v8/src/types.h
rossberg@chromium.org 9b28aed3f6 Introduce representation types
Also:
- improve type pretty-printing,
- update doc comments,
- some renamings for consistency.

R=mstarzinger@chromium.org
BUG=

Review URL: https://codereview.chromium.org/176843006

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@20025 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-03-18 11:50:18 +00:00

650 lines
24 KiB
C++

// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_TYPES_H_
#define V8_TYPES_H_
#include "v8.h"
#include "objects.h"
namespace v8 {
namespace internal {
// A simple type system for compiler-internal use. It is based entirely on
// union types, and all subtyping hence amounts to set inclusion. Besides the
// obvious primitive types and some predefined unions, the type language also
// can express class types (a.k.a. specific maps) and singleton types (i.e.,
// concrete constants).
//
// Types consist of two dimensions: semantic (value range) and representation.
// Both are related through subtyping.
//
// The following equations and inequations hold for the semantic axis:
//
// None <= T
// T <= Any
//
// Oddball = Boolean \/ Null \/ Undefined
// Number = Signed32 \/ Unsigned32 \/ Double
// Smi <= Signed32
// Name = String \/ Symbol
// UniqueName = InternalizedString \/ Symbol
// InternalizedString < String
//
// Receiver = Object \/ Proxy
// Array < Object
// Function < Object
// RegExp < Object
// Undetectable < Object
// Detectable = Receiver \/ Number \/ Name - Undetectable
//
// Class(map) < T iff instance_type(map) < T
// Constant(x) < T iff instance_type(map(x)) < T
//
// Note that Constant(x) < Class(map(x)) does _not_ hold, since x's map can
// change! (Its instance type cannot, however.)
// TODO(rossberg): the latter is not currently true for proxies, because of fix,
// but will hold once we implement direct proxies.
//
// For the representation axis, the following holds:
//
// None <= R
// R <= Any
//
// UntaggedInt <= UntaggedInt8 \/ UntaggedInt16 \/ UntaggedInt32)
// UntaggedFloat <= UntaggedFloat32 \/ UntaggedFloat64
// UntaggedNumber <= UntaggedInt \/ UntaggedFloat
// Untagged <= UntaggedNumber \/ UntaggedPtr
// Tagged <= TaggedInt \/ TaggedPtr
//
// Subtyping relates the two dimensions, for example:
//
// Number <= Tagged \/ UntaggedNumber
// Object <= TaggedPtr \/ UntaggedPtr
//
// That holds because the semantic type constructors defined by the API create
// types that allow for all possible representations, and dually, the ones for
// representation types initially include all semantic ranges. Representations
// can then e.g. be narrowed for a given semantic type using intersection:
//
// SignedSmall /\ TaggedInt (a 'smi')
// Number /\ TaggedPtr (a heap number)
//
// There are two main functions for testing types:
//
// T1->Is(T2) -- tests whether T1 is included in T2 (i.e., T1 <= T2)
// T1->Maybe(T2) -- tests whether T1 and T2 overlap (i.e., T1 /\ T2 =/= 0)
//
// Typically, the former is to be used to select representations (e.g., via
// T->Is(SignedSmall())), and the latter to check whether a specific case needs
// handling (e.g., via T->Maybe(Number())).
//
// There is no functionality to discover whether a type is a leaf in the
// lattice. That is intentional. It should always be possible to refine the
// lattice (e.g., splitting up number types further) without invalidating any
// existing assumptions or tests.
// Consequently, do not use pointer equality for type tests, always use Is!
//
// Internally, all 'primitive' types, and their unions, are represented as
// bitsets. Class is a heap pointer to the respective map. Only Constant's, or
// unions containing Class'es or Constant's, currently require allocation.
// Note that the bitset representation is closed under both Union and Intersect.
//
// There are two type representations, using different allocation:
//
// - class Type (zone-allocated, for compiler and concurrent compilation)
// - class HeapType (heap-allocated, for persistent types)
//
// Both provide the same API, and the Convert method can be used to interconvert
// them. For zone types, no query method touches the heap, only constructors do.
