5411e8508b
The abstractions in this CL include: 1) Using EvacuatePrologue to handle age mark updating in SemiSpaceNewSpace. 2) Using IsPromotionCandidate to check if a page contains the current age mark. 3) EnsureCurrentCapacity instead of Rebalance. 4) Delegate page promotions in mark-compact.cc to the NewSpace implementation. Bug: v8:12612 Change-Id: Ied83261d661a8e61a11bf33b1d7a2103ac99a853 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3644966 Commit-Queue: Omer Katz <omerkatz@chromium.org> Reviewed-by: Dominik Inführ <dinfuehr@chromium.org> Cr-Commit-Position: refs/heads/main@{#80846}
1009 lines
35 KiB
C++
1009 lines
35 KiB
C++
// Copyright 2011 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <memory>
|
|
|
|
#include "include/v8-initialization.h"
|
|
#include "include/v8-platform.h"
|
|
#include "src/base/bounded-page-allocator.h"
|
|
#include "src/base/macros.h"
|
|
#include "src/base/platform/platform.h"
|
|
#include "src/common/globals.h"
|
|
#include "src/heap/factory.h"
|
|
#include "src/heap/large-spaces.h"
|
|
#include "src/heap/memory-allocator.h"
|
|
#include "src/heap/memory-chunk.h"
|
|
#include "src/heap/spaces-inl.h"
|
|
#include "src/heap/spaces.h"
|
|
#include "src/objects/free-space.h"
|
|
#include "src/objects/objects-inl.h"
|
|
#include "src/snapshot/snapshot.h"
|
|
#include "test/cctest/cctest.h"
|
|
#include "test/cctest/heap/heap-tester.h"
|
|
#include "test/cctest/heap/heap-utils.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
namespace heap {
|
|
|
|
// Temporarily sets a given allocator in an isolate.
|
|
class V8_NODISCARD TestMemoryAllocatorScope {
|
|
public:
|
|
TestMemoryAllocatorScope(Isolate* isolate, size_t max_capacity,
|
|
PageAllocator* page_allocator = nullptr)
|
|
: isolate_(isolate),
|
|
old_allocator_(std::move(isolate->heap()->memory_allocator_)) {
|
|
// Save the code pages for restoring them later on because the constructor
|
|
// of MemoryAllocator will change them.
|
|
isolate->GetCodePages()->swap(code_pages_);
|
|
isolate->heap()->memory_allocator_.reset(new MemoryAllocator(
|
|
isolate,
|
|
page_allocator != nullptr ? page_allocator : isolate->page_allocator(),
|
|
max_capacity));
|
|
if (page_allocator != nullptr) {
|
|
isolate->heap()->memory_allocator_->data_page_allocator_ = page_allocator;
|
|
}
|
|
}
|
|
|
|
MemoryAllocator* allocator() { return isolate_->heap()->memory_allocator(); }
|
|
|
|
~TestMemoryAllocatorScope() {
|
|
isolate_->heap()->memory_allocator()->TearDown();
|
|
isolate_->heap()->memory_allocator_.swap(old_allocator_);
|
|
isolate_->GetCodePages()->swap(code_pages_);
|
|
}
|
|
|
|
TestMemoryAllocatorScope(const TestMemoryAllocatorScope&) = delete;
|
|
TestMemoryAllocatorScope& operator=(const TestMemoryAllocatorScope&) = delete;
|
|
|
|
private:
|
|
Isolate* isolate_;
|
|
std::unique_ptr<MemoryAllocator> old_allocator_;
|
|
std::vector<MemoryRange> code_pages_;
|
|
};
|
|
|
|
// Temporarily sets a given code page allocator in an isolate.
|
|
class V8_NODISCARD TestCodePageAllocatorScope {
|
|
public:
|
|
TestCodePageAllocatorScope(Isolate* isolate,
|
|
v8::PageAllocator* code_page_allocator)
|
|
: isolate_(isolate),
|
|
old_code_page_allocator_(
|
|
isolate->heap()->memory_allocator()->code_page_allocator()) {
|
|
isolate->heap()->memory_allocator()->code_page_allocator_ =
|
|
code_page_allocator;
|
|
}
|
|
|
|
~TestCodePageAllocatorScope() {
|
|
isolate_->heap()->memory_allocator()->code_page_allocator_ =
|
|
old_code_page_allocator_;
|
|
}
|
|
TestCodePageAllocatorScope(const TestCodePageAllocatorScope&) = delete;
|
|
TestCodePageAllocatorScope& operator=(const TestCodePageAllocatorScope&) =
|
|
delete;
|
|
|
|
private:
|
|
Isolate* isolate_;
|
|
v8::PageAllocator* old_code_page_allocator_;
|
|
};
|
|
|
|
static void VerifyMemoryChunk(Isolate* isolate, Heap* heap,
|
|
v8::PageAllocator* code_page_allocator,
|
|
size_t area_size, Executability executable,
|
|
PageSize page_size, LargeObjectSpace* space) {
|
|
TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved());
|
|
MemoryAllocator* memory_allocator = test_allocator_scope.allocator();
|
|
