v8/test/cctest/test-spaces.cc
vitalyr@chromium.org 7976ca2cbc Merge isolates to bleeding_edge.
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@7271 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-03-18 20:35:07 +00:00

256 lines
8.2 KiB
C++

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "v8.h"
#include "cctest.h"
using namespace v8::internal;
static void VerifyRegionMarking(Address page_start) {
Page* p = Page::FromAddress(page_start);
p->SetRegionMarks(Page::kAllRegionsCleanMarks);
for (Address addr = p->ObjectAreaStart();
addr < p->ObjectAreaEnd();
addr += kPointerSize) {
CHECK(!Page::FromAddress(addr)->IsRegionDirty(addr));
}
for (Address addr = p->ObjectAreaStart();
addr < p->ObjectAreaEnd();
addr += kPointerSize) {
Page::FromAddress(addr)->MarkRegionDirty(addr);
}
for (Address addr = p->ObjectAreaStart();
addr < p->ObjectAreaEnd();
addr += kPointerSize) {
CHECK(Page::FromAddress(addr)->IsRegionDirty(addr));
}
}
TEST(Page) {
byte* mem = NewArray<byte>(2*Page::kPageSize);
CHECK(mem != NULL);
Address start = reinterpret_cast<Address>(mem);
Address page_start = RoundUp(start, Page::kPageSize);
Page* p = Page::FromAddress(page_start);
// Initialized Page has heap pointer, normally set by memory_allocator.
p->heap_ = HEAP;
CHECK(p->address() == page_start);
CHECK(p->is_valid());
p->opaque_header = 0;
p->SetIsLargeObjectPage(false);
CHECK(!p->next_page()->is_valid());
CHECK(p->ObjectAreaStart() == page_start + Page::kObjectStartOffset);
CHECK(p->ObjectAreaEnd() == page_start + Page::kPageSize);
CHECK(p->Offset(page_start + Page::kObjectStartOffset) ==
Page::kObjectStartOffset);
CHECK(p->Offset(page_start + Page::kPageSize) == Page::kPageSize);
CHECK(p->OffsetToAddress(Page::kObjectStartOffset) == p->ObjectAreaStart());
CHECK(p->OffsetToAddress(Page::kPageSize) == p->ObjectAreaEnd());
// test region marking
VerifyRegionMarking(page_start);
DeleteArray(mem);
}
TEST(MemoryAllocator) {
OS::Setup();
Isolate* isolate = Isolate::Current();
CHECK(HEAP->ConfigureHeapDefault());
CHECK(isolate->memory_allocator()->Setup(HEAP->MaxReserved(),
HEAP->MaxExecutableSize()));
OldSpace faked_space(HEAP,
HEAP->MaxReserved(),
OLD_POINTER_SPACE,
NOT_EXECUTABLE);
int total_pages = 0;
int requested = MemoryAllocator::kPagesPerChunk;
int allocated;
// If we request n pages, we should get n or n - 1.
Page* first_page =
isolate->memory_allocator()->AllocatePages(
requested, &allocated, &faked_space);
CHECK(first_page->is_valid());
CHECK(allocated == requested || allocated == requested - 1);
total_pages += allocated;
Page* last_page = first_page;
for (Page* p = first_page; p->is_valid(); p = p->next_page()) {
CHECK(isolate->memory_allocator()->IsPageInSpace(p, &faked_space));
last_page = p;
}
// Again, we should get n or n - 1 pages.
Page* others =
isolate->memory_allocator()->AllocatePages(
requested, &allocated, &faked_space);
CHECK(others->is_valid());
CHECK(allocated == requested || allocated == requested - 1);
total_pages += allocated;
isolate->memory_allocator()->SetNextPage(last_page, others);
int page_count = 0;
for (Page* p = first_page; p->is_valid(); p = p->next_page()) {
CHECK(isolate->memory_allocator()->IsPageInSpace(p, &faked_space));
page_count++;
}
CHECK(total_pages == page_count);
Page* second_page = first_page->next_page();
CHECK(second_page->is_valid());
// Freeing pages at the first chunk starting at or after the second page
// should free the entire second chunk. It will return the page it was passed
// (since the second page was in the first chunk).
