v8/test/unittests/compiler/common-operator-reducer-unittest.cc
bmeurer 99f8d57f3c [turbofan] Introduce optional Float64Min and Float64Max machine operators.
Basically recognize certain x < y ? x : y constructs and turn that into
Float64Min/Float64Max operations, if the target machine supports that.
On x86 we lower to (v)minsd/(v)maxsd.

R=dcarney@chromium.org

Review URL: https://codereview.chromium.org/998283002

Cr-Commit-Position: refs/heads/master@{#27160}
2015-03-12 14:07:39 +00:00

168 lines
5.6 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/common-operator.h"
#include "src/compiler/common-operator-reducer.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/js-operator.h"
#include "src/compiler/machine-operator.h"
#include "src/compiler/machine-type.h"
#include "src/compiler/operator.h"
#include "test/unittests/compiler/graph-unittest.h"
#include "test/unittests/compiler/node-test-utils.h"
namespace v8 {
namespace internal {
namespace compiler {
class CommonOperatorReducerTest : public GraphTest {
public:
explicit CommonOperatorReducerTest(int num_parameters = 1)
: GraphTest(num_parameters), machine_(zone()) {}
~CommonOperatorReducerTest() OVERRIDE {}
protected:
Reduction Reduce(Node* node, MachineOperatorBuilder::Flags flags =
MachineOperatorBuilder::kNoFlags) {
JSOperatorBuilder javascript(zone());
MachineOperatorBuilder machine(zone(), kMachPtr, flags);
JSGraph jsgraph(isolate(), graph(), common(), &javascript, &machine);
CommonOperatorReducer reducer(&jsgraph);
return reducer.Reduce(node);
}
MachineOperatorBuilder* machine() { return &machine_; }
private:
MachineOperatorBuilder machine_;
};
namespace {
const BranchHint kBranchHints[] = {BranchHint::kNone, BranchHint::kFalse,
BranchHint::kTrue};
const MachineType kMachineTypes[] = {
kMachFloat32, kMachFloat64, kMachInt8, kMachUint8, kMachInt16,
kMachUint16, kMachInt32, kMachUint32, kMachInt64, kMachUint64,
kMachPtr, kMachAnyTagged, kRepBit, kRepWord8, kRepWord16,
kRepWord32, kRepWord64, kRepFloat32, kRepFloat64, kRepTagged};
const Operator kOp0(0, Operator::kNoProperties, "Op0", 0, 0, 0, 1, 1, 0);
} // namespace
// -----------------------------------------------------------------------------
// EffectPhi
TEST_F(CommonOperatorReducerTest, RedundantEffectPhi) {
const int kMaxInputs = 64;
Node* inputs[kMaxInputs];
Node* const input = graph()->NewNode(&kOp0);
TRACED_FORRANGE(int, input_count, 2, kMaxInputs - 1) {
int const value_input_count = input_count - 1;
for (int i = 0; i < value_input_count; ++i) {
inputs[i] = input;
}
inputs[value_input_count] = graph()->start();
Reduction r = Reduce(graph()->NewNode(
common()->EffectPhi(value_input_count), input_count, inputs));
ASSERT_TRUE(r.Changed());
EXPECT_EQ(input, r.replacement());
}
}
// -----------------------------------------------------------------------------
// Phi
TEST_F(CommonOperatorReducerTest, RedundantPhi) {
const int kMaxInputs = 64;
Node* inputs[kMaxInputs];
Node* const input = graph()->NewNode(&kOp0);
TRACED_FORRANGE(int, input_count, 2, kMaxInputs - 1) {
int const value_input_count = input_count - 1;
TRACED_FOREACH(MachineType, type, kMachineTypes) {
for (int i = 0; i < value_input_count; ++i) {
inputs[i] = graph()->start();
}
Node* merge = graph()->NewNode(common()->Merge(value_input_count),
value_input_count, inputs);
for (int i = 0; i < value_input_count; ++i) {
inputs[i] = input;
}
inputs[value_input_count] = merge;
Reduction r = Reduce(graph()->NewNode(
common()->Phi(type, value_input_count), input_count, inputs));
ASSERT_TRUE(r.Changed());
EXPECT_EQ(input, r.replacement());
}
}
}
TEST_F(CommonOperatorReducerTest, PhiToFloat64MaxOrFloat64Min) {
Node* p0 = Parameter(0);
Node* p1 = Parameter(1);
Node* check = graph()->NewNode(machine()->Float64LessThan(), p0, p1);
Node* branch = graph()->NewNode(common()->Branch(), check, graph()->start());
Node* if_true = graph()->NewNode(common()->IfTrue(), branch);
Node* if_false = graph()->NewNode(common()->IfFalse(), branch);
Node* merge = graph()->NewNode(common()->Merge(2), if_true, if_false);
Reduction r1 =
Reduce(graph()->NewNode(common()->Phi(kMachFloat64, 2), p1, p0, merge),
MachineOperatorBuilder::kFloat64Max);
ASSERT_TRUE(r1.Changed());
EXPECT_THAT(r1.replacement(), IsFloat64Max(p1, p0));
Reduction r2 =
Reduce(graph()->NewNode(common()->Phi(kMachFloat64, 2), p0, p1, merge),
MachineOperatorBuilder::kFloat64Min);
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(), IsFloat64Min(p0, p1));
}
// -----------------------------------------------------------------------------
// Select
TEST_F(CommonOperatorReducerTest, RedundantSelect) {
Node* const input = graph()->NewNode(&kOp0);
TRACED_FOREACH(BranchHint, hint, kBranchHints) {
TRACED_FOREACH(MachineType, type, kMachineTypes) {
Reduction r = Reduce(
graph()->NewNode(common()->Select(type, hint), input, input, input));
ASSERT_TRUE(r.Changed());
EXPECT_EQ(input, r.replacement());
}
}
}
TEST_F(CommonOperatorReducerTest, SelectToFloat64MaxOrFloat64Min) {
Node* p0 = Parameter(0);
Node* p1 = Parameter(1);
Node* check = graph()->NewNode(machine()->Float64LessThan(), p0, p1);
Reduction r1 =
Reduce(graph()->NewNode(common()->Select(kMachFloat64), check, p1, p0),
MachineOperatorBuilder::kFloat64Max);
ASSERT_TRUE(r1.Changed());
EXPECT_THAT(r1.replacement(), IsFloat64Max(p1, p0));
Reduction r2 =
Reduce(graph()->NewNode(common()->Select(kMachFloat64), check, p0, p1),
MachineOperatorBuilder::kFloat64Min);
ASSERT_TRUE(r2.Changed());
EXPECT_THAT(r2.replacement(), IsFloat64Min(p0, p1));
}
} // namespace compiler
} // namespace internal
} // namespace v8