v8/test/cctest/heap/test-spaces.cc
Omer Katz 5411e8508b [heap] Abstract away remaining SemiSpaceNewSpace methods
The abstractions in this CL include:
1) Using EvacuatePrologue to handle age mark updating in
SemiSpaceNewSpace.
2) Using IsPromotionCandidate to check if a page contains
the current age mark.
3) EnsureCurrentCapacity instead of Rebalance.
4) Delegate page promotions in mark-compact.cc to the
NewSpace implementation.

Bug: v8:12612
Change-Id: Ied83261d661a8e61a11bf33b1d7a2103ac99a853
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3644966
Commit-Queue: Omer Katz <omerkatz@chromium.org>
Reviewed-by: Dominik Inführ <dinfuehr@chromium.org>
Cr-Commit-Position: refs/heads/main@{#80846}
2022-05-31 10:37:57 +00:00

1009 lines
35 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include <memory>
#include "include/v8-initialization.h"
#include "include/v8-platform.h"
#include "src/base/bounded-page-allocator.h"
#include "src/base/macros.h"
#include "src/base/platform/platform.h"
#include "src/common/globals.h"
#include "src/heap/factory.h"
#include "src/heap/large-spaces.h"
#include "src/heap/memory-allocator.h"
#include "src/heap/memory-chunk.h"
#include "src/heap/spaces-inl.h"
#include "src/heap/spaces.h"
#include "src/objects/free-space.h"
#include "src/objects/objects-inl.h"
#include "src/snapshot/snapshot.h"
#include "test/cctest/cctest.h"
#include "test/cctest/heap/heap-tester.h"
#include "test/cctest/heap/heap-utils.h"
namespace v8 {
namespace internal {
namespace heap {
// Temporarily sets a given allocator in an isolate.
class V8_NODISCARD TestMemoryAllocatorScope {
public:
TestMemoryAllocatorScope(Isolate* isolate, size_t max_capacity,
PageAllocator* page_allocator = nullptr)
: isolate_(isolate),
old_allocator_(std::move(isolate->heap()->memory_allocator_)) {
// Save the code pages for restoring them later on because the constructor
// of MemoryAllocator will change them.
isolate->GetCodePages()->swap(code_pages_);
isolate->heap()->memory_allocator_.reset(new MemoryAllocator(
isolate,
page_allocator != nullptr ? page_allocator : isolate->page_allocator(),
max_capacity));
if (page_allocator != nullptr) {
isolate->heap()->memory_allocator_->data_page_allocator_ = page_allocator;
}
}
MemoryAllocator* allocator() { return isolate_->heap()->memory_allocator(); }
~TestMemoryAllocatorScope() {
isolate_->heap()->memory_allocator()->TearDown();
isolate_->heap()->memory_allocator_.swap(old_allocator_);
isolate_->GetCodePages()->swap(code_pages_);
}
TestMemoryAllocatorScope(const TestMemoryAllocatorScope&) = delete;
TestMemoryAllocatorScope& operator=(const TestMemoryAllocatorScope&) = delete;
private:
Isolate* isolate_;
std::unique_ptr<MemoryAllocator> old_allocator_;
std::vector<MemoryRange> code_pages_;
};
// Temporarily sets a given code page allocator in an isolate.