TestCodePageAllocatorScope test_code_page_allocator_scope(
|
|
isolate, code_page_allocator);
|
|
|
|
v8::PageAllocator* page_allocator =
|
|
memory_allocator->page_allocator(executable);
|
|
|
|
size_t allocatable_memory_area_offset =
|
|
MemoryChunkLayout::ObjectStartOffsetInMemoryChunk(space->identity());
|
|
size_t guard_size =
|
|
(executable == EXECUTABLE) ? MemoryChunkLayout::CodePageGuardSize() : 0;
|
|
|
|
MemoryChunk* memory_chunk =
|
|
memory_allocator->AllocateLargePage(space, area_size, executable);
|
|
size_t reserved_size =
|
|
((executable == EXECUTABLE))
|
|
? allocatable_memory_area_offset +
|
|
RoundUp(area_size, page_allocator->CommitPageSize()) +
|
|
guard_size
|
|
: RoundUp(allocatable_memory_area_offset + area_size,
|
|
page_allocator->CommitPageSize());
|
|
CHECK(memory_chunk->size() == reserved_size);
|
|
CHECK(memory_chunk->area_start() <
|
|
memory_chunk->address() + memory_chunk->size());
|
|
CHECK(memory_chunk->area_end() <=
|
|
memory_chunk->address() + memory_chunk->size());
|
|
CHECK(static_cast<size_t>(memory_chunk->area_size()) == area_size);
|
|
|
|
memory_allocator->Free(MemoryAllocator::FreeMode::kImmediately, memory_chunk);
|
|
}
|
|
|
|
static unsigned int PseudorandomAreaSize() {
|
|
static uint32_t lo = 2345;
|
|
lo = 18273 * (lo & 0xFFFFF) + (lo >> 16);
|
|
return lo & 0xFFFFF;
|
|
}
|
|
|
|
|
|
TEST(MemoryChunk) {
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
|
|
v8::PageAllocator* page_allocator = GetPlatformPageAllocator();
|
|
size_t area_size;
|
|
|
|
bool jitless = isolate->jitless();
|
|
|
|
for (int i = 0; i < 100; i++) {
|
|
area_size =
|
|
RoundUp(PseudorandomAreaSize(), page_allocator->CommitPageSize());
|
|
|
|
// With CodeRange.
|
|
const size_t code_range_size = 32 * MB;
|
|
VirtualMemory code_range_reservation(
|
|
page_allocator, code_range_size, nullptr, MemoryChunk::kAlignment,
|
|
jitless ? JitPermission::kNoJit : JitPermission::kMapAsJittable);
|
|
|
|
base::PageFreeingMode page_freeing_mode =
|
|
base::PageFreeingMode::kMakeInaccessible;
|
|
|
|
// On MacOS on ARM64 the code range reservation must be committed as RWX.
|
|
if (V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT && !jitless) {
|
|
page_freeing_mode = base::PageFreeingMode::kDiscard;
|
|
void* base = reinterpret_cast<void*>(code_range_reservation.address());
|
|
CHECK(page_allocator->SetPermissions(base, code_range_size,
|
|
PageAllocator::kReadWriteExecute));
|
|
CHECK(page_allocator->DiscardSystemPages(base, code_range_size));
|
|
}
|
|
|
|
CHECK(code_range_reservation.IsReserved());
|
|
|
|
base::BoundedPageAllocator code_page_allocator(
|
|
page_allocator, code_range_reservation.address(),
|
|
code_range_reservation.size(), MemoryChunk::kAlignment,
|
|
base::PageInitializationMode::kAllocatedPagesCanBeUninitialized,
|
|
page_freeing_mode);
|
|
|
|
// Modification of pages in code_range_reservation requires write access.
|
|
RwxMemoryWriteScopeForTesting rwx_write_scope;
|
|
|
|
VerifyMemoryChunk(isolate, heap, &code_page_allocator, area_size,
|
|
EXECUTABLE, PageSize::kLarge, heap->code_lo_space());
|
|
|
|
VerifyMemoryChunk(isolate, heap, &code_page_allocator, area_size,
|
|
NOT_EXECUTABLE, PageSize::kLarge, heap->lo_space());
|
|
}
|
|
}
|
|
|
|
|
|
TEST(MemoryAllocator) {
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
|
|
TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved());
|
|
MemoryAllocator* memory_allocator = test_allocator_scope.allocator();
|
|
LinearAllocationArea allocation_info;
|
|
|
|
int total_pages = 0;
|
|
OldSpace faked_space(heap, &allocation_info);
|
|
CHECK(!faked_space.first_page());
|
|
CHECK(!faked_space.last_page());
|
|
Page* first_page = memory_allocator->AllocatePage(
|
|
MemoryAllocator::AllocationMode::kRegular,
|
|
static_cast<PagedSpace*>(&faked_space), NOT_EXECUTABLE);
|
|
|
|
faked_space.memory_chunk_list().PushBack(first_page);
|
|
CHECK(first_page->next_page() == nullptr);
|
|
total_pages++;
|
|
|
|
for (Page* p = first_page; p != nullptr; p = p->next_page()) {
|
|
CHECK(p->owner() == &faked_space);
|
|
}
|
|
|
|
// Again, we should get n or n - 1 pages.
