v8/test/mjsunit/array-constructor-feedback.js
mvstanton@chromium.org 535f3427ca Pretenure call new support.
When FLAG_pretenure_call_new is on, we emit mementos on new object creation
in full code, and consume the feedback in crankshaft. A key difference in the
generated code for stubs is the allocation of an additional type vector slot for the
CallNew AST node, which simplifies the CallConstructStub and CallFunctionStub
considerably.

Some performance tuning still needs to be addressed, therefore the flag is off at
this moment, though fully functional. The goal is to remove the flag as soon as
possible, which allows much code deletion (yay).

R=hpayer@chromium.org

Review URL: https://codereview.chromium.org/132963012

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@20076 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-03-19 13:39:09 +00:00

256 lines
8.6 KiB
JavaScript

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Flags: --allow-natives-syntax --smi-only-arrays --expose-gc
// Flags: --noalways-opt
// Test element kind of objects.
// Since --smi-only-arrays affects builtins, its default setting at compile
// time sticks if built with snapshot. If --smi-only-arrays is deactivated
// by default, only a no-snapshot build actually has smi-only arrays enabled
// in this test case. Depending on whether smi-only arrays are actually
// enabled, this test takes the appropriate code path to check smi-only arrays.
// support_smi_only_arrays = %HasFastSmiElements(new Array(1,2,3,4,5,6,7,8));
support_smi_only_arrays = true;
if (support_smi_only_arrays) {
print("Tests include smi-only arrays.");
} else {
print("Tests do NOT include smi-only arrays.");
}
var elements_kind = {
fast_smi_only : 'fast smi only elements',
fast : 'fast elements',
fast_double : 'fast double elements',
dictionary : 'dictionary elements',
external_byte : 'external byte elements',
external_unsigned_byte : 'external unsigned byte elements',
external_short : 'external short elements',
external_unsigned_short : 'external unsigned short elements',
external_int : 'external int elements',
external_unsigned_int : 'external unsigned int elements',
external_float : 'external float elements',
external_double : 'external double elements',
external_pixel : 'external pixel elements'
}
function getKind(obj) {
if (%HasFastSmiElements(obj)) return elements_kind.fast_smi_only;
if (%HasFastObjectElements(obj)) return elements_kind.fast;
if (%HasFastDoubleElements(obj)) return elements_kind.fast_double;
if (%HasDictionaryElements(obj)) return elements_kind.dictionary;
}
function isHoley(obj) {
if (%HasFastHoleyElements(obj)) return true;
return false;
}
function assertKind(expected, obj, name_opt) {
if (!support_smi_only_arrays &&
expected == elements_kind.fast_smi_only) {
expected = elements_kind.fast;
}
assertEquals(expected, getKind(obj), name_opt);
}
if (support_smi_only_arrays) {
// Test: If a call site goes megamorphic, it retains the ability to
// use allocation site feedback (if FLAG_allocation_site_pretenuring
// is on).
(function() {
function bar(t, len) {
return new t(len);
}
a = bar(Array, 10);
a[0] = 3.5;
b = bar(Array, 1);
assertKind(elements_kind.fast_double, b);
c = bar(Object, 3);
b = bar(Array, 10);
// TODO(mvstanton): re-enable when FLAG_allocation_site_pretenuring
// is on in the build.
// assertKind(elements_kind.fast_double, b);
})();
// Test: ensure that crankshafted array constructor sites are deopted
// if another function is used.
(function() {
function bar0(t) {
return new t();
}
a = bar0(Array);
a[0] = 3.5;
b = bar0(Array);
assertKind(elements_kind.fast_double, b);
%OptimizeFunctionOnNextCall(bar0);
