.
ASSERT(previous_ != NULL);
previous_->next_ = next_;
if (next_ == NULL) {
ASSERT(block()->last() == this);
block()->set_last(previous_);
} else {
next_->previous_ = previous_;
}
clear_block();
}
void HInstruction::InsertBefore(HInstruction* next) {
ASSERT(!IsLinked());
ASSERT(!next->IsBlockEntry());
ASSERT(!IsControlInstruction());
ASSERT(!next->block()->IsStartBlock());
ASSERT(next->previous_ != NULL);
HInstruction* prev = next->previous();
prev->next_ = this;
next->previous_ = this;
next_ = next;
previous_ = prev;
SetBlock(next->block());
if (position() == RelocInfo::kNoPosition &&
next->position() != RelocInfo::kNoPosition) {
set_position(next->position());
}
}
void HInstruction::InsertAfter(HInstruction* previous) {
ASSERT(!IsLinked());
ASSERT(!previous->IsControlInstruction());
ASSERT(!IsControlInstruction() || previous->next_ == NULL);
HBasicBlock* block = previous->block();
// Never insert anything except constants into the start block after finishing
// it.
if (block->IsStartBlock() && block->IsFinished() && !IsConstant()) {
ASSERT(block->end()->SecondSuccessor() == NULL);
InsertAfter(block->end()->FirstSuccessor()->first());
return;
}
// If we're inserting after an instruction with side-effects that is
// followed by a simulate instruction, we need to insert after the
// simulate instruction instead.
HInstruction* next = previous->next_;
if (previous->HasObservableSideEffects() && next != NULL) {
ASSERT(next->IsSimulate());
previous = next;
next = previous->next_;
}
previous_ = previous;
next_ = next;
SetBlock(block);
previous->next_ = this;
if (next != NULL) next->previous_ = this;
if (block->last() == previous) {
block->set_last(this);
}
if (position() == RelocInfo::kNoPosition &&
previous->position() != RelocInfo::kNoPosition) {
set_position(previous->position());
}
}
#ifdef DEBUG
void HInstruction::Verify() {
// Verify that input operands are defined before use.
HBasicBlock* cur_block = block();
for (int i = 0; i < OperandCount(); ++i) {
HValue* other_operand = OperandAt(i);
if (other_operand == NULL) continue;
HBasicBlock* other_block = other_operand->block();
if (cur_block == other_block) {
if (!other_operand->IsPhi()) {
HInstruction* cur = this->previous();
while (cur != NULL) {
if (cur == other_operand) break;
cur = cur->previous();
}
// Must reach other operand in the same block!
ASSERT(cur == other_operand);
}
} else {
// If the following assert fires, you may have forgotten an
// AddInstruction.
ASSERT(other_block->Dominates(cur_block));
}
}
// Verify that instructions that may have side-effects are followed
// by a simulate instruction.
if (HasObservableSideEffects() && !IsOsrEntry()) {
ASSERT(next()->IsSimulate());
}
// Verify that instructions that can be eliminated by GVN have overridden
// HValue::DataEquals. The default implementation is UNREACHABLE. We
// don't actually care whether DataEquals returns true or false here.
if (CheckFlag(kUseGVN)) DataEquals(this);
// Verify that all uses are in the graph.
for (HUseIterator use = uses(); !use.Done(); use.Advance()) {
if (use.value()->IsInstruction()) {
ASSERT(HInstruction::cast(use.value())->IsLinked());
}
}
}
#endif
void HDummyUse::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
}
void HEnvironmentMarker::PrintDataTo(StringStream* stream) {
stream->Add("%s var[%d]", kind() == BIND ? "bind" : "lookup", index());
}
void HUnaryCall::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" ");
stream->Add("#%d", argument_count());
}
void HBinaryCall::PrintDataTo(StringStream* stream) {
first()->PrintNameTo(stream);
stream->Add(" ");
second()->PrintNameTo(stream);
stream->Add(" ");
stream->Add("#%d", argument_count());
}
void HBoundsCheck::ApplyIndexChange() {
if (skip_check()) return;
DecompositionResult decomposition;
bool index_is_decomposable = index()->TryDecompose(&decomposition);
if (index_is_decomposable) {
ASSERT(decomposition.base() == base());
if (decomposition.offset() == offset() &&
decomposition.scale() == scale()) return;
} else {
return;
}
ReplaceAllUsesWith(index());
HValue* current_index = decomposition.base();
int actual_offset = decomposition.offset() + offset();
int actual_scale = decomposition.scale() + scale();
Zone* zone = block()->graph()->zone();
HValue* context = block()->graph()->GetInvalidContext();
if (actual_offset != 0) {
HConstant* add_offset = HConstant::New(zone, context, actual_offset);
add_offset->InsertBefore(this);
HInstruction* add = HAdd::New(zone, context,
current_index, add_offset);
add->InsertBefore(this);
add->AssumeRepresentation(index()->representation());
add->ClearFlag(kCanOverflow);
current_index = add;
}
if (actual_scale != 0) {
HConstant* sar_scale = HConstant::New(zone, context, actual_scale);
sar_scale->InsertBefore(this);
HInstruction* sar = HSar::New(zone, context,
current_index, sar_scale);
sar->InsertBefore(this);
sar->AssumeRepresentation(index()->representation());
current_index = sar;
}
SetOperandAt(0, current_index);
base_ = NULL;
offset_ = 0;
scale_ = 0;
}
void HBoundsCheck::PrintDataTo(StringStream* stream) {
index()->PrintNameTo(stream);
stream->Add(" ");
length()->PrintNameTo(stream);
if (base() != NULL && (offset() != 0 || scale() != 0)) {
stream->Add(" base: ((");
if (base() != index()) {
index()->PrintNameTo(stream);
} else {
stream->Add("index");
}
stream->Add(" + %d) >> %d)", offset(), scale());
}
if (skip_check()) {
stream->Add(" [DISABLED]");
}
}
void HBoundsCheck::InferRepresentation(HInferRepresentationPhase* h_infer) {
ASSERT(CheckFlag(kFlexibleRepresentation));
HValue* actual_index = index()->ActualValue();
HValue* actual_length = length()->ActualValue();
Representation index_rep = actual_index->representation();
Representation length_rep = actual_length->representation();
if (index_rep.IsTagged() && actual_index->type().IsSmi()) {
index_rep = Representation::Smi();
}
if (length_rep.IsTagged() && actual_length->type().IsSmi()) {
length_rep = Representation::Smi();
}
Representation r = index_rep.generalize(length_rep);
if (r.is_more_general_than(Representation::Integer32())) {
r = Representation::Integer32();
}
UpdateRepresentation(r, h_infer, "boundscheck");
}
Range* HBoundsCheck::InferRange(Zone* zone) {
Representation r = representation();
if (r.IsSmiOrInteger32() && length()->HasRange()) {
int upper = length()->range()->upper() - (allow_equality() ? 0 : 1);
int lower = 0;
Range* result = new(zone) Range(lower, upper);
if (index()->HasRange()) {
result->Intersect(index()->range());
}
// In case of Smi representation, clamp result to Smi::kMaxValue.
if (r.IsSmi()) result->ClampToSmi();
return result;
}
return HValue::InferRange(zone);
}
void HBoundsCheckBaseIndexInformation::PrintDataTo(StringStream* stream) {
stream->Add("base: ");
base_index()->PrintNameTo(stream);
stream->Add(", check: ");
base_index()->PrintNameTo(stream);
}
void HCallConstantFunction::PrintDataTo(StringStream* stream) {
if (IsApplyFunction()) {
stream->Add("optimized apply ");
} else {
stream->Add("%o ", function()->shared()->DebugName());
}
stream->Add("#%d", argument_count());
}
void HCallNamed::PrintDataTo(StringStream* stream) {
stream->Add("%o ", *name());
HUnaryCall::PrintDataTo(stream);
}
void HCallGlobal::PrintDataTo(StringStream* stream) {
stream->Add("%o ", *name());
HUnaryCall::PrintDataTo(stream);
}
void HCallKnownGlobal::PrintDataTo(StringStream* stream) {
stream->Add("%o ", target()->shared()->DebugName());
stream->Add("#%d", argument_count());
}
void HCallNewArray::PrintDataTo(StringStream* stream) {
stream->Add(ElementsKindToString(elements_kind()));
stream->Add(" ");
HBinaryCall::PrintDataTo(stream);
}
void HCallRuntime::PrintDataTo(StringStream* stream) {
stream->Add("%o ", *name());
if (save_doubles() == kSaveFPRegs) {
stream->Add("[save doubles] ");
}
stream->Add("#%d", argument_count());
}
void HClassOfTestAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("class_of_test(");
value()->PrintNameTo(stream);
stream->Add(", \"%o\")", *class_name());
}
void HWrapReceiver::PrintDataTo(StringStream* stream) {
receiver()->PrintNameTo(stream);
stream->Add(" ");
function()->PrintNameTo(stream);
}
void HAccessArgumentsAt::PrintDataTo(StringStream* stream) {
arguments()->PrintNameTo(stream);
stream->Add("[");
index()->PrintNameTo(stream);
stream->Add("], length ");
length()->PrintNameTo(stream);
}
void HControlInstruction::PrintDataTo(StringStream* stream) {
stream->Add(" goto (");
bool first_block = true;
for (HSuccessorIterator it(this); !it.Done(); it.Advance()) {
stream->Add(first_block ? "B%d" : ", B%d", it.Current()->block_id());
first_block = false;
}
stream->Add(")");
}
void HUnaryControlInstruction::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
HControlInstruction::PrintDataTo(stream);
}
void HReturn::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" (pop ");
parameter_count()->PrintNameTo(stream);
stream->Add(" values)");
}
Representation HBranch::observed_input_representation(int index) {
static const ToBooleanStub::Types tagged_types(
ToBooleanStub::NULL_TYPE |
ToBooleanStub::SPEC_OBJECT |
ToBooleanStub::STRING |
ToBooleanStub::SYMBOL);
if (expected_input_types_.ContainsAnyOf(tagged_types)) {
return Representation::Tagged();
}
if (expected_input_types_.Contains(ToBooleanStub::UNDEFINED)) {
if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) {
return Representation::Double();
}
return Representation::Tagged();
}
if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) {
return Representation::Double();
}
if (expected_input_types_.Contains(ToBooleanStub::SMI)) {
return Representation::Smi();
}
return Representation::None();
}
bool HBranch::KnownSuccessorBlock(HBasicBlock** block) {
HValue* value = this->value();
if (value->EmitAtUses()) {
ASSERT(value->IsConstant());
ASSERT(!value->representation().IsDouble());
*block = HConstant::cast(value)->BooleanValue()
? FirstSuccessor()
: SecondSuccessor();
return true;
}
*block = NULL;
return false;
}
void HCompareMap::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" (%p)", *map().handle());
HControlInstruction::PrintDataTo(stream);
}
const char* HUnaryMathOperation::OpName() const {
switch (op()) {
case kMathFloor: return "floor";
case kMathRound: return "round";
case kMathAbs: return "abs";
case kMathLog: return "log";
case kMathExp: return "exp";
case kMathSqrt: return "sqrt";
case kMathPowHalf: return "pow-half";
default:
UNREACHABLE();
return NULL;
}
}
Range* HUnaryMathOperation::InferRange(Zone* zone) {
Representation r = representation();
if (r.IsSmiOrInteger32() && value()->HasRange()) {
if (op() == kMathAbs) {
int upper = value()->range()->upper();
int lower = value()->range()->lower();
bool spans_zero = value()->range()->CanBeZero();
// Math.abs(kMinInt) overflows its representation, on which the
// instruction deopts. Hence clamp it to kMaxInt.
int abs_upper = upper == kMinInt ? kMaxInt : abs(upper);
int abs_lower = lower == kMinInt ? kMaxInt : abs(lower);
Range* result =
new(zone) Range(spans_zero ? 0 : Min(abs_lower, abs_upper),
Max(abs_lower, abs_upper));
// In case of Smi representation, clamp Math.abs(Smi::kMinValue) to
// Smi::kMaxValue.
if (r.IsSmi()) result->ClampToSmi();
return result;
}
}
return HValue::InferRange(zone);
}
void HUnaryMathOperation::PrintDataTo(StringStream* stream) {
const char* name = OpName();
stream->Add("%s ", name);
value()->PrintNameTo(stream);
}
void HUnaryOperation::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
}
void HHasInstanceTypeAndBranch::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
switch (from_) {
case FIRST_JS_RECEIVER_TYPE:
if (to_ == LAST_TYPE) stream->Add(" spec_object");
break;
case JS_REGEXP_TYPE:
if (to_ == JS_REGEXP_TYPE) stream->Add(" reg_exp");
break;
case JS_ARRAY_TYPE:
if (to_ == JS_ARRAY_TYPE) stream->Add(" array");
break;
case JS_FUNCTION_TYPE:
if (to_ == JS_FUNCTION_TYPE) stream->Add(" function");
break;
default:
break;
}
}
void HTypeofIsAndBranch::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" == %o", *type_literal_);
HControlInstruction::PrintDataTo(stream);
}
bool HTypeofIsAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
if (value()->representation().IsSpecialization()) {
if (compares_number_type()) {
*block = FirstSuccessor();
} else {
*block = SecondSuccessor();
}
return true;
}
*block = NULL;
return false;
}
void HCheckMapValue::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" ");
map()->PrintNameTo(stream);
}
void HForInPrepareMap::PrintDataTo(StringStream* stream) {
enumerable()->PrintNameTo(stream);
}
void HForInCacheArray::PrintDataTo(StringStream* stream) {
enumerable()->PrintNameTo(stream);
stream->Add(" ");
map()->PrintNameTo(stream);
stream->Add("[%d]", idx_);
}
void HLoadFieldByIndex::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add(" ");
index()->PrintNameTo(stream);
}
static bool MatchLeftIsOnes(HValue* l, HValue* r, HValue** negated) {
if (!l->EqualsInteger32Constant(~0)) return false;
*negated = r;
return true;
}
static bool MatchNegationViaXor(HValue* instr, HValue** negated) {
if (!instr->IsBitwise()) return false;
HBitwise* b = HBitwise::cast(instr);
return (b->op() == Token::BIT_XOR) &&
(MatchLeftIsOnes(b->left(), b->right(), negated) ||
MatchLeftIsOnes(b->right(), b->left(), negated));
}
static bool MatchDoubleNegation(HValue* instr, HValue** arg) {
HValue* negated;
return MatchNegationViaXor(instr, &negated) &&
MatchNegationViaXor(negated, arg);
}
HValue* HBitwise::Canonicalize() {
if (!representation().IsSmiOrInteger32()) return this;
// If x is an int32, then x & -1 == x, x | 0 == x and x ^ 0 == x.
int32_t nop_constant = (op() == Token::BIT_AND) ? -1 : 0;
if (left()->EqualsInteger32Constant(nop_constant) &&
!right()->CheckFlag(kUint32)) {
return right();
}
if (right()->EqualsInteger32Constant(nop_constant) &&
!left()->CheckFlag(kUint32)) {
return left();
}
// Optimize double negation, a common pattern used for ToInt32(x).