#define MASK_BITSET_TYPE_LIST(V) \
V(Representation, static_cast<int>(0xff800000)) \
V(Semantic, static_cast<int>(0x007fffff))
#define REPRESENTATION(k) ((k) & kRepresentation)
#define SEMANTIC(k) ((k) & kSemantic)
#define REPRESENTATION_BITSET_TYPE_LIST(V) \
V(None, 0) \
V(UntaggedInt8, 1 << 23 | kSemantic) \
V(UntaggedInt16, 1 << 24 | kSemantic) \
V(UntaggedInt32, 1 << 25 | kSemantic) \
V(UntaggedFloat32, 1 << 26 | kSemantic) \
V(UntaggedFloat64, 1 << 27 | kSemantic) \
V(UntaggedPtr, 1 << 28 | kSemantic) \
V(TaggedInt, 1 << 29 | kSemantic) \
V(TaggedPtr, -1 << 30 | kSemantic) /* MSB has to be sign-extended */ \
\
V(UntaggedInt, kUntaggedInt8 | kUntaggedInt16 | kUntaggedInt32) \
V(UntaggedFloat, kUntaggedFloat32 | kUntaggedFloat64) \
V(UntaggedNumber, kUntaggedInt | kUntaggedFloat) \
V(Untagged, kUntaggedNumber | kUntaggedPtr) \
V(Tagged, kTaggedInt | kTaggedPtr)
#define SEMANTIC_BITSET_TYPE_LIST(V) \
V(Null, 1 << 0 | REPRESENTATION(kTaggedPtr)) \
V(Undefined, 1 << 1 | REPRESENTATION(kTaggedPtr)) \
V(Boolean, 1 << 2 | REPRESENTATION(kTaggedPtr)) \
V(SignedSmall, 1 << 3 | REPRESENTATION(kTagged | kUntaggedNumber)) \
V(OtherSigned32, 1 << 4 | REPRESENTATION(kTagged | kUntaggedNumber)) \
V(Unsigned32, 1 << 5 | REPRESENTATION(kTagged | kUntaggedNumber)) \
V(Float, 1 << 6 | REPRESENTATION(kTagged | kUntaggedNumber)) \
V(Symbol, 1 << 7 | REPRESENTATION(kTaggedPtr)) \
V(InternalizedString, 1 << 8 | REPRESENTATION(kTaggedPtr)) \
V(OtherString, 1 << 9 | REPRESENTATION(kTaggedPtr)) \
V(Undetectable, 1 << 10 | REPRESENTATION(kTaggedPtr)) \
V(Array, 1 << 11 | REPRESENTATION(kTaggedPtr)) \
V(Function, 1 << 12 | REPRESENTATION(kTaggedPtr)) \
V(RegExp, 1 << 13 | REPRESENTATION(kTaggedPtr)) \
V(OtherObject, 1 << 14 | REPRESENTATION(kTaggedPtr)) \
V(Proxy, 1 << 15 | REPRESENTATION(kTaggedPtr)) \
V(Internal, 1 << 16 | REPRESENTATION(kTagged | kUntagged)) \
\
V(Oddball, kBoolean | kNull | kUndefined) \
V(Signed32, kSignedSmall | kOtherSigned32) \
V(Number, kSigned32 | kUnsigned32 | kFloat) \
V(String, kInternalizedString | kOtherString) \
V(UniqueName, kSymbol | kInternalizedString) \
V(Name, kSymbol | kString) \
V(NumberOrString, kNumber | kString) \
V(DetectableObject, kArray | kFunction | kRegExp | kOtherObject) \
V(DetectableReceiver, kDetectableObject | kProxy) \
V(Detectable, kDetectableReceiver | kNumber | kName) \
V(Object, kDetectableObject | kUndetectable) \
V(Receiver, kObject | kProxy) \
V(NonNumber, kOddball | kName | kReceiver | kInternal) \
V(Any, kNumber | kNonNumber)
#define BITSET_TYPE_LIST(V) \
MASK_BITSET_TYPE_LIST(V) \
REPRESENTATION_BITSET_TYPE_LIST(V) \
SEMANTIC_BITSET_TYPE_LIST(V)
// struct Config {
// typedef Base;
// typedef Unioned;
// typedef Region;
// template<class> struct Handle { typedef type; } // No template typedefs...