class V8_NODISCARD TestCodePageAllocatorScope {
public:
TestCodePageAllocatorScope(Isolate* isolate,
v8::PageAllocator* code_page_allocator)
: isolate_(isolate),
old_code_page_allocator_(
isolate->heap()->memory_allocator()->code_page_allocator()) {
isolate->heap()->memory_allocator()->code_page_allocator_ =
code_page_allocator;
}
~TestCodePageAllocatorScope() {
isolate_->heap()->memory_allocator()->code_page_allocator_ =
old_code_page_allocator_;
}
TestCodePageAllocatorScope(const TestCodePageAllocatorScope&) = delete;
TestCodePageAllocatorScope& operator=(const TestCodePageAllocatorScope&) =
delete;
private:
Isolate* isolate_;
v8::PageAllocator* old_code_page_allocator_;
};
static void VerifyMemoryChunk(Isolate* isolate, Heap* heap,
v8::PageAllocator* code_page_allocator,
size_t area_size, Executability executable,
PageSize page_size, LargeObjectSpace* space) {
TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved());
MemoryAllocator* memory_allocator = test_allocator_scope.allocator();
TestCodePageAllocatorScope test_code_page_allocator_scope(
isolate, code_page_allocator);
v8::PageAllocator* page_allocator =
memory_allocator->page_allocator(executable);
size_t allocatable_memory_area_offset =
MemoryChunkLayout::ObjectStartOffsetInMemoryChunk(space->identity());
size_t guard_size =
(executable == EXECUTABLE) ? MemoryChunkLayout::CodePageGuardSize() : 0;
MemoryChunk* memory_chunk =
memory_allocator->AllocateLargePage(space, area_size, executable);
size_t reserved_size =
((executable == EXECUTABLE))
? allocatable_memory_area_offset +
RoundUp(area_size, page_allocator->CommitPageSize()) +
guard_size
: RoundUp(allocatable_memory_area_offset + area_size,
page_allocator->CommitPageSize());
CHECK(memory_chunk->size() == reserved_size);
CHECK(memory_chunk->area_start() <
memory_chunk->address() + memory_chunk->size());
CHECK(memory_chunk->area_end() <=
memory_chunk->address() + memory_chunk->size());
CHECK(static_cast<size_t>(memory_chunk->area_size()) == area_size);
memory_allocator->Free(MemoryAllocator::FreeMode::kImmediately, memory_chunk);
}
static unsigned int PseudorandomAreaSize() {
static uint32_t lo = 2345;
lo = 18273 * (lo & 0xFFFFF) + (lo >> 16);
return lo & 0xFFFFF;
}
TEST(MemoryChunk) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
v8::PageAllocator* page_allocator = GetPlatformPageAllocator();
size_t area_size;
bool jitless = isolate->jitless();
for (int i = 0; i < 100; i++) {
area_size =
RoundUp(PseudorandomAreaSize(), page_allocator->CommitPageSize());
// With CodeRange.
const size_t code_range_size = 32 * MB;
VirtualMemory code_range_reservation(
page_allocator, code_range_size, nullptr, MemoryChunk::kAlignment,
jitless ? JitPermission::kNoJit : JitPermission::kMapAsJittable);
base::PageFreeingMode page_freeing_mode =
base::PageFreeingMode::kMakeInaccessible;
// On MacOS on ARM64 the code range reservation must be committed as RWX.
if (V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT && !jitless) {
page_freeing_mode = base::PageFreeingMode::kDiscard;
void* base = reinterpret_cast<void*>(code_range_reservation.address());
CHECK(page_allocator->SetPermissions(base, code_range_size,
PageAllocator::kReadWriteExecute));
CHECK(page_allocator->DiscardSystemPages(base, code_range_size));
}
CHECK(code_range_reservation.IsReserved());
base::BoundedPageAllocator code_page_allocator(
page_allocator, code_range_reservation.address(),
code_range_reservation.size(), MemoryChunk::kAlignment,
base::PageInitializationMode::kAllocatedPagesCanBeUninitialized,
page_freeing_mode);
// Modification of pages in code_range_reservation requires write access.
RwxMemoryWriteScopeForTesting rwx_write_scope;
VerifyMemoryChunk(isolate, heap, &code_page_allocator, area_size,
EXECUTABLE, PageSize::kLarge, heap->code_lo_space());
VerifyMemoryChunk(isolate, heap, &code_page_allocator, area_size,
NOT_EXECUTABLE, PageSize::kLarge, heap->lo_space());
}
}
TEST(MemoryAllocator) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved());
MemoryAllocator* memory_allocator = test_allocator_scope.allocator();
LinearAllocationArea allocation_info;
int total_pages = 0;
OldSpace faked_space(heap, &allocation_info);
CHECK(!faked_space.first_page());
CHECK(!faked_space.last_page());
Page* first_page = memory_allocator->AllocatePage(
MemoryAllocator::AllocationMode::kRegular,
static_cast<PagedSpace*>(&faked_space), NOT_EXECUTABLE);
faked_space.memory_chunk_list().PushBack(first_page);
CHECK(first_page->next_page() == nullptr);
total_pages++;
for (Page* p = first_page; p != nullptr; p = p->next_page()) {
CHECK(p->owner() == &faked_space);
}
// Again, we should get n or n - 1 pages.
