9b28aed3f6
Also: - improve type pretty-printing, - update doc comments, - some renamings for consistency. R=mstarzinger@chromium.org BUG= Review URL: https://codereview.chromium.org/176843006 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@20025 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
650 lines
24 KiB
C++
650 lines
24 KiB
C++
// Copyright 2013 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_TYPES_H_
|
|
#define V8_TYPES_H_
|
|
|
|
#include "v8.h"
|
|
|
|
#include "objects.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
// A simple type system for compiler-internal use. It is based entirely on
|
|
// union types, and all subtyping hence amounts to set inclusion. Besides the
|
|
// obvious primitive types and some predefined unions, the type language also
|
|
// can express class types (a.k.a. specific maps) and singleton types (i.e.,
|
|
// concrete constants).
|
|
//
|
|
// Types consist of two dimensions: semantic (value range) and representation.
|
|
// Both are related through subtyping.
|
|
//
|
|
// The following equations and inequations hold for the semantic axis:
|
|
//
|
|
// None <= T
|
|
// T <= Any
|
|
//
|
|
// Oddball = Boolean \/ Null \/ Undefined
|
|
// Number = Signed32 \/ Unsigned32 \/ Double
|
|
// Smi <= Signed32
|
|
// Name = String \/ Symbol
|
|
// UniqueName = InternalizedString \/ Symbol
|
|
// InternalizedString < String
|
|
//
|
|
// Receiver = Object \/ Proxy
|
|
// Array < Object
|
|
// Function < Object
|
|
// RegExp < Object
|
|
// Undetectable < Object
|
|
// Detectable = Receiver \/ Number \/ Name - Undetectable
|
|
//
|
|
// Class(map) < T iff instance_type(map) < T
|
|
// Constant(x) < T iff instance_type(map(x)) < T
|
|
//
|
|
// Note that Constant(x) < Class(map(x)) does _not_ hold, since x's map can
|
|
// change! (Its instance type cannot, however.)
|
|
// TODO(rossberg): the latter is not currently true for proxies, because of fix,
|
|
// but will hold once we implement direct proxies.
|
|
//
|
|
// For the representation axis, the following holds:
|
|
//
|
|
// None <= R
|
|
// R <= Any
|
|
//
|
|
// UntaggedInt <= UntaggedInt8 \/ UntaggedInt16 \/ UntaggedInt32)
|
|
// UntaggedFloat <= UntaggedFloat32 \/ UntaggedFloat64
|
|
// UntaggedNumber <= UntaggedInt \/ UntaggedFloat
|
|
// Untagged <= UntaggedNumber \/ UntaggedPtr
|
|
// Tagged <= TaggedInt \/ TaggedPtr
|
|
//
|
|
// Subtyping relates the two dimensions, for example:
|
|
//
|
|
// Number <= Tagged \/ UntaggedNumber
|
|
// Object <= TaggedPtr \/ UntaggedPtr
|
|
//
|
|
// That holds because the semantic type constructors defined by the API create
|
|
// types that allow for all possible representations, and dually, the ones for
|
|
// representation types initially include all semantic ranges. Representations
|
|
// can then e.g. be narrowed for a given semantic type using intersection:
|
|
//
|
|
// SignedSmall /\ TaggedInt (a 'smi')
|
|
// Number /\ TaggedPtr (a heap number)
|
|
//
|
|
// There are two main functions for testing types:
|
|
//
|
|
// T1->Is(T2) -- tests whether T1 is included in T2 (i.e., T1 <= T2)
|
|
// T1->Maybe(T2) -- tests whether T1 and T2 overlap (i.e., T1 /\ T2 =/= 0)
|
|
//
|
|
// Typically, the former is to be used to select representations (e.g., via
|
|
// T->Is(SignedSmall())), and the latter to check whether a specific case needs
|
|
// handling (e.g., via T->Maybe(Number())).