// static Handle<Type>::type handle(Type* type); // !is_bitset(type)
// static bool is_bitset(Type*);
// static bool is_class(Type*);
// static bool is_constant(Type*);
// static bool is_union(Type*);
// static int as_bitset(Type*);
// static i::Handle<i::Map> as_class(Type*);
// static i::Handle<i::Object> as_constant(Type*);
// static Handle<Unioned>::type as_union(Type*);
// static Type* from_bitset(int bitset);
// static Handle<Type>::type from_bitset(int bitset, Region*);
// static Handle<Type>::type from_class(i::Handle<Map>, int lub, Region*);
// static Handle<Type>::type from_constant(i::Handle<Object>, int, Region*);
// static Handle<Type>::type from_union(Handle<Unioned>::type);
// static Handle<Unioned>::type union_create(int size, Region*);
// static void union_shrink(Handle<Unioned>::type, int size);
// static Handle<Type>::type union_get(Handle<Unioned>::type, int);
// static void union_set(Handle<Unioned>::type, int, Handle<Type>::type);
// static int union_length(Handle<Unioned>::type);
// static int lub_bitset(Type*);
// }
template<class Config>
class TypeImpl : public Config::Base {
public:
typedef typename Config::template Handle<TypeImpl>::type TypeHandle;
typedef typename Config::Region Region;
#define DEFINE_TYPE_CONSTRUCTOR(type, value) \
static TypeImpl* type() { return Config::from_bitset(k##type); } \
static TypeHandle type(Region* region) { \
return Config::from_bitset(k##type, region); \
}
BITSET_TYPE_LIST(DEFINE_TYPE_CONSTRUCTOR)
#undef DEFINE_TYPE_CONSTRUCTOR
static TypeHandle Class(i::Handle<i::Map> map, Region* region) {
return Config::from_class(map, LubBitset(*map), region);
}
static TypeHandle Constant(i::Handle<i::Object> value, Region* region) {
return Config::from_constant(value, LubBitset(*value), region);
}
static TypeHandle Union(TypeHandle type1, TypeHandle type2, Region* reg);
static TypeHandle Intersect(TypeHandle type1, TypeHandle type2, Region* reg);
static TypeHandle Of(i::Handle<i::Object> value, Region* region) {
return Config::from_bitset(LubBitset(*value), region);
}
bool Is(TypeImpl* that) { return this == that || this->SlowIs(that); }
template<class TypeHandle>
bool Is(TypeHandle that) { return this->Is(*that); }
bool Maybe(TypeImpl* that);
template<class TypeHandle>
bool Maybe(TypeHandle that) { return this->Maybe(*that); }
// State-dependent versions of Of and Is that consider subtyping between
// a constant and its map class.
static TypeHandle OfCurrently(i::Handle<i::Object> value, Region* region);
bool IsCurrently(TypeImpl* that);
template<class TypeHandle>
bool IsCurrently(TypeHandle that) { return this->IsCurrently(*that); }
bool IsClass() { return Config::is_class(this); }
bool IsConstant() { return Config::is_constant(this); }
i::Handle<i::Map> AsClass() { return Config::as_class(this); }
i::Handle<i::Object> AsConstant() { return Config::as_constant(this); }
int NumClasses();
int NumConstants();
template<class T>
class Iterator {
public:
bool Done() const { return index_ < 0; }
i::Handle<T> Current();
void Advance();
private:
template<class> friend class TypeImpl;
Iterator() : index_(-1) {}
explicit Iterator(TypeHandle type) : type_(type), index_(-1) {
Advance();
}
inline bool matches(TypeHandle type);
inline TypeHandle get_type();
TypeHandle type_;
int index_;
};
Iterator<i::Map> Classes() {
if (this->IsBitset()) return Iterator<i::Map>();