Page* other = memory_allocator->AllocatePage(
MemoryAllocator::AllocationMode::kRegular,
static_cast<PagedSpace*>(&faked_space), NOT_EXECUTABLE);
total_pages++;
faked_space.memory_chunk_list().PushBack(other);
int page_count = 0;
for (Page* p = first_page; p != nullptr; p = p->next_page()) {
CHECK(p->owner() == &faked_space);
page_count++;
}
CHECK(total_pages == page_count);
Page* second_page = first_page->next_page();
CHECK_NOT_NULL(second_page);
// OldSpace's destructor will tear down the space and free up all pages.
}
TEST(ComputeDiscardMemoryAreas) {
base::AddressRegion memory_area;
size_t page_size = MemoryAllocator::GetCommitPageSize();
size_t free_header_size = FreeSpace::kSize;
memory_area = MemoryAllocator::ComputeDiscardMemoryArea(0, 0);
CHECK_EQ(memory_area.begin(), 0);
CHECK_EQ(memory_area.size(), 0);
memory_area = MemoryAllocator::ComputeDiscardMemoryArea(
0, page_size + free_header_size);
CHECK_EQ(memory_area.begin(), 0);
CHECK_EQ(memory_area.size(), 0);
memory_area = MemoryAllocator::ComputeDiscardMemoryArea(
page_size - free_header_size, page_size + free_header_size);
CHECK_EQ(memory_area.begin(), page_size);
CHECK_EQ(memory_area.size(), page_size);
memory_area = MemoryAllocator::ComputeDiscardMemoryArea(page_size, page_size);
CHECK_EQ(memory_area.begin(), 0);
CHECK_EQ(memory_area.size(), 0);
memory_area = MemoryAllocator::ComputeDiscardMemoryArea(
page_size / 2, page_size + page_size / 2);
CHECK_EQ(memory_area.begin(), page_size);
CHECK_EQ(memory_area.size(), page_size);
memory_area = MemoryAllocator::ComputeDiscardMemoryArea(
page_size / 2, page_size + page_size / 4);
CHECK_EQ(memory_area.begin(), 0);
CHECK_EQ(memory_area.size(), 0);
memory_area =
MemoryAllocator::ComputeDiscardMemoryArea(page_size / 2, page_size * 3);
CHECK_EQ(memory_area.begin(), page_size);
CHECK_EQ(memory_area.size(), page_size * 2);
}
TEST(SemiSpaceNewSpace) {
if (FLAG_single_generation) return;
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved());
MemoryAllocator* memory_allocator = test_allocator_scope.allocator();
LinearAllocationArea allocation_info;
std::unique_ptr<SemiSpaceNewSpace> new_space =
std::make_unique<SemiSpaceNewSpace>(
heap, CcTest::heap()->InitialSemiSpaceSize(),
CcTest::heap()->InitialSemiSpaceSize(), &allocation_info);
CHECK(new_space->MaximumCapacity());
while (new_space->Available() >= kMaxRegularHeapObjectSize) {
CHECK(new_space->Contains(
new_space->AllocateRaw(kMaxRegularHeapObjectSize, kTaggedAligned)
.ToObjectChecked()));
}
new_space.reset();
memory_allocator->unmapper()->EnsureUnmappingCompleted();
}
TEST(OldSpace) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved());
LinearAllocationArea allocation_info;
OldSpace* s = new OldSpace(heap, &allocation_info);
CHECK_NOT_NULL(s);
while (s->Available() > 0) {
s->AllocateRawUnaligned(kMaxRegularHeapObjectSize).ToObjectChecked();
}
delete s;
}
TEST(OldLargeObjectSpace) {
// This test does not initialize allocated objects, which confuses the
// incremental marker.
FLAG_incremental_marking = false;
FLAG_max_heap_size = 20;
OldLargeObjectSpace* lo = CcTest::heap()->lo_space();
CHECK_NOT_NULL(lo);
int lo_size = Page::kPageSize;
Object obj = lo->AllocateRaw(lo_size).ToObjectChecked();
CHECK(obj.IsHeapObject());
HeapObject ho = HeapObject::cast(obj);
CHECK(lo->Contains(HeapObject::cast(obj)));
CHECK(lo->Contains(ho));
CHECK_EQ(0, Heap::GetFillToAlign(ho.address(), kTaggedAligned));
// All large objects have the same alignment because they start at the
// same offset within a page. Fixed double arrays have the most strict
// alignment requirements.