|
|
//
|
|
// There is no functionality to discover whether a type is a leaf in the
|
|
// lattice. That is intentional. It should always be possible to refine the
|
|
// lattice (e.g., splitting up number types further) without invalidating any
|
|
// existing assumptions or tests.
|
|
// Consequently, do not use pointer equality for type tests, always use Is!
|
|
//
|
|
// Internally, all 'primitive' types, and their unions, are represented as
|
|
// bitsets. Class is a heap pointer to the respective map. Only Constant's, or
|
|
// unions containing Class'es or Constant's, currently require allocation.
|
|
// Note that the bitset representation is closed under both Union and Intersect.
|
|
//
|
|
// There are two type representations, using different allocation:
|
|
//
|
|
// - class Type (zone-allocated, for compiler and concurrent compilation)
|
|
// - class HeapType (heap-allocated, for persistent types)
|
|
//
|
|
// Both provide the same API, and the Convert method can be used to interconvert
|
|
// them. For zone types, no query method touches the heap, only constructors do.
|
|
|
|
|
|
#define MASK_BITSET_TYPE_LIST(V) \
|
|
V(Representation, static_cast<int>(0xff800000)) \
|
|
V(Semantic, static_cast<int>(0x007fffff))
|
|
|
|
#define REPRESENTATION(k) ((k) & kRepresentation)
|
|
#define SEMANTIC(k) ((k) & kSemantic)
|
|
|
|
#define REPRESENTATION_BITSET_TYPE_LIST(V) \
|
|
V(None, 0) \
|
|
V(UntaggedInt8, 1 << 23 | kSemantic) \
|
|
V(UntaggedInt16, 1 << 24 | kSemantic) \
|
|
V(UntaggedInt32, 1 << 25 | kSemantic) \
|
|
V(UntaggedFloat32, 1 << 26 | kSemantic) \
|
|
V(UntaggedFloat64, 1 << 27 | kSemantic) \
|
|
V(UntaggedPtr, 1 << 28 | kSemantic) \
|
|
V(TaggedInt, 1 << 29 | kSemantic) \
|
|
V(TaggedPtr, -1 << 30 | kSemantic) /* MSB has to be sign-extended */ \
|
|
\
|
|
V(UntaggedInt, kUntaggedInt8 | kUntaggedInt16 | kUntaggedInt32) \
|
|
V(UntaggedFloat, kUntaggedFloat32 | kUntaggedFloat64) \
|
|
V(UntaggedNumber, kUntaggedInt | kUntaggedFloat) \
|
|
V(Untagged, kUntaggedNumber | kUntaggedPtr) \
|
|
V(Tagged, kTaggedInt | kTaggedPtr)
|
|
|
|
#define SEMANTIC_BITSET_TYPE_LIST(V) \
|
|
V(Null, 1 << 0 | REPRESENTATION(kTaggedPtr)) \
|
|
V(Undefined, 1 << 1 | REPRESENTATION(kTaggedPtr)) \
|
|
V(Boolean, 1 << 2 | REPRESENTATION(kTaggedPtr)) \
|
|
V(SignedSmall, 1 << 3 | REPRESENTATION(kTagged | kUntaggedNumber)) \
|
|
V(OtherSigned32, 1 << 4 | REPRESENTATION(kTagged | kUntaggedNumber)) \
|
|
V(Unsigned32, 1 << 5 | REPRESENTATION(kTagged | kUntaggedNumber)) \
|
|
V(Float, 1 << 6 | REPRESENTATION(kTagged | kUntaggedNumber)) \
|
|
V(Symbol, 1 << 7 | REPRESENTATION(kTaggedPtr)) \
|
|
V(InternalizedString, 1 << 8 | REPRESENTATION(kTaggedPtr)) \
|
|
V(OtherString, 1 << 9 | REPRESENTATION(kTaggedPtr)) \
|
|
V(Undetectable, 1 << 10 | REPRESENTATION(kTaggedPtr)) \
|
|
V(Array, 1 << 11 | REPRESENTATION(kTaggedPtr)) \
|
|
V(Function, 1 << 12 | REPRESENTATION(kTaggedPtr)) \
|
|
V(RegExp, 1 << 13 | REPRESENTATION(kTaggedPtr)) \
|
|
V(OtherObject, 1 << 14 | REPRESENTATION(kTaggedPtr)) \
