v8/src/ia32/codegen-ia32.h
kmillikin@chromium.org 9c829fafe9 Change the register allocator so that it no longer tracks references
to the platform-specific reserved registers.  They are always in use
for their intended purpose, cannot appear in the virtual frame, and
can be freely used without allocation in the code generator.

Review URL: http://codereview.chromium.org/113837

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@2061 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2009-05-27 07:53:47 +00:00

633 lines
24 KiB
C++

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_IA32_CODEGEN_IA32_H_
#define V8_IA32_CODEGEN_IA32_H_
namespace v8 {
namespace internal {
// Forward declarations
class DeferredCode;
class RegisterAllocator;
class RegisterFile;
enum InitState { CONST_INIT, NOT_CONST_INIT };
enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
// -------------------------------------------------------------------------
// Reference support
// A reference is a C++ stack-allocated object that keeps an ECMA
// reference on the execution stack while in scope. For variables
// the reference is empty, indicating that it isn't necessary to
// store state on the stack for keeping track of references to those.
// For properties, we keep either one (named) or two (indexed) values
// on the execution stack to represent the reference.
class Reference BASE_EMBEDDED {
public:
// The values of the types is important, see size().
enum Type { ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 };
Reference(CodeGenerator* cgen, Expression* expression);
~Reference();
Expression* expression() const { return expression_; }
Type type() const { return type_; }
void set_type(Type value) {
ASSERT(type_ == ILLEGAL);
type_ = value;
}
// The size the reference takes up on the stack.
int size() const { return (type_ == ILLEGAL) ? 0 : type_; }
bool is_illegal() const { return type_ == ILLEGAL; }
bool is_slot() const { return type_ == SLOT; }
bool is_property() const { return type_ == NAMED || type_ == KEYED; }
// Return the name. Only valid for named property references.
Handle<String> GetName();
// Generate code to push the value of the reference on top of the
// expression stack. The reference is expected to be already on top of
// the expression stack, and it is left in place with its value above it.
void GetValue(TypeofState typeof_state);
// Like GetValue except that the slot is expected to be written to before
// being read from again. Thae value of the reference may be invalidated,
// causing subsequent attempts to read it to fail.
void TakeValue(TypeofState typeof_state);
// Generate code to store the value on top of the expression stack in the
// reference. The reference is expected to be immediately below the value
// on the expression stack. The stored value is left in place (with the
// reference intact below it) to support chained assignments.
void SetValue(InitState init_state);
private:
CodeGenerator* cgen_;
Expression* expression_;
Type type_;
};
// -------------------------------------------------------------------------
// Control destinations.
// A control destination encapsulates a pair of jump targets and a
// flag indicating which one is the preferred fall-through. The
// preferred fall-through must be unbound, the other may be already
// bound (ie, a backward target).
//
// The true and false targets may be jumped to unconditionally or
// control may split conditionally. Unconditional jumping and
// splitting should be emitted in tail position (as the last thing
// when compiling an expression) because they can cause either label
// to be bound or the non-fall through to be jumped to leaving an
// invalid virtual frame.
//
// The labels in the control destination can be extracted and
// manipulated normally without affecting the state of the
// destination.
class ControlDestination BASE_EMBEDDED {
public:
ControlDestination(JumpTarget* true_target,
JumpTarget* false_target,
bool true_is_fall_through)
: true_target_(true_target),
false_target_(false_target),
true_is_fall_through_(true_is_fall_through),
is_used_(false) {
ASSERT(true_is_fall_through ? !true_target->is_bound()
: !false_target->is_bound());
}
// Accessors for the jump targets. Directly jumping or branching to
// or binding the targets will not update the destination's state.
JumpTarget* true_target() const { return true_target_; }
JumpTarget* false_target() const { return false_target_; }
// True if the the destination has been jumped to unconditionally or
// control has been split to both targets. This predicate does not
// test whether the targets have been extracted and manipulated as
// raw jump targets.
bool is_used() const { return is_used_; }
// True if the destination is used and the true target (respectively
// false target) was the fall through. If the target is backward,
// "fall through" included jumping unconditionally to it.
bool true_was_fall_through() const {
return is_used_ && true_is_fall_through_;
}
bool false_was_fall_through() const {
return is_used_ && !true_is_fall_through_;
}
// Emit a branch to one of the true or false targets, and bind the
// other target. Because this binds the fall-through target, it
// should be emitted in tail position (as the last thing when
// compiling an expression).
void Split(Condition cc) {
ASSERT(!is_used_);
if (true_is_fall_through_) {
false_target_->Branch(NegateCondition(cc));
true_target_->Bind();
} else {
true_target_->Branch(cc);
false_target_->Bind();
}
is_used_ = true;
}
// Emit an unconditional jump in tail position, to the true target
// (if the argument is true) or the false target. The "jump" will
// actually bind the jump target if it is forward, jump to it if it
// is backward.
