0dcaac1939
Review URL: http://codereview.chromium.org/3970005 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5698 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
501 lines
15 KiB
C++
501 lines
15 KiB
C++
// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_SPACES_INL_H_
|
|
#define V8_SPACES_INL_H_
|
|
|
|
#include "memory.h"
|
|
#include "spaces.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// PageIterator
|
|
|
|
bool PageIterator::has_next() {
|
|
return prev_page_ != stop_page_;
|
|
}
|
|
|
|
|
|
Page* PageIterator::next() {
|
|
ASSERT(has_next());
|
|
prev_page_ = (prev_page_ == NULL)
|
|
? space_->first_page_
|
|
: prev_page_->next_page();
|
|
return prev_page_;
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Page
|
|
|
|
Page* Page::next_page() {
|
|
return MemoryAllocator::GetNextPage(this);
|
|
}
|
|
|
|
|
|
Address Page::AllocationTop() {
|
|
PagedSpace* owner = MemoryAllocator::PageOwner(this);
|
|
return owner->PageAllocationTop(this);
|
|
}
|
|
|
|
|
|
Address Page::AllocationWatermark() {
|
|
PagedSpace* owner = MemoryAllocator::PageOwner(this);
|
|
if (this == owner->AllocationTopPage()) {
|
|
return owner->top();
|
|
}
|
|
return address() + AllocationWatermarkOffset();
|
|
}
|
|
|
|
|
|
uint32_t Page::AllocationWatermarkOffset() {
|
|
return static_cast<uint32_t>((flags_ & kAllocationWatermarkOffsetMask) >>
|
|
kAllocationWatermarkOffsetShift);
|
|
}
|
|
|
|
|
|
void Page::SetAllocationWatermark(Address allocation_watermark) {
|
|
if ((Heap::gc_state() == Heap::SCAVENGE) && IsWatermarkValid()) {
|
|
// When iterating intergenerational references during scavenge
|
|
// we might decide to promote an encountered young object.
|
|
// We will allocate a space for such an object and put it
|
|
// into the promotion queue to process it later.
|
|
// If space for object was allocated somewhere beyond allocation
|
|
// watermark this might cause garbage pointers to appear under allocation
|
|
// watermark. To avoid visiting them during dirty regions iteration
|
|
// which might be still in progress we store a valid allocation watermark
|
|
// value and mark this page as having an invalid watermark.
|
|
SetCachedAllocationWatermark(AllocationWatermark());
|
|
InvalidateWatermark(true);
|
|
}
|
|
|
|
flags_ = (flags_ & kFlagsMask) |
|
|
Offset(allocation_watermark) << kAllocationWatermarkOffsetShift;
|
|
ASSERT(AllocationWatermarkOffset()
|
|
== static_cast<uint32_t>(Offset(allocation_watermark)));
|
|
}
|
|
|
|
|
|
void Page::SetCachedAllocationWatermark(Address allocation_watermark) {
|
|
mc_first_forwarded = allocation_watermark;
|
|
}
|
|
|
|
|
|
Address Page::CachedAllocationWatermark() {
|
|
return mc_first_forwarded;
|
|
}
|
|
|
|
|
|
uint32_t Page::GetRegionMarks() {
|
|
return dirty_regions_;
|
|
}
|
|
|
|
|
|
void Page::SetRegionMarks(uint32_t marks) {
|
|
dirty_regions_ = marks;
|
|
}
|
|
|
|
|
|
int Page::GetRegionNumberForAddress(Address addr) {
|
|
// Each page is divided into 256 byte regions. Each region has a corresponding
|
|
// dirty mark bit in the page header. Region can contain intergenerational
|
|
// references iff its dirty mark is set.
|
|
// A normal 8K page contains exactly 32 regions so all region marks fit
|
|
// into 32-bit integer field. To calculate a region number we just divide
|
|
// offset inside page by region size.
|
|
// A large page can contain more then 32 regions. But we want to avoid
|
|
// additional write barrier code for distinguishing between large and normal
|
|
// pages so we just ignore the fact that addr points into a large page and
|
|
// calculate region number as if addr pointed into a normal 8K page. This way
|
|
// we get a region number modulo 32 so for large pages several regions might
|
|
// be mapped to a single dirty mark.
|
|
ASSERT_PAGE_ALIGNED(this->address());
|
|
STATIC_ASSERT((kPageAlignmentMask >> kRegionSizeLog2) < kBitsPerInt);
|
|
|
|
// We are using masking with kPageAlignmentMask instead of Page::Offset()
|
|
// to get an offset to the beginning of 8K page containing addr not to the
|
|
// beginning of actual page which can be bigger then 8K.