|
|
Page* other = memory_allocator->AllocatePage(
|
|
MemoryAllocator::AllocationMode::kRegular,
|
|
static_cast<PagedSpace*>(&faked_space), NOT_EXECUTABLE);
|
|
total_pages++;
|
|
faked_space.memory_chunk_list().PushBack(other);
|
|
int page_count = 0;
|
|
for (Page* p = first_page; p != nullptr; p = p->next_page()) {
|
|
CHECK(p->owner() == &faked_space);
|
|
page_count++;
|
|
}
|
|
CHECK(total_pages == page_count);
|
|
|
|
Page* second_page = first_page->next_page();
|
|
CHECK_NOT_NULL(second_page);
|
|
|
|
// OldSpace's destructor will tear down the space and free up all pages.
|
|
}
|
|
|
|
TEST(ComputeDiscardMemoryAreas) {
|
|
base::AddressRegion memory_area;
|
|
size_t page_size = MemoryAllocator::GetCommitPageSize();
|
|
size_t free_header_size = FreeSpace::kSize;
|
|
|
|
memory_area = MemoryAllocator::ComputeDiscardMemoryArea(0, 0);
|
|
CHECK_EQ(memory_area.begin(), 0);
|
|
CHECK_EQ(memory_area.size(), 0);
|
|
|
|
memory_area = MemoryAllocator::ComputeDiscardMemoryArea(
|
|
0, page_size + free_header_size);
|
|
CHECK_EQ(memory_area.begin(), 0);
|
|
CHECK_EQ(memory_area.size(), 0);
|
|
|
|
memory_area = MemoryAllocator::ComputeDiscardMemoryArea(
|
|
page_size - free_header_size, page_size + free_header_size);
|
|
CHECK_EQ(memory_area.begin(), page_size);
|
|
CHECK_EQ(memory_area.size(), page_size);
|
|
|
|
memory_area = MemoryAllocator::ComputeDiscardMemoryArea(page_size, page_size);
|
|
CHECK_EQ(memory_area.begin(), 0);
|
|
CHECK_EQ(memory_area.size(), 0);
|
|
|
|
memory_area = MemoryAllocator::ComputeDiscardMemoryArea(
|
|
page_size / 2, page_size + page_size / 2);
|
|
CHECK_EQ(memory_area.begin(), page_size);
|
|
CHECK_EQ(memory_area.size(), page_size);
|
|
|
|
memory_area = MemoryAllocator::ComputeDiscardMemoryArea(
|
|
page_size / 2, page_size + page_size / 4);
|
|
CHECK_EQ(memory_area.begin(), 0);
|
|
CHECK_EQ(memory_area.size(), 0);
|
|
|
|
memory_area =
|
|
MemoryAllocator::ComputeDiscardMemoryArea(page_size / 2, page_size * 3);
|
|
CHECK_EQ(memory_area.begin(), page_size);
|
|
CHECK_EQ(memory_area.size(), page_size * 2);
|
|
}
|
|
|
|
TEST(SemiSpaceNewSpace) {
|
|
if (FLAG_single_generation) return;
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved());
|
|
MemoryAllocator* memory_allocator = test_allocator_scope.allocator();
|
|
LinearAllocationArea allocation_info;
|
|
|
|
std::unique_ptr<SemiSpaceNewSpace> new_space =
|
|
std::make_unique<SemiSpaceNewSpace>(
|
|
heap, CcTest::heap()->InitialSemiSpaceSize(),
|
|
CcTest::heap()->InitialSemiSpaceSize(), &allocation_info);
|
|
CHECK(new_space->MaximumCapacity());
|
|
|
|
while (new_space->Available() >= kMaxRegularHeapObjectSize) {
|
|
CHECK(new_space->Contains(
|
|
new_space->AllocateRaw(kMaxRegularHeapObjectSize, kTaggedAligned)
|
|
.ToObjectChecked()));
|
|
}
|
|
|
|
new_space.reset();
|
|
memory_allocator->unmapper()->EnsureUnmappingCompleted();
|
|
}
|
|
|
|
TEST(OldSpace) {
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
TestMemoryAllocatorScope test_allocator_scope(isolate, heap->MaxReserved());
|
|
LinearAllocationArea allocation_info;
|
|
|
|
OldSpace* s = new OldSpace(heap, &allocation_info);
|
|
CHECK_NOT_NULL(s);
|
|
|
|
while (s->Available() > 0) {
|
|
s->AllocateRawUnaligned(kMaxRegularHeapObjectSize).ToObjectChecked();
|
|
}
|
|
|
|
delete s;
|
|
}
|
|
|
|
TEST(OldLargeObjectSpace) {
|
|
// This test does not initialize allocated objects, which confuses the
|
|
// incremental marker.
|
|
FLAG_incremental_marking = false;
|
|
FLAG_max_heap_size = 20;
|
|
|
|
OldLargeObjectSpace* lo = CcTest::heap()->lo_space();
|
|
CHECK_NOT_NULL(lo);
|
|
|
|
int lo_size = Page::kPageSize;
|
|
|
|
Object obj = lo->AllocateRaw(lo_size).ToObjectChecked();
|
|
CHECK(obj.IsHeapObject());
|
|
|
|
HeapObject ho = HeapObject::cast(obj);
|
|
|
|
CHECK(lo->Contains(HeapObject::cast(obj)));
|
|
|
|
CHECK(lo->Contains(ho));
|
|
|
|
CHECK_EQ(0, Heap::GetFillToAlign(ho.address(), kTaggedAligned));
|
|
// All large objects have the same alignment because they start at the
|
|
// same offset within a page. Fixed double arrays have the most strict
|
|
// alignment requirements.
