v8/src/codegen.cc
2009-03-20 09:35:31 +00:00

595 lines
19 KiB
C++

// Copyright 2007-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "bootstrapper.h"
#include "codegen-inl.h"
#include "debug.h"
#include "prettyprinter.h"
#include "runtime.h"
#include "scopeinfo.h"
#include "stub-cache.h"
#include "virtual-frame.h"
namespace v8 { namespace internal {
DeferredCode::DeferredCode(CodeGenerator* generator)
: generator_(generator),
masm_(generator->masm()),
enter_(generator),
exit_(generator, JumpTarget::BIDIRECTIONAL),
statement_position_(masm_->current_statement_position()),
position_(masm_->current_position()) {
generator->AddDeferred(this);
ASSERT(statement_position_ != RelocInfo::kNoPosition);
ASSERT(position_ != RelocInfo::kNoPosition);
#ifdef DEBUG
comment_ = "";
#endif
}
void CodeGenerator::ClearDeferred() {
for (int i = 0; i < deferred_.length(); i++) {
deferred_[i]->Clear();
}
}
void CodeGenerator::ProcessDeferred() {
while (!deferred_.is_empty()) {
DeferredCode* code = deferred_.RemoveLast();
MacroAssembler* masm = code->masm();
// Record position of deferred code stub.
masm->RecordStatementPosition(code->statement_position());
if (code->position() != RelocInfo::kNoPosition) {
masm->RecordPosition(code->position());
}
// Generate the code.
Comment cmnt(masm, code->comment());
code->Generate();
ASSERT(code->enter()->is_bound());
code->Clear();
}
}
void CodeGenerator::SetFrame(VirtualFrame* new_frame,
RegisterFile* non_frame_registers) {
RegisterFile saved_counts;
if (has_valid_frame()) {
frame_->DetachFromCodeGenerator();
// The remaining register reference counts are the non-frame ones.
allocator_->SaveTo(&saved_counts);
}
if (new_frame != NULL) {
// Restore the non-frame register references that go with the new frame.
allocator_->RestoreFrom(non_frame_registers);
new_frame->AttachToCodeGenerator();
}
frame_ = new_frame;
saved_counts.CopyTo(non_frame_registers);
}
void CodeGenerator::DeleteFrame() {
if (has_valid_frame()) {
frame_->DetachFromCodeGenerator();
delete frame_;
frame_ = NULL;
}
}
// Generate the code. Takes a function literal, generates code for it, assemble
// all the pieces into a Code object. This function is only to be called by
// the compiler.cc code.
Handle<Code> CodeGenerator::MakeCode(FunctionLiteral* flit,
Handle<Script> script,
bool is_eval) {
#ifdef ENABLE_DISASSEMBLER
bool print_code = Bootstrapper::IsActive()
? FLAG_print_builtin_code
: FLAG_print_code;
#endif
#ifdef DEBUG
bool print_source = false;
bool print_ast = false;
const char* ftype;
if (Bootstrapper::IsActive()) {
print_source = FLAG_print_builtin_source;
print_ast = FLAG_print_builtin_ast;
ftype = "builtin";
} else {
print_source = FLAG_print_source;
print_ast = FLAG_print_ast;
ftype = "user-defined";
}
if (FLAG_trace_codegen || print_source || print_ast) {
PrintF("*** Generate code for %s function: ", ftype);
flit->name()->ShortPrint();
PrintF(" ***\n");
}
if (print_source) {
PrintF("--- Source from AST ---\n%s\n", PrettyPrinter().PrintProgram(flit));
}
if (print_ast) {
PrintF("--- AST ---\n%s\n", AstPrinter().PrintProgram(flit));
}
#endif // DEBUG
// Generate code.
const int initial_buffer_size = 4 * KB;
CodeGenerator cgen(initial_buffer_size, script, is_eval);
cgen.GenCode(flit);
if (cgen.HasStackOverflow()) {
ASSERT(!Top::has_pending_exception());
return Handle<Code>::null();
}
// Allocate and install the code.
CodeDesc desc;
cgen.masm()->GetCode(&desc);
ScopeInfo<> sinfo(flit->scope());
Code::Flags flags = Code::ComputeFlags(Code::FUNCTION);
Handle<Code> code = Factory::NewCode(desc,
&sinfo,
flags,
cgen.masm()->CodeObject());
// Add unresolved entries in the code to the fixup list.