|
|
V(Proxy, 1 << 15 | REPRESENTATION(kTaggedPtr)) \
|
|
V(Internal, 1 << 16 | REPRESENTATION(kTagged | kUntagged)) \
|
|
\
|
|
V(Oddball, kBoolean | kNull | kUndefined) \
|
|
V(Signed32, kSignedSmall | kOtherSigned32) \
|
|
V(Number, kSigned32 | kUnsigned32 | kFloat) \
|
|
V(String, kInternalizedString | kOtherString) \
|
|
V(UniqueName, kSymbol | kInternalizedString) \
|
|
V(Name, kSymbol | kString) \
|
|
V(NumberOrString, kNumber | kString) \
|
|
V(DetectableObject, kArray | kFunction | kRegExp | kOtherObject) \
|
|
V(DetectableReceiver, kDetectableObject | kProxy) \
|
|
V(Detectable, kDetectableReceiver | kNumber | kName) \
|
|
V(Object, kDetectableObject | kUndetectable) \
|
|
V(Receiver, kObject | kProxy) \
|
|
V(NonNumber, kOddball | kName | kReceiver | kInternal) \
|
|
V(Any, kNumber | kNonNumber)
|
|
|
|
#define BITSET_TYPE_LIST(V) \
|
|
MASK_BITSET_TYPE_LIST(V) \
|
|
REPRESENTATION_BITSET_TYPE_LIST(V) \
|
|
SEMANTIC_BITSET_TYPE_LIST(V)
|
|
|
|
|
|
// struct Config {
|
|
// typedef Base;
|
|
// typedef Unioned;
|
|
// typedef Region;
|
|
// template<class> struct Handle { typedef type; } // No template typedefs...
|
|
// static Handle<Type>::type handle(Type* type); // !is_bitset(type)
|
|
// static bool is_bitset(Type*);
|
|
// static bool is_class(Type*);
|
|
// static bool is_constant(Type*);
|
|
// static bool is_union(Type*);
|
|
// static int as_bitset(Type*);
|
|
// static i::Handle<i::Map> as_class(Type*);
|
|
// static i::Handle<i::Object> as_constant(Type*);
|
|
// static Handle<Unioned>::type as_union(Type*);
|
|
// static Type* from_bitset(int bitset);
|
|
// static Handle<Type>::type from_bitset(int bitset, Region*);
|
|
// static Handle<Type>::type from_class(i::Handle<Map>, int lub, Region*);
|
|
// static Handle<Type>::type from_constant(i::Handle<Object>, int, Region*);
|
|
// static Handle<Type>::type from_union(Handle<Unioned>::type);
|
|
// static Handle<Unioned>::type union_create(int size, Region*);
|
|
// static void union_shrink(Handle<Unioned>::type, int size);
|
|
// static Handle<Type>::type union_get(Handle<Unioned>::type, int);
|
|
// static void union_set(Handle<Unioned>::type, int, Handle<Type>::type);
|
|
// static int union_length(Handle<Unioned>::type);
|
|
// static int lub_bitset(Type*);
|
|
// }
|
|
template<class Config>
|
|
class TypeImpl : public Config::Base {
|
|
public:
|
|
typedef typename Config::template Handle<TypeImpl>::type TypeHandle;
|
|
typedef typename Config::Region Region;
|
|
|
|
#define DEFINE_TYPE_CONSTRUCTOR(type, value) \
|
|
static TypeImpl* type() { return Config::from_bitset(k##type); } \
|
|
static TypeHandle type(Region* region) { \
|
|
return Config::from_bitset(k##type, region); \
|
|
}
|
|
BITSET_TYPE_LIST(DEFINE_TYPE_CONSTRUCTOR)
|
|
#undef DEFINE_TYPE_CONSTRUCTOR
|
|
|
|
static TypeHandle Class(i::Handle<i::Map> map, Region* region) {
|
|
return Config::from_class(map, LubBitset(*map), region);
|
|
}
|
|
static TypeHandle Constant(i::Handle<i::Object> value, Region* region) {
|
|