CHECK_EQ(
0, Heap::GetFillToAlign(
ho.address(),
HeapObject::RequiredAlignment(
ReadOnlyRoots(CcTest::i_isolate()).fixed_double_array_map())));
Isolate* isolate = CcTest::i_isolate();
HandleScope handle_scope(isolate);
while (true) {
{
AllocationResult allocation = lo->AllocateRaw(lo_size);
if (allocation.IsFailure()) break;
ho = HeapObject::cast(allocation.ToObjectChecked());
Handle<HeapObject> keep_alive(ho, isolate);
}
}
CHECK(!lo->IsEmpty());
CHECK(lo->AllocateRaw(lo_size).IsFailure());
}
#ifndef DEBUG
// The test verifies that committed size of a space is less then some threshold.
// Debug builds pull in all sorts of additional instrumentation that increases
// heap sizes. E.g. CSA_DCHECK creates on-heap strings for error messages. These
// messages are also not stable if files are moved and modified during the build
// process (jumbo builds).
TEST(SizeOfInitialHeap) {
ManualGCScope manual_gc_scope;
if (i::FLAG_always_turbofan) return;
// Bootstrapping without a snapshot causes more allocations.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
if (!isolate->snapshot_available()) return;
HandleScope scope(isolate);
v8::Local<v8::Context> context = CcTest::isolate()->GetCurrentContext();
// Skip this test on the custom snapshot builder.
if (!CcTest::global()
->Get(context, v8_str("assertEquals"))
.ToLocalChecked()
->IsUndefined()) {
return;
}
// Initial size of LO_SPACE
size_t initial_lo_space = isolate->heap()->lo_space()->Size();
// The limit for each space for an empty isolate containing just the
// snapshot.
// In PPC the page size is 64K, causing more internal fragmentation
// hence requiring a larger limit.
#if V8_OS_LINUX && (V8_HOST_ARCH_PPC || V8_HOST_ARCH_PPC64)
const size_t kMaxInitialSizePerSpace = 3 * MB;
#else
const size_t kMaxInitialSizePerSpace = 2 * MB;
#endif
// Freshly initialized VM gets by with the snapshot size (which is below
// kMaxInitialSizePerSpace per space).
Heap* heap = isolate->heap();
for (int i = FIRST_GROWABLE_PAGED_SPACE; i <= LAST_GROWABLE_PAGED_SPACE;
i++) {
// Map space might be disabled.
if (i == MAP_SPACE && !heap->paged_space(i)) continue;
// Debug code can be very large, so skip CODE_SPACE if we are generating it.
if (i == CODE_SPACE && i::FLAG_debug_code) continue;
// Check that the initial heap is also below the limit.
CHECK_LE(heap->paged_space(i)->CommittedMemory(), kMaxInitialSizePerSpace);
}
CompileRun("/*empty*/");
// No large objects required to perform the above steps.
CHECK_EQ(initial_lo_space,
static_cast<size_t>(isolate->heap()->lo_space()->Size()));
}
#endif // DEBUG
static HeapObject AllocateUnaligned(NewSpace* space, int size) {
AllocationResult allocation = space->AllocateRaw(size, kTaggedAligned);
CHECK(!allocation.IsFailure());
HeapObject filler;
CHECK(allocation.To(&filler));
space->heap()->CreateFillerObjectAt(filler.address(), size);
return filler;
}
static HeapObject AllocateUnaligned(PagedSpace* space, int size) {
AllocationResult allocation = space->AllocateRaw(size, kTaggedAligned);
CHECK(!allocation.IsFailure());
HeapObject filler;
CHECK(allocation.To(&filler));
space->heap()->CreateFillerObjectAt(filler.address(), size);
return filler;
}
static HeapObject AllocateUnaligned(OldLargeObjectSpace* space, int size) {
AllocationResult allocation = space->AllocateRaw(size);
CHECK(!allocation.IsFailure());
HeapObject filler;
CHECK(allocation.To(&filler));
return filler;
}
class Observer : public AllocationObserver {
public:
explicit Observer(intptr_t step_size)
: AllocationObserver(step_size), count_(0) {}
void Step(int bytes_allocated, Address addr, size_t) override { count_++; }
int count() const { return count_; }
private:
int count_;
};
template <typename T>
void testAllocationObserver(Isolate* i_isolate, T* space) {
Observer observer1(128);
space->AddAllocationObserver(&observer1);
// The observer should not get notified if we have only allocated less than
// 128 bytes.
AllocateUnaligned(space, 64);
CHECK_EQ(observer1.count(), 0);
// The observer should get called when we have allocated exactly 128 bytes.