Bootstrapper::AddFixup(*code, cgen.masm());
#ifdef ENABLE_DISASSEMBLER
if (print_code) {
// Print the source code if available.
if (!script->IsUndefined() && !script->source()->IsUndefined()) {
PrintF("--- Raw source ---\n");
StringInputBuffer stream(String::cast(script->source()));
stream.Seek(flit->start_position());
// flit->end_position() points to the last character in the stream. We
// need to compensate by adding one to calculate the length.
int source_len = flit->end_position() - flit->start_position() + 1;
for (int i = 0; i < source_len; i++) {
if (stream.has_more()) PrintF("%c", stream.GetNext());
}
PrintF("\n\n");
}
PrintF("--- Code ---\n");
code->Disassemble(*flit->name()->ToCString());
}
#endif // ENABLE_DISASSEMBLER
if (!code.is_null()) {
Counters::total_compiled_code_size.Increment(code->instruction_size());
}
return code;
}
#ifdef ENABLE_LOGGING_AND_PROFILING
bool CodeGenerator::ShouldGenerateLog(Expression* type) {
ASSERT(type != NULL);
if (!Logger::is_enabled()) return false;
Handle<String> name = Handle<String>::cast(type->AsLiteral()->handle());
if (FLAG_log_regexp) {
static Vector<const char> kRegexp = CStrVector("regexp");
if (name->IsEqualTo(kRegexp))
return true;
}
return false;
}
#endif
// Sets the function info on a function.
// The start_position points to the first '(' character after the function name
// in the full script source. When counting characters in the script source the
// the first character is number 0 (not 1).
void CodeGenerator::SetFunctionInfo(Handle<JSFunction> fun,
int length,
int function_token_position,
int start_position,
int end_position,
bool is_expression,
bool is_toplevel,
Handle<Script> script) {
fun->shared()->set_length(length);
fun->shared()->set_formal_parameter_count(length);
fun->shared()->set_script(*script);
fun->shared()->set_function_token_position(function_token_position);
fun->shared()->set_start_position(start_position);
fun->shared()->set_end_position(end_position);
fun->shared()->set_is_expression(is_expression);
fun->shared()->set_is_toplevel(is_toplevel);
}
static Handle<Code> ComputeLazyCompile(int argc) {
CALL_HEAP_FUNCTION(StubCache::ComputeLazyCompile(argc), Code);
}
Handle<JSFunction> CodeGenerator::BuildBoilerplate(FunctionLiteral* node) {
#ifdef DEBUG
// We should not try to compile the same function literal more than
// once.
node->mark_as_compiled();
#endif
// Determine if the function can be lazily compiled. This is
// necessary to allow some of our builtin JS files to be lazily
// compiled. These builtins cannot be handled lazily by the parser,
// since we have to know if a function uses the special natives
// syntax, which is something the parser records.
bool allow_lazy = node->AllowsLazyCompilation();
// Generate code
Handle<Code> code;
if (FLAG_lazy && allow_lazy) {
code = ComputeLazyCompile(node->num_parameters());
} else {
code = MakeCode(node, script_, false);
// Check for stack-overflow exception.
if (code.is_null()) {
SetStackOverflow();
return Handle<JSFunction>::null();
}
// Function compilation complete.
LOG(CodeCreateEvent("Function", *code, *node->name()));
}
// Create a boilerplate function.
Handle<JSFunction> function =
Factory::NewFunctionBoilerplate(node->name(),
node->materialized_literal_count(),
node->contains_array_literal(),
code);
CodeGenerator::SetFunctionInfo(function, node->num_parameters(),
node->function_token_position(),
node->start_position(), node->end_position(),
node->is_expression(), false, script_);
// Notify debugger that a new function has been added.
Debugger::OnNewFunction(function);
// Set the expected number of properties for instances and return
// the resulting function.
SetExpectedNofPropertiesFromEstimate(function,
node->expected_property_count());
return function;
}
Handle<Code> CodeGenerator::ComputeCallInitialize(int argc) {
CALL_HEAP_FUNCTION(StubCache::ComputeCallInitialize(argc), Code);
}
Handle<Code> CodeGenerator::ComputeCallInitializeInLoop(int argc) {
// Force the creation of the corresponding stub outside loops,
// because it will be used when clearing the ICs later - when we
// don't know if we're inside a loop or not.