return Config::from_constant(value, LubBitset(*value), region);
|
|
}
|
|
|
|
static TypeHandle Union(TypeHandle type1, TypeHandle type2, Region* reg);
|
|
static TypeHandle Intersect(TypeHandle type1, TypeHandle type2, Region* reg);
|
|
|
|
static TypeHandle Of(i::Handle<i::Object> value, Region* region) {
|
|
return Config::from_bitset(LubBitset(*value), region);
|
|
}
|
|
|
|
bool Is(TypeImpl* that) { return this == that || this->SlowIs(that); }
|
|
template<class TypeHandle>
|
|
bool Is(TypeHandle that) { return this->Is(*that); }
|
|
bool Maybe(TypeImpl* that);
|
|
template<class TypeHandle>
|
|
bool Maybe(TypeHandle that) { return this->Maybe(*that); }
|
|
|
|
// State-dependent versions of Of and Is that consider subtyping between
|
|
// a constant and its map class.
|
|
static TypeHandle OfCurrently(i::Handle<i::Object> value, Region* region);
|
|
bool IsCurrently(TypeImpl* that);
|
|
template<class TypeHandle>
|
|
bool IsCurrently(TypeHandle that) { return this->IsCurrently(*that); }
|
|
|
|
bool IsClass() { return Config::is_class(this); }
|
|
bool IsConstant() { return Config::is_constant(this); }
|
|
i::Handle<i::Map> AsClass() { return Config::as_class(this); }
|
|
i::Handle<i::Object> AsConstant() { return Config::as_constant(this); }
|
|
|
|
int NumClasses();
|
|
int NumConstants();
|
|
|
|
template<class T>
|
|
class Iterator {
|
|
public:
|
|
bool Done() const { return index_ < 0; }
|
|
i::Handle<T> Current();
|
|
void Advance();
|
|
|
|
private:
|
|
template<class> friend class TypeImpl;
|
|
|
|
Iterator() : index_(-1) {}
|
|
explicit Iterator(TypeHandle type) : type_(type), index_(-1) {
|
|
Advance();
|
|
}
|
|
|
|
inline bool matches(TypeHandle type);
|
|
inline TypeHandle get_type();
|
|
|
|
TypeHandle type_;
|
|
int index_;
|
|
};
|
|
|
|
Iterator<i::Map> Classes() {
|
|
if (this->IsBitset()) return Iterator<i::Map>();
|
|
return Iterator<i::Map>(Config::handle(this));
|
|
}
|
|
Iterator<i::Object> Constants() {
|
|
if (this->IsBitset()) return Iterator<i::Object>();
|
|
return Iterator<i::Object>(Config::handle(this));
|
|
}
|
|
|
|
static TypeImpl* cast(typename Config::Base* object) {
|
|
TypeImpl* t = static_cast<TypeImpl*>(object);
|
|
ASSERT(t->IsBitset() || t->IsClass() || t->IsConstant() || t->IsUnion());
|
|
return t;
|
|
}
|
|
|
|
template<class OtherTypeImpl>
|
|
static TypeHandle Convert(
|
|
typename OtherTypeImpl::TypeHandle type, Region* region);
|
|
|
|
#ifdef OBJECT_PRINT
|
|
enum PrintDimension { BOTH_DIMS, SEMANTIC_DIM, REPRESENTATION_DIM };
|
|
void TypePrint(PrintDimension = BOTH_DIMS);
|
|
void TypePrint(FILE* out, PrintDimension = BOTH_DIMS);
|
|
#endif
|
|
|
|
private:
|
|
template<class> friend class Iterator;
|
|
template<class> friend class TypeImpl;
|
|
|
|
// A union is a fixed array containing types. Invariants:
|
|
// - its length is at least 2
|
|
// - at most one field is a bitset, and it must go into index 0
|
|
// - no field is a union
|
|
typedef typename Config::Unioned Unioned;
|
|
typedef typename Config::template Handle<Unioned>::type UnionedHandle;