AllocateUnaligned(space, 64);
CHECK_EQ(observer1.count(), 1);
// Another >128 bytes should get another notification.
AllocateUnaligned(space, 136);
CHECK_EQ(observer1.count(), 2);
// Allocating a large object should get only one notification.
AllocateUnaligned(space, 1024);
CHECK_EQ(observer1.count(), 3);
// Allocating another 2048 bytes in small objects should get 16
// notifications.
for (int i = 0; i < 64; ++i) {
AllocateUnaligned(space, 32);
}
CHECK_EQ(observer1.count(), 19);
// Multiple observers should work.
Observer observer2(96);
space->AddAllocationObserver(&observer2);
AllocateUnaligned(space, 2048);
CHECK_EQ(observer1.count(), 20);
CHECK_EQ(observer2.count(), 1);
AllocateUnaligned(space, 104);
CHECK_EQ(observer1.count(), 20);
CHECK_EQ(observer2.count(), 2);
// Callback should stop getting called after an observer is removed.
space->RemoveAllocationObserver(&observer1);
AllocateUnaligned(space, 384);
CHECK_EQ(observer1.count(), 20); // no more notifications.
CHECK_EQ(observer2.count(), 3); // this one is still active.
// Ensure that PauseInlineAllocationObserversScope work correctly.
AllocateUnaligned(space, 48);
CHECK_EQ(observer2.count(), 3);
{
PauseAllocationObserversScope pause_observers(i_isolate->heap());
CHECK_EQ(observer2.count(), 3);
AllocateUnaligned(space, 384);
CHECK_EQ(observer2.count(), 3);
}
CHECK_EQ(observer2.count(), 3);
// Coupled with the 48 bytes allocated before the pause, another 48 bytes
// allocated here should trigger a notification.
AllocateUnaligned(space, 48);
CHECK_EQ(observer2.count(), 4);
space->RemoveAllocationObserver(&observer2);
AllocateUnaligned(space, 384);
CHECK_EQ(observer1.count(), 20);
CHECK_EQ(observer2.count(), 4);
}
UNINITIALIZED_TEST(AllocationObserver) {
if (FLAG_single_generation) return;
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
{
v8::Isolate::Scope isolate_scope(isolate);
v8::HandleScope handle_scope(isolate);
v8::Context::New(isolate)->Enter();
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
testAllocationObserver<NewSpace>(i_isolate, i_isolate->heap()->new_space());
// Old space is used but the code path is shared for all
// classes inheriting from PagedSpace.
testAllocationObserver<PagedSpace>(i_isolate,
i_isolate->heap()->old_space());
testAllocationObserver<OldLargeObjectSpace>(i_isolate,
i_isolate->heap()->lo_space());
}
isolate->Dispose();
}
UNINITIALIZED_TEST(InlineAllocationObserverCadence) {
if (FLAG_single_generation) return;
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
{
v8::Isolate::Scope isolate_scope(isolate);
v8::HandleScope handle_scope(isolate);
v8::Context::New(isolate)->Enter();
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
// Clear out any pre-existing garbage to make the test consistent
// across snapshot/no-snapshot builds.
CcTest::CollectAllGarbage(i_isolate);
NewSpace* new_space = i_isolate->heap()->new_space();
Observer observer1(512);
new_space->AddAllocationObserver(&observer1);
Observer observer2(576);
new_space->AddAllocationObserver(&observer2);
for (int i = 0; i < 512; ++i) {
AllocateUnaligned(new_space, 32);
}
new_space->RemoveAllocationObserver(&observer1);
new_space->RemoveAllocationObserver(&observer2);
CHECK_EQ(observer1.count(), 32);
CHECK_EQ(observer2.count(), 28);
}
isolate->Dispose();
}
HEAP_TEST(Regress777177) {
FLAG_stress_concurrent_allocation = false; // For SimulateFullSpace.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
PagedSpace* old_space = heap->old_space();
Observer observer(128);
old_space->AddAllocationObserver(&observer);
int area_size = old_space->AreaSize();
int max_object_size = kMaxRegularHeapObjectSize;
int filler_size = area_size - max_object_size;
{
// Ensure a new linear allocation area on a fresh page.
AlwaysAllocateScopeForTesting always_allocate(heap);
heap::SimulateFullSpace(old_space);
AllocationResult result =
old_space->AllocateRaw(filler_size, kTaggedAligned);
HeapObject obj = result.ToObjectChecked();
heap->CreateFillerObjectAt(obj.address(), filler_size);
}
{
// Allocate all bytes of the linear allocation area. This moves top_ and
// top_on_previous_step_ to the next page.