HValue* arg;
if (MatchDoubleNegation(this, &arg) && !arg->CheckFlag(kUint32)) {
return arg;
}
return this;
}
Representation HAdd::RepresentationFromInputs() {
Representation left_rep = left()->representation();
if (left_rep.IsExternal()) {
return Representation::External();
}
return HArithmeticBinaryOperation::RepresentationFromInputs();
}
Representation HAdd::RequiredInputRepresentation(int index) {
if (index == 2) {
Representation left_rep = left()->representation();
if (left_rep.IsExternal()) {
return Representation::Integer32();
}
}
return HArithmeticBinaryOperation::RequiredInputRepresentation(index);
}
static bool IsIdentityOperation(HValue* arg1, HValue* arg2, int32_t identity) {
return arg1->representation().IsSpecialization() &&
arg2->EqualsInteger32Constant(identity);
}
HValue* HAdd::Canonicalize() {
// Adding 0 is an identity operation except in case of -0: -0 + 0 = +0
if (IsIdentityOperation(left(), right(), 0) &&
!left()->representation().IsDouble()) { // Left could be -0.
return left();
}
if (IsIdentityOperation(right(), left(), 0) &&
!left()->representation().IsDouble()) { // Right could be -0.
return right();
}
return this;
}
HValue* HSub::Canonicalize() {
if (IsIdentityOperation(left(), right(), 0)) return left();
return this;
}
HValue* HMul::Canonicalize() {
if (IsIdentityOperation(left(), right(), 1)) return left();
if (IsIdentityOperation(right(), left(), 1)) return right();
return this;
}
bool HMul::MulMinusOne() {
if (left()->EqualsInteger32Constant(-1) ||
right()->EqualsInteger32Constant(-1)) {
return true;
}
return false;
}
HValue* HMod::Canonicalize() {
return this;
}
HValue* HDiv::Canonicalize() {
if (IsIdentityOperation(left(), right(), 1)) return left();
return this;
}
HValue* HChange::Canonicalize() {
return (from().Equals(to())) ? value() : this;
}
HValue* HWrapReceiver::Canonicalize() {
if (HasNoUses()) return NULL;
if (receiver()->type().IsJSObject()) {
return receiver();
}
return this;
}
void HTypeof::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
}
HInstruction* HForceRepresentation::New(Zone* zone, HValue* context,
HValue* value, Representation required_representation) {
if (FLAG_fold_constants && value->IsConstant()) {
HConstant* c = HConstant::cast(value);
if (c->HasNumberValue()) {
double double_res = c->DoubleValue();
if (IsInt32Double(double_res)) {
return HConstant::New(zone, context,
static_cast<int32_t>(double_res),
required_representation);
}
}
}
return new(zone) HForceRepresentation(value, required_representation);
}
void HForceRepresentation::PrintDataTo(StringStream* stream) {
stream->Add("%s ", representation().Mnemonic());
value()->PrintNameTo(stream);
}
void HChange::PrintDataTo(StringStream* stream) {
HUnaryOperation::PrintDataTo(stream);
stream->Add(" %s to %s", from().Mnemonic(), to().Mnemonic());
if (CanTruncateToInt32()) stream->Add(" truncating-int32");
if (CheckFlag(kBailoutOnMinusZero)) stream->Add(" -0?");
if (CheckFlag(kAllowUndefinedAsNaN)) stream->Add(" allow-undefined-as-nan");
}
static HValue* SimplifiedDividendForMathFloorOfDiv(HValue* dividend) {
// A value with an integer representation does not need to be transformed.
if (dividend->representation().IsInteger32()) {
return dividend;
}
// A change from an integer32 can be replaced by the integer32 value.
if (dividend->IsChange() &&
HChange::cast(dividend)->from().IsInteger32()) {
return HChange::cast(dividend)->value();
}
return NULL;
}
HValue* HUnaryMathOperation::Canonicalize() {
if (op() == kMathRound || op() == kMathFloor) {
HValue* val = value();
if (val->IsChange()) val = HChange::cast(val)->value();
// If the input is smi or integer32 then we replace the instruction with its
// input.
if (val->representation().IsSmiOrInteger32()) {
if (!val->representation().Equals(representation())) {
HChange* result = new(block()->zone()) HChange(
val, representation(), false, false);
result->InsertBefore(this);
return result;
}
return val;
}
}
if (op() == kMathFloor) {
HValue* val = value();
if (val->IsChange()) val = HChange::cast(val)->value();
if (val->IsDiv() && (val->UseCount() == 1)) {
HDiv* hdiv = HDiv::cast(val);
HValue* left = hdiv->left();
HValue* right = hdiv->right();
// Try to simplify left and right values of the division.
HValue* new_left = SimplifiedDividendForMathFloorOfDiv(left);
if (new_left == NULL &&
hdiv->observed_input_representation(1).IsSmiOrInteger32()) {
new_left = new(block()->zone()) HChange(
left, Representation::Integer32(), false, false);
HChange::cast(new_left)->InsertBefore(this);
}
HValue* new_right =
LChunkBuilder::SimplifiedDivisorForMathFloorOfDiv(right);
if (new_right == NULL &&
#if V8_TARGET_ARCH_ARM
CpuFeatures::IsSupported(SUDIV) &&
#endif
hdiv->observed_input_representation(2).IsSmiOrInteger32()) {
new_right = new(block()->zone()) HChange(
right, Representation::Integer32(), false, false);
HChange::cast(new_right)->InsertBefore(this);
}
// Return if left or right are not optimizable.
if ((new_left == NULL) || (new_right == NULL)) return this;
// Insert the new values in the graph.
if (new_left->IsInstruction() &&
!HInstruction::cast(new_left)->IsLinked()) {
HInstruction::cast(new_left)->InsertBefore(this);
}
if (new_right->IsInstruction() &&
!HInstruction::cast(new_right)->IsLinked()) {
HInstruction::cast(new_right)->InsertBefore(this);
}
HMathFloorOfDiv* instr =
HMathFloorOfDiv::New(block()->zone(), context(), new_left, new_right);
// Replace this HMathFloor instruction by the new HMathFloorOfDiv.
instr->InsertBefore(this);
ReplaceAllUsesWith(instr);
Kill();
// We know the division had no other uses than this HMathFloor. Delete it.
// Dead code elimination will deal with |left| and |right| if
// appropriate.
hdiv->DeleteAndReplaceWith(NULL);
// Return NULL to remove this instruction from the graph.
return NULL;
}
}
return this;
}
HValue* HCheckInstanceType::Canonicalize() {
if (check_ == IS_STRING && value()->type().IsString()) {
return value();
}
if (check_ == IS_INTERNALIZED_STRING && value()->IsConstant()) {
if (HConstant::cast(value())->HasInternalizedStringValue()) {
return value();
}
}
return this;
}
void HCheckInstanceType::GetCheckInterval(InstanceType* first,
InstanceType* last) {
ASSERT(is_interval_check());
switch (check_) {
case IS_SPEC_OBJECT:
*first = FIRST_SPEC_OBJECT_TYPE;
*last = LAST_SPEC_OBJECT_TYPE;
return;
case IS_JS_ARRAY:
*first = *last = JS_ARRAY_TYPE;
return;
default:
UNREACHABLE();
}
}
void HCheckInstanceType::GetCheckMaskAndTag(uint8_t* mask, uint8_t* tag) {
ASSERT(!is_interval_check());
switch (check_) {
case IS_STRING:
*mask = kIsNotStringMask;
*tag = kStringTag;
return;
case IS_INTERNALIZED_STRING:
*mask = kIsNotStringMask | kIsNotInternalizedMask;
*tag = kInternalizedTag;
return;
default:
UNREACHABLE();
}
}
void HCheckMaps::HandleSideEffectDominator(GVNFlag side_effect,
HValue* dominator) {
ASSERT(side_effect == kChangesMaps);
// TODO(mstarzinger): For now we specialize on HStoreNamedField, but once
// type information is rich enough we should generalize this to any HType
// for which the map is known.
if (HasNoUses() && dominator->IsStoreNamedField()) {
HStoreNamedField* store = HStoreNamedField::cast(dominator);
if (!store->has_transition() || store->object() != value()) return;
HConstant* transition = HConstant::cast(store->transition());
if (map_set_.Contains(transition->GetUnique())) {
DeleteAndReplaceWith(NULL);
return;
}
}
}
void HCheckMaps::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" [%p", *map_set_.at(0).handle());
for (int i = 1; i < map_set_.size(); ++i) {
stream->Add(",%p", *map_set_.at(i).handle());
}
stream->Add("]%s", CanOmitMapChecks() ? "(omitted)" : "");
}
void HCheckValue::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" ");
object().handle()->ShortPrint(stream);
}
HValue* HCheckValue::Canonicalize() {
return (value()->IsConstant() &&
HConstant::cast(value())->GetUnique() == object_)
? NULL
: this;
}
const char* HCheckInstanceType::GetCheckName() {
switch (check_) {
case IS_SPEC_OBJECT: return "object";
case IS_JS_ARRAY: return "array";
case IS_STRING: return "string";
case IS_INTERNALIZED_STRING: return "internalized_string";
}
UNREACHABLE();
return "";
}
void HCheckInstanceType::PrintDataTo(StringStream* stream) {
stream->Add("%s ", GetCheckName());
HUnaryOperation::PrintDataTo(stream);
}
void HCallStub::PrintDataTo(StringStream* stream) {
stream->Add("%s ",
CodeStub::MajorName(major_key_, false));
HUnaryCall::PrintDataTo(stream);
}
void HUnknownOSRValue::PrintDataTo(StringStream *stream) {
const char* type = "expression";
if (environment_->is_local_index(index_)) type = "local";
if (environment_->is_special_index(index_)) type = "special";
if (environment_->is_parameter_index(index_)) type = "parameter";
stream->Add("%s @ %d", type, index_);
}
void HInstanceOf::PrintDataTo(StringStream* stream) {
left()->PrintNameTo(stream);
stream->Add(" ");
right()->PrintNameTo(stream);
stream->Add(" ");
context()->PrintNameTo(stream);
}
Range* HValue::InferRange(Zone* zone) {
Range* result;
if (representation().IsSmi() || type().IsSmi()) {
result = new(zone) Range(Smi::kMinValue, Smi::kMaxValue);
result->set_can_be_minus_zero(false);
} else {
result = new(zone) Range();
result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32));
// TODO(jkummerow): The range cannot be minus zero when the upper type
// bound is Integer32.
}
return result;
}
Range* HChange::InferRange(Zone* zone) {
Range* input_range = value()->range();
if (from().IsInteger32() && !value()->CheckFlag(HInstruction::kUint32) &&
(to().IsSmi() ||
(to().IsTagged() &&
input_range != NULL &&
input_range->IsInSmiRange()))) {
set_type(HType::Smi());
ClearGVNFlag(kChangesNewSpacePromotion);
}
Range* result = (input_range != NULL)
? input_range->Copy(zone)
: HValue::InferRange(zone);
result->set_can_be_minus_zero(!to().IsSmiOrInteger32() ||
!(CheckFlag(kAllUsesTruncatingToInt32) ||
CheckFlag(kAllUsesTruncatingToSmi)));
if (to().IsSmi()) result->ClampToSmi();
return result;
}
Range* HConstant::InferRange(Zone* zone) {
if (has_int32_value_) {
Range* result = new(zone) Range(int32_value_, int32_value_);
result->set_can_be_minus_zero(false);
return result;
}
return HValue::InferRange(zone);
}
int HPhi::position() const {
return block()->first()->position();
}
Range* HPhi::InferRange(Zone* zone) {
Representation r = representation();
if (r.IsSmiOrInteger32()) {
if (block()->IsLoopHeader()) {
Range* range = r.IsSmi()
? new(zone) Range(Smi::kMinValue, Smi::kMaxValue)
: new(zone) Range(kMinInt, kMaxInt);
return range;
} else {
Range* range = OperandAt(0)->range()->Copy(zone);
for (int i = 1; i < OperandCount(); ++i) {
range->Union(OperandAt(i)->range());
}
return range;
}
} else {
return HValue::InferRange(zone);
}
}
Range* HAdd::InferRange(Zone* zone) {
Representation r = representation();
if (r.IsSmiOrInteger32()) {
Range* a = left()->range();
Range* b = right()->range();
Range* res = a->Copy(zone);
if (!res->AddAndCheckOverflow(r, b) ||
(r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
(r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
ClearFlag(kCanOverflow);
}
res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
!CheckFlag(kAllUsesTruncatingToInt32) &&
a->CanBeMinusZero() && b->CanBeMinusZero());
return res;
} else {
return HValue::InferRange(zone);
}
}
Range* HSub::InferRange(Zone* zone) {
Representation r = representation();
if (r.IsSmiOrInteger32()) {
Range* a = left()->range();
Range* b = right()->range();
Range* res = a->Copy(zone);
if (!res->SubAndCheckOverflow(r, b) ||
(r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
(r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
ClearFlag(kCanOverflow);
}
res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
!CheckFlag(kAllUsesTruncatingToInt32) &&
a->CanBeMinusZero() && b->CanBeZero());
return res;
} else {
return HValue::InferRange(zone);
}
}
Range* HMul::InferRange(Zone* zone) {
Representation r = representation();
if (r.IsSmiOrInteger32()) {
Range* a = left()->range();
Range* b = right()->range();
Range* res = a->Copy(zone);
if (!res->MulAndCheckOverflow(r, b) ||
(((r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
(r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) &&
MulMinusOne())) {
// Truncated int multiplication is too precise and therefore not the
// same as converting to Double and back.