void Goto(bool where) {
ASSERT(!is_used_);
JumpTarget* target = where ? true_target_ : false_target_;
if (target->is_bound()) {
target->Jump();
} else {
target->Bind();
}
is_used_ = true;
true_is_fall_through_ = where;
}
// Mark this jump target as used as if Goto had been called, but
// without generating a jump or binding a label (the control effect
// should have already happened). This is used when the left
// subexpression of the short-circuit boolean operators are
// compiled.
void Use(bool where) {
ASSERT(!is_used_);
ASSERT((where ? true_target_ : false_target_)->is_bound());
is_used_ = true;
true_is_fall_through_ = where;
}
// Swap the true and false targets but keep the same actual label as
// the fall through. This is used when compiling negated
// expressions, where we want to swap the targets but preserve the
// state.
void Invert() {
JumpTarget* temp_target = true_target_;
true_target_ = false_target_;
false_target_ = temp_target;
true_is_fall_through_ = !true_is_fall_through_;
}
private:
// True and false jump targets.
JumpTarget* true_target_;
JumpTarget* false_target_;
// Before using the destination: true if the true target is the
// preferred fall through, false if the false target is. After
// using the destination: true if the true target was actually used
// as the fall through, false if the false target was.
bool true_is_fall_through_;
// True if the Split or Goto functions have been called.
bool is_used_;
};
// -------------------------------------------------------------------------
// Code generation state
// The state is passed down the AST by the code generator (and back up, in
// the form of the state of the jump target pair). It is threaded through
// the call stack. Constructing a state implicitly pushes it on the owning
// code generator's stack of states, and destroying one implicitly pops it.
//
// The code generator state is only used for expressions, so statements have
// the initial state.
class CodeGenState BASE_EMBEDDED {
public:
// Create an initial code generator state. Destroying the initial state
// leaves the code generator with a NULL state.
explicit CodeGenState(CodeGenerator* owner);
// Create a code generator state based on a code generator's current
// state. The new state may or may not be inside a typeof, and has its
// own control destination.
CodeGenState(CodeGenerator* owner,
TypeofState typeof_state,
ControlDestination* destination);
// Destroy a code generator state and restore the owning code generator's
// previous state.
~CodeGenState();
// Accessors for the state.
TypeofState typeof_state() const { return typeof_state_; }
ControlDestination* destination() const { return destination_; }
private:
// The owning code generator.
CodeGenerator* owner_;
// A flag indicating whether we are compiling the immediate subexpression
// of a typeof expression.
TypeofState typeof_state_;
// A control destination in case the expression has a control-flow
// effect.
ControlDestination* destination_;
// The previous state of the owning code generator, restored when
// this state is destroyed.
CodeGenState* previous_;
};
// -------------------------------------------------------------------------
// CodeGenerator
class CodeGenerator: public AstVisitor {
public:
// Takes a function literal, generates code for it. This function should only
// be called by compiler.cc.
static Handle<Code> MakeCode(FunctionLiteral* fun,
Handle<Script> script,
bool is_eval);
#ifdef ENABLE_LOGGING_AND_PROFILING
static bool ShouldGenerateLog(Expression* type);
#endif
static void SetFunctionInfo(Handle<JSFunction> fun,
int length,
int function_token_position,
int start_position,
int end_position,
bool is_expression,
bool is_toplevel,
Handle<Script> script,
Handle<String> inferred_name);
// Accessors
MacroAssembler* masm() { return masm_; }
VirtualFrame* frame() const { return frame_; }
bool has_valid_frame() const { return frame_ != NULL; }
// Set the virtual frame to be new_frame, with non-frame register
// reference counts given by non_frame_registers. The non-frame
// register reference counts of the old frame are returned in
// non_frame_registers.
void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers);
void DeleteFrame();
RegisterAllocator* allocator() const { return allocator_; }
CodeGenState* state() { return state_; }
void set_state(CodeGenState* state) { state_ = state; }
void AddDeferred(DeferredCode* code) { deferred_.Add(code); }
bool in_spilled_code() const { return in_spilled_code_; }
void set_in_spilled_code(bool flag) { in_spilled_code_ = flag; }
private:
// Construction/Destruction
CodeGenerator(int buffer_size, Handle<Script> script, bool is_eval);
virtual ~CodeGenerator() { delete masm_; }
// Accessors
Scope* scope() const { return scope_; }
// Clearing and generating deferred code.
void ClearDeferred();
void ProcessDeferred();
bool is_eval() { return is_eval_; }
// State
TypeofState typeof_state() const { return state_->typeof_state(); }
ControlDestination* destination() const { return state_->destination(); }
// Track loop nesting level.
int loop_nesting() const { return loop_nesting_; }
void IncrementLoopNesting() { loop_nesting_++; }
void DecrementLoopNesting() { loop_nesting_--; }
// Node visitors.