|
|
intptr_t offset_inside_normal_page = OffsetFrom(addr) & kPageAlignmentMask;
|
|
return static_cast<int>(offset_inside_normal_page >> kRegionSizeLog2);
|
|
}
|
|
|
|
|
|
uint32_t Page::GetRegionMaskForAddress(Address addr) {
|
|
return 1 << GetRegionNumberForAddress(addr);
|
|
}
|
|
|
|
|
|
uint32_t Page::GetRegionMaskForSpan(Address start, int length_in_bytes) {
|
|
uint32_t result = 0;
|
|
if (length_in_bytes >= kPageSize) {
|
|
result = kAllRegionsDirtyMarks;
|
|
} else if (length_in_bytes > 0) {
|
|
int start_region = GetRegionNumberForAddress(start);
|
|
int end_region =
|
|
GetRegionNumberForAddress(start + length_in_bytes - kPointerSize);
|
|
uint32_t start_mask = (~0) << start_region;
|
|
uint32_t end_mask = ~((~1) << end_region);
|
|
result = start_mask & end_mask;
|
|
// if end_region < start_region, the mask is ored.
|
|
if (result == 0) result = start_mask | end_mask;
|
|
}
|
|
#ifdef DEBUG
|
|
if (FLAG_enable_slow_asserts) {
|
|
uint32_t expected = 0;
|
|
for (Address a = start; a < start + length_in_bytes; a += kPointerSize) {
|
|
expected |= GetRegionMaskForAddress(a);
|
|
}
|
|
ASSERT(expected == result);
|
|
}
|
|
#endif
|
|
return result;
|
|
}
|
|
|
|
|
|
void Page::MarkRegionDirty(Address address) {
|
|
SetRegionMarks(GetRegionMarks() | GetRegionMaskForAddress(address));
|
|
}
|
|
|
|
|
|
bool Page::IsRegionDirty(Address address) {
|
|
return GetRegionMarks() & GetRegionMaskForAddress(address);
|
|
}
|
|
|
|
|
|
void Page::ClearRegionMarks(Address start, Address end, bool reaches_limit) {
|
|
int rstart = GetRegionNumberForAddress(start);
|
|
int rend = GetRegionNumberForAddress(end);
|
|
|
|
if (reaches_limit) {
|
|
end += 1;
|
|
}
|
|
|
|
if ((rend - rstart) == 0) {
|
|
return;
|
|
}
|
|
|
|
uint32_t bitmask = 0;
|
|
|
|
if ((OffsetFrom(start) & kRegionAlignmentMask) == 0
|
|
|| (start == ObjectAreaStart())) {
|
|
// First region is fully covered
|
|
bitmask = 1 << rstart;
|
|
}
|
|
|
|
while (++rstart < rend) {
|
|
bitmask |= 1 << rstart;
|
|
}
|
|
|
|
if (bitmask) {
|
|
SetRegionMarks(GetRegionMarks() & ~bitmask);
|
|
}
|
|
}
|
|
|
|
|
|
void Page::FlipMeaningOfInvalidatedWatermarkFlag() {
|
|
watermark_invalidated_mark_ ^= 1 << WATERMARK_INVALIDATED;
|
|
}
|
|
|
|
|
|
bool Page::IsWatermarkValid() {
|
|
return (flags_ & (1 << WATERMARK_INVALIDATED)) != watermark_invalidated_mark_;
|
|
}
|
|
|
|
|
|
void Page::InvalidateWatermark(bool value) {
|
|
if (value) {
|
|
flags_ = (flags_ & ~(1 << WATERMARK_INVALIDATED)) |
|
|
watermark_invalidated_mark_;
|
|
} else {
|
|
flags_ = (flags_ & ~(1 << WATERMARK_INVALIDATED)) |
|
|
(watermark_invalidated_mark_ ^ (1 << WATERMARK_INVALIDATED));
|
|
}
|
|
|
|
ASSERT(IsWatermarkValid() == !value);
|
|
}
|
|
|
|
|
|
bool Page::GetPageFlag(PageFlag flag) {
|
|
return (flags_ & static_cast<intptr_t>(1 << flag)) != 0;
|
|
}
|
|
|
|
|
|
void Page::SetPageFlag(PageFlag flag, bool value) {
|
|
if (value) {
|
|
flags_ |= static_cast<intptr_t>(1 << flag);
|
|
} else {
|
|
flags_ &= ~static_cast<intptr_t>(1 << flag);
|
|
}
|
|
}
|
|
|
|
|
|
void Page::ClearPageFlags() {
|
|
flags_ = 0;
|
|
}
|
|
|
|
|
|
void Page::ClearGCFields() {
|
|
InvalidateWatermark(true);
|
|
SetAllocationWatermark(ObjectAreaStart());
|
|
if (Heap::gc_state() == Heap::SCAVENGE) {
|
|
SetCachedAllocationWatermark(ObjectAreaStart());
|
|
}
|
|
SetRegionMarks(kAllRegionsCleanMarks);
|
|
}
|
|
|
|
|
|
bool Page::WasInUseBeforeMC() {
|
|
return GetPageFlag(WAS_IN_USE_BEFORE_MC);
|
|
}
|
|
|
|
|
|
void Page::SetWasInUseBeforeMC(bool was_in_use) {
|
|
SetPageFlag(WAS_IN_USE_BEFORE_MC, was_in_use);
|
|
}
|
|
|
|
|
|
bool Page::IsLargeObjectPage() {
|
|
return !GetPageFlag(IS_NORMAL_PAGE);
|
|
}
|
|
|
|
|
|