// Handle truncated integer multiplication by -1 special.
ClearFlag(kCanOverflow);
}
res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
!CheckFlag(kAllUsesTruncatingToInt32) &&
((a->CanBeZero() && b->CanBeNegative()) ||
(a->CanBeNegative() && b->CanBeZero())));
return res;
} else {
return HValue::InferRange(zone);
}
}
Range* HDiv::InferRange(Zone* zone) {
if (representation().IsInteger32()) {
Range* a = left()->range();
Range* b = right()->range();
Range* result = new(zone) Range();
result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
(a->CanBeMinusZero() ||
(a->CanBeZero() && b->CanBeNegative())));
if (!a->Includes(kMinInt) || !b->Includes(-1)) {
ClearFlag(HValue::kCanOverflow);
}
if (!b->CanBeZero()) {
ClearFlag(HValue::kCanBeDivByZero);
}
return result;
} else {
return HValue::InferRange(zone);
}
}
Range* HMod::InferRange(Zone* zone) {
if (representation().IsInteger32()) {
Range* a = left()->range();
Range* b = right()->range();
// The magnitude of the modulus is bounded by the right operand. Note that
// apart for the cases involving kMinInt, the calculation below is the same
// as Max(Abs(b->lower()), Abs(b->upper())) - 1.
int32_t positive_bound = -(Min(NegAbs(b->lower()), NegAbs(b->upper())) + 1);
// The result of the modulo operation has the sign of its left operand.
bool left_can_be_negative = a->CanBeMinusZero() || a->CanBeNegative();
Range* result = new(zone) Range(left_can_be_negative ? -positive_bound : 0,
a->CanBePositive() ? positive_bound : 0);
result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
left_can_be_negative);
if (!a->Includes(kMinInt) || !b->Includes(-1)) {
ClearFlag(HValue::kCanOverflow);
}
if (!b->CanBeZero()) {
ClearFlag(HValue::kCanBeDivByZero);
}
return result;
} else {
return HValue::InferRange(zone);
}
}
InductionVariableData* InductionVariableData::ExaminePhi(HPhi* phi) {
if (phi->block()->loop_information() == NULL) return NULL;
if (phi->OperandCount() != 2) return NULL;
int32_t candidate_increment;
candidate_increment = ComputeIncrement(phi, phi->OperandAt(0));
if (candidate_increment != 0) {
return new(phi->block()->graph()->zone())
InductionVariableData(phi, phi->OperandAt(1), candidate_increment);
}
candidate_increment = ComputeIncrement(phi, phi->OperandAt(1));
if (candidate_increment != 0) {
return new(phi->block()->graph()->zone())
InductionVariableData(phi, phi->OperandAt(0), candidate_increment);
}
return NULL;
}
/*
* This function tries to match the following patterns (and all the relevant
* variants related to |, & and + being commutative):
* base | constant_or_mask
* base & constant_and_mask
* (base + constant_offset) & constant_and_mask
* (base - constant_offset) & constant_and_mask
*/
void InductionVariableData::DecomposeBitwise(
HValue* value,
BitwiseDecompositionResult* result) {
HValue* base = IgnoreOsrValue(value);
result->base = value;
if (!base->representation().IsInteger32()) return;
if (base->IsBitwise()) {
bool allow_offset = false;
int32_t mask = 0;
HBitwise* bitwise = HBitwise::cast(base);
if (bitwise->right()->IsInteger32Constant()) {
mask = bitwise->right()->GetInteger32Constant();
base = bitwise->left();
} else if (bitwise->left()->IsInteger32Constant()) {
mask = bitwise->left()->GetInteger32Constant();
base = bitwise->right();
} else {
return;
}
if (bitwise->op() == Token::BIT_AND) {
result->and_mask = mask;
allow_offset = true;
} else if (bitwise->op() == Token::BIT_OR) {
result->or_mask = mask;
} else {
return;
}
result->context = bitwise->context();
if (allow_offset) {
if (base->IsAdd()) {
HAdd* add = HAdd::cast(base);
if (add->right()->IsInteger32Constant()) {
base = add->left();
} else if (add->left()->IsInteger32Constant()) {
base = add->right();
}
} else if (base->IsSub()) {
HSub* sub = HSub::cast(base);
if (sub->right()->IsInteger32Constant()) {
base = sub->left();
}
}
}
result->base = base;
}
}
void InductionVariableData::AddCheck(HBoundsCheck* check,
int32_t upper_limit) {
ASSERT(limit_validity() != NULL);
if (limit_validity() != check->block() &&
!limit_validity()->Dominates(check->block())) return;
if (!phi()->block()->current_loop()->IsNestedInThisLoop(
check->block()->current_loop())) return;
ChecksRelatedToLength* length_checks = checks();
while (length_checks != NULL) {
if (length_checks->length() == check->length()) break;
length_checks = length_checks->next();
}
if (length_checks == NULL) {
length_checks = new(check->block()->zone())
ChecksRelatedToLength(check->length(), checks());
checks_ = length_checks;
}
length_checks->AddCheck(check, upper_limit);
}
void InductionVariableData::ChecksRelatedToLength::CloseCurrentBlock() {
if (checks() != NULL) {
InductionVariableCheck* c = checks();
HBasicBlock* current_block = c->check()->block();
while (c != NULL && c->check()->block() == current_block) {
c->set_upper_limit(current_upper_limit_);
c = c->next();
}
}
}
void InductionVariableData::ChecksRelatedToLength::UseNewIndexInCurrentBlock(
Token::Value token,
int32_t mask,
HValue* index_base,
HValue* context) {
ASSERT(first_check_in_block() != NULL);
HValue* previous_index = first_check_in_block()->index();
ASSERT(context != NULL);
Zone* zone = index_base->block()->graph()->zone();
set_added_constant(HConstant::New(zone, context, mask));
if (added_index() != NULL) {
added_constant()->InsertBefore(added_index());
} else {
added_constant()->InsertBefore(first_check_in_block());
}
if (added_index() == NULL) {
first_check_in_block()->ReplaceAllUsesWith(first_check_in_block()->index());
HInstruction* new_index = HBitwise::New(zone, context, token, index_base,
added_constant());
ASSERT(new_index->IsBitwise());
new_index->ClearAllSideEffects();
new_index->AssumeRepresentation(Representation::Integer32());
set_added_index(HBitwise::cast(new_index));
added_index()->InsertBefore(first_check_in_block());
}
ASSERT(added_index()->op() == token);
added_index()->SetOperandAt(1, index_base);
added_index()->SetOperandAt(2, added_constant());
first_check_in_block()->SetOperandAt(0, added_index());
if (previous_index->UseCount() == 0) {
previous_index->DeleteAndReplaceWith(NULL);
}
}
void InductionVariableData::ChecksRelatedToLength::AddCheck(
HBoundsCheck* check,
int32_t upper_limit) {
BitwiseDecompositionResult decomposition;
InductionVariableData::DecomposeBitwise(check->index(), &decomposition);
if (first_check_in_block() == NULL ||
first_check_in_block()->block() != check->block()) {
CloseCurrentBlock();
first_check_in_block_ = check;
set_added_index(NULL);
set_added_constant(NULL);
current_and_mask_in_block_ = decomposition.and_mask;
current_or_mask_in_block_ = decomposition.or_mask;
current_upper_limit_ = upper_limit;
InductionVariableCheck* new_check = new(check->block()->graph()->zone())
InductionVariableCheck(check, checks_, upper_limit);
checks_ = new_check;
return;
}
if (upper_limit > current_upper_limit()) {
current_upper_limit_ = upper_limit;
}
if (decomposition.and_mask != 0 &&
current_or_mask_in_block() == 0) {
if (current_and_mask_in_block() == 0 ||
decomposition.and_mask > current_and_mask_in_block()) {
UseNewIndexInCurrentBlock(Token::BIT_AND,
decomposition.and_mask,
decomposition.base,
decomposition.context);
current_and_mask_in_block_ = decomposition.and_mask;
}
check->set_skip_check();
}
if (current_and_mask_in_block() == 0) {
if (decomposition.or_mask > current_or_mask_in_block()) {
UseNewIndexInCurrentBlock(Token::BIT_OR,
decomposition.or_mask,
decomposition.base,
decomposition.context);
current_or_mask_in_block_ = decomposition.or_mask;
}
check->set_skip_check();
}
if (!check->skip_check()) {
InductionVariableCheck* new_check = new(check->block()->graph()->zone())
InductionVariableCheck(check, checks_, upper_limit);
checks_ = new_check;
}
}
/*
* This method detects if phi is an induction variable, with phi_operand as
* its "incremented" value (the other operand would be the "base" value).
*
* It cheks is phi_operand has the form "phi + constant".
* If yes, the constant is the increment that the induction variable gets at
* every loop iteration.
* Otherwise it returns 0.
*/
int32_t InductionVariableData::ComputeIncrement(HPhi* phi,
HValue* phi_operand) {
if (!phi_operand->representation().IsInteger32()) return 0;
if (phi_operand->IsAdd()) {
HAdd* operation = HAdd::cast(phi_operand);
if (operation->left() == phi &&
operation->right()->IsInteger32Constant()) {
return operation->right()->GetInteger32Constant();
} else if (operation->right() == phi &&
operation->left()->IsInteger32Constant()) {
return operation->left()->GetInteger32Constant();
}
} else if (phi_operand->IsSub()) {
HSub* operation = HSub::cast(phi_operand);
if (operation->left() == phi &&
operation->right()->IsInteger32Constant()) {
return -operation->right()->GetInteger32Constant();
}
}
return 0;
}
/*
* Swaps the information in "update" with the one contained in "this".
* The swapping is important because this method is used while doing a
* dominator tree traversal, and "update" will retain the old data that
* will be restored while backtracking.
*/
void InductionVariableData::UpdateAdditionalLimit(
InductionVariableLimitUpdate* update) {
ASSERT(update->updated_variable == this);
if (update->limit_is_upper) {
swap(&additional_upper_limit_, &update->limit);
swap(&additional_upper_limit_is_included_, &update->limit_is_included);
} else {
swap(&additional_lower_limit_, &update->limit);
swap(&additional_lower_limit_is_included_, &update->limit_is_included);
}
}
int32_t InductionVariableData::ComputeUpperLimit(int32_t and_mask,
int32_t or_mask) {
// Should be Smi::kMaxValue but it must fit 32 bits; lower is safe anyway.
const int32_t MAX_LIMIT = 1 << 30;
int32_t result = MAX_LIMIT;
if (limit() != NULL &&
limit()->IsInteger32Constant()) {
int32_t limit_value = limit()->GetInteger32Constant();
if (!limit_included()) {
limit_value--;
}
if (limit_value < result) result = limit_value;
}
if (additional_upper_limit() != NULL &&
additional_upper_limit()->IsInteger32Constant()) {
int32_t limit_value = additional_upper_limit()->GetInteger32Constant();
if (!additional_upper_limit_is_included()) {
limit_value--;
}
if (limit_value < result) result = limit_value;
}
if (and_mask > 0 && and_mask < MAX_LIMIT) {
if (and_mask < result) result = and_mask;
return result;
}
// Add the effect of the or_mask.
result |= or_mask;
return result >= MAX_LIMIT ? kNoLimit : result;
}
HValue* InductionVariableData::IgnoreOsrValue(HValue* v) {
if (!v->IsPhi()) return v;
HPhi* phi = HPhi::cast(v);
if (phi->OperandCount() != 2) return v;
if (phi->OperandAt(0)->block()->is_osr_entry()) {
return phi->OperandAt(1);
} else if (phi->OperandAt(1)->block()->is_osr_entry()) {
return phi->OperandAt(0);
} else {
return v;
}
}
InductionVariableData* InductionVariableData::GetInductionVariableData(
HValue* v) {
v = IgnoreOsrValue(v);
if (v->IsPhi()) {
return HPhi::cast(v)->induction_variable_data();
}
return NULL;
}
/*
* Check if a conditional branch to "current_branch" with token "token" is
* the branch that keeps the induction loop running (and, conversely, will
* terminate it if the "other_branch" is taken).
*
* Three conditions must be met:
* - "current_branch" must be in the induction loop.
* - "other_branch" must be out of the induction loop.
* - "token" and the induction increment must be "compatible": the token should
* be a condition that keeps the execution inside the loop until the limit is
* reached.