void VisitStatements(ZoneList<Statement*>* statements);
#define DEF_VISIT(type) \
void Visit##type(type* node);
NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
// Visit a statement and then spill the virtual frame if control flow can
// reach the end of the statement (ie, it does not exit via break,
// continue, return, or throw). This function is used temporarily while
// the code generator is being transformed.
void VisitAndSpill(Statement* statement);
// Visit a list of statements and then spill the virtual frame if control
// flow can reach the end of the list.
void VisitStatementsAndSpill(ZoneList<Statement*>* statements);
// Main code generation function
void GenCode(FunctionLiteral* fun);
// Generate the return sequence code. Should be called no more than
// once per compiled function, immediately after binding the return
// target (which can not be done more than once).
void GenerateReturnSequence(Result* return_value);
// The following are used by class Reference.
void LoadReference(Reference* ref);
void UnloadReference(Reference* ref);
Operand ContextOperand(Register context, int index) const {
return Operand(context, Context::SlotOffset(index));
}
Operand SlotOperand(Slot* slot, Register tmp);
Operand ContextSlotOperandCheckExtensions(Slot* slot,
Result tmp,
JumpTarget* slow);
// Expressions
Operand GlobalObject() const {
return ContextOperand(esi, Context::GLOBAL_INDEX);
}
void LoadCondition(Expression* x,
TypeofState typeof_state,
ControlDestination* destination,
bool force_control);
void Load(Expression* x, TypeofState typeof_state = NOT_INSIDE_TYPEOF);
void LoadGlobal();
void LoadGlobalReceiver();
// Generate code to push the value of an expression on top of the frame
// and then spill the frame fully to memory. This function is used
// temporarily while the code generator is being transformed.
void LoadAndSpill(Expression* expression,
TypeofState typeof_state = NOT_INSIDE_TYPEOF);
// Read a value from a slot and leave it on top of the expression stack.
void LoadFromSlot(Slot* slot, TypeofState typeof_state);
Result LoadFromGlobalSlotCheckExtensions(Slot* slot,
TypeofState typeof_state,
JumpTarget* slow);
// Store the value on top of the expression stack into a slot, leaving the
// value in place.
void StoreToSlot(Slot* slot, InitState init_state);
// Special code for typeof expressions: Unfortunately, we must
// be careful when loading the expression in 'typeof'
// expressions. We are not allowed to throw reference errors for
// non-existing properties of the global object, so we must make it
// look like an explicit property access, instead of an access
// through the context chain.
void LoadTypeofExpression(Expression* x);
// Translate the value on top of the frame into control flow to the
// control destination.
void ToBoolean(ControlDestination* destination);
void GenericBinaryOperation(
Token::Value op,
SmiAnalysis* type,
OverwriteMode overwrite_mode);
// If possible, combine two constant smi values using op to produce
// a smi result, and push it on the virtual frame, all at compile time.
// Returns true if it succeeds. Otherwise it has no effect.
bool FoldConstantSmis(Token::Value op, int left, int right);
// Emit code to perform a binary operation on a constant
// smi and a likely smi. Consumes the Result *operand.
void ConstantSmiBinaryOperation(Token::Value op,
Result* operand,
Handle<Object> constant_operand,
SmiAnalysis* type,
bool reversed,
OverwriteMode overwrite_mode);
// Emit code to perform a binary operation on two likely smis.
// The code to handle smi arguments is produced inline.
// Consumes the Results *left and *right.
void LikelySmiBinaryOperation(Token::Value op,
Result* left,
Result* right,
OverwriteMode overwrite_mode);
void Comparison(Condition cc,
bool strict,
ControlDestination* destination);
// To prevent long attacker-controlled byte sequences, integer constants
// from the JavaScript source are loaded in two parts if they are larger
// than 16 bits.
static const int kMaxSmiInlinedBits = 16;
bool IsUnsafeSmi(Handle<Object> value);
// Load an integer constant x into a register target using
// at most 16 bits of user-controlled data per assembly operation.
void LoadUnsafeSmi(Register target, Handle<Object> value);
void CallWithArguments(ZoneList<Expression*>* arguments, int position);
void CheckStack();
struct InlineRuntimeLUT {
void (CodeGenerator::*method)(ZoneList<Expression*>*);
const char* name;
};
static InlineRuntimeLUT* FindInlineRuntimeLUT(Handle<String> name);
bool CheckForInlineRuntimeCall(CallRuntime* node);
static bool PatchInlineRuntimeEntry(Handle<String> name,
const InlineRuntimeLUT& new_entry,
InlineRuntimeLUT* old_entry);
Handle<JSFunction> BuildBoilerplate(FunctionLiteral* node);
void ProcessDeclarations(ZoneList<Declaration*>* declarations);
Handle<Code> ComputeCallInitialize(int argc, InLoopFlag in_loop);
// Declare global variables and functions in the given array of
// name/value pairs.