ComputeCallInitialize(argc);
CALL_HEAP_FUNCTION(StubCache::ComputeCallInitializeInLoop(argc), Code);
}
void CodeGenerator::ProcessDeclarations(ZoneList<Declaration*>* declarations) {
int length = declarations->length();
int globals = 0;
for (int i = 0; i < length; i++) {
Declaration* node = declarations->at(i);
Variable* var = node->proxy()->var();
Slot* slot = var->slot();
// If it was not possible to allocate the variable at compile
// time, we need to "declare" it at runtime to make sure it
// actually exists in the local context.
if ((slot != NULL && slot->type() == Slot::LOOKUP) || !var->is_global()) {
VisitDeclaration(node);
} else {
// Count global variables and functions for later processing
globals++;
}
}
// Return in case of no declared global functions or variables.
if (globals == 0) return;
// Compute array of global variable and function declarations.
Handle<FixedArray> array = Factory::NewFixedArray(2 * globals, TENURED);
for (int j = 0, i = 0; i < length; i++) {
Declaration* node = declarations->at(i);
Variable* var = node->proxy()->var();
Slot* slot = var->slot();
if ((slot != NULL && slot->type() == Slot::LOOKUP) || !var->is_global()) {
// Skip - already processed.
} else {
array->set(j++, *(var->name()));
if (node->fun() == NULL) {
if (var->mode() == Variable::CONST) {
// In case this is const property use the hole.
array->set_the_hole(j++);
} else {
array->set_undefined(j++);
}
} else {
Handle<JSFunction> function = BuildBoilerplate(node->fun());
// Check for stack-overflow exception.
if (HasStackOverflow()) return;
array->set(j++, *function);
}
}
}
// Invoke the platform-dependent code generator to do the actual
// declaration the global variables and functions.
DeclareGlobals(array);
}
struct InlineRuntimeLUT {
void (CodeGenerator::*method)(ZoneList<Expression*>*);
const char* name;
};
bool CodeGenerator::CheckForInlineRuntimeCall(CallRuntime* node) {
ZoneList<Expression*>* args = node->arguments();
// Special cases: These 'runtime calls' manipulate the current
// frame and are only used 1 or two places, so we generate them
// inline instead of generating calls to them. They are used
// for implementing Function.prototype.call() and
// Function.prototype.apply().
static const InlineRuntimeLUT kInlineRuntimeLUT[] = {
{&v8::internal::CodeGenerator::GenerateIsSmi,
"_IsSmi"},
{&v8::internal::CodeGenerator::GenerateIsNonNegativeSmi,
"_IsNonNegativeSmi"},
{&v8::internal::CodeGenerator::GenerateIsArray,
"_IsArray"},
{&v8::internal::CodeGenerator::GenerateArgumentsLength,
"_ArgumentsLength"},
{&v8::internal::CodeGenerator::GenerateArgumentsAccess,
"_Arguments"},
{&v8::internal::CodeGenerator::GenerateValueOf,
"_ValueOf"},
{&v8::internal::CodeGenerator::GenerateSetValueOf,
"_SetValueOf"},
{&v8::internal::CodeGenerator::GenerateFastCharCodeAt,
"_FastCharCodeAt"},
{&v8::internal::CodeGenerator::GenerateObjectEquals,
"_ObjectEquals"},
{&v8::internal::CodeGenerator::GenerateLog,
"_Log"}
};
Handle<String> name = node->name();
if (name->length() > 0 && name->Get(0) == '_') {
for (unsigned i = 0;
i < sizeof(kInlineRuntimeLUT) / sizeof(InlineRuntimeLUT);
i++) {
const InlineRuntimeLUT* entry = kInlineRuntimeLUT + i;
if (name->IsEqualTo(CStrVector(entry->name))) {
((*this).*(entry->method))(args);
return true;
}
}
}
return false;
}
void CodeGenerator::GenerateFastCaseSwitchStatement(SwitchStatement* node,
int min_index,
int range,
int default_index) {
ZoneList<CaseClause*>* cases = node->cases();
int length = cases->length();
// Label pointer per number in range.
SmartPointer<Label*> case_targets(NewArray<Label*>(range));
// Label per switch case.
SmartPointer<Label> case_labels(NewArray<Label>(length));
Label* fail_label =
default_index >= 0 ? &(case_labels[default_index]) : NULL;
// Populate array of label pointers for each number in the range.
// Initally put the failure label everywhere.
for (int i = 0; i < range; i++) {
case_targets[i] = fail_label;
}
// Overwrite with label of a case for the number value of that case.