*/
bool InductionVariableData::CheckIfBranchIsLoopGuard(
Token::Value token,
HBasicBlock* current_branch,
HBasicBlock* other_branch) {
if (!phi()->block()->current_loop()->IsNestedInThisLoop(
current_branch->current_loop())) {
return false;
}
if (phi()->block()->current_loop()->IsNestedInThisLoop(
other_branch->current_loop())) {
return false;
}
if (increment() > 0 && (token == Token::LT || token == Token::LTE)) {
return true;
}
if (increment() < 0 && (token == Token::GT || token == Token::GTE)) {
return true;
}
if (Token::IsInequalityOp(token) && (increment() == 1 || increment() == -1)) {
return true;
}
return false;
}
void InductionVariableData::ComputeLimitFromPredecessorBlock(
HBasicBlock* block,
LimitFromPredecessorBlock* result) {
if (block->predecessors()->length() != 1) return;
HBasicBlock* predecessor = block->predecessors()->at(0);
HInstruction* end = predecessor->last();
if (!end->IsCompareNumericAndBranch()) return;
HCompareNumericAndBranch* branch = HCompareNumericAndBranch::cast(end);
Token::Value token = branch->token();
if (!Token::IsArithmeticCompareOp(token)) return;
HBasicBlock* other_target;
if (block == branch->SuccessorAt(0)) {
other_target = branch->SuccessorAt(1);
} else {
other_target = branch->SuccessorAt(0);
token = Token::NegateCompareOp(token);
ASSERT(block == branch->SuccessorAt(1));
}
InductionVariableData* data;
data = GetInductionVariableData(branch->left());
HValue* limit = branch->right();
if (data == NULL) {
data = GetInductionVariableData(branch->right());
token = Token::ReverseCompareOp(token);
limit = branch->left();
}
if (data != NULL) {
result->variable = data;
result->token = token;
result->limit = limit;
result->other_target = other_target;
}
}
/*
* Compute the limit that is imposed on an induction variable when entering
* "block" (if any).
* If the limit is the "proper" induction limit (the one that makes the loop
* terminate when the induction variable reaches it) it is stored directly in
* the induction variable data.
* Otherwise the limit is written in "additional_limit" and the method
* returns true.
*/
bool InductionVariableData::ComputeInductionVariableLimit(
HBasicBlock* block,
InductionVariableLimitUpdate* additional_limit) {
LimitFromPredecessorBlock limit;
ComputeLimitFromPredecessorBlock(block, &limit);
if (!limit.LimitIsValid()) return false;
if (limit.variable->CheckIfBranchIsLoopGuard(limit.token,
block,
limit.other_target)) {
limit.variable->limit_ = limit.limit;
limit.variable->limit_included_ = limit.LimitIsIncluded();
limit.variable->limit_validity_ = block;
limit.variable->induction_exit_block_ = block->predecessors()->at(0);
limit.variable->induction_exit_target_ = limit.other_target;
return false;
} else {
additional_limit->updated_variable = limit.variable;
additional_limit->limit = limit.limit;
additional_limit->limit_is_upper = limit.LimitIsUpper();
additional_limit->limit_is_included = limit.LimitIsIncluded();
return true;
}
}
Range* HMathMinMax::InferRange(Zone* zone) {
if (representation().IsSmiOrInteger32()) {
Range* a = left()->range();
Range* b = right()->range();
Range* res = a->Copy(zone);
if (operation_ == kMathMax) {
res->CombinedMax(b);
} else {
ASSERT(operation_ == kMathMin);
res->CombinedMin(b);
}
return res;
} else {
return HValue::InferRange(zone);
}
}
void HPhi::PrintTo(StringStream* stream) {
stream->Add("[");
for (int i = 0; i < OperandCount(); ++i) {
HValue* value = OperandAt(i);
stream->Add(" ");
value->PrintNameTo(stream);
stream->Add(" ");
}
stream->Add(" uses:%d_%ds_%di_%dd_%dt",
UseCount(),
smi_non_phi_uses() + smi_indirect_uses(),
int32_non_phi_uses() + int32_indirect_uses(),
double_non_phi_uses() + double_indirect_uses(),
tagged_non_phi_uses() + tagged_indirect_uses());
PrintRangeTo(stream);
PrintTypeTo(stream);
stream->Add("]");
}
void HPhi::AddInput(HValue* value) {
inputs_.Add(NULL, value->block()->zone());
SetOperandAt(OperandCount() - 1, value);
// Mark phis that may have 'arguments' directly or indirectly as an operand.
if (!CheckFlag(kIsArguments) && value->CheckFlag(kIsArguments)) {
SetFlag(kIsArguments);
}
}
bool HPhi::HasRealUses() {
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
if (!it.value()->IsPhi()) return true;
}
return false;
}
HValue* HPhi::GetRedundantReplacement() {
HValue* candidate = NULL;
int count = OperandCount();
int position = 0;
while (position < count && candidate == NULL) {
HValue* current = OperandAt(position++);
if (current != this) candidate = current;
}
while (position < count) {
HValue* current = OperandAt(position++);
if (current != this && current != candidate) return NULL;
}
ASSERT(candidate != this);
return candidate;
}
void HPhi::DeleteFromGraph() {
ASSERT(block() != NULL);
block()->RemovePhi(this);
ASSERT(block() == NULL);
}
void HPhi::InitRealUses(int phi_id) {
// Initialize real uses.
phi_id_ = phi_id;
// Compute a conservative approximation of truncating uses before inferring
// representations. The proper, exact computation will be done later, when
// inserting representation changes.
SetFlag(kTruncatingToSmi);
SetFlag(kTruncatingToInt32);
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
HValue* value = it.value();
if (!value->IsPhi()) {
Representation rep = value->observed_input_representation(it.index());
non_phi_uses_[rep.kind()] += 1;
if (FLAG_trace_representation) {
PrintF("#%d Phi is used by real #%d %s as %s\n",
id(), value->id(), value->Mnemonic(), rep.Mnemonic());
}
if (!value->IsSimulate()) {
if (!value->CheckFlag(kTruncatingToSmi)) {
ClearFlag(kTruncatingToSmi);
}
if (!value->CheckFlag(kTruncatingToInt32)) {
ClearFlag(kTruncatingToInt32);
}
}
}
}
}
void HPhi::AddNonPhiUsesFrom(HPhi* other) {
if (FLAG_trace_representation) {
PrintF("adding to #%d Phi uses of #%d Phi: s%d i%d d%d t%d\n",
id(), other->id(),
other->non_phi_uses_[Representation::kSmi],
other->non_phi_uses_[Representation::kInteger32],
other->non_phi_uses_[Representation::kDouble],
other->non_phi_uses_[Representation::kTagged]);
}
for (int i = 0; i < Representation::kNumRepresentations; i++) {
indirect_uses_[i] += other->non_phi_uses_[i];
}
}
void HPhi::AddIndirectUsesTo(int* dest) {
for (int i = 0; i < Representation::kNumRepresentations; i++) {
dest[i] += indirect_uses_[i];
}
}
void HSimulate::MergeWith(ZoneList<HSimulate*>* list) {
while (!list->is_empty()) {
HSimulate* from = list->RemoveLast();
ZoneList<HValue*>* from_values = &from->values_;
for (int i = 0; i < from_values->length(); ++i) {
if (from->HasAssignedIndexAt(i)) {
int index = from->GetAssignedIndexAt(i);
if (HasValueForIndex(index)) continue;
AddAssignedValue(index, from_values->at(i));
} else {
if (pop_count_ > 0) {
pop_count_--;
} else {
AddPushedValue(from_values->at(i));
}
}
}
pop_count_ += from->pop_count_;
from->DeleteAndReplaceWith(NULL);
}
}
void HSimulate::PrintDataTo(StringStream* stream) {
stream->Add("id=%d", ast_id().ToInt());
if (pop_count_ > 0) stream->Add(" pop %d", pop_count_);
if (values_.length() > 0) {
if (pop_count_ > 0) stream->Add(" /");
for (int i = values_.length() - 1; i >= 0; --i) {
if (HasAssignedIndexAt(i)) {
stream->Add(" var[%d] = ", GetAssignedIndexAt(i));
} else {
stream->Add(" push ");
}
values_[i]->PrintNameTo(stream);
if (i > 0) stream->Add(",");
}
}
}
void HSimulate::ReplayEnvironment(HEnvironment* env) {
ASSERT(env != NULL);
env->set_ast_id(ast_id());
env->Drop(pop_count());
for (int i = values()->length() - 1; i >= 0; --i) {
HValue* value = values()->at(i);
if (HasAssignedIndexAt(i)) {
env->Bind(GetAssignedIndexAt(i), value);
} else {
env->Push(value);
}
}
}
static void ReplayEnvironmentNested(const ZoneList<HValue*>* values,
HCapturedObject* other) {
for (int i = 0; i < values->length(); ++i) {
HValue* value = values->at(i);
if (value->IsCapturedObject()) {
if (HCapturedObject::cast(value)->capture_id() == other->capture_id()) {
values->at(i) = other;
} else {
ReplayEnvironmentNested(HCapturedObject::cast(value)->values(), other);
}
}
}
}
// Replay captured objects by replacing all captured objects with the
// same capture id in the current and all outer environments.
void HCapturedObject::ReplayEnvironment(HEnvironment* env) {
ASSERT(env != NULL);
while (env != NULL) {
ReplayEnvironmentNested(env->values(), this);
env = env->outer();
}
}
void HCapturedObject::PrintDataTo(StringStream* stream) {
stream->Add("#%d ", capture_id());
HDematerializedObject::PrintDataTo(stream);
}
void HEnterInlined::RegisterReturnTarget(HBasicBlock* return_target,
Zone* zone) {
ASSERT(return_target->IsInlineReturnTarget());
return_targets_.Add(return_target, zone);
}
void HEnterInlined::PrintDataTo(StringStream* stream) {
SmartArrayPointer<char> name = function()->debug_name()->ToCString();
stream->Add("%s, id=%d", name.get(), function()->id().ToInt());
}
static bool IsInteger32(double value) {
double roundtrip_value = static_cast<double>(static_cast<int32_t>(value));
return BitCast<int64_t>(roundtrip_value) == BitCast<int64_t>(value);
}
HConstant::HConstant(Handle<Object> handle, Representation r)
: HTemplateInstruction<0>(HType::TypeFromValue(handle)),
object_(Unique<Object>::CreateUninitialized(handle)),
has_smi_value_(false),
has_int32_value_(false),
has_double_value_(false),
has_external_reference_value_(false),
is_internalized_string_(false),
is_not_in_new_space_(true),
is_cell_(false),
boolean_value_(handle->BooleanValue()) {
if (handle->IsHeapObject()) {
Heap* heap = Handle<HeapObject>::cast(handle)->GetHeap();
is_not_in_new_space_ = !heap->InNewSpace(*handle);
}
if (handle->IsNumber()) {
double n = handle->Number();
has_int32_value_ = IsInteger32(n);
int32_value_ = DoubleToInt32(n);
has_smi_value_ = has_int32_value_ && Smi::IsValid(int32_value_);
double_value_ = n;
has_double_value_ = true;
} else {
is_internalized_string_ = handle->IsInternalizedString();
}
is_cell_ = !handle.is_null() &&
(handle->IsCell() || handle->IsPropertyCell());
Initialize(r);
}
HConstant::HConstant(Unique<Object> unique,
Representation r,
HType type,
bool is_internalize_string,
bool is_not_in_new_space,
bool is_cell,
bool boolean_value)
: HTemplateInstruction<0>(type),
object_(unique),
has_smi_value_(false),
has_int32_value_(false),
has_double_value_(false),
has_external_reference_value_(false),
is_internalized_string_(is_internalize_string),
is_not_in_new_space_(is_not_in_new_space),
is_cell_(is_cell),
boolean_value_(boolean_value) {
ASSERT(!unique.handle().is_null());
ASSERT(!type.IsTaggedNumber());
Initialize(r);
}
HConstant::HConstant(int32_t integer_value,
Representation r,
bool is_not_in_new_space,
Unique<Object> object)
: object_(object),
has_smi_value_(Smi::IsValid(integer_value)),
has_int32_value_(true),
has_double_value_(true),
has_external_reference_value_(false),
is_internalized_string_(false),
is_not_in_new_space_(is_not_in_new_space),
is_cell_(false),
boolean_value_(integer_value != 0),
int32_value_(integer_value),
double_value_(FastI2D(integer_value)) {
set_type(has_smi_value_ ? HType::Smi() : HType::TaggedNumber());
Initialize(r);
}
HConstant::HConstant(double double_value,
Representation r,
bool is_not_in_new_space,
Unique<Object> object)
: object_(object),
has_int32_value_(IsInteger32(double_value)),
has_double_value_(true),
has_external_reference_value_(false),
is_internalized_string_(false),
is_not_in_new_space_(is_not_in_new_space),
is_cell_(false),
boolean_value_(double_value != 0 && !std::isnan(double_value)),
int32_value_(DoubleToInt32(double_value)),
double_value_(double_value) {
has_smi_value_ = has_int32_value_ && Smi::IsValid(int32_value_);
set_type(has_smi_value_ ? HType::Smi() : HType::TaggedNumber());
Initialize(r);
}
HConstant::HConstant(ExternalReference reference)
: HTemplateInstruction<0>(HType::None()),
object_(Unique<Object>(Handle<Object>::null())),
has_smi_value_(false),
has_int32_value_(false),
has_double_value_(false),
has_external_reference_value_(true),
is_internalized_string_(false),
is_not_in_new_space_(true),
is_cell_(false),
boolean_value_(true),
external_reference_value_(reference) {
Initialize(Representation::External());
}
void HConstant::Initialize(Representation r) {
if (r.IsNone()) {
if (has_smi_value_ && SmiValuesAre31Bits()) {
r = Representation::Smi();
} else if (has_int32_value_) {
r = Representation::Integer32();
} else if (has_double_value_) {
r = Representation::Double();
} else if (has_external_reference_value_) {
r = Representation::External();
} else {
Handle<Object> object = object_.handle();
if (object->IsJSObject()) {
// Try to eagerly migrate JSObjects that have deprecated maps.