AllocationResult result =
old_space->AllocateRaw(max_object_size, kTaggedAligned);
HeapObject obj = result.ToObjectChecked();
// Simulate allocation folding moving the top pointer back.
old_space->SetTopAndLimit(obj.address(), old_space->limit());
}
{
// This triggers assert in crbug.com/777177.
AllocationResult result =
old_space->AllocateRaw(filler_size, kTaggedAligned);
HeapObject obj = result.ToObjectChecked();
heap->CreateFillerObjectAt(obj.address(), filler_size);
}
old_space->RemoveAllocationObserver(&observer);
}
HEAP_TEST(Regress791582) {
if (FLAG_single_generation) return;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
NewSpace* new_space = heap->new_space();
GrowNewSpace(heap);
int until_page_end = static_cast<int>(new_space->limit() - new_space->top());
if (!IsAligned(until_page_end, kTaggedSize)) {
// The test works if the size of allocation area size is a multiple of
// pointer size. This is usually the case unless some allocation observer
// is already active (e.g. incremental marking observer).
return;
}
Observer observer(128);
new_space->AddAllocationObserver(&observer);
{
AllocationResult result =
new_space->AllocateRaw(until_page_end, kTaggedAligned);
HeapObject obj = result.ToObjectChecked();
heap->CreateFillerObjectAt(obj.address(), until_page_end);
// Simulate allocation folding moving the top pointer back.
*new_space->allocation_top_address() = obj.address();
}
{
// This triggers assert in crbug.com/791582
AllocationResult result = new_space->AllocateRaw(256, kTaggedAligned);
HeapObject obj = result.ToObjectChecked();
heap->CreateFillerObjectAt(obj.address(), 256);
}
new_space->RemoveAllocationObserver(&observer);
}
TEST(ShrinkPageToHighWaterMarkFreeSpaceEnd) {
FLAG_stress_incremental_marking = false;
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
heap::SealCurrentObjects(CcTest::heap());
// Prepare page that only contains a single object and a trailing FreeSpace
// filler.
Handle<FixedArray> array =
isolate->factory()->NewFixedArray(128, AllocationType::kOld);
Page* page = Page::FromHeapObject(*array);
// Reset space so high water mark is consistent.
PagedSpace* old_space = CcTest::heap()->old_space();
old_space->FreeLinearAllocationArea();
old_space->ResetFreeList();
HeapObject filler = HeapObject::FromAddress(array->address() + array->Size());
CHECK(filler.IsFreeSpace());
size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
size_t should_have_shrunk = RoundDown(
static_cast<size_t>(MemoryChunkLayout::AllocatableMemoryInDataPage() -
array->Size()),
CommitPageSize());
CHECK_EQ(should_have_shrunk, shrunk);
}
TEST(ShrinkPageToHighWaterMarkNoFiller) {
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
heap::SealCurrentObjects(CcTest::heap());
const int kFillerSize = 0;
std::vector<Handle<FixedArray>> arrays =
heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize);
Handle<FixedArray> array = arrays.back();
Page* page = Page::FromHeapObject(*array);
CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize);
// Reset space so high water mark and fillers are consistent.
PagedSpace* old_space = CcTest::heap()->old_space();
old_space->ResetFreeList();
old_space->FreeLinearAllocationArea();
size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
CHECK_EQ(0u, shrunk);
}
TEST(ShrinkPageToHighWaterMarkOneWordFiller) {
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
heap::SealCurrentObjects(CcTest::heap());
const int kFillerSize = kTaggedSize;
std::vector<Handle<FixedArray>> arrays =
heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize);
Handle<FixedArray> array = arrays.back();
Page* page = Page::FromHeapObject(*array);
CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize);
// Reset space so high water mark and fillers are consistent.
PagedSpace* old_space = CcTest::heap()->old_space();
old_space->FreeLinearAllocationArea();
old_space->ResetFreeList();
HeapObject filler = HeapObject::FromAddress(array->address() + array->Size());
CHECK_EQ(filler.map(),
ReadOnlyRoots(CcTest::heap()).one_pointer_filler_map());
size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
CHECK_EQ(0u, shrunk);
}
TEST(ShrinkPageToHighWaterMarkTwoWordFiller) {
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
heap::SealCurrentObjects(CcTest::heap());
const int kFillerSize = 2 * kTaggedSize;
std::vector<Handle<FixedArray>> arrays =
heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize);
Handle<FixedArray> array = arrays.back();
Page* page = Page::FromHeapObject(*array);
CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize);
// Reset space so high water mark and fillers are consistent.