return Iterator<i::Map>(Config::handle(this));
}
Iterator<i::Object> Constants() {
if (this->IsBitset()) return Iterator<i::Object>();
return Iterator<i::Object>(Config::handle(this));
}
static TypeImpl* cast(typename Config::Base* object) {
TypeImpl* t = static_cast<TypeImpl*>(object);
ASSERT(t->IsBitset() || t->IsClass() || t->IsConstant() || t->IsUnion());
return t;
}
template<class OtherTypeImpl>
static TypeHandle Convert(
typename OtherTypeImpl::TypeHandle type, Region* region);
#ifdef OBJECT_PRINT
enum PrintDimension { BOTH_DIMS, SEMANTIC_DIM, REPRESENTATION_DIM };
void TypePrint(PrintDimension = BOTH_DIMS);
void TypePrint(FILE* out, PrintDimension = BOTH_DIMS);
#endif
private:
template<class> friend class Iterator;
template<class> friend class TypeImpl;
// A union is a fixed array containing types. Invariants:
// - its length is at least 2
// - at most one field is a bitset, and it must go into index 0
// - no field is a union
typedef typename Config::Unioned Unioned;
typedef typename Config::template Handle<Unioned>::type UnionedHandle;
enum {
#define DECLARE_TYPE(type, value) k##type = (value),
BITSET_TYPE_LIST(DECLARE_TYPE)
#undef DECLARE_TYPE
kUnusedEOL = 0
};
bool IsNone() { return this == None(); }
bool IsAny() { return this == Any(); }
bool IsBitset() { return Config::is_bitset(this); }
bool IsUnion() { return Config::is_union(this); }
int AsBitset() { return Config::as_bitset(this); }
UnionedHandle AsUnion() { return Config::as_union(this); }
static int UnionLength(UnionedHandle unioned) {
return Config::union_length(unioned);
}
static TypeHandle UnionGet(UnionedHandle unioned, int i) {
return Config::union_get(unioned, i);
}
bool SlowIs(TypeImpl* that);
static bool IsInhabited(int bitset) {
return (bitset & kRepresentation) && (bitset & kSemantic);
}
int LubBitset(); // least upper bound that's a bitset
int GlbBitset(); // greatest lower bound that's a bitset
static int LubBitset(i::Object* value);
static int LubBitset(i::Map* map);
bool InUnion(UnionedHandle unioned, int current_size);
static int ExtendUnion(
UnionedHandle unioned, TypeHandle t, int current_size);
static int ExtendIntersection(
UnionedHandle unioned, TypeHandle t, TypeHandle other, int current_size);
#ifdef OBJECT_PRINT
static const char* bitset_name(int bitset);
static void BitsetTypePrint(FILE* out, int bitset);
#endif
};
// Zone-allocated types are either (odd) integers to represent bitsets, or
// (even) pointers to zone lists for everything else. The first slot of every
// list is an explicit tag value to distinguish representation.
struct ZoneTypeConfig {
private:
typedef i::ZoneList<void*> Tagged;
enum Tag {
kClassTag,
kConstantTag,
kUnionTag
};
static Tagged* tagged_create(Tag tag, int size, Zone* zone) {
Tagged* tagged = new(zone) Tagged(size + 1, zone);
tagged->Add(reinterpret_cast<void*>(tag), zone);
tagged->AddBlock(NULL, size, zone);
return tagged;
}
static void tagged_shrink(Tagged* tagged, int size) {
tagged->Rewind(size + 1);
}
static Tag tagged_tag(Tagged* tagged) {
return static_cast<Tag>(reinterpret_cast<intptr_t>(tagged->at(0)));
}
template<class T>
static T tagged_get(Tagged* tagged, int i) {
return reinterpret_cast<T>(tagged->at(i + 1));
}
template<class T>
static void tagged_set(Tagged* tagged, int i, T value) {
tagged->at(i + 1) = reinterpret_cast<void*>(value);
}
static int tagged_length(Tagged* tagged) {