Page* free_return = isolate->memory_allocator()->FreePages(second_page);
CHECK(free_return == second_page);
isolate->memory_allocator()->SetNextPage(first_page, free_return);
// Freeing pages in the first chunk starting at the first page should free
// the first chunk and return an invalid page.
Page* invalid_page = isolate->memory_allocator()->FreePages(first_page);
CHECK(!invalid_page->is_valid());
isolate->memory_allocator()->TearDown();
}
TEST(NewSpace) {
OS::Setup();
CHECK(HEAP->ConfigureHeapDefault());
CHECK(Isolate::Current()->memory_allocator()->Setup(
HEAP->MaxReserved(), HEAP->MaxExecutableSize()));
NewSpace new_space(HEAP);
void* chunk =
Isolate::Current()->memory_allocator()->ReserveInitialChunk(
4 * HEAP->ReservedSemiSpaceSize());
CHECK(chunk != NULL);
Address start = RoundUp(static_cast<Address>(chunk),
2 * HEAP->ReservedSemiSpaceSize());
CHECK(new_space.Setup(start, 2 * HEAP->ReservedSemiSpaceSize()));
CHECK(new_space.HasBeenSetup());
while (new_space.Available() >= Page::kMaxHeapObjectSize) {
Object* obj =
new_space.AllocateRaw(Page::kMaxHeapObjectSize)->ToObjectUnchecked();
CHECK(new_space.Contains(HeapObject::cast(obj)));
}
new_space.TearDown();
Isolate::Current()->memory_allocator()->TearDown();
}
TEST(OldSpace) {
OS::Setup();
CHECK(HEAP->ConfigureHeapDefault());
CHECK(Isolate::Current()->memory_allocator()->Setup(
HEAP->MaxReserved(), HEAP->MaxExecutableSize()));
OldSpace* s = new OldSpace(HEAP,
HEAP->MaxOldGenerationSize(),
OLD_POINTER_SPACE,
NOT_EXECUTABLE);
CHECK(s != NULL);
void* chunk =
Isolate::Current()->memory_allocator()->ReserveInitialChunk(
4 * HEAP->ReservedSemiSpaceSize());
CHECK(chunk != NULL);
Address start = static_cast<Address>(chunk);
size_t size = RoundUp(start, 2 * HEAP->ReservedSemiSpaceSize()) - start;
CHECK(s->Setup(start, size));
while (s->Available() > 0) {
s->AllocateRaw(Page::kMaxHeapObjectSize)->ToObjectUnchecked();
}
s->TearDown();
delete s;
Isolate::Current()->memory_allocator()->TearDown();
}
TEST(LargeObjectSpace) {
OS::Setup();
CHECK(HEAP->Setup(false));
LargeObjectSpace* lo = HEAP->lo_space();
CHECK(lo != NULL);
Map* faked_map = reinterpret_cast<Map*>(HeapObject::FromAddress(0));
int lo_size = Page::kPageSize;
Object* obj = lo->AllocateRaw(lo_size)->ToObjectUnchecked();
CHECK(obj->IsHeapObject());
HeapObject* ho = HeapObject::cast(obj);
ho->set_map(faked_map);
CHECK(lo->Contains(HeapObject::cast(obj)));
CHECK(lo->FindObject(ho->address()) == obj);
CHECK(lo->Contains(ho));
while (true) {
intptr_t available = lo->Available();
{ MaybeObject* maybe_obj = lo->AllocateRaw(lo_size);
if (!maybe_obj->ToObject(&obj)) break;
}
HeapObject::cast(obj)->set_map(faked_map);
CHECK(lo->Available() < available);
};
CHECK(!lo->IsEmpty());
CHECK(lo->AllocateRaw(lo_size)->IsFailure());
lo->TearDown();
delete lo;
Isolate::Current()->memory_allocator()->TearDown();
}