void DeclareGlobals(Handle<FixedArray> pairs);
// Instantiate the function boilerplate.
void InstantiateBoilerplate(Handle<JSFunction> boilerplate);
// Support for type checks.
void GenerateIsSmi(ZoneList<Expression*>* args);
void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args);
void GenerateIsArray(ZoneList<Expression*>* args);
// Support for arguments.length and arguments[?].
void GenerateArgumentsLength(ZoneList<Expression*>* args);
void GenerateArgumentsAccess(ZoneList<Expression*>* args);
// Support for accessing the value field of an object (used by Date).
void GenerateValueOf(ZoneList<Expression*>* args);
void GenerateSetValueOf(ZoneList<Expression*>* args);
// Fast support for charCodeAt(n).
void GenerateFastCharCodeAt(ZoneList<Expression*>* args);
// Fast support for object equality testing.
void GenerateObjectEquals(ZoneList<Expression*>* args);
void GenerateLog(ZoneList<Expression*>* args);
void GenerateGetFramePointer(ZoneList<Expression*>* args);
// Methods and constants for fast case switch statement support.
//
// Only allow fast-case switch if the range of labels is at most
// this factor times the number of case labels.
// Value is derived from comparing the size of code generated by the normal
// switch code for Smi-labels to the size of a single pointer. If code
// quality increases this number should be decreased to match.
static const int kFastSwitchMaxOverheadFactor = 5;
// Minimal number of switch cases required before we allow jump-table
// optimization.
static const int kFastSwitchMinCaseCount = 5;
// The limit of the range of a fast-case switch, as a factor of the number
// of cases of the switch. Each platform should return a value that
// is optimal compared to the default code generated for a switch statement
// on that platform.
int FastCaseSwitchMaxOverheadFactor();
// The minimal number of cases in a switch before the fast-case switch
// optimization is enabled. Each platform should return a value that
// is optimal compared to the default code generated for a switch statement
// on that platform.
int FastCaseSwitchMinCaseCount();
// Allocate a jump table and create code to jump through it.
// Should call GenerateFastCaseSwitchCases to generate the code for
// all the cases at the appropriate point.
void GenerateFastCaseSwitchJumpTable(SwitchStatement* node,
int min_index,
int range,
Label* fail_label,
Vector<Label*> case_targets,
Vector<Label> case_labels);
// Generate the code for cases for the fast case switch.
// Called by GenerateFastCaseSwitchJumpTable.
void GenerateFastCaseSwitchCases(SwitchStatement* node,
Vector<Label> case_labels,
VirtualFrame* start_frame);
// Fast support for constant-Smi switches.
void GenerateFastCaseSwitchStatement(SwitchStatement* node,
int min_index,
int range,
int default_index);
// Fast support for constant-Smi switches. Tests whether switch statement
// permits optimization and calls GenerateFastCaseSwitch if it does.
// Returns true if the fast-case switch was generated, and false if not.
bool TryGenerateFastCaseSwitchStatement(SwitchStatement* node);
// Methods used to indicate which source code is generated for. Source
// positions are collected by the assembler and emitted with the relocation
// information.
void CodeForFunctionPosition(FunctionLiteral* fun);
void CodeForReturnPosition(FunctionLiteral* fun);
void CodeForStatementPosition(Node* node);
void CodeForSourcePosition(int pos);
#ifdef DEBUG
// True if the registers are valid for entry to a block. There should
// be no frame-external references to (non-reserved) registers.
bool HasValidEntryRegisters();
#endif
bool is_eval_; // Tells whether code is generated for eval.
Handle<Script> script_;
ZoneList<DeferredCode*> deferred_;
// Assembler
MacroAssembler* masm_; // to generate code
// Code generation state
Scope* scope_;
VirtualFrame* frame_;
RegisterAllocator* allocator_;
CodeGenState* state_;
int loop_nesting_;
// Jump targets.
// The target of the return from the function.
BreakTarget function_return_;
// True if the function return is shadowed (ie, jumping to the target
// function_return_ does not jump to the true function return, but rather
// to some unlinking code).
bool function_return_is_shadowed_;
// True when we are in code that expects the virtual frame to be fully
// spilled. Some virtual frame function are disabled in DEBUG builds when
// called from spilled code, because they do not leave the virtual frame
// in a spilled state.
bool in_spilled_code_;
static InlineRuntimeLUT kInlineRuntimeLUT[];
friend class VirtualFrame;
friend class JumpTarget;
friend class Reference;
friend class Result;
friend class CodeGeneratorPatcher; // Used in test-log-ia32.cc
DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
};
} } // namespace v8::internal
#endif // V8_IA32_CODEGEN_IA32_H_