// (In reverse order, so that if the same label occurs twice, the
// first one wins).
for (int i = length - 1; i >= 0 ; i--) {
CaseClause* clause = cases->at(i);
if (!clause->is_default()) {
Object* label_value = *(clause->label()->AsLiteral()->handle());
int case_value = Smi::cast(label_value)->value();
case_targets[case_value - min_index] = &(case_labels[i]);
}
}
GenerateFastCaseSwitchJumpTable(node,
min_index,
range,
fail_label,
Vector<Label*>(*case_targets, range),
Vector<Label>(*case_labels, length));
}
void CodeGenerator::GenerateFastCaseSwitchCases(
SwitchStatement* node,
Vector<Label> case_labels,
VirtualFrame* start_frame) {
ZoneList<CaseClause*>* cases = node->cases();
int length = cases->length();
for (int i = 0; i < length; i++) {
Comment cmnt(masm(), "[ Case clause");
// We may not have a virtual frame if control flow did not fall
// off the end of the previous case. In that case, use the start
// frame. Otherwise, we have to merge the existing one to the
// start frame as part of the previous case.
if (!has_valid_frame()) {
RegisterFile non_frame_registers = RegisterAllocator::Reserved();
SetFrame(new VirtualFrame(start_frame), &non_frame_registers);
} else {
frame_->MergeTo(start_frame);
}
masm()->bind(&case_labels[i]);
VisitStatements(cases->at(i)->statements());
}
}
bool CodeGenerator::TryGenerateFastCaseSwitchStatement(SwitchStatement* node) {
// TODO(238): Due to issue 238, fast case switches can crash on ARM
// and possibly IA32. They are disabled for now.
// See http://code.google.com/p/v8/issues/detail?id=238
return false;
ZoneList<CaseClause*>* cases = node->cases();
int length = cases->length();
if (length < FastCaseSwitchMinCaseCount()) {
return false;
}
// Test whether fast-case should be used.
int default_index = -1;
int min_index = Smi::kMaxValue;
int max_index = Smi::kMinValue;
for (int i = 0; i < length; i++) {
CaseClause* clause = cases->at(i);
if (clause->is_default()) {
if (default_index >= 0) {
// There is more than one default label. Defer to the normal case
// for error.
return false;
}
default_index = i;
} else {
Expression* label = clause->label();
Literal* literal = label->AsLiteral();
if (literal == NULL) {
return false; // fail fast case
}
Object* value = *(literal->handle());
if (!value->IsSmi()) {
return false;
}
int int_value = Smi::cast(value)->value();
min_index = Min(int_value, min_index);
max_index = Max(int_value, max_index);
}
}
// All labels are known to be Smis.
int range = max_index - min_index + 1; // |min..max| inclusive
if (range / FastCaseSwitchMaxOverheadFactor() > length) {
return false; // range of labels is too sparse
}
// Optimization accepted, generate code.
GenerateFastCaseSwitchStatement(node, min_index, range, default_index);
return true;
}
void CodeGenerator::CodeForFunctionPosition(FunctionLiteral* fun) {
if (FLAG_debug_info) {
int pos = fun->start_position();
if (pos != RelocInfo::kNoPosition) {
masm()->RecordStatementPosition(pos);
masm()->RecordPosition(pos);
}
}
}
void CodeGenerator::CodeForStatementPosition(Node* node) {
if (FLAG_debug_info) {
int pos = node->statement_pos();
if (pos != RelocInfo::kNoPosition) {
masm()->RecordStatementPosition(pos);
CodeForSourcePosition(pos);
}
}
}
void CodeGenerator::CodeForSourcePosition(int pos) {
if (FLAG_debug_info) {
if (pos != RelocInfo::kNoPosition) {
masm()->RecordPosition(pos);
}
}
}
const char* RuntimeStub::GetName() {
return Runtime::FunctionForId(id_)->stub_name;
}
void RuntimeStub::Generate(MacroAssembler* masm) {
masm->TailCallRuntime(ExternalReference(id_), num_arguments_);
}
void ArgumentsAccessStub::Generate(MacroAssembler* masm) {
switch (type_) {
case READ_LENGTH: GenerateReadLength(masm); break;
case READ_ELEMENT: GenerateReadElement(masm); break;
case NEW_OBJECT: GenerateNewObject(masm); break;
}
}
} } // namespace v8::internal