|
|
CHECK_EQ(
|
|
0, Heap::GetFillToAlign(
|
|
ho.address(),
|
|
HeapObject::RequiredAlignment(
|
|
ReadOnlyRoots(CcTest::i_isolate()).fixed_double_array_map())));
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
HandleScope handle_scope(isolate);
|
|
while (true) {
|
|
{
|
|
AllocationResult allocation = lo->AllocateRaw(lo_size);
|
|
if (allocation.IsFailure()) break;
|
|
ho = HeapObject::cast(allocation.ToObjectChecked());
|
|
Handle<HeapObject> keep_alive(ho, isolate);
|
|
}
|
|
}
|
|
|
|
CHECK(!lo->IsEmpty());
|
|
CHECK(lo->AllocateRaw(lo_size).IsFailure());
|
|
}
|
|
|
|
#ifndef DEBUG
|
|
// The test verifies that committed size of a space is less then some threshold.
|
|
// Debug builds pull in all sorts of additional instrumentation that increases
|
|
// heap sizes. E.g. CSA_DCHECK creates on-heap strings for error messages. These
|
|
// messages are also not stable if files are moved and modified during the build
|
|
// process (jumbo builds).
|
|
TEST(SizeOfInitialHeap) {
|
|
ManualGCScope manual_gc_scope;
|
|
if (i::FLAG_always_turbofan) return;
|
|
// Bootstrapping without a snapshot causes more allocations.
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
if (!isolate->snapshot_available()) return;
|
|
HandleScope scope(isolate);
|
|
v8::Local<v8::Context> context = CcTest::isolate()->GetCurrentContext();
|
|
// Skip this test on the custom snapshot builder.
|
|
if (!CcTest::global()
|
|
->Get(context, v8_str("assertEquals"))
|
|
.ToLocalChecked()
|
|
->IsUndefined()) {
|
|
return;
|
|
}
|
|
// Initial size of LO_SPACE
|
|
size_t initial_lo_space = isolate->heap()->lo_space()->Size();
|
|
|
|
// The limit for each space for an empty isolate containing just the
|
|
// snapshot.
|
|
// In PPC the page size is 64K, causing more internal fragmentation
|
|
// hence requiring a larger limit.
|
|
#if V8_OS_LINUX && (V8_HOST_ARCH_PPC || V8_HOST_ARCH_PPC64)
|
|
const size_t kMaxInitialSizePerSpace = 3 * MB;
|
|
#else
|
|
const size_t kMaxInitialSizePerSpace = 2 * MB;
|
|
#endif
|
|
|
|
// Freshly initialized VM gets by with the snapshot size (which is below
|
|
// kMaxInitialSizePerSpace per space).
|
|
Heap* heap = isolate->heap();
|
|
for (int i = FIRST_GROWABLE_PAGED_SPACE; i <= LAST_GROWABLE_PAGED_SPACE;
|
|
i++) {
|
|
// Map space might be disabled.
|
|
if (i == MAP_SPACE && !heap->paged_space(i)) continue;
|
|
|
|
// Debug code can be very large, so skip CODE_SPACE if we are generating it.
|
|
if (i == CODE_SPACE && i::FLAG_debug_code) continue;
|
|
|
|
// Check that the initial heap is also below the limit.
|
|
CHECK_LE(heap->paged_space(i)->CommittedMemory(), kMaxInitialSizePerSpace);
|
|
}
|
|
|
|
CompileRun("/*empty*/");
|
|
|
|
// No large objects required to perform the above steps.
|
|
CHECK_EQ(initial_lo_space,
|
|
static_cast<size_t>(isolate->heap()->lo_space()->Size()));
|
|
}
|
|
#endif // DEBUG
|
|
|
|
static HeapObject AllocateUnaligned(NewSpace* space, int size) {
|
|
AllocationResult allocation = space->AllocateRaw(size, kTaggedAligned);
|
|
CHECK(!allocation.IsFailure());
|
|
HeapObject filler;
|
|
CHECK(allocation.To(&filler));
|
|
space->heap()->CreateFillerObjectAt(filler.address(), size);
|
|
return filler;
|
|
}
|
|
|
|
static HeapObject AllocateUnaligned(PagedSpace* space, int size) {
|
|
AllocationResult allocation = space->AllocateRaw(size, kTaggedAligned);
|
|
CHECK(!allocation.IsFailure());
|
|
HeapObject filler;
|
|
CHECK(allocation.To(&filler));
|
|
space->heap()->CreateFillerObjectAt(filler.address(), size);
|
|
return filler;
|
|
}
|
|
|
|
static HeapObject AllocateUnaligned(OldLargeObjectSpace* space, int size) {
|
|
AllocationResult allocation = space->AllocateRaw(size);
|
|
CHECK(!allocation.IsFailure());
|
|
HeapObject filler;
|
|
CHECK(allocation.To(&filler));
|
|
return filler;
|
|
}
|
|
|
|
class Observer : public AllocationObserver {
|
|
public:
|
|
explicit Observer(intptr_t step_size)
|
|
: AllocationObserver(step_size), count_(0) {}
|
|
|
|
void Step(int bytes_allocated, Address addr, size_t) override { count_++; }
|
|
|
|
int count() const { return count_; }
|
|
|
|
private:
|
|
int count_;
|
|
};
|
|
|
|
template <typename T>
|
|
void testAllocationObserver(Isolate* i_isolate, T* space) {
|
|
Observer observer1(128);
|
|
space->AddAllocationObserver(&observer1);
|
|
|
|
// The observer should not get notified if we have only allocated less than
|
|
// 128 bytes.