void Page::SetIsLargeObjectPage(bool is_large_object_page) {
|
|
SetPageFlag(IS_NORMAL_PAGE, !is_large_object_page);
|
|
}
|
|
|
|
bool Page::IsPageExecutable() {
|
|
return GetPageFlag(IS_EXECUTABLE);
|
|
}
|
|
|
|
|
|
void Page::SetIsPageExecutable(bool is_page_executable) {
|
|
SetPageFlag(IS_EXECUTABLE, is_page_executable);
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// MemoryAllocator
|
|
|
|
void MemoryAllocator::ChunkInfo::init(Address a, size_t s, PagedSpace* o) {
|
|
address_ = a;
|
|
size_ = s;
|
|
owner_ = o;
|
|
executable_ = (o == NULL) ? NOT_EXECUTABLE : o->executable();
|
|
}
|
|
|
|
|
|
bool MemoryAllocator::IsValidChunk(int chunk_id) {
|
|
if (!IsValidChunkId(chunk_id)) return false;
|
|
|
|
ChunkInfo& c = chunks_[chunk_id];
|
|
return (c.address() != NULL) && (c.size() != 0) && (c.owner() != NULL);
|
|
}
|
|
|
|
|
|
bool MemoryAllocator::IsValidChunkId(int chunk_id) {
|
|
return (0 <= chunk_id) && (chunk_id < max_nof_chunks_);
|
|
}
|
|
|
|
|
|
bool MemoryAllocator::IsPageInSpace(Page* p, PagedSpace* space) {
|
|
ASSERT(p->is_valid());
|
|
|
|
int chunk_id = GetChunkId(p);
|
|
if (!IsValidChunkId(chunk_id)) return false;
|
|
|
|
ChunkInfo& c = chunks_[chunk_id];
|
|
return (c.address() <= p->address()) &&
|
|
(p->address() < c.address() + c.size()) &&
|
|
(space == c.owner());
|
|
}
|
|
|
|
|
|
Page* MemoryAllocator::GetNextPage(Page* p) {
|
|
ASSERT(p->is_valid());
|
|
intptr_t raw_addr = p->opaque_header & ~Page::kPageAlignmentMask;
|
|
return Page::FromAddress(AddressFrom<Address>(raw_addr));
|
|
}
|
|
|
|
|
|
int MemoryAllocator::GetChunkId(Page* p) {
|
|
ASSERT(p->is_valid());
|
|
return static_cast<int>(p->opaque_header & Page::kPageAlignmentMask);
|
|
}
|
|
|
|
|
|
void MemoryAllocator::SetNextPage(Page* prev, Page* next) {
|
|
ASSERT(prev->is_valid());
|
|
int chunk_id = GetChunkId(prev);
|
|
ASSERT_PAGE_ALIGNED(next->address());
|
|
prev->opaque_header = OffsetFrom(next->address()) | chunk_id;
|
|
}
|
|
|
|
|
|
PagedSpace* MemoryAllocator::PageOwner(Page* page) {
|
|
int chunk_id = GetChunkId(page);
|
|
ASSERT(IsValidChunk(chunk_id));
|
|
return chunks_[chunk_id].owner();
|
|
}
|
|
|
|
|
|
bool MemoryAllocator::InInitialChunk(Address address) {
|
|
if (initial_chunk_ == NULL) return false;
|
|
|
|
Address start = static_cast<Address>(initial_chunk_->address());
|
|
return (start <= address) && (address < start + initial_chunk_->size());
|
|
}
|
|
|
|
|
|
#ifdef ENABLE_HEAP_PROTECTION
|
|
|
|
void MemoryAllocator::Protect(Address start, size_t size) {
|
|
OS::Protect(start, size);
|
|
}
|
|
|
|
|
|
void MemoryAllocator::Unprotect(Address start,
|
|
size_t size,
|
|
Executability executable) {
|
|
OS::Unprotect(start, size, executable);
|
|
}
|
|
|
|
|
|
void MemoryAllocator::ProtectChunkFromPage(Page* page) {
|
|
int id = GetChunkId(page);
|
|
OS::Protect(chunks_[id].address(), chunks_[id].size());
|
|
}
|
|
|
|
|
|
void MemoryAllocator::UnprotectChunkFromPage(Page* page) {
|
|
int id = GetChunkId(page);
|
|
OS::Unprotect(chunks_[id].address(), chunks_[id].size(),
|
|
chunks_[id].owner()->executable() == EXECUTABLE);
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
// --------------------------------------------------------------------------
|
|
// PagedSpace
|
|
|
|
bool PagedSpace::Contains(Address addr) {
|
|
Page* p = Page::FromAddress(addr);
|
|
if (!p->is_valid()) return false;
|
|
return MemoryAllocator::IsPageInSpace(p, this);
|
|
}
|
|
|
|
|
|
// Try linear allocation in the page of alloc_info's allocation top. Does
|
|
// not contain slow case logic (eg, move to the next page or try free list
|
|
// allocation) so it can be used by all the allocation functions and for all
|
|
// the paged spaces.