PagedSpace* old_space = CcTest::heap()->old_space();
old_space->FreeLinearAllocationArea();
old_space->ResetFreeList();
HeapObject filler = HeapObject::FromAddress(array->address() + array->Size());
CHECK_EQ(filler.map(),
ReadOnlyRoots(CcTest::heap()).two_pointer_filler_map());
size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
CHECK_EQ(0u, shrunk);
}
namespace {
// PageAllocator that always fails.
class FailingPageAllocator : public v8::PageAllocator {
public:
size_t AllocatePageSize() override { return 1024; }
size_t CommitPageSize() override { return 1024; }
void SetRandomMmapSeed(int64_t seed) override {}
void* GetRandomMmapAddr() override { return nullptr; }
void* AllocatePages(void* address, size_t length, size_t alignment,
Permission permissions) override {
return nullptr;
}
bool FreePages(void* address, size_t length) override { return false; }
bool ReleasePages(void* address, size_t length, size_t new_length) override {
return false;
}
bool SetPermissions(void* address, size_t length,
Permission permissions) override {
return false;
}
bool RecommitPages(void* address, size_t length,
Permission permissions) override {
return false;
}
bool DecommitPages(void* address, size_t length) override { return false; }
};
} // namespace
TEST(NoMemoryForNewPage) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
// Memory allocator that will fail to allocate any pages.
FailingPageAllocator failing_allocator;
TestMemoryAllocatorScope test_allocator_scope(isolate, 0, &failing_allocator);
MemoryAllocator* memory_allocator = test_allocator_scope.allocator();
LinearAllocationArea allocation_info;
OldSpace faked_space(heap, &allocation_info);
Page* page = memory_allocator->AllocatePage(
MemoryAllocator::AllocationMode::kRegular,
static_cast<PagedSpace*>(&faked_space), NOT_EXECUTABLE);
CHECK_NULL(page);
}
namespace {
// ReadOnlySpace cannot be torn down by a destructor because the destructor
// cannot take an argument. Since these tests create ReadOnlySpaces not attached
// to the Heap directly, they need to be destroyed to ensure the
// MemoryAllocator's stats are all 0 at exit.
class V8_NODISCARD ReadOnlySpaceScope {
public:
explicit ReadOnlySpaceScope(Heap* heap) : ro_space_(heap) {}
~ReadOnlySpaceScope() {
ro_space_.TearDown(CcTest::heap()->memory_allocator());
}
ReadOnlySpace* space() { return &ro_space_; }
private:
ReadOnlySpace ro_space_;
};
} // namespace
TEST(ReadOnlySpaceMetrics_OnePage) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
// Create a read-only space and allocate some memory, shrink the pages and
// check the allocated object size is as expected.
ReadOnlySpaceScope scope(heap);
ReadOnlySpace* faked_space = scope.space();
// Initially no memory.
CHECK_EQ(faked_space->Size(), 0);
CHECK_EQ(faked_space->Capacity(), 0);
CHECK_EQ(faked_space->CommittedMemory(), 0);
CHECK_EQ(faked_space->CommittedPhysicalMemory(), 0);
faked_space->AllocateRaw(16, kTaggedAligned);
faked_space->ShrinkPages();
faked_space->Seal(ReadOnlySpace::SealMode::kDoNotDetachFromHeap);
// Allocated objects size.
CHECK_EQ(faked_space->Size(), 16);
size_t committed_memory = RoundUp(
MemoryChunkLayout::ObjectStartOffsetInDataPage() + faked_space->Size(),
MemoryAllocator::GetCommitPageSize());
// Amount of OS allocated memory.
CHECK_EQ(faked_space->CommittedMemory(), committed_memory);
CHECK_EQ(faked_space->CommittedPhysicalMemory(), committed_memory);
// Capacity will be one OS page minus the page header.
CHECK_EQ(faked_space->Capacity(),
committed_memory - MemoryChunkLayout::ObjectStartOffsetInDataPage());
}
TEST(ReadOnlySpaceMetrics_AlignedAllocations) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
// Create a read-only space and allocate some memory, shrink the pages and
// check the allocated object size is as expected.