|
|
AllocateUnaligned(space, 64);
|
|
CHECK_EQ(observer1.count(), 0);
|
|
|
|
// The observer should get called when we have allocated exactly 128 bytes.
|
|
AllocateUnaligned(space, 64);
|
|
CHECK_EQ(observer1.count(), 1);
|
|
|
|
// Another >128 bytes should get another notification.
|
|
AllocateUnaligned(space, 136);
|
|
CHECK_EQ(observer1.count(), 2);
|
|
|
|
// Allocating a large object should get only one notification.
|
|
AllocateUnaligned(space, 1024);
|
|
CHECK_EQ(observer1.count(), 3);
|
|
|
|
// Allocating another 2048 bytes in small objects should get 16
|
|
// notifications.
|
|
for (int i = 0; i < 64; ++i) {
|
|
AllocateUnaligned(space, 32);
|
|
}
|
|
CHECK_EQ(observer1.count(), 19);
|
|
|
|
// Multiple observers should work.
|
|
Observer observer2(96);
|
|
space->AddAllocationObserver(&observer2);
|
|
|
|
AllocateUnaligned(space, 2048);
|
|
CHECK_EQ(observer1.count(), 20);
|
|
CHECK_EQ(observer2.count(), 1);
|
|
|
|
AllocateUnaligned(space, 104);
|
|
CHECK_EQ(observer1.count(), 20);
|
|
CHECK_EQ(observer2.count(), 2);
|
|
|
|
// Callback should stop getting called after an observer is removed.
|
|
space->RemoveAllocationObserver(&observer1);
|
|
|
|
AllocateUnaligned(space, 384);
|
|
CHECK_EQ(observer1.count(), 20); // no more notifications.
|
|
CHECK_EQ(observer2.count(), 3); // this one is still active.
|
|
|
|
// Ensure that PauseInlineAllocationObserversScope work correctly.
|
|
AllocateUnaligned(space, 48);
|
|
CHECK_EQ(observer2.count(), 3);
|
|
{
|
|
PauseAllocationObserversScope pause_observers(i_isolate->heap());
|
|
CHECK_EQ(observer2.count(), 3);
|
|
AllocateUnaligned(space, 384);
|
|
CHECK_EQ(observer2.count(), 3);
|
|
}
|
|
CHECK_EQ(observer2.count(), 3);
|
|
// Coupled with the 48 bytes allocated before the pause, another 48 bytes
|
|
// allocated here should trigger a notification.
|
|
AllocateUnaligned(space, 48);
|
|
CHECK_EQ(observer2.count(), 4);
|
|
|
|
space->RemoveAllocationObserver(&observer2);
|
|
AllocateUnaligned(space, 384);
|
|
CHECK_EQ(observer1.count(), 20);
|
|
CHECK_EQ(observer2.count(), 4);
|
|
}
|
|
|
|
UNINITIALIZED_TEST(AllocationObserver) {
|
|
if (FLAG_single_generation) return;
|
|
v8::Isolate::CreateParams create_params;
|
|
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
|
|
v8::Isolate* isolate = v8::Isolate::New(create_params);
|
|
{
|
|
v8::Isolate::Scope isolate_scope(isolate);
|
|
v8::HandleScope handle_scope(isolate);
|
|
v8::Context::New(isolate)->Enter();
|
|
|
|
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
|
|
|
|
testAllocationObserver<NewSpace>(i_isolate, i_isolate->heap()->new_space());
|
|
// Old space is used but the code path is shared for all
|
|
// classes inheriting from PagedSpace.
|
|
testAllocationObserver<PagedSpace>(i_isolate,
|
|
i_isolate->heap()->old_space());
|
|
testAllocationObserver<OldLargeObjectSpace>(i_isolate,
|
|
i_isolate->heap()->lo_space());
|
|
}
|
|
isolate->Dispose();
|
|
}
|
|
|
|
UNINITIALIZED_TEST(InlineAllocationObserverCadence) {
|
|
if (FLAG_single_generation) return;
|
|
v8::Isolate::CreateParams create_params;
|
|
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
|
|
v8::Isolate* isolate = v8::Isolate::New(create_params);
|
|
{
|
|
v8::Isolate::Scope isolate_scope(isolate);
|
|
v8::HandleScope handle_scope(isolate);
|
|
v8::Context::New(isolate)->Enter();
|
|
|
|
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
|
|
|
|
// Clear out any pre-existing garbage to make the test consistent
|
|
// across snapshot/no-snapshot builds.