b = bar0(Array);
assertKind(elements_kind.fast_double, b);
assertOptimized(bar0);
// bar0 should deopt
b = bar0(Object);
assertUnoptimized(bar0)
// When it's re-optimized, we should call through the full stub
bar0(Array);
%OptimizeFunctionOnNextCall(bar0);
b = bar0(Array);
// This only makes sense to test if we allow crankshafting
if (4 != %GetOptimizationStatus(bar0)) {
// We also lost our ability to record kind feedback, as the site
// is megamorphic now.
assertKind(elements_kind.fast_smi_only, b);
assertOptimized(bar0);
b[0] = 3.5;
c = bar0(Array);
assertKind(elements_kind.fast_smi_only, c);
}
})();
// Test: Ensure that inlined array calls in crankshaft learn from deopts
// based on the move to a dictionary for the array.
(function() {
function bar(len) {
return new Array(len);
}
a = bar(10);
a[0] = "a string";
a = bar(10);
assertKind(elements_kind.fast, a);
%OptimizeFunctionOnNextCall(bar);
a = bar(10);
assertKind(elements_kind.fast, a);
assertOptimized(bar);
// bar should deopt because the length is too large.
a = bar(100000);
assertUnoptimized(bar);
assertKind(elements_kind.dictionary, a);
// The allocation site now has feedback that means the array constructor
// will not be inlined.
%OptimizeFunctionOnNextCall(bar);
a = bar(100000);
assertKind(elements_kind.dictionary, a);
assertOptimized(bar);
// If the argument isn't a smi, it bails out as well
a = bar("oops");
assertOptimized(bar);
assertKind(elements_kind.fast, a);
function barn(one, two, three) {
return new Array(one, two, three);
}
barn(1, 2, 3);
barn(1, 2, 3);
%OptimizeFunctionOnNextCall(barn);
barn(1, 2, 3);
assertOptimized(barn);
a = barn(1, "oops", 3);
// The method should deopt, but learn from the failure to avoid inlining
// the array.
assertKind(elements_kind.fast, a);
assertUnoptimized(barn);
%OptimizeFunctionOnNextCall(barn);
a = barn(1, "oops", 3);
assertOptimized(barn);
})();
// Test: When a method with array constructor is crankshafted, the type
// feedback for elements kind is baked in. Verify that transitions don't
// change it anymore
(function() {
function bar() {
return new Array();
}
a = bar();
bar();
%OptimizeFunctionOnNextCall(bar);
b = bar();
// This only makes sense to test if we allow crankshafting
if (4 != %GetOptimizationStatus(bar)) {
assertOptimized(bar);
%DebugPrint(3);
b[0] = 3.5;
c = bar();
assertKind(elements_kind.fast_smi_only, c);
assertOptimized(bar);
}
})();
// Test: create arrays in two contexts, verifying that the correct
// map for Array in that context will be used.
(function() {
function bar() { return new Array(); }
bar();
bar();
%OptimizeFunctionOnNextCall(bar);
a = bar();
assertTrue(a instanceof Array);
var contextB = Realm.create();
Realm.eval(contextB, "function bar2() { return new Array(); };");
Realm.eval(contextB, "bar2(); bar2();");
Realm.eval(contextB, "%OptimizeFunctionOnNextCall(bar2);");
Realm.eval(contextB, "bar2();");
assertFalse(Realm.eval(contextB, "bar2();") instanceof Array);
assertTrue(Realm.eval(contextB, "bar2() instanceof Array"));
})();
// Test: create array with packed feedback, then optimize/inline
// function. Verify that if we ask for a holey array then we deopt.
// Reoptimization will proceed with the correct feedback and we
// won't deopt anymore.
(function() {
function bar(len) { return new Array(len); }
bar(0);
bar(0);
%OptimizeFunctionOnNextCall(bar);
a = bar(0);
assertOptimized(bar);
assertFalse(isHoley(a));
a = bar(1); // ouch!
assertUnoptimized(bar);
assertTrue(isHoley(a));
// Try again
%OptimizeFunctionOnNextCall(bar);
a = bar(100);
assertOptimized(bar);
assertTrue(isHoley(a));
a = bar(0);
assertOptimized(bar);
assertTrue(isHoley(a));
})();
}