|
|
|
|
enum {
|
|
#define DECLARE_TYPE(type, value) k##type = (value),
|
|
BITSET_TYPE_LIST(DECLARE_TYPE)
|
|
#undef DECLARE_TYPE
|
|
kUnusedEOL = 0
|
|
};
|
|
|
|
bool IsNone() { return this == None(); }
|
|
bool IsAny() { return this == Any(); }
|
|
bool IsBitset() { return Config::is_bitset(this); }
|
|
bool IsUnion() { return Config::is_union(this); }
|
|
int AsBitset() { return Config::as_bitset(this); }
|
|
UnionedHandle AsUnion() { return Config::as_union(this); }
|
|
|
|
static int UnionLength(UnionedHandle unioned) {
|
|
return Config::union_length(unioned);
|
|
}
|
|
static TypeHandle UnionGet(UnionedHandle unioned, int i) {
|
|
return Config::union_get(unioned, i);
|
|
}
|
|
|
|
bool SlowIs(TypeImpl* that);
|
|
|
|
static bool IsInhabited(int bitset) {
|
|
return (bitset & kRepresentation) && (bitset & kSemantic);
|
|
}
|
|
|
|
int LubBitset(); // least upper bound that's a bitset
|
|
int GlbBitset(); // greatest lower bound that's a bitset
|
|
|
|
static int LubBitset(i::Object* value);
|
|
static int LubBitset(i::Map* map);
|
|
|
|
bool InUnion(UnionedHandle unioned, int current_size);
|
|
static int ExtendUnion(
|
|
UnionedHandle unioned, TypeHandle t, int current_size);
|
|
static int ExtendIntersection(
|
|
UnionedHandle unioned, TypeHandle t, TypeHandle other, int current_size);
|
|
|
|
#ifdef OBJECT_PRINT
|
|
static const char* bitset_name(int bitset);
|
|
static void BitsetTypePrint(FILE* out, int bitset);
|
|
#endif
|
|
};
|
|
|
|
|
|
// Zone-allocated types are either (odd) integers to represent bitsets, or
|
|
// (even) pointers to zone lists for everything else. The first slot of every
|
|
// list is an explicit tag value to distinguish representation.
|
|
struct ZoneTypeConfig {
|
|
private:
|
|
typedef i::ZoneList<void*> Tagged;
|
|
|
|
enum Tag {
|
|
kClassTag,
|
|
kConstantTag,
|
|
kUnionTag
|
|
};
|
|
|
|
static Tagged* tagged_create(Tag tag, int size, Zone* zone) {
|
|
Tagged* tagged = new(zone) Tagged(size + 1, zone);
|
|
tagged->Add(reinterpret_cast<void*>(tag), zone);
|
|
tagged->AddBlock(NULL, size, zone);
|
|
return tagged;
|
|
}
|
|
static void tagged_shrink(Tagged* tagged, int size) {
|
|
tagged->Rewind(size + 1);
|
|
}
|
|
static Tag tagged_tag(Tagged* tagged) {
|
|
return static_cast<Tag>(reinterpret_cast<intptr_t>(tagged->at(0)));
|
|
}
|
|
template<class T>
|
|
static T tagged_get(Tagged* tagged, int i) {
|
|
return reinterpret_cast<T>(tagged->at(i + 1));
|
|
}
|
|
template<class T>
|
|
static void tagged_set(Tagged* tagged, int i, T value) {
|
|
tagged->at(i + 1) = reinterpret_cast<void*>(value);
|
|
}
|
|
static int tagged_length(Tagged* tagged) {
|
|
return tagged->length() - 1;
|
|
}
|
|
|
|
public:
|
|
typedef TypeImpl<ZoneTypeConfig> Type;
|
|
class Base {};
|
|
typedef i::ZoneList<Type*> Unioned;
|
|
typedef i::Zone Region;
|
|
template<class T> struct Handle { typedef T* type; };
|
|
|
|
static Type* handle(Type* type) { return type; }
|
|
|
|
static bool is(Type* type, Tag tag) {
|
|