Handle<JSObject> js_object = Handle<JSObject>::cast(object);
if (js_object->map()->is_deprecated()) {
JSObject::TryMigrateInstance(js_object);
}
}
r = Representation::Tagged();
}
}
set_representation(r);
SetFlag(kUseGVN);
}
bool HConstant::EmitAtUses() {
ASSERT(IsLinked());
if (block()->graph()->has_osr() &&
block()->graph()->IsStandardConstant(this)) {
// TODO(titzer): this seems like a hack that should be fixed by custom OSR.
return true;
}
if (UseCount() == 0) return true;
if (IsCell()) return false;
if (representation().IsDouble()) return false;
return true;
}
HConstant* HConstant::CopyToRepresentation(Representation r, Zone* zone) const {
if (r.IsSmi() && !has_smi_value_) return NULL;
if (r.IsInteger32() && !has_int32_value_) return NULL;
if (r.IsDouble() && !has_double_value_) return NULL;
if (r.IsExternal() && !has_external_reference_value_) return NULL;
if (has_int32_value_) {
return new(zone) HConstant(int32_value_, r, is_not_in_new_space_, object_);
}
if (has_double_value_) {
return new(zone) HConstant(double_value_, r, is_not_in_new_space_, object_);
}
if (has_external_reference_value_) {
return new(zone) HConstant(external_reference_value_);
}
ASSERT(!object_.handle().is_null());
return new(zone) HConstant(object_,
r,
type_,
is_internalized_string_,
is_not_in_new_space_,
is_cell_,
boolean_value_);
}
Maybe<HConstant*> HConstant::CopyToTruncatedInt32(Zone* zone) {
HConstant* res = NULL;
if (has_int32_value_) {
res = new(zone) HConstant(int32_value_,
Representation::Integer32(),
is_not_in_new_space_,
object_);
} else if (has_double_value_) {
res = new(zone) HConstant(DoubleToInt32(double_value_),
Representation::Integer32(),
is_not_in_new_space_,
object_);
}
return Maybe<HConstant*>(res != NULL, res);
}
Maybe<HConstant*> HConstant::CopyToTruncatedNumber(Zone* zone) {
HConstant* res = NULL;
Handle<Object> handle = this->handle(zone->isolate());
if (handle->IsBoolean()) {
res = handle->BooleanValue() ?
new(zone) HConstant(1) : new(zone) HConstant(0);
} else if (handle->IsUndefined()) {
res = new(zone) HConstant(OS::nan_value());
} else if (handle->IsNull()) {
res = new(zone) HConstant(0);
}
return Maybe<HConstant*>(res != NULL, res);
}
void HConstant::PrintDataTo(StringStream* stream) {
if (has_int32_value_) {
stream->Add("%d ", int32_value_);
} else if (has_double_value_) {
stream->Add("%f ", FmtElm(double_value_));
} else if (has_external_reference_value_) {
stream->Add("%p ", reinterpret_cast<void*>(
external_reference_value_.address()));
} else {
handle(Isolate::Current())->ShortPrint(stream);
}
}
void HBinaryOperation::PrintDataTo(StringStream* stream) {
left()->PrintNameTo(stream);
stream->Add(" ");
right()->PrintNameTo(stream);
if (CheckFlag(kCanOverflow)) stream->Add(" !");
if (CheckFlag(kBailoutOnMinusZero)) stream->Add(" -0?");
}
void HBinaryOperation::InferRepresentation(HInferRepresentationPhase* h_infer) {
ASSERT(CheckFlag(kFlexibleRepresentation));
Representation new_rep = RepresentationFromInputs();
UpdateRepresentation(new_rep, h_infer, "inputs");
if (representation().IsSmi() && HasNonSmiUse()) {
UpdateRepresentation(
Representation::Integer32(), h_infer, "use requirements");
}
if (observed_output_representation_.IsNone()) {
new_rep = RepresentationFromUses();
UpdateRepresentation(new_rep, h_infer, "uses");
} else {
new_rep = RepresentationFromOutput();
UpdateRepresentation(new_rep, h_infer, "output");
}
}
Representation HBinaryOperation::RepresentationFromInputs() {
// Determine the worst case of observed input representations and
// the currently assumed output representation.
Representation rep = representation();
for (int i = 1; i <= 2; ++i) {
rep = rep.generalize(observed_input_representation(i));
}
// If any of the actual input representation is more general than what we
// have so far but not Tagged, use that representation instead.
Representation left_rep = left()->representation();
Representation right_rep = right()->representation();
if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
return rep;
}
bool HBinaryOperation::IgnoreObservedOutputRepresentation(
Representation current_rep) {
return ((current_rep.IsInteger32() && CheckUsesForFlag(kTruncatingToInt32)) ||
(current_rep.IsSmi() && CheckUsesForFlag(kTruncatingToSmi))) &&
// Mul in Integer32 mode would be too precise.
(!this->IsMul() || HMul::cast(this)->MulMinusOne());
}
Representation HBinaryOperation::RepresentationFromOutput() {
Representation rep = representation();
// Consider observed output representation, but ignore it if it's Double,
// this instruction is not a division, and all its uses are truncating
// to Integer32.
if (observed_output_representation_.is_more_general_than(rep) &&
!IgnoreObservedOutputRepresentation(rep)) {
return observed_output_representation_;
}
return Representation::None();
}
void HBinaryOperation::AssumeRepresentation(Representation r) {
set_observed_input_representation(1, r);
set_observed_input_representation(2, r);
HValue::AssumeRepresentation(r);
}
void HMathMinMax::InferRepresentation(HInferRepresentationPhase* h_infer) {
ASSERT(CheckFlag(kFlexibleRepresentation));
Representation new_rep = RepresentationFromInputs();
UpdateRepresentation(new_rep, h_infer, "inputs");
// Do not care about uses.
}
Range* HBitwise::InferRange(Zone* zone) {
if (op() == Token::BIT_XOR) {
if (left()->HasRange() && right()->HasRange()) {
// The maximum value has the high bit, and all bits below, set:
// (1 << high) - 1.
// If the range can be negative, the minimum int is a negative number with
// the high bit, and all bits below, unset:
// -(1 << high).
// If it cannot be negative, conservatively choose 0 as minimum int.
int64_t left_upper = left()->range()->upper();
int64_t left_lower = left()->range()->lower();
int64_t right_upper = right()->range()->upper();
int64_t right_lower = right()->range()->lower();
if (left_upper < 0) left_upper = ~left_upper;
if (left_lower < 0) left_lower = ~left_lower;
if (right_upper < 0) right_upper = ~right_upper;
if (right_lower < 0) right_lower = ~right_lower;
int high = MostSignificantBit(
static_cast<uint32_t>(
left_upper | left_lower | right_upper | right_lower));
int64_t limit = 1;
limit <<= high;
int32_t min = (left()->range()->CanBeNegative() ||
right()->range()->CanBeNegative())
? static_cast<int32_t>(-limit) : 0;
return new(zone) Range(min, static_cast<int32_t>(limit - 1));
}
Range* result = HValue::InferRange(zone);
result->set_can_be_minus_zero(false);
return result;
}
const int32_t kDefaultMask = static_cast<int32_t>(0xffffffff);
int32_t left_mask = (left()->range() != NULL)
? left()->range()->Mask()
: kDefaultMask;
int32_t right_mask = (right()->range() != NULL)
? right()->range()->Mask()
: kDefaultMask;
int32_t result_mask = (op() == Token::BIT_AND)
? left_mask & right_mask
: left_mask | right_mask;
if (result_mask >= 0) return new(zone) Range(0, result_mask);
Range* result = HValue::InferRange(zone);
result->set_can_be_minus_zero(false);
return result;
}
Range* HSar::InferRange(Zone* zone) {
if (right()->IsConstant()) {
HConstant* c = HConstant::cast(right());
if (c->HasInteger32Value()) {
Range* result = (left()->range() != NULL)
? left()->range()->Copy(zone)
: new(zone) Range();
result->Sar(c->Integer32Value());
return result;
}
}
return HValue::InferRange(zone);
}
Range* HShr::InferRange(Zone* zone) {
if (right()->IsConstant()) {
HConstant* c = HConstant::cast(right());
if (c->HasInteger32Value()) {
int shift_count = c->Integer32Value() & 0x1f;
if (left()->range()->CanBeNegative()) {
// Only compute bounds if the result always fits into an int32.
return (shift_count >= 1)
? new(zone) Range(0,
static_cast<uint32_t>(0xffffffff) >> shift_count)
: new(zone) Range();
} else {
// For positive inputs we can use the >> operator.
Range* result = (left()->range() != NULL)
? left()->range()->Copy(zone)
: new(zone) Range();
result->Sar(c->Integer32Value());
return result;
}
}
}
return HValue::InferRange(zone);
}
Range* HShl::InferRange(Zone* zone) {
if (right()->IsConstant()) {
HConstant* c = HConstant::cast(right());
if (c->HasInteger32Value()) {
Range* result = (left()->range() != NULL)
? left()->range()->Copy(zone)
: new(zone) Range();
result->Shl(c->Integer32Value());
return result;
}
}
return HValue::InferRange(zone);
}
Range* HLoadNamedField::InferRange(Zone* zone) {
if (access().representation().IsInteger8()) {
return new(zone) Range(kMinInt8, kMaxInt8);
}
if (access().representation().IsUInteger8()) {
return new(zone) Range(kMinUInt8, kMaxUInt8);
}
if (access().representation().IsInteger16()) {
return new(zone) Range(kMinInt16, kMaxInt16);
}
if (access().representation().IsUInteger16()) {
return new(zone) Range(kMinUInt16, kMaxUInt16);
}
if (access().IsStringLength()) {
return new(zone) Range(0, String::kMaxLength);
}
return HValue::InferRange(zone);
}
Range* HLoadKeyed::InferRange(Zone* zone) {
switch (elements_kind()) {
case EXTERNAL_BYTE_ELEMENTS:
return new(zone) Range(kMinInt8, kMaxInt8);
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
case EXTERNAL_PIXEL_ELEMENTS:
return new(zone) Range(kMinUInt8, kMaxUInt8);
case EXTERNAL_SHORT_ELEMENTS:
return new(zone) Range(kMinInt16, kMaxInt16);
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
return new(zone) Range(kMinUInt16, kMaxUInt16);
default:
return HValue::InferRange(zone);
}
}
void HCompareGeneric::PrintDataTo(StringStream* stream) {
stream->Add(Token::Name(token()));
stream->Add(" ");
HBinaryOperation::PrintDataTo(stream);
}
void HStringCompareAndBranch::PrintDataTo(StringStream* stream) {
stream->Add(Token::Name(token()));
stream->Add(" ");
HControlInstruction::PrintDataTo(stream);
}
void HCompareNumericAndBranch::PrintDataTo(StringStream* stream) {
stream->Add(Token::Name(token()));
stream->Add(" ");
left()->PrintNameTo(stream);
stream->Add(" ");
right()->PrintNameTo(stream);
HControlInstruction::PrintDataTo(stream);
}
void HCompareObjectEqAndBranch::PrintDataTo(StringStream* stream) {
left()->PrintNameTo(stream);
stream->Add(" ");
right()->PrintNameTo(stream);
HControlInstruction::PrintDataTo(stream);
}
bool HCompareObjectEqAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
if (left()->IsConstant() && right()->IsConstant()) {
bool comparison_result =
HConstant::cast(left())->Equals(HConstant::cast(right()));
*block = comparison_result
? FirstSuccessor()
: SecondSuccessor();
return true;
}
*block = NULL;
return false;
}
void HCompareHoleAndBranch::InferRepresentation(
HInferRepresentationPhase* h_infer) {
ChangeRepresentation(value()->representation());
}
bool HCompareMinusZeroAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
if (value()->representation().IsSmiOrInteger32()) {
// A Smi or Integer32 cannot contain minus zero.
*block = SecondSuccessor();
return true;
}
*block = NULL;
return false;
}
void HCompareMinusZeroAndBranch::InferRepresentation(
HInferRepresentationPhase* h_infer) {
ChangeRepresentation(value()->representation());
}
void HGoto::PrintDataTo(StringStream* stream) {
stream->Add("B%d", SuccessorAt(0)->block_id());
}
void HCompareNumericAndBranch::InferRepresentation(
HInferRepresentationPhase* h_infer) {
Representation left_rep = left()->representation();
Representation right_rep = right()->representation();
Representation observed_left = observed_input_representation(0);
Representation observed_right = observed_input_representation(1);
Representation rep = Representation::None();
rep = rep.generalize(observed_left);
rep = rep.generalize(observed_right);
if (rep.IsNone() || rep.IsSmiOrInteger32()) {
if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
} else {
rep = Representation::Double();
}
if (rep.IsDouble()) {
// According to the ES5 spec (11.9.3, 11.8.5), Equality comparisons (==, ===
// and !=) have special handling of undefined, e.g. undefined == undefined
// is 'true'. Relational comparisons have a different semantic, first
// calling ToPrimitive() on their arguments. The standard Crankshaft
// tagged-to-double conversion to ensure the HCompareNumericAndBranch's
// inputs are doubles caused 'undefined' to be converted to NaN. That's
// compatible out-of-the box with ordered relational comparisons (<, >, <=,
// >=). However, for equality comparisons (and for 'in' and 'instanceof'),
// it is not consistent with the spec. For example, it would cause undefined
// == undefined (should be true) to be evaluated as NaN == NaN
// (false). Therefore, any comparisons other than ordered relational
// comparisons must cause a deopt when one of their arguments is undefined.