return tagged->length() - 1;
}
public:
typedef TypeImpl<ZoneTypeConfig> Type;
class Base {};
typedef i::ZoneList<Type*> Unioned;
typedef i::Zone Region;
template<class T> struct Handle { typedef T* type; };
static Type* handle(Type* type) { return type; }
static bool is(Type* type, Tag tag) {
return is_tagged(type) && tagged_tag(as_tagged(type)) == tag;
}
static bool is_bitset(Type* type) {
return reinterpret_cast<intptr_t>(type) & 1;
}
static bool is_tagged(Type* type) { return !is_bitset(type); }
static bool is_class(Type* type) { return is(type, kClassTag); }
static bool is_constant(Type* type) { return is(type, kConstantTag); }
static bool is_union(Type* type) { return is(type, kUnionTag); }
static bool tagged_is_union(Tagged* tagged) {
return is(from_tagged(tagged), kUnionTag);
}
static int as_bitset(Type* type) {
ASSERT(is_bitset(type));
return static_cast<int>(reinterpret_cast<intptr_t>(type) >> 1);
}
static Tagged* as_tagged(Type* type) {
ASSERT(is_tagged(type));
return reinterpret_cast<Tagged*>(type);
}
static i::Handle<i::Map> as_class(Type* type) {
ASSERT(is_class(type));
return i::Handle<i::Map>(tagged_get<i::Map**>(as_tagged(type), 1));
}
static i::Handle<i::Object> as_constant(Type* type) {
ASSERT(is_constant(type));
return i::Handle<i::Object>(tagged_get<i::Object**>(as_tagged(type), 1));
}
static Unioned* as_union(Type* type) {
ASSERT(is_union(type));
return tagged_as_union(as_tagged(type));
}
static Unioned* tagged_as_union(Tagged* tagged) {
ASSERT(tagged_is_union(tagged));
return reinterpret_cast<Unioned*>(tagged);
}
static Type* from_bitset(int bitset) {
return reinterpret_cast<Type*>((bitset << 1) | 1);
}
static Type* from_bitset(int bitset, Zone* Zone) {
return from_bitset(bitset);
}
static Type* from_tagged(Tagged* tagged) {
return reinterpret_cast<Type*>(tagged);
}
static Type* from_class(i::Handle<i::Map> map, int lub, Zone* zone) {
Tagged* tagged = tagged_create(kClassTag, 2, zone);
tagged_set(tagged, 0, lub);
tagged_set(tagged, 1, map.location());
return from_tagged(tagged);
}
static Type* from_constant(i::Handle<i::Object> value, int lub, Zone* zone) {
Tagged* tagged = tagged_create(kConstantTag, 2, zone);
tagged_set(tagged, 0, lub);
tagged_set(tagged, 1, value.location());
return from_tagged(tagged);
}
static Type* from_union(Unioned* unioned) {
return from_tagged(tagged_from_union(unioned));
}
static Tagged* tagged_from_union(Unioned* unioned) {
return reinterpret_cast<Tagged*>(unioned);
}
static Unioned* union_create(int size, Zone* zone) {
return tagged_as_union(tagged_create(kUnionTag, size, zone));
}
static void union_shrink(Unioned* unioned, int size) {
tagged_shrink(tagged_from_union(unioned), size);
}
static Type* union_get(Unioned* unioned, int i) {
Type* type = tagged_get<Type*>(tagged_from_union(unioned), i);
ASSERT(!is_union(type));
return type;
}
static void union_set(Unioned* unioned, int i, Type* type) {
ASSERT(!is_union(type));
tagged_set(tagged_from_union(unioned), i, type);
}
static int union_length(Unioned* unioned) {
return tagged_length(tagged_from_union(unioned));
}
static int lub_bitset(Type* type) {
ASSERT(is_class(type) || is_constant(type));
return static_cast<int>(tagged_get<intptr_t>(as_tagged(type), 0));
}
};
// Heap-allocated types are either smis for bitsets, maps for classes, boxes for
// constants, or fixed arrays for unions.