return is_tagged(type) && tagged_tag(as_tagged(type)) == tag;
|
|
}
|
|
|
|
static bool is_bitset(Type* type) {
|
|
return reinterpret_cast<intptr_t>(type) & 1;
|
|
}
|
|
static bool is_tagged(Type* type) { return !is_bitset(type); }
|
|
static bool is_class(Type* type) { return is(type, kClassTag); }
|
|
static bool is_constant(Type* type) { return is(type, kConstantTag); }
|
|
static bool is_union(Type* type) { return is(type, kUnionTag); }
|
|
static bool tagged_is_union(Tagged* tagged) {
|
|
return is(from_tagged(tagged), kUnionTag);
|
|
}
|
|
|
|
static int as_bitset(Type* type) {
|
|
ASSERT(is_bitset(type));
|
|
return static_cast<int>(reinterpret_cast<intptr_t>(type) >> 1);
|
|
}
|
|
static Tagged* as_tagged(Type* type) {
|
|
ASSERT(is_tagged(type));
|
|
return reinterpret_cast<Tagged*>(type);
|
|
}
|
|
static i::Handle<i::Map> as_class(Type* type) {
|
|
ASSERT(is_class(type));
|
|
return i::Handle<i::Map>(tagged_get<i::Map**>(as_tagged(type), 1));
|
|
}
|
|
static i::Handle<i::Object> as_constant(Type* type) {
|
|
ASSERT(is_constant(type));
|
|
return i::Handle<i::Object>(tagged_get<i::Object**>(as_tagged(type), 1));
|
|
}
|
|
static Unioned* as_union(Type* type) {
|
|
ASSERT(is_union(type));
|
|
return tagged_as_union(as_tagged(type));
|
|
}
|
|
static Unioned* tagged_as_union(Tagged* tagged) {
|
|
ASSERT(tagged_is_union(tagged));
|
|
return reinterpret_cast<Unioned*>(tagged);
|
|
}
|
|
|
|
static Type* from_bitset(int bitset) {
|
|
return reinterpret_cast<Type*>((bitset << 1) | 1);
|
|
}
|
|
static Type* from_bitset(int bitset, Zone* Zone) {
|
|
return from_bitset(bitset);
|
|
}
|
|
static Type* from_tagged(Tagged* tagged) {
|
|
return reinterpret_cast<Type*>(tagged);
|
|
}
|
|
static Type* from_class(i::Handle<i::Map> map, int lub, Zone* zone) {
|
|
Tagged* tagged = tagged_create(kClassTag, 2, zone);
|
|
tagged_set(tagged, 0, lub);
|
|
tagged_set(tagged, 1, map.location());
|
|
return from_tagged(tagged);
|
|
}
|
|
static Type* from_constant(i::Handle<i::Object> value, int lub, Zone* zone) {
|
|
Tagged* tagged = tagged_create(kConstantTag, 2, zone);
|
|
tagged_set(tagged, 0, lub);
|
|
tagged_set(tagged, 1, value.location());
|
|
return from_tagged(tagged);
|
|
}
|
|
static Type* from_union(Unioned* unioned) {
|
|
return from_tagged(tagged_from_union(unioned));
|
|
}
|
|
static Tagged* tagged_from_union(Unioned* unioned) {
|
|
return reinterpret_cast<Tagged*>(unioned);
|
|
}
|
|
|
|
static Unioned* union_create(int size, Zone* zone) {
|
|
return tagged_as_union(tagged_create(kUnionTag, size, zone));
|
|
}
|
|
static void union_shrink(Unioned* unioned, int size) {
|
|
tagged_shrink(tagged_from_union(unioned), size);
|
|
}
|
|
static Type* union_get(Unioned* unioned, int i) {
|
|
Type* type = tagged_get<Type*>(tagged_from_union(unioned), i);
|
|
ASSERT(!is_union(type));
|
|
return type;
|
|
}
|
|
static void union_set(Unioned* unioned, int i, Type* type) {
|
|
ASSERT(!is_union(type));
|
|
tagged_set(tagged_from_union(unioned), i, type);
|
|
}
|
|
static int union_length(Unioned* unioned) {