// See also v8:1434
if (Token::IsOrderedRelationalCompareOp(token_)) {
SetFlag(kAllowUndefinedAsNaN);
}
}
ChangeRepresentation(rep);
}
void HParameter::PrintDataTo(StringStream* stream) {
stream->Add("%u", index());
}
void HLoadNamedField::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
access_.PrintTo(stream);
}
HCheckMaps* HCheckMaps::New(Zone* zone,
HValue* context,
HValue* value,
Handle<Map> map,
CompilationInfo* info,
HValue* typecheck) {
HCheckMaps* check_map = new(zone) HCheckMaps(value, zone, typecheck);
check_map->Add(map, zone);
if (map->CanOmitMapChecks() &&
value->IsConstant() &&
HConstant::cast(value)->HasMap(map)) {
// TODO(titzer): collect dependent map checks into a list.
check_map->omit_ = true;
if (map->CanTransition()) {
map->AddDependentCompilationInfo(
DependentCode::kPrototypeCheckGroup, info);
}
}
return check_map;
}
void HLoadNamedGeneric::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add(".");
stream->Add(String::cast(*name())->ToCString().get());
}
void HLoadKeyed::PrintDataTo(StringStream* stream) {
if (!is_external()) {
elements()->PrintNameTo(stream);
} else {
ASSERT(elements_kind() >= FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND &&
elements_kind() <= LAST_EXTERNAL_ARRAY_ELEMENTS_KIND);
elements()->PrintNameTo(stream);
stream->Add(".");
stream->Add(ElementsKindToString(elements_kind()));
}
stream->Add("[");
key()->PrintNameTo(stream);
if (IsDehoisted()) {
stream->Add(" + %d]", index_offset());
} else {
stream->Add("]");
}
if (HasDependency()) {
stream->Add(" ");
dependency()->PrintNameTo(stream);
}
if (RequiresHoleCheck()) {
stream->Add(" check_hole");
}
}
bool HLoadKeyed::UsesMustHandleHole() const {
if (IsFastPackedElementsKind(elements_kind())) {
return false;
}
if (IsExternalArrayElementsKind(elements_kind())) {
return false;
}
if (hole_mode() == ALLOW_RETURN_HOLE) {
if (IsFastDoubleElementsKind(elements_kind())) {
return AllUsesCanTreatHoleAsNaN();
}
return true;
}
if (IsFastDoubleElementsKind(elements_kind())) {
return false;
}
// Holes are only returned as tagged values.
if (!representation().IsTagged()) {
return false;
}
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
if (!use->IsChange()) return false;
}
return true;
}
bool HLoadKeyed::AllUsesCanTreatHoleAsNaN() const {
return IsFastDoubleElementsKind(elements_kind()) &&
CheckUsesForFlag(HValue::kAllowUndefinedAsNaN);
}
bool HLoadKeyed::RequiresHoleCheck() const {
if (IsFastPackedElementsKind(elements_kind())) {
return false;
}
if (IsExternalArrayElementsKind(elements_kind())) {
return false;
}
return !UsesMustHandleHole();
}
void HLoadKeyedGeneric::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add("[");
key()->PrintNameTo(stream);
stream->Add("]");
}
HValue* HLoadKeyedGeneric::Canonicalize() {
// Recognize generic keyed loads that use property name generated
// by for-in statement as a key and rewrite them into fast property load
// by index.
if (key()->IsLoadKeyed()) {
HLoadKeyed* key_load = HLoadKeyed::cast(key());
if (key_load->elements()->IsForInCacheArray()) {
HForInCacheArray* names_cache =
HForInCacheArray::cast(key_load->elements());
if (names_cache->enumerable() == object()) {
HForInCacheArray* index_cache =
names_cache->index_cache();
HCheckMapValue* map_check =
HCheckMapValue::New(block()->graph()->zone(),
block()->graph()->GetInvalidContext(),
object(),
names_cache->map());
HInstruction* index = HLoadKeyed::New(
block()->graph()->zone(),
block()->graph()->GetInvalidContext(),
index_cache,
key_load->key(),
key_load->key(),
key_load->elements_kind());
map_check->InsertBefore(this);
index->InsertBefore(this);
HLoadFieldByIndex* load = new(block()->zone()) HLoadFieldByIndex(
object(), index);
load->InsertBefore(this);
return load;
}
}
}
return this;
}
void HStoreNamedGeneric::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add(".");
ASSERT(name()->IsString());
stream->Add(String::cast(*name())->ToCString().get());
stream->Add(" = ");
value()->PrintNameTo(stream);
}
void HStoreNamedField::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
access_.PrintTo(stream);
stream->Add(" = ");
value()->PrintNameTo(stream);
if (NeedsWriteBarrier()) {
stream->Add(" (write-barrier)");
}
if (has_transition()) {
stream->Add(" (transition map %p)", *transition_map());
}
}
void HStoreKeyed::PrintDataTo(StringStream* stream) {
if (!is_external()) {
elements()->PrintNameTo(stream);
} else {
elements()->PrintNameTo(stream);
stream->Add(".");
stream->Add(ElementsKindToString(elements_kind()));
ASSERT(elements_kind() >= FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND &&
elements_kind() <= LAST_EXTERNAL_ARRAY_ELEMENTS_KIND);
}
stream->Add("[");
key()->PrintNameTo(stream);
if (IsDehoisted()) {
stream->Add(" + %d] = ", index_offset());
} else {
stream->Add("] = ");
}
value()->PrintNameTo(stream);
}
void HStoreKeyedGeneric::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add("[");
key()->PrintNameTo(stream);
stream->Add("] = ");
value()->PrintNameTo(stream);
}
void HTransitionElementsKind::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
ElementsKind from_kind = original_map().handle()->elements_kind();
ElementsKind to_kind = transitioned_map().handle()->elements_kind();
stream->Add(" %p [%s] -> %p [%s]",
*original_map().handle(),
ElementsAccessor::ForKind(from_kind)->name(),
*transitioned_map().handle(),
ElementsAccessor::ForKind(to_kind)->name());
if (IsSimpleMapChangeTransition(from_kind, to_kind)) stream->Add(" (simple)");
}
void HLoadGlobalCell::PrintDataTo(StringStream* stream) {
stream->Add("[%p]", *cell().handle());
if (!details_.IsDontDelete()) stream->Add(" (deleteable)");
if (details_.IsReadOnly()) stream->Add(" (read-only)");
}
bool HLoadGlobalCell::RequiresHoleCheck() const {
if (details_.IsDontDelete() && !details_.IsReadOnly()) return false;
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
if (!use->IsChange()) return true;
}
return false;
}
void HLoadGlobalGeneric::PrintDataTo(StringStream* stream) {
stream->Add("%o ", *name());
}
void HInnerAllocatedObject::PrintDataTo(StringStream* stream) {
base_object()->PrintNameTo(stream);
stream->Add(" offset %d", offset());
}
void HStoreGlobalCell::PrintDataTo(StringStream* stream) {
stream->Add("[%p] = ", *cell().handle());
value()->PrintNameTo(stream);
if (!details_.IsDontDelete()) stream->Add(" (deleteable)");
if (details_.IsReadOnly()) stream->Add(" (read-only)");
}
void HStoreGlobalGeneric::PrintDataTo(StringStream* stream) {
stream->Add("%o = ", *name());
value()->PrintNameTo(stream);
}
void HLoadContextSlot::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add("[%d]", slot_index());
}
void HStoreContextSlot::PrintDataTo(StringStream* stream) {
context()->PrintNameTo(stream);
stream->Add("[%d] = ", slot_index());
value()->PrintNameTo(stream);
}
// Implementation of type inference and type conversions. Calculates
// the inferred type of this instruction based on the input operands.
HType HValue::CalculateInferredType() {
return type_;
}
HType HPhi::CalculateInferredType() {
if (OperandCount() == 0) return HType::Tagged();
HType result = OperandAt(0)->type();
for (int i = 1; i < OperandCount(); ++i) {
HType current = OperandAt(i)->type();
result = result.Combine(current);
}
return result;
}
HType HChange::CalculateInferredType() {
if (from().IsDouble() && to().IsTagged()) return HType::HeapNumber();
return type();
}
Representation HUnaryMathOperation::RepresentationFromInputs() {
Representation rep = representation();
// If any of the actual input representation is more general than what we
// have so far but not Tagged, use that representation instead.
Representation input_rep = value()->representation();
if (!input_rep.IsTagged()) {
rep = rep.generalize(input_rep);
}
return rep;
}
void HAllocate::HandleSideEffectDominator(GVNFlag side_effect,
HValue* dominator) {
ASSERT(side_effect == kChangesNewSpacePromotion);
Zone* zone = block()->zone();
if (!FLAG_use_allocation_folding) return;
// Try to fold allocations together with their dominating allocations.
if (!dominator->IsAllocate()) {
if (FLAG_trace_allocation_folding) {
PrintF("#%d (%s) cannot fold into #%d (%s)\n",
id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
}
return;
}
HAllocate* dominator_allocate = HAllocate::cast(dominator);
HValue* dominator_size = dominator_allocate->size();
HValue* current_size = size();
// TODO(hpayer): Add support for non-constant allocation in dominator.
if (!current_size->IsInteger32Constant() ||
!dominator_size->IsInteger32Constant()) {
if (FLAG_trace_allocation_folding) {
PrintF("#%d (%s) cannot fold into #%d (%s), dynamic allocation size\n",
id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
}
return;
}
dominator_allocate = GetFoldableDominator(dominator_allocate);
if (dominator_allocate == NULL) {
return;
}
ASSERT((IsNewSpaceAllocation() &&
dominator_allocate->IsNewSpaceAllocation()) ||
(IsOldDataSpaceAllocation() &&
dominator_allocate->IsOldDataSpaceAllocation()) ||
(IsOldPointerSpaceAllocation() &&
dominator_allocate->IsOldPointerSpaceAllocation()));
// First update the size of the dominator allocate instruction.
dominator_size = dominator_allocate->size();
int32_t original_object_size =
HConstant::cast(dominator_size)->GetInteger32Constant();
int32_t dominator_size_constant = original_object_size;
int32_t current_size_constant =
HConstant::cast(current_size)->GetInteger32Constant();
int32_t new_dominator_size = dominator_size_constant + current_size_constant;
if (MustAllocateDoubleAligned()) {
if (!dominator_allocate->MustAllocateDoubleAligned()) {
dominator_allocate->MakeDoubleAligned();
}
if ((dominator_size_constant & kDoubleAlignmentMask) != 0) {
dominator_size_constant += kDoubleSize / 2;
new_dominator_size += kDoubleSize / 2;
}
}
if (new_dominator_size > isolate()->heap()->MaxRegularSpaceAllocationSize()) {
if (FLAG_trace_allocation_folding) {
PrintF("#%d (%s) cannot fold into #%d (%s) due to size: %d\n",
id(), Mnemonic(), dominator_allocate->id(),
dominator_allocate->Mnemonic(), new_dominator_size);
}
return;
}
HInstruction* new_dominator_size_constant = HConstant::CreateAndInsertBefore(
zone,
context(),
new_dominator_size,
Representation::None(),
dominator_allocate);
dominator_allocate->UpdateSize(new_dominator_size_constant);
#ifdef VERIFY_HEAP
if (FLAG_verify_heap && dominator_allocate->IsNewSpaceAllocation()) {
dominator_allocate->MakePrefillWithFiller();
} else {
// TODO(hpayer): This is a short-term hack to make allocation mementos
// work again in new space.
dominator_allocate->ClearNextMapWord(original_object_size);
}
#else
// TODO(hpayer): This is a short-term hack to make allocation mementos
// work again in new space.
dominator_allocate->ClearNextMapWord(original_object_size);
#endif
dominator_allocate->UpdateClearNextMapWord(MustClearNextMapWord());
// After that replace the dominated allocate instruction.
HInstruction* inner_offset = HConstant::CreateAndInsertBefore(
zone,
context(),
dominator_size_constant,
Representation::None(),
this);
HInstruction* dominated_allocate_instr =
HInnerAllocatedObject::New(zone,
context(),
dominator_allocate,
inner_offset,
type());
dominated_allocate_instr->InsertBefore(this);
DeleteAndReplaceWith(dominated_allocate_instr);
if (FLAG_trace_allocation_folding) {
PrintF("#%d (%s) folded into #%d (%s)\n",
id(), Mnemonic(), dominator_allocate->id(),
dominator_allocate->Mnemonic());
}
}
HAllocate* HAllocate::GetFoldableDominator(HAllocate* dominator) {
if (!IsFoldable(dominator)) {
// We cannot hoist old space allocations over new space allocations.
if (IsNewSpaceAllocation() || dominator->IsNewSpaceAllocation()) {
if (FLAG_trace_allocation_folding) {
PrintF("#%d (%s) cannot fold into #%d (%s), new space hoisting\n",
id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
}
return NULL;
}
HAllocate* dominator_dominator = dominator->dominating_allocate_;
// We can hoist old data space allocations over an old pointer space
// allocation and vice versa. For that we have to check the dominator
// of the dominator allocate instruction.
if (dominator_dominator == NULL) {
dominating_allocate_ = dominator;
if (FLAG_trace_allocation_folding) {
PrintF("#%d (%s) cannot fold into #%d (%s), different spaces\n",
id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
}
return NULL;
}
// We can just fold old space allocations that are in the same basic block,
// since it is not guaranteed that we fill up the whole allocated old
// space memory.