ReadOnlySpaceScope scope(heap);
ReadOnlySpace* faked_space = scope.space();
// Initially no memory.
CHECK_EQ(faked_space->Size(), 0);
CHECK_EQ(faked_space->Capacity(), 0);
CHECK_EQ(faked_space->CommittedMemory(), 0);
CHECK_EQ(faked_space->CommittedPhysicalMemory(), 0);
// Allocate an object just under an OS page in size.
int object_size =
static_cast<int>(MemoryAllocator::GetCommitPageSize() - kApiTaggedSize);
// TODO(v8:8875): Pointer compression does not enable aligned memory allocation
// yet.
#ifdef V8_COMPRESS_POINTERS
int alignment = kInt32Size;
#else
int alignment = kDoubleSize;
#endif
HeapObject object =
faked_space->AllocateRaw(object_size, kDoubleAligned).ToObjectChecked();
CHECK_EQ(object.address() % alignment, 0);
object =
faked_space->AllocateRaw(object_size, kDoubleAligned).ToObjectChecked();
CHECK_EQ(object.address() % alignment, 0);
// Calculate size of allocations based on area_start.
Address area_start = faked_space->pages().back()->GetAreaStart();
Address top = RoundUp(area_start, alignment) + object_size;
top = RoundUp(top, alignment) + object_size;
size_t expected_size = top - area_start;
faked_space->ShrinkPages();
faked_space->Seal(ReadOnlySpace::SealMode::kDoNotDetachFromHeap);
// Allocated objects size may will contain 4 bytes of padding on 32-bit or
// with pointer compression.
CHECK_EQ(faked_space->Size(), expected_size);
size_t committed_memory = RoundUp(
MemoryChunkLayout::ObjectStartOffsetInDataPage() + faked_space->Size(),
MemoryAllocator::GetCommitPageSize());
CHECK_EQ(faked_space->CommittedMemory(), committed_memory);
CHECK_EQ(faked_space->CommittedPhysicalMemory(), committed_memory);
// Capacity will be 3 OS pages minus the page header.
CHECK_EQ(faked_space->Capacity(),
committed_memory - MemoryChunkLayout::ObjectStartOffsetInDataPage());
}
TEST(ReadOnlySpaceMetrics_TwoPages) {
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
// Create a read-only space and allocate some memory, shrink the pages and
// check the allocated object size is as expected.
ReadOnlySpaceScope scope(heap);
ReadOnlySpace* faked_space = scope.space();
// Initially no memory.
CHECK_EQ(faked_space->Size(), 0);
CHECK_EQ(faked_space->Capacity(), 0);
CHECK_EQ(faked_space->CommittedMemory(), 0);
CHECK_EQ(faked_space->CommittedPhysicalMemory(), 0);
// Allocate an object that's too big to have more than one on a page.
int object_size = RoundUp(
static_cast<int>(
MemoryChunkLayout::AllocatableMemoryInMemoryChunk(RO_SPACE) / 2 + 16),
kTaggedSize);
CHECK_GT(object_size * 2,
MemoryChunkLayout::AllocatableMemoryInMemoryChunk(RO_SPACE));
faked_space->AllocateRaw(object_size, kTaggedAligned);
// Then allocate another so it expands the space to two pages.
faked_space->AllocateRaw(object_size, kTaggedAligned);
faked_space->ShrinkPages();
faked_space->Seal(ReadOnlySpace::SealMode::kDoNotDetachFromHeap);
// Allocated objects size.
CHECK_EQ(faked_space->Size(), object_size * 2);
// Amount of OS allocated memory.
size_t committed_memory_per_page =
RoundUp(MemoryChunkLayout::ObjectStartOffsetInDataPage() + object_size,
MemoryAllocator::GetCommitPageSize());
CHECK_EQ(faked_space->CommittedMemory(), 2 * committed_memory_per_page);
CHECK_EQ(faked_space->CommittedPhysicalMemory(),
2 * committed_memory_per_page);
// Capacity will be the space up to the amount of committed memory minus the
// page headers.
size_t capacity_per_page =
RoundUp(MemoryChunkLayout::ObjectStartOffsetInDataPage() + object_size,
MemoryAllocator::GetCommitPageSize()) -
MemoryChunkLayout::ObjectStartOffsetInDataPage();
CHECK_EQ(faked_space->Capacity(), 2 * capacity_per_page);
}
} // namespace heap
} // namespace internal
} // namespace v8