|
|
return tagged_length(tagged_from_union(unioned));
|
|
}
|
|
static int lub_bitset(Type* type) {
|
|
ASSERT(is_class(type) || is_constant(type));
|
|
return static_cast<int>(tagged_get<intptr_t>(as_tagged(type), 0));
|
|
}
|
|
};
|
|
|
|
|
|
// Heap-allocated types are either smis for bitsets, maps for classes, boxes for
|
|
// constants, or fixed arrays for unions.
|
|
struct HeapTypeConfig {
|
|
typedef TypeImpl<HeapTypeConfig> Type;
|
|
typedef i::Object Base;
|
|
typedef i::FixedArray Unioned;
|
|
typedef i::Isolate Region;
|
|
template<class T> struct Handle { typedef i::Handle<T> type; };
|
|
|
|
static i::Handle<Type> handle(Type* type) {
|
|
return i::handle(type, i::HeapObject::cast(type)->GetIsolate());
|
|
}
|
|
|
|
static bool is_bitset(Type* type) { return type->IsSmi(); }
|
|
static bool is_class(Type* type) { return type->IsMap(); }
|
|
static bool is_constant(Type* type) { return type->IsBox(); }
|
|
static bool is_union(Type* type) { return type->IsFixedArray(); }
|
|
|
|
static int as_bitset(Type* type) {
|
|
return Smi::cast(type)->value();
|
|
}
|
|
static i::Handle<i::Map> as_class(Type* type) {
|
|
return i::handle(i::Map::cast(type));
|
|
}
|
|
static i::Handle<i::Object> as_constant(Type* type) {
|
|
i::Box* box = i::Box::cast(type);
|
|
return i::handle(box->value(), box->GetIsolate());
|
|
}
|
|
static i::Handle<Unioned> as_union(Type* type) {
|
|
return i::handle(i::FixedArray::cast(type));
|
|
}
|
|
|
|
static Type* from_bitset(int bitset) {
|
|
return Type::cast(i::Smi::FromInt(bitset));
|
|
}
|
|
static i::Handle<Type> from_bitset(int bitset, Isolate* isolate) {
|
|
return i::handle(from_bitset(bitset), isolate);
|
|
}
|
|
static i::Handle<Type> from_class(
|
|
i::Handle<i::Map> map, int lub, Isolate* isolate) {
|
|
return i::Handle<Type>::cast(i::Handle<Object>::cast(map));
|
|
}
|
|
static i::Handle<Type> from_constant(
|
|
i::Handle<i::Object> value, int lub, Isolate* isolate) {
|
|
i::Handle<Box> box = isolate->factory()->NewBox(value);
|
|
return i::Handle<Type>::cast(i::Handle<Object>::cast(box));
|
|
}
|
|
static i::Handle<Type> from_union(i::Handle<Unioned> unioned) {
|
|
return i::Handle<Type>::cast(i::Handle<Object>::cast(unioned));
|
|
}
|
|
|
|
static i::Handle<Unioned> union_create(int size, Isolate* isolate) {
|
|
return isolate->factory()->NewFixedArray(size);
|
|
}
|
|
static void union_shrink(i::Handle<Unioned> unioned, int size) {
|
|
unioned->Shrink(size);
|
|
}
|
|
static i::Handle<Type> union_get(i::Handle<Unioned> unioned, int i) {
|
|
Type* type = static_cast<Type*>(unioned->get(i));
|
|
ASSERT(!is_union(type));
|
|
return i::handle(type, unioned->GetIsolate());
|
|
}
|
|
static void union_set(
|
|
i::Handle<Unioned> unioned, int i, i::Handle<Type> type) {
|
|
ASSERT(!is_union(*type));
|
|
unioned->set(i, *type);
|
|
}
|
|
static int union_length(i::Handle<Unioned> unioned) {
|
|
return unioned->length();
|
|
}
|
|
static int lub_bitset(Type* type) {
|
|
return 0; // kNone, which causes recomputation.