// TODO(hpayer): Remove this limitation and add filler maps for each each
// allocation as soon as we have store elimination.
if (block()->block_id() != dominator_dominator->block()->block_id()) {
if (FLAG_trace_allocation_folding) {
PrintF("#%d (%s) cannot fold into #%d (%s), different basic blocks\n",
id(), Mnemonic(), dominator_dominator->id(),
dominator_dominator->Mnemonic());
}
return NULL;
}
ASSERT((IsOldDataSpaceAllocation() &&
dominator_dominator->IsOldDataSpaceAllocation()) ||
(IsOldPointerSpaceAllocation() &&
dominator_dominator->IsOldPointerSpaceAllocation()));
int32_t current_size = HConstant::cast(size())->GetInteger32Constant();
HStoreNamedField* dominator_free_space_size =
dominator->filler_free_space_size_;
if (dominator_free_space_size != NULL) {
// We already hoisted one old space allocation, i.e., we already installed
// a filler map. Hence, we just have to update the free space size.
dominator->UpdateFreeSpaceFiller(current_size);
} else {
// This is the first old space allocation that gets hoisted. We have to
// install a filler map since the follwing allocation may cause a GC.
dominator->CreateFreeSpaceFiller(current_size);
}
// We can hoist the old space allocation over the actual dominator.
return dominator_dominator;
}
return dominator;
}
void HAllocate::UpdateFreeSpaceFiller(int32_t free_space_size) {
ASSERT(filler_free_space_size_ != NULL);
Zone* zone = block()->zone();
// We must explicitly force Smi representation here because on x64 we
// would otherwise automatically choose int32, but the actual store
// requires a Smi-tagged value.
HConstant* new_free_space_size = HConstant::CreateAndInsertBefore(
zone,
context(),
filler_free_space_size_->value()->GetInteger32Constant() +
free_space_size,
Representation::Smi(),
filler_free_space_size_);
filler_free_space_size_->UpdateValue(new_free_space_size);
}
void HAllocate::CreateFreeSpaceFiller(int32_t free_space_size) {
ASSERT(filler_free_space_size_ == NULL);
Zone* zone = block()->zone();
HInstruction* free_space_instr =
HInnerAllocatedObject::New(zone, context(), dominating_allocate_,
dominating_allocate_->size(), type());
free_space_instr->InsertBefore(this);
HConstant* filler_map = HConstant::New(
zone,
context(),
isolate()->factory()->free_space_map());
filler_map->FinalizeUniqueness(); // TODO(titzer): should be init'd a'ready
filler_map->InsertAfter(free_space_instr);
HInstruction* store_map = HStoreNamedField::New(zone, context(),
free_space_instr, HObjectAccess::ForMap(), filler_map);
store_map->SetFlag(HValue::kHasNoObservableSideEffects);
store_map->InsertAfter(filler_map);
// We must explicitly force Smi representation here because on x64 we
// would otherwise automatically choose int32, but the actual store
// requires a Smi-tagged value.
HConstant* filler_size = HConstant::CreateAndInsertAfter(
zone, context(), free_space_size, Representation::Smi(), store_map);
// Must force Smi representation for x64 (see comment above).
HObjectAccess access =
HObjectAccess::ForJSObjectOffset(FreeSpace::kSizeOffset,
Representation::Smi());
HStoreNamedField* store_size = HStoreNamedField::New(zone, context(),
free_space_instr, access, filler_size);
store_size->SetFlag(HValue::kHasNoObservableSideEffects);
store_size->InsertAfter(filler_size);
filler_free_space_size_ = store_size;
}
void HAllocate::ClearNextMapWord(int offset) {
if (MustClearNextMapWord()) {
Zone* zone = block()->zone();
HObjectAccess access = HObjectAccess::ForJSObjectOffset(offset);
HStoreNamedField* clear_next_map =
HStoreNamedField::New(zone, context(), this, access,
block()->graph()->GetConstant0());
clear_next_map->ClearAllSideEffects();
clear_next_map->InsertAfter(this);
}
}
void HAllocate::PrintDataTo(StringStream* stream) {
size()->PrintNameTo(stream);
stream->Add(" (");
if (IsNewSpaceAllocation()) stream->Add("N");
if (IsOldPointerSpaceAllocation()) stream->Add("P");
if (IsOldDataSpaceAllocation()) stream->Add("D");
if (MustAllocateDoubleAligned()) stream->Add("A");
if (MustPrefillWithFiller()) stream->Add("F");
stream->Add(")");
}
HValue* HUnaryMathOperation::EnsureAndPropagateNotMinusZero(
BitVector* visited) {
visited->Add(id());
if (representation().IsSmiOrInteger32() &&
!value()->representation().Equals(representation())) {
if (value()->range() == NULL || value()->range()->CanBeMinusZero()) {
SetFlag(kBailoutOnMinusZero);
}
}
if (RequiredInputRepresentation(0).IsSmiOrInteger32() &&
representation().Equals(RequiredInputRepresentation(0))) {
return value();
}
return NULL;
}
HValue* HChange::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
if (from().IsSmiOrInteger32()) return NULL;
if (CanTruncateToInt32()) return NULL;
if (value()->range() == NULL || value()->range()->CanBeMinusZero()) {
SetFlag(kBailoutOnMinusZero);
}
ASSERT(!from().IsSmiOrInteger32() || !to().IsSmiOrInteger32());
return NULL;
}
HValue* HForceRepresentation::EnsureAndPropagateNotMinusZero(
BitVector* visited) {
visited->Add(id());
return value();
}
HValue* HMod::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
if (range() == NULL || range()->CanBeMinusZero()) {
SetFlag(kBailoutOnMinusZero);
return left();
}
return NULL;
}
HValue* HDiv::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
if (range() == NULL || range()->CanBeMinusZero()) {
SetFlag(kBailoutOnMinusZero);
}
return NULL;
}
HValue* HMathFloorOfDiv::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
SetFlag(kBailoutOnMinusZero);
return NULL;
}
HValue* HMul::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
if (range() == NULL || range()->CanBeMinusZero()) {
SetFlag(kBailoutOnMinusZero);
}
return NULL;
}
HValue* HSub::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
// Propagate to the left argument. If the left argument cannot be -0, then
// the result of the add operation cannot be either.
if (range() == NULL || range()->CanBeMinusZero()) {
return left();
}
return NULL;
}
HValue* HAdd::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
// Propagate to the left argument. If the left argument cannot be -0, then
// the result of the sub operation cannot be either.
if (range() == NULL || range()->CanBeMinusZero()) {
return left();
}
return NULL;
}
bool HStoreKeyed::NeedsCanonicalization() {
// If value is an integer or smi or comes from the result of a keyed load or
// constant then it is either be a non-hole value or in the case of a constant
// the hole is only being stored explicitly: no need for canonicalization.
//
// The exception to that is keyed loads from external float or double arrays:
// these can load arbitrary representation of NaN.
if (value()->IsConstant()) {
return false;
}
if (value()->IsLoadKeyed()) {
return IsExternalFloatOrDoubleElementsKind(
HLoadKeyed::cast(value())->elements_kind());
}
if (value()->IsChange()) {
if (HChange::cast(value())->from().IsSmiOrInteger32()) {
return false;
}
if (HChange::cast(value())->value()->type().IsSmi()) {
return false;
}
}
return true;
}
#define H_CONSTANT_INT(val) \
HConstant::New(zone, context, static_cast<int32_t>(val))
#define H_CONSTANT_DOUBLE(val) \
HConstant::New(zone, context, static_cast<double>(val))
#define DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HInstr, op) \
HInstruction* HInstr::New( \
Zone* zone, HValue* context, HValue* left, HValue* right) { \
if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { \
HConstant* c_left = HConstant::cast(left); \
HConstant* c_right = HConstant::cast(right); \
if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { \
double double_res = c_left->DoubleValue() op c_right->DoubleValue(); \
if (IsInt32Double(double_res)) { \
return H_CONSTANT_INT(double_res); \
} \
return H_CONSTANT_DOUBLE(double_res); \
} \
} \
return new(zone) HInstr(context, left, right); \
}
DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HAdd, +)
DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HMul, *)
DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HSub, -)
#undef DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR
HInstruction* HStringAdd::New(Zone* zone,
HValue* context,
HValue* left,
HValue* right,
PretenureFlag pretenure_flag,
StringAddFlags flags,
Handle<AllocationSite> allocation_site) {
if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
HConstant* c_right = HConstant::cast(right);
HConstant* c_left = HConstant::cast(left);
if (c_left->HasStringValue() && c_right->HasStringValue()) {
Handle<String> concat = zone->isolate()->factory()->NewFlatConcatString(
c_left->StringValue(), c_right->StringValue());
return HConstant::New(zone, context, concat);
}
}
return new(zone) HStringAdd(
context, left, right, pretenure_flag, flags, allocation_site);
}
void HStringAdd::PrintDataTo(StringStream* stream) {
if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_BOTH) {
stream->Add("_CheckBoth");
} else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_LEFT) {
stream->Add("_CheckLeft");
} else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_RIGHT) {
stream->Add("_CheckRight");
}
stream->Add(" (");
if (pretenure_flag() == NOT_TENURED) stream->Add("N");
else if (pretenure_flag() == TENURED) stream->Add("D");
stream->Add(")");
}
HInstruction* HStringCharFromCode::New(
Zone* zone, HValue* context, HValue* char_code) {
if (FLAG_fold_constants && char_code->IsConstant()) {
HConstant* c_code = HConstant::cast(char_code);
Isolate* isolate = zone->isolate();
if (c_code->HasNumberValue()) {
if (std::isfinite(c_code->DoubleValue())) {
uint32_t code = c_code->NumberValueAsInteger32() & 0xffff;
return HConstant::New(zone, context,
LookupSingleCharacterStringFromCode(isolate, code));
}
return HConstant::New(zone, context, isolate->factory()->empty_string());
}
}
return new(zone) HStringCharFromCode(context, char_code);
}
HInstruction* HUnaryMathOperation::New(
Zone* zone, HValue* context, HValue* value, BuiltinFunctionId op) {
do {
if (!FLAG_fold_constants) break;
if (!value->IsConstant()) break;
HConstant* constant = HConstant::cast(value);
if (!constant->HasNumberValue()) break;
double d = constant->DoubleValue();
if (std::isnan(d)) { // NaN poisons everything.
return H_CONSTANT_DOUBLE(OS::nan_value());
}
if (std::isinf(d)) { // +Infinity and -Infinity.
switch (op) {
case kMathExp:
return H_CONSTANT_DOUBLE((d > 0.0) ? d : 0.0);
case kMathLog:
case kMathSqrt:
return H_CONSTANT_DOUBLE((d > 0.0) ? d : OS::nan_value());
case kMathPowHalf:
case kMathAbs:
return H_CONSTANT_DOUBLE((d > 0.0) ? d : -d);
case kMathRound:
case kMathFloor:
return H_CONSTANT_DOUBLE(d);
default:
UNREACHABLE();
break;
}
}
switch (op) {
case kMathExp:
return H_CONSTANT_DOUBLE(fast_exp(d));
case kMathLog:
return H_CONSTANT_DOUBLE(std::log(d));
case kMathSqrt:
return H_CONSTANT_DOUBLE(fast_sqrt(d));
case kMathPowHalf:
return H_CONSTANT_DOUBLE(power_double_double(d, 0.5));
case kMathAbs:
return H_CONSTANT_DOUBLE((d >= 0.0) ? d + 0.0 : -d);
case kMathRound:
// -0.5 .. -0.0 round to -0.0.
if ((d >= -0.5 && Double(d).Sign() < 0)) return H_CONSTANT_DOUBLE(-0.0);
// Doubles are represented as Significant * 2 ^ Exponent. If the
// Exponent is not negative, the double value is already an integer.
if (Double(d).Exponent() >= 0) return H_CONSTANT_DOUBLE(d);
return H_CONSTANT_DOUBLE(std::floor(d + 0.5));
case kMathFloor:
return H_CONSTANT_DOUBLE(std::floor(d));
default:
UNREACHABLE();
break;
}
} while (false);
return new(zone) HUnaryMathOperation(context, value, op);
}
HInstruction* HPower::New(Zone* zone,
HValue* context,
HValue* left,
HValue* right) {
if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
HConstant* c_left = HConstant::cast(left);
HConstant* c_right = HConstant::cast(right);
if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
double result = power_helper(c_left->DoubleValue(),
c_right->DoubleValue());
return H_CONSTANT_DOUBLE(std::isnan(result) ? OS::nan_value() : result);
}
}
return new(zone) HPower(left, right);
}
HInstruction* HMathMinMax::New(
Zone* zone, HValue* context, HValue* left, HValue* right, Operation op) {
if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
HConstant* c_left = HConstant::cast(left);
HConstant* c_right = HConstant::cast(right);
if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
double d_left = c_left->DoubleValue();
double d_right = c_right->DoubleValue();
if (op == kMathMin) {
if (d_left > d_right) return H_CONSTANT_DOUBLE(d_right);
if (d_left < d_right) return H_CONSTANT_DOUBLE(d_left);
if (d_left == d_right) {
// Handle +0 and -0.
return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_left
: d_right);
}
} else {
if (d_left < d_right) return H_CONSTANT_DOUBLE(d_right);
if (d_left > d_right) return H_CONSTANT_DOUBLE(d_left);
if (d_left == d_right) {
// Handle +0 and -0.
return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_right
: d_left);
}
}
// All comparisons failed, must be NaN.
return H_CONSTANT_DOUBLE(OS::nan_value());
}
}
return new(zone) HMathMinMax(context, left, right, op);
}
HInstruction* HMod::New(Zone* zone,
HValue* context,
HValue* left,
HValue* right) {
if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
HConstant* c_left = HConstant::cast(left);
HConstant* c_right = HConstant::cast(right);
if (c_left->HasInteger32Value() && c_right->HasInteger32Value()) {
int32_t dividend = c_left->Integer32Value();
int32_t divisor = c_right->Integer32Value();
if (dividend == kMinInt && divisor == -1) {
return H_CONSTANT_DOUBLE(-0.0);
}
if (divisor != 0) {
int32_t res = dividend % divisor;
if ((res == 0) && (dividend < 0)) {
return H_CONSTANT_DOUBLE(-0.0);
}
return H_CONSTANT_INT(res);
}
}
}
return new(zone) HMod(context, left, right);
}
HInstruction* HDiv::New(
Zone* zone, HValue* context, HValue* left, HValue* right) {
// If left and right are constant values, try to return a constant value.
if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
HConstant* c_left = HConstant::cast(left);
HConstant* c_right = HConstant::cast(right);
if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
if (c_right->DoubleValue() != 0) {
double double_res = c_left->DoubleValue() / c_right->DoubleValue();
if (IsInt32Double(double_res)) {
return H_CONSTANT_INT(double_res);
}
return H_CONSTANT_DOUBLE(double_res);
} else {
int sign = Double(c_left->DoubleValue()).Sign() *
Double(c_right->DoubleValue()).Sign(); // Right could be -0.
return H_CONSTANT_DOUBLE(sign * V8_INFINITY);
}
}
}
return new(zone) HDiv(context, left, right);
}
HInstruction* HBitwise::New(
Zone* zone, HValue* context, Token::Value op, HValue* left, HValue* right) {
if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
HConstant* c_left = HConstant::cast(left);
HConstant* c_right = HConstant::cast(right);
if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
int32_t result;
int32_t v_left = c_left->NumberValueAsInteger32();
int32_t v_right = c_right->NumberValueAsInteger32();
switch (op) {
case Token::BIT_XOR:
result = v_left ^ v_right;
break;
case Token::BIT_AND:
result = v_left & v_right;
break;
case Token::BIT_OR:
result = v_left | v_right;
break;
default:
result = 0; // Please the compiler.
