v8/test/mjsunit/compiler/number-comparison-truncations.js
Georg Neis 110a07ff07 [test] Explicitly add --turbo-inlining to tests that require it
This lets me run tests with --no-turbo-inlining without having to
worry about false positives.

Change-Id: Icf906e631ef5821136f397af141ba8b18334da7e
Reviewed-on: https://chromium-review.googlesource.com/c/1477730
Reviewed-by: Jaroslav Sevcik <jarin@chromium.org>
Commit-Queue: Georg Neis <neis@chromium.org>
Cr-Commit-Position: refs/heads/master@{#59707}
2019-02-19 19:30:30 +00:00

153 lines
4.0 KiB
JavaScript

// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Flags: --allow-natives-syntax --opt --turbo-inlining
// Test that SpeculativeNumberEqual[SignedSmall] properly passes the
// kIdentifyZeros truncation.
(function() {
function foo(x, y) {
if (x * y === 0) return 0;
return 1;
}
assertEquals(0, foo(0, 1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(0, 1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
assertOptimized(foo);
// Even if x*y produces -0 now, it should stay optimized.
assertEquals(0, foo(-3, 0));
assertEquals(0, foo(0, -3));
assertOptimized(foo);
})();
// Test that SpeculativeNumberEqual[Number] properly passes the
// kIdentifyZeros truncation.
(function() {
// Produce a SpeculativeNumberEqual with Number feedback.
function bar(x, y) { return x === y; }
bar(0.1, 0.5);
bar(-0, 100);
function foo(x, y) {
if (bar(x * y, 0)) return 0;
return 1;
}
assertEquals(0, foo(0, 1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(0, 1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
assertOptimized(foo);
// Even if x*y produces -0 now, it should stay optimized.
assertEquals(0, foo(-3, 0));
assertEquals(0, foo(0, -3));
assertOptimized(foo);
})();
// Test that SpeculativeNumberLessThan[SignedSmall] properly passes the
// kIdentifyZeros truncation.
(function() {
function foo(x, y) {
if (x * y < 0) return 0;
return 1;
}
assertEquals(0, foo(1, -1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(1, -1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
assertOptimized(foo);
// Even if x*y produces -0 now, it should stay optimized.
assertEquals(1, foo(-3, 0));
assertEquals(1, foo(0, -3));
assertOptimized(foo);
})();
// Test that SpeculativeNumberLessThan[Number] properly passes the
// kIdentifyZeros truncation.
(function() {
// Produce a SpeculativeNumberLessThan with Number feedback.
function bar(x, y) { return x < y; }
bar(0.1, 0.5);
bar(-0, 100);
function foo(x, y) {
if (bar(x * y, 0)) return 0;
return 1;
}
assertEquals(0, foo(1, -1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(1, -1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
assertOptimized(foo);
// Even if x*y produces -0 now, it should stay optimized.
assertEquals(1, foo(-3, 0));
assertEquals(1, foo(0, -3));
assertOptimized(foo);
})();
// Test that SpeculativeNumberLessThanOrEqual[SignedSmall] properly passes the
// kIdentifyZeros truncation.
(function() {
function foo(x, y) {
if (x * y <= 0) return 0;
return 1;
}
assertEquals(0, foo(0, 1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(0, 1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
assertOptimized(foo);
// Even if x*y produces -0 now, it should stay optimized.
assertEquals(0, foo(-3, 0));
assertEquals(0, foo(0, -3));
assertOptimized(foo);
})();
// Test that SpeculativeNumberLessThanOrEqual[Number] properly passes the
// kIdentifyZeros truncation.
(function() {
// Produce a SpeculativeNumberLessThanOrEqual with Number feedback.
function bar(x, y) { return x <= y; }
bar(0.1, 0.5);
bar(-0, 100);
function foo(x, y) {
if (bar(x * y, 0)) return 0;
return 1;
}
assertEquals(0, foo(0, 1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(0, 1));
assertEquals(1, foo(1, 1));
assertEquals(1, foo(1, 2));
assertOptimized(foo);
// Even if x*y produces -0 now, it should stay optimized.
assertEquals(0, foo(-3, 0));
assertEquals(0, foo(0, -3));
assertOptimized(foo);
})();