|
|
}
|
|
};
|
|
|
|
typedef TypeImpl<ZoneTypeConfig> Type;
|
|
typedef TypeImpl<HeapTypeConfig> HeapType;
|
|
|
|
|
|
// A simple struct to represent a pair of lower/upper type bounds.
|
|
template<class Config>
|
|
struct BoundsImpl {
|
|
typedef TypeImpl<Config> Type;
|
|
typedef typename Type::TypeHandle TypeHandle;
|
|
typedef typename Type::Region Region;
|
|
|
|
TypeHandle lower;
|
|
TypeHandle upper;
|
|
|
|
BoundsImpl() {}
|
|
explicit BoundsImpl(TypeHandle t) : lower(t), upper(t) {}
|
|
BoundsImpl(TypeHandle l, TypeHandle u) : lower(l), upper(u) {
|
|
ASSERT(lower->Is(upper));
|
|
}
|
|
|
|
// Unrestricted bounds.
|
|
static BoundsImpl Unbounded(Region* region) {
|
|
return BoundsImpl(Type::None(region), Type::Any(region));
|
|
}
|
|
|
|
// Meet: both b1 and b2 are known to hold.
|
|
static BoundsImpl Both(BoundsImpl b1, BoundsImpl b2, Region* region) {
|
|
TypeHandle lower = Type::Union(b1.lower, b2.lower, region);
|
|
TypeHandle upper = Type::Intersect(b1.upper, b2.upper, region);
|
|
// Lower bounds are considered approximate, correct as necessary.
|
|
lower = Type::Intersect(lower, upper, region);
|
|
return BoundsImpl(lower, upper);
|
|
}
|
|
|
|
// Join: either b1 or b2 is known to hold.
|
|
static BoundsImpl Either(BoundsImpl b1, BoundsImpl b2, Region* region) {
|
|
TypeHandle lower = Type::Intersect(b1.lower, b2.lower, region);
|
|
TypeHandle upper = Type::Union(b1.upper, b2.upper, region);
|
|
return BoundsImpl(lower, upper);
|
|
}
|
|
|
|
static BoundsImpl NarrowLower(BoundsImpl b, TypeHandle t, Region* region) {
|
|
// Lower bounds are considered approximate, correct as necessary.
|
|
t = Type::Intersect(t, b.upper, region);
|
|
TypeHandle lower = Type::Union(b.lower, t, region);
|
|
return BoundsImpl(lower, b.upper);
|
|
}
|
|
static BoundsImpl NarrowUpper(BoundsImpl b, TypeHandle t, Region* region) {
|
|
TypeHandle lower = Type::Intersect(b.lower, t, region);
|
|
TypeHandle upper = Type::Intersect(b.upper, t, region);
|
|
return BoundsImpl(lower, upper);
|
|
}
|
|
|
|
bool Narrows(BoundsImpl that) {
|
|
return that.lower->Is(this->lower) && this->upper->Is(that.upper);
|
|
}
|
|
};
|
|
|
|
typedef BoundsImpl<ZoneTypeConfig> Bounds;
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_TYPES_H_
|