|
|
CcTest::CollectAllGarbage(i_isolate);
|
|
|
|
NewSpace* new_space = i_isolate->heap()->new_space();
|
|
|
|
Observer observer1(512);
|
|
new_space->AddAllocationObserver(&observer1);
|
|
Observer observer2(576);
|
|
new_space->AddAllocationObserver(&observer2);
|
|
|
|
for (int i = 0; i < 512; ++i) {
|
|
AllocateUnaligned(new_space, 32);
|
|
}
|
|
|
|
new_space->RemoveAllocationObserver(&observer1);
|
|
new_space->RemoveAllocationObserver(&observer2);
|
|
|
|
CHECK_EQ(observer1.count(), 32);
|
|
CHECK_EQ(observer2.count(), 28);
|
|
}
|
|
isolate->Dispose();
|
|
}
|
|
|
|
HEAP_TEST(Regress777177) {
|
|
FLAG_stress_concurrent_allocation = false; // For SimulateFullSpace.
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
HandleScope scope(isolate);
|
|
PagedSpace* old_space = heap->old_space();
|
|
Observer observer(128);
|
|
old_space->AddAllocationObserver(&observer);
|
|
|
|
int area_size = old_space->AreaSize();
|
|
int max_object_size = kMaxRegularHeapObjectSize;
|
|
int filler_size = area_size - max_object_size;
|
|
|
|
{
|
|
// Ensure a new linear allocation area on a fresh page.
|
|
AlwaysAllocateScopeForTesting always_allocate(heap);
|
|
heap::SimulateFullSpace(old_space);
|
|
AllocationResult result =
|
|
old_space->AllocateRaw(filler_size, kTaggedAligned);
|
|
HeapObject obj = result.ToObjectChecked();
|
|
heap->CreateFillerObjectAt(obj.address(), filler_size);
|
|
}
|
|
|
|
{
|
|
// Allocate all bytes of the linear allocation area. This moves top_ and
|
|
// top_on_previous_step_ to the next page.
|
|
AllocationResult result =
|
|
old_space->AllocateRaw(max_object_size, kTaggedAligned);
|
|
HeapObject obj = result.ToObjectChecked();
|
|
// Simulate allocation folding moving the top pointer back.
|
|
old_space->SetTopAndLimit(obj.address(), old_space->limit());
|
|
}
|
|
|
|
{
|
|
// This triggers assert in crbug.com/777177.
|
|
AllocationResult result =
|
|
old_space->AllocateRaw(filler_size, kTaggedAligned);
|
|
HeapObject obj = result.ToObjectChecked();
|
|
heap->CreateFillerObjectAt(obj.address(), filler_size);
|
|
}
|
|
old_space->RemoveAllocationObserver(&observer);
|
|
}
|
|
|
|
HEAP_TEST(Regress791582) {
|
|
if (FLAG_single_generation) return;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
HandleScope scope(isolate);
|
|
NewSpace* new_space = heap->new_space();
|
|
GrowNewSpace(heap);
|
|
|
|
int until_page_end = static_cast<int>(new_space->limit() - new_space->top());
|
|
|
|
if (!IsAligned(until_page_end, kTaggedSize)) {
|
|
// The test works if the size of allocation area size is a multiple of
|
|
// pointer size. This is usually the case unless some allocation observer
|
|
// is already active (e.g. incremental marking observer).
|
|
return;
|
|
}
|
|
|
|
Observer observer(128);
|
|
new_space->AddAllocationObserver(&observer);
|
|
|
|
{
|
|
AllocationResult result =
|
|
new_space->AllocateRaw(until_page_end, kTaggedAligned);
|
|
HeapObject obj = result.ToObjectChecked();
|
|
heap->CreateFillerObjectAt(obj.address(), until_page_end);
|
|
// Simulate allocation folding moving the top pointer back.
|
|
*new_space->allocation_top_address() = obj.address();
|
|
}
|
|
|
|
{
|
|
// This triggers assert in crbug.com/791582
|
|
AllocationResult result = new_space->AllocateRaw(256, kTaggedAligned);
|
|
HeapObject obj = result.ToObjectChecked();
|
|
heap->CreateFillerObjectAt(obj.address(), 256);
|
|
}
|
|
new_space->RemoveAllocationObserver(&observer);
|
|
}
|
|
|
|
TEST(ShrinkPageToHighWaterMarkFreeSpaceEnd) {
|
|
FLAG_stress_incremental_marking = false;
|
|
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
HandleScope scope(isolate);
|
|
|
|
heap::SealCurrentObjects(CcTest::heap());
|
|
|
|
// Prepare page that only contains a single object and a trailing FreeSpace
|
|
// filler.
|
|
Handle<FixedArray> array =
|
|
isolate->factory()->NewFixedArray(128, AllocationType::kOld);
|
|
Page* page = Page::FromHeapObject(*array);
|
|
|
|
// Reset space so high water mark is consistent.