struct HeapTypeConfig {
typedef TypeImpl<HeapTypeConfig> Type;
typedef i::Object Base;
typedef i::FixedArray Unioned;
typedef i::Isolate Region;
template<class T> struct Handle { typedef i::Handle<T> type; };
static i::Handle<Type> handle(Type* type) {
return i::handle(type, i::HeapObject::cast(type)->GetIsolate());
}
static bool is_bitset(Type* type) { return type->IsSmi(); }
static bool is_class(Type* type) { return type->IsMap(); }
static bool is_constant(Type* type) { return type->IsBox(); }
static bool is_union(Type* type) { return type->IsFixedArray(); }
static int as_bitset(Type* type) {
return Smi::cast(type)->value();
}
static i::Handle<i::Map> as_class(Type* type) {
return i::handle(i::Map::cast(type));
}
static i::Handle<i::Object> as_constant(Type* type) {
i::Box* box = i::Box::cast(type);
return i::handle(box->value(), box->GetIsolate());
}
static i::Handle<Unioned> as_union(Type* type) {
return i::handle(i::FixedArray::cast(type));
}
static Type* from_bitset(int bitset) {
return Type::cast(i::Smi::FromInt(bitset));
}
static i::Handle<Type> from_bitset(int bitset, Isolate* isolate) {
return i::handle(from_bitset(bitset), isolate);
}
static i::Handle<Type> from_class(
i::Handle<i::Map> map, int lub, Isolate* isolate) {
return i::Handle<Type>::cast(i::Handle<Object>::cast(map));
}
static i::Handle<Type> from_constant(
i::Handle<i::Object> value, int lub, Isolate* isolate) {
i::Handle<Box> box = isolate->factory()->NewBox(value);
return i::Handle<Type>::cast(i::Handle<Object>::cast(box));
}
static i::Handle<Type> from_union(i::Handle<Unioned> unioned) {
return i::Handle<Type>::cast(i::Handle<Object>::cast(unioned));
}
static i::Handle<Unioned> union_create(int size, Isolate* isolate) {
return isolate->factory()->NewFixedArray(size);
}
static void union_shrink(i::Handle<Unioned> unioned, int size) {
unioned->Shrink(size);
}
static i::Handle<Type> union_get(i::Handle<Unioned> unioned, int i) {
Type* type = static_cast<Type*>(unioned->get(i));
ASSERT(!is_union(type));
return i::handle(type, unioned->GetIsolate());
}
static void union_set(
i::Handle<Unioned> unioned, int i, i::Handle<Type> type) {
ASSERT(!is_union(*type));
unioned->set(i, *type);
}
static int union_length(i::Handle<Unioned> unioned) {
return unioned->length();
}
static int lub_bitset(Type* type) {
return 0; // kNone, which causes recomputation.
}
};
typedef TypeImpl<ZoneTypeConfig> Type;
typedef TypeImpl<HeapTypeConfig> HeapType;
// A simple struct to represent a pair of lower/upper type bounds.
template<class Config>
struct BoundsImpl {
typedef TypeImpl<Config> Type;
typedef typename Type::TypeHandle TypeHandle;
typedef typename Type::Region Region;
TypeHandle lower;
TypeHandle upper;
BoundsImpl() {}
explicit BoundsImpl(TypeHandle t) : lower(t), upper(t) {}
BoundsImpl(TypeHandle l, TypeHandle u) : lower(l), upper(u) {
ASSERT(lower->Is(upper));
}
// Unrestricted bounds.
static BoundsImpl Unbounded(Region* region) {
return BoundsImpl(Type::None(region), Type::Any(region));
}
// Meet: both b1 and b2 are known to hold.
static BoundsImpl Both(BoundsImpl b1, BoundsImpl b2, Region* region) {
TypeHandle lower = Type::Union(b1.lower, b2.lower, region);
TypeHandle upper = Type::Intersect(b1.upper, b2.upper, region);
// Lower bounds are considered approximate, correct as necessary.
lower = Type::Intersect(lower, upper, region);
return BoundsImpl(lower, upper);
}
// Join: either b1 or b2 is known to hold.
static BoundsImpl Either(BoundsImpl b1, BoundsImpl b2, Region* region) {
TypeHandle lower = Type::Intersect(b1.lower, b2.lower, region);
TypeHandle upper = Type::Union(b1.upper, b2.upper, region);
return BoundsImpl(lower, upper);
}
static BoundsImpl NarrowLower(BoundsImpl b, TypeHandle t, Region* region) {
// Lower bounds are considered approximate, correct as necessary.
t = Type::Intersect(t, b.upper, region);
TypeHandle lower = Type::Union(b.lower, t, region);
return BoundsImpl(lower, b.upper);
}
static BoundsImpl NarrowUpper(BoundsImpl b, TypeHandle t, Region* region) {
TypeHandle lower = Type::Intersect(b.lower, t, region);
TypeHandle upper = Type::Intersect(b.upper, t, region);
return BoundsImpl(lower, upper);
}
bool Narrows(BoundsImpl that) {
return that.lower->Is(this->lower) && this->upper->Is(that.upper);
}
};
typedef BoundsImpl<ZoneTypeConfig> Bounds;
} } // namespace v8::internal
#endif // V8_TYPES_H_