|
|
HeapObject* PagedSpace::AllocateLinearly(AllocationInfo* alloc_info,
|
|
int size_in_bytes) {
|
|
Address current_top = alloc_info->top;
|
|
Address new_top = current_top + size_in_bytes;
|
|
if (new_top > alloc_info->limit) return NULL;
|
|
|
|
alloc_info->top = new_top;
|
|
ASSERT(alloc_info->VerifyPagedAllocation());
|
|
accounting_stats_.AllocateBytes(size_in_bytes);
|
|
return HeapObject::FromAddress(current_top);
|
|
}
|
|
|
|
|
|
// Raw allocation.
|
|
MaybeObject* PagedSpace::AllocateRaw(int size_in_bytes) {
|
|
ASSERT(HasBeenSetup());
|
|
ASSERT_OBJECT_SIZE(size_in_bytes);
|
|
HeapObject* object = AllocateLinearly(&allocation_info_, size_in_bytes);
|
|
if (object != NULL) return object;
|
|
|
|
object = SlowAllocateRaw(size_in_bytes);
|
|
if (object != NULL) return object;
|
|
|
|
return Failure::RetryAfterGC(identity());
|
|
}
|
|
|
|
|
|
// Reallocating (and promoting) objects during a compacting collection.
|
|
MaybeObject* PagedSpace::MCAllocateRaw(int size_in_bytes) {
|
|
ASSERT(HasBeenSetup());
|
|
ASSERT_OBJECT_SIZE(size_in_bytes);
|
|
HeapObject* object = AllocateLinearly(&mc_forwarding_info_, size_in_bytes);
|
|
if (object != NULL) return object;
|
|
|
|
object = SlowMCAllocateRaw(size_in_bytes);
|
|
if (object != NULL) return object;
|
|
|
|
return Failure::RetryAfterGC(identity());
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// LargeObjectChunk
|
|
|
|
HeapObject* LargeObjectChunk::GetObject() {
|
|
// Round the chunk address up to the nearest page-aligned address
|
|
// and return the heap object in that page.
|
|
Page* page = Page::FromAddress(RoundUp(address(), Page::kPageSize));
|
|
return HeapObject::FromAddress(page->ObjectAreaStart());
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// LargeObjectSpace
|
|
|
|
MaybeObject* NewSpace::AllocateRawInternal(int size_in_bytes,
|
|
AllocationInfo* alloc_info) {
|
|
Address new_top = alloc_info->top + size_in_bytes;
|
|
if (new_top > alloc_info->limit) return Failure::RetryAfterGC();
|
|
|
|
Object* obj = HeapObject::FromAddress(alloc_info->top);
|
|
alloc_info->top = new_top;
|
|
#ifdef DEBUG
|
|
SemiSpace* space =
|
|
(alloc_info == &allocation_info_) ? &to_space_ : &from_space_;
|
|
ASSERT(space->low() <= alloc_info->top
|
|
&& alloc_info->top <= space->high()
|
|
&& alloc_info->limit == space->high());
|
|
#endif
|
|
return obj;
|
|
}
|
|
|
|
|
|
bool FreeListNode::IsFreeListNode(HeapObject* object) {
|
|
return object->map() == Heap::raw_unchecked_byte_array_map()
|
|
|| object->map() == Heap::raw_unchecked_one_pointer_filler_map()
|
|
|| object->map() == Heap::raw_unchecked_two_pointer_filler_map();
|
|
}
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_SPACES_INL_H_
|