UNREACHABLE();
}
return H_CONSTANT_INT(result);
}
}
return new(zone) HBitwise(context, op, left, right);
}
#define DEFINE_NEW_H_BITWISE_INSTR(HInstr, result) \
HInstruction* HInstr::New( \
Zone* zone, HValue* context, HValue* left, HValue* right) { \
if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { \
HConstant* c_left = HConstant::cast(left); \
HConstant* c_right = HConstant::cast(right); \
if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { \
return H_CONSTANT_INT(result); \
} \
} \
return new(zone) HInstr(context, left, right); \
}
DEFINE_NEW_H_BITWISE_INSTR(HSar,
c_left->NumberValueAsInteger32() >> (c_right->NumberValueAsInteger32() & 0x1f))
DEFINE_NEW_H_BITWISE_INSTR(HShl,
c_left->NumberValueAsInteger32() << (c_right->NumberValueAsInteger32() & 0x1f))
#undef DEFINE_NEW_H_BITWISE_INSTR
HInstruction* HShr::New(
Zone* zone, HValue* context, HValue* left, HValue* right) {
if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
HConstant* c_left = HConstant::cast(left);
HConstant* c_right = HConstant::cast(right);
if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
int32_t left_val = c_left->NumberValueAsInteger32();
int32_t right_val = c_right->NumberValueAsInteger32() & 0x1f;
if ((right_val == 0) && (left_val < 0)) {
return H_CONSTANT_DOUBLE(static_cast<uint32_t>(left_val));
}
return H_CONSTANT_INT(static_cast<uint32_t>(left_val) >> right_val);
}
}
return new(zone) HShr(context, left, right);
}
HInstruction* HSeqStringGetChar::New(Zone* zone,
HValue* context,
String::Encoding encoding,
HValue* string,
HValue* index) {
if (FLAG_fold_constants && string->IsConstant() && index->IsConstant()) {
HConstant* c_string = HConstant::cast(string);
HConstant* c_index = HConstant::cast(index);
if (c_string->HasStringValue() && c_index->HasInteger32Value()) {
Handle<String> s = c_string->StringValue();
int32_t i = c_index->Integer32Value();
ASSERT_LE(0, i);
ASSERT_LT(i, s->length());
return H_CONSTANT_INT(s->Get(i));
}
}
return new(zone) HSeqStringGetChar(encoding, string, index);
}
#undef H_CONSTANT_INT
#undef H_CONSTANT_DOUBLE
void HBitwise::PrintDataTo(StringStream* stream) {
stream->Add(Token::Name(op_));
stream->Add(" ");
HBitwiseBinaryOperation::PrintDataTo(stream);
}
void HPhi::SimplifyConstantInputs() {
// Convert constant inputs to integers when all uses are truncating.
// This must happen before representation inference takes place.
if (!CheckUsesForFlag(kTruncatingToInt32)) return;
for (int i = 0; i < OperandCount(); ++i) {
if (!OperandAt(i)->IsConstant()) return;
}
HGraph* graph = block()->graph();
for (int i = 0; i < OperandCount(); ++i) {
HConstant* operand = HConstant::cast(OperandAt(i));
if (operand->HasInteger32Value()) {
continue;
} else if (operand->HasDoubleValue()) {
HConstant* integer_input =
HConstant::New(graph->zone(), graph->GetInvalidContext(),
DoubleToInt32(operand->DoubleValue()));
integer_input->InsertAfter(operand);
SetOperandAt(i, integer_input);
} else if (operand->HasBooleanValue()) {
SetOperandAt(i, operand->BooleanValue() ? graph->GetConstant1()
: graph->GetConstant0());
} else if (operand->ImmortalImmovable()) {
SetOperandAt(i, graph->GetConstant0());
}
}
// Overwrite observed input representations because they are likely Tagged.
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
if (use->IsBinaryOperation()) {
HBinaryOperation::cast(use)->set_observed_input_representation(
it.index(), Representation::Smi());
}
}
}
void HPhi::InferRepresentation(HInferRepresentationPhase* h_infer) {
ASSERT(CheckFlag(kFlexibleRepresentation));
Representation new_rep = RepresentationFromInputs();
UpdateRepresentation(new_rep, h_infer, "inputs");
new_rep = RepresentationFromUses();
UpdateRepresentation(new_rep, h_infer, "uses");
new_rep = RepresentationFromUseRequirements();
UpdateRepresentation(new_rep, h_infer, "use requirements");
}
Representation HPhi::RepresentationFromInputs() {
Representation r = Representation::None();
for (int i = 0; i < OperandCount(); ++i) {
r = r.generalize(OperandAt(i)->KnownOptimalRepresentation());
}
return r;
}
// Returns a representation if all uses agree on the same representation.
// Integer32 is also returned when some uses are Smi but others are Integer32.
Representation HValue::RepresentationFromUseRequirements() {
Representation rep = Representation::None();
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
// Ignore the use requirement from never run code
if (it.value()->block()->IsUnreachable()) continue;
// We check for observed_input_representation elsewhere.
Representation use_rep =
it.value()->RequiredInputRepresentation(it.index());
if (rep.IsNone()) {
rep = use_rep;
continue;
}
if (use_rep.IsNone() || rep.Equals(use_rep)) continue;
if (rep.generalize(use_rep).IsInteger32()) {
rep = Representation::Integer32();
continue;
}
return Representation::None();
}
return rep;
}
bool HValue::HasNonSmiUse() {
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
// We check for observed_input_representation elsewhere.
Representation use_rep =
it.value()->RequiredInputRepresentation(it.index());
if (!use_rep.IsNone() &&
!use_rep.IsSmi() &&
!use_rep.IsTagged()) {
return true;
}
}
return false;
}
// Node-specific verification code is only included in debug mode.
#ifdef DEBUG
void HPhi::Verify() {
ASSERT(OperandCount() == block()->predecessors()->length());
for (int i = 0; i < OperandCount(); ++i) {
HValue* value = OperandAt(i);
HBasicBlock* defining_block = value->block();
HBasicBlock* predecessor_block = block()->predecessors()->at(i);
ASSERT(defining_block == predecessor_block ||
defining_block->Dominates(predecessor_block));
}
}
void HSimulate::Verify() {
HInstruction::Verify();
ASSERT(HasAstId());
}
void HCheckHeapObject::Verify() {
HInstruction::Verify();
ASSERT(HasNoUses());
}
void HCheckValue::Verify() {
HInstruction::Verify();
ASSERT(HasNoUses());
}
#endif
HObjectAccess HObjectAccess::ForFixedArrayHeader(int offset) {
ASSERT(offset >= 0);
ASSERT(offset < FixedArray::kHeaderSize);
if (offset == FixedArray::kLengthOffset) return ForFixedArrayLength();
return HObjectAccess(kInobject, offset);
}
HObjectAccess HObjectAccess::ForJSObjectOffset(int offset,
Representation representation) {
ASSERT(offset >= 0);
Portion portion = kInobject;
if (offset == JSObject::kElementsOffset) {
portion = kElementsPointer;
} else if (offset == JSObject::kMapOffset) {
portion = kMaps;
}
return HObjectAccess(portion, offset, representation);
}
HObjectAccess HObjectAccess::ForAllocationSiteOffset(int offset) {
switch (offset) {
case AllocationSite::kTransitionInfoOffset:
return HObjectAccess(kInobject, offset, Representation::Tagged());
case AllocationSite::kNestedSiteOffset:
return HObjectAccess(kInobject, offset, Representation::Tagged());
case AllocationSite::kPretenureDataOffset:
return HObjectAccess(kInobject, offset, Representation::Smi());
case AllocationSite::kPretenureCreateCountOffset:
return HObjectAccess(kInobject, offset, Representation::Smi());
case AllocationSite::kDependentCodeOffset:
return HObjectAccess(kInobject, offset, Representation::Tagged());
case AllocationSite::kWeakNextOffset:
return HObjectAccess(kInobject, offset, Representation::Tagged());
default:
UNREACHABLE();
}
return HObjectAccess(kInobject, offset);
}
HObjectAccess HObjectAccess::ForContextSlot(int index) {
ASSERT(index >= 0);
Portion portion = kInobject;
int offset = Context::kHeaderSize + index * kPointerSize;
ASSERT_EQ(offset, Context::SlotOffset(index) + kHeapObjectTag);
return HObjectAccess(portion, offset, Representation::Tagged());
}
HObjectAccess HObjectAccess::ForJSArrayOffset(int offset) {
ASSERT(offset >= 0);
Portion portion = kInobject;
if (offset == JSObject::kElementsOffset) {
portion = kElementsPointer;
} else if (offset == JSArray::kLengthOffset) {
portion = kArrayLengths;
} else if (offset == JSObject::kMapOffset) {
portion = kMaps;
}
return HObjectAccess(portion, offset);
}
HObjectAccess HObjectAccess::ForBackingStoreOffset(int offset,
Representation representation) {
ASSERT(offset >= 0);
return HObjectAccess(kBackingStore, offset, representation);
}
HObjectAccess HObjectAccess::ForField(Handle<Map> map,
LookupResult *lookup, Handle<String> name) {
ASSERT(lookup->IsField() || lookup->IsTransitionToField(*map));
int index;
Representation representation;
if (lookup->IsField()) {
index = lookup->GetLocalFieldIndexFromMap(*map);
representation = lookup->representation();
} else {
Map* transition = lookup->GetTransitionMapFromMap(*map);
int descriptor = transition->LastAdded();
index = transition->instance_descriptors()->GetFieldIndex(descriptor) -
map->inobject_properties();
PropertyDetails details =
transition->instance_descriptors()->GetDetails(descriptor);
representation = details.representation();
}
if (index < 0) {
// Negative property indices are in-object properties, indexed
// from the end of the fixed part of the object.
int offset = (index * kPointerSize) + map->instance_size();
return HObjectAccess(kInobject, offset, representation);
} else {
// Non-negative property indices are in the properties array.
int offset = (index * kPointerSize) + FixedArray::kHeaderSize;
return HObjectAccess(kBackingStore, offset, representation, name);
}
}
HObjectAccess HObjectAccess::ForCellPayload(Isolate* isolate) {
return HObjectAccess(
kInobject, Cell::kValueOffset, Representation::Tagged(),
Handle<String>(isolate->heap()->cell_value_string()));
}
void HObjectAccess::SetGVNFlags(HValue *instr, bool is_store) {
// set the appropriate GVN flags for a given load or store instruction
if (is_store) {
// track dominating allocations in order to eliminate write barriers
instr->SetGVNFlag(kDependsOnNewSpacePromotion);
instr->SetFlag(HValue::kTrackSideEffectDominators);
} else {
// try to GVN loads, but don't hoist above map changes
instr->SetFlag(HValue::kUseGVN);
instr->SetGVNFlag(kDependsOnMaps);
}
switch (portion()) {
case kArrayLengths:
instr->SetGVNFlag(is_store
? kChangesArrayLengths : kDependsOnArrayLengths);
break;
case kStringLengths:
instr->SetGVNFlag(is_store
? kChangesStringLengths : kDependsOnStringLengths);
break;
case kInobject:
instr->SetGVNFlag(is_store
? kChangesInobjectFields : kDependsOnInobjectFields);
break;
case kDouble:
instr->SetGVNFlag(is_store
? kChangesDoubleFields : kDependsOnDoubleFields);
break;
case kBackingStore:
instr->SetGVNFlag(is_store
? kChangesBackingStoreFields : kDependsOnBackingStoreFields);
break;
case kElementsPointer:
instr->SetGVNFlag(is_store
? kChangesElementsPointer : kDependsOnElementsPointer);
break;
case kMaps:
instr->SetGVNFlag(is_store
? kChangesMaps : kDependsOnMaps);
break;
case kExternalMemory:
instr->SetGVNFlag(is_store
? kChangesExternalMemory : kDependsOnExternalMemory);
break;
}
}
void HObjectAccess::PrintTo(StringStream* stream) {
stream->Add(".");
switch (portion()) {
case kArrayLengths:
case kStringLengths:
stream->Add("%length");
break;
case kElementsPointer:
stream->Add("%elements");
break;
case kMaps:
stream->Add("%map");
break;
case kDouble: // fall through
case kInobject:
if (!name_.is_null()) {
stream->Add(String::cast(*name_)->ToCString().get());
}
stream->Add("[in-object]");
break;
case kBackingStore:
if (!name_.is_null()) {
stream->Add(String::cast(*name_)->ToCString().get());
}
stream->Add("[backing-store]");
break;
case kExternalMemory:
stream->Add("[external-memory]");
break;
}
stream->Add("@%d", offset());
}
} } // namespace v8::internal