|
|
PagedSpace* old_space = CcTest::heap()->old_space();
|
|
old_space->FreeLinearAllocationArea();
|
|
old_space->ResetFreeList();
|
|
|
|
HeapObject filler = HeapObject::FromAddress(array->address() + array->Size());
|
|
CHECK(filler.IsFreeSpace());
|
|
size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
|
|
size_t should_have_shrunk = RoundDown(
|
|
static_cast<size_t>(MemoryChunkLayout::AllocatableMemoryInDataPage() -
|
|
array->Size()),
|
|
CommitPageSize());
|
|
CHECK_EQ(should_have_shrunk, shrunk);
|
|
}
|
|
|
|
TEST(ShrinkPageToHighWaterMarkNoFiller) {
|
|
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
HandleScope scope(isolate);
|
|
heap::SealCurrentObjects(CcTest::heap());
|
|
|
|
const int kFillerSize = 0;
|
|
std::vector<Handle<FixedArray>> arrays =
|
|
heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize);
|
|
Handle<FixedArray> array = arrays.back();
|
|
Page* page = Page::FromHeapObject(*array);
|
|
CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize);
|
|
|
|
// Reset space so high water mark and fillers are consistent.
|
|
PagedSpace* old_space = CcTest::heap()->old_space();
|
|
old_space->ResetFreeList();
|
|
old_space->FreeLinearAllocationArea();
|
|
|
|
size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
|
|
CHECK_EQ(0u, shrunk);
|
|
}
|
|
|
|
TEST(ShrinkPageToHighWaterMarkOneWordFiller) {
|
|
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
HandleScope scope(isolate);
|
|
|
|
heap::SealCurrentObjects(CcTest::heap());
|
|
|
|
const int kFillerSize = kTaggedSize;
|
|
std::vector<Handle<FixedArray>> arrays =
|
|
heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize);
|
|
Handle<FixedArray> array = arrays.back();
|
|
Page* page = Page::FromHeapObject(*array);
|
|
CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize);
|
|
|
|
// Reset space so high water mark and fillers are consistent.
|
|
PagedSpace* old_space = CcTest::heap()->old_space();
|
|
old_space->FreeLinearAllocationArea();
|
|
old_space->ResetFreeList();
|
|
|
|
HeapObject filler = HeapObject::FromAddress(array->address() + array->Size());
|
|
CHECK_EQ(filler.map(),
|
|
ReadOnlyRoots(CcTest::heap()).one_pointer_filler_map());
|
|
|
|
size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
|
|
CHECK_EQ(0u, shrunk);
|
|
}
|
|
|
|
TEST(ShrinkPageToHighWaterMarkTwoWordFiller) {
|
|
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
HandleScope scope(isolate);
|
|
|
|
heap::SealCurrentObjects(CcTest::heap());
|
|
|
|
const int kFillerSize = 2 * kTaggedSize;
|
|
std::vector<Handle<FixedArray>> arrays =
|
|
heap::FillOldSpacePageWithFixedArrays(CcTest::heap(), kFillerSize);
|
|
Handle<FixedArray> array = arrays.back();
|
|
Page* page = Page::FromHeapObject(*array);
|
|
CHECK_EQ(page->area_end(), array->address() + array->Size() + kFillerSize);
|
|
|
|
// Reset space so high water mark and fillers are consistent.
|
|
PagedSpace* old_space = CcTest::heap()->old_space();
|
|
old_space->FreeLinearAllocationArea();
|
|
old_space->ResetFreeList();
|
|
|
|
HeapObject filler = HeapObject::FromAddress(array->address() + array->Size());
|
|
CHECK_EQ(filler.map(),
|
|
ReadOnlyRoots(CcTest::heap()).two_pointer_filler_map());
|
|
|
|
size_t shrunk = old_space->ShrinkPageToHighWaterMark(page);
|
|
CHECK_EQ(0u, shrunk);
|
|
}
|
|
|
|
namespace {
|
|
// PageAllocator that always fails.
|
|
class FailingPageAllocator : public v8::PageAllocator {
|
|
public:
|
|
size_t AllocatePageSize() override { return 1024; }
|
|
size_t CommitPageSize() override { return 1024; }
|
|
void SetRandomMmapSeed(int64_t seed) override {}
|
|
void* GetRandomMmapAddr() override { return nullptr; }
|
|
void* AllocatePages(void* address, size_t length, size_t alignment,
|
|
Permission permissions) override {
|
|
return nullptr;
|
|
}
|
|
bool FreePages(void* address, size_t length) override { return false; }
|
|
bool ReleasePages(void* address, size_t length, size_t new_length) override {
|
|
return false;
|
|
}
|
|
bool SetPermissions(void* address, size_t length,
|
|
Permission permissions) override {
|
|
return false;
|
|
}
|
|
bool RecommitPages(void* address, size_t length,
|
|
Permission permissions) override {
|
|
return false;
|
|
}
|
|
bool DecommitPages(void* address, size_t length) override { return false; }
|
|
};
|
|
} // namespace
|
|
|
|
TEST(NoMemoryForNewPage) {
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
|
|
// Memory allocator that will fail to allocate any pages.
|
|
FailingPageAllocator failing_allocator;
|
|
TestMemoryAllocatorScope test_allocator_scope(isolate, 0, &failing_allocator);
|
|
MemoryAllocator* memory_allocator = test_allocator_scope.allocator();
|
|
LinearAllocationArea allocation_info;
|
|
OldSpace faked_space(heap, &allocation_info);
|
|
Page* page = memory_allocator->AllocatePage(
|
|
MemoryAllocator::AllocationMode::kRegular,
|
|
static_cast<PagedSpace*>(&faked_space), NOT_EXECUTABLE);
|
|
|
|
CHECK_NULL(page);
|
|
}
|
|
|
|
namespace {
|
|
// ReadOnlySpace cannot be torn down by a destructor because the destructor
|
|
// cannot take an argument. Since these tests create ReadOnlySpaces not attached
|
|
// to the Heap directly, they need to be destroyed to ensure the
|
|
// MemoryAllocator's stats are all 0 at exit.
|
|
class V8_NODISCARD ReadOnlySpaceScope {
|
|
public:
|
|
explicit ReadOnlySpaceScope(Heap* heap) : ro_space_(heap) {}
|
|
~ReadOnlySpaceScope() {
|
|
ro_space_.TearDown(CcTest::heap()->memory_allocator());
|
|
}
|
|
|
|
ReadOnlySpace* space() { return &ro_space_; }
|
|
|
|
private:
|
|
ReadOnlySpace ro_space_;
|
|
};
|
|
} // namespace
|
|
|
|
TEST(ReadOnlySpaceMetrics_OnePage) {
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
|
|
// Create a read-only space and allocate some memory, shrink the pages and
|
|
// check the allocated object size is as expected.
|
|
|
|
ReadOnlySpaceScope scope(heap);
|
|
ReadOnlySpace* faked_space = scope.space();
|
|
|
|
// Initially no memory.
|
|
CHECK_EQ(faked_space->Size(), 0);
|
|
CHECK_EQ(faked_space->Capacity(), 0);
|
|
CHECK_EQ(faked_space->CommittedMemory(), 0);
|
|
CHECK_EQ(faked_space->CommittedPhysicalMemory(), 0);
|
|
|
|
faked_space->AllocateRaw(16, kTaggedAligned);
|
|
|
|
faked_space->ShrinkPages();
|
|
faked_space->Seal(ReadOnlySpace::SealMode::kDoNotDetachFromHeap);
|
|
|
|
// Allocated objects size.
|
|
CHECK_EQ(faked_space->Size(), 16);
|
|
|
|
size_t committed_memory = RoundUp(
|
|
MemoryChunkLayout::ObjectStartOffsetInDataPage() + faked_space->Size(),
|
|
MemoryAllocator::GetCommitPageSize());
|
|
|
|
// Amount of OS allocated memory.
|
|
CHECK_EQ(faked_space->CommittedMemory(), committed_memory);
|
|
CHECK_EQ(faked_space->CommittedPhysicalMemory(), committed_memory);
|
|
|
|
// Capacity will be one OS page minus the page header.
|
|
CHECK_EQ(faked_space->Capacity(),
|
|
committed_memory - MemoryChunkLayout::ObjectStartOffsetInDataPage());
|
|
}
|
|
|
|
TEST(ReadOnlySpaceMetrics_AlignedAllocations) {
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
|
|
// Create a read-only space and allocate some memory, shrink the pages and
|
|
// check the allocated object size is as expected.
|
|
|
|
ReadOnlySpaceScope scope(heap);
|
|
ReadOnlySpace* faked_space = scope.space();
|
|
|
|
// Initially no memory.
|
|
CHECK_EQ(faked_space->Size(), 0);
|
|
CHECK_EQ(faked_space->Capacity(), 0);
|
|
CHECK_EQ(faked_space->CommittedMemory(), 0);
|
|
CHECK_EQ(faked_space->CommittedPhysicalMemory(), 0);
|
|
|
|
// Allocate an object just under an OS page in size.
|
|
int object_size =
|
|
static_cast<int>(MemoryAllocator::GetCommitPageSize() - kApiTaggedSize);
|
|
|
|
// TODO(v8:8875): Pointer compression does not enable aligned memory allocation
|
|
// yet.
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
int alignment = kInt32Size;
|
|
#else
|
|
int alignment = kDoubleSize;
|
|
#endif
|
|
|
|
HeapObject object =
|
|
faked_space->AllocateRaw(object_size, kDoubleAligned).ToObjectChecked();
|
|
CHECK_EQ(object.address() % alignment, 0);
|
|
object =
|
|
faked_space->AllocateRaw(object_size, kDoubleAligned).ToObjectChecked();
|
|
CHECK_EQ(object.address() % alignment, 0);
|
|
|
|
// Calculate size of allocations based on area_start.
|
|
Address area_start = faked_space->pages().back()->GetAreaStart();
|
|
Address top = RoundUp(area_start, alignment) + object_size;
|
|
top = RoundUp(top, alignment) + object_size;
|
|
size_t expected_size = top - area_start;
|
|
|
|
faked_space->ShrinkPages();
|
|
faked_space->Seal(ReadOnlySpace::SealMode::kDoNotDetachFromHeap);
|
|
|
|
// Allocated objects size may will contain 4 bytes of padding on 32-bit or
|
|
// with pointer compression.
|
|
CHECK_EQ(faked_space->Size(), expected_size);
|
|
|
|
size_t committed_memory = RoundUp(
|
|
MemoryChunkLayout::ObjectStartOffsetInDataPage() + faked_space->Size(),
|
|
MemoryAllocator::GetCommitPageSize());
|
|
|
|
CHECK_EQ(faked_space->CommittedMemory(), committed_memory);
|
|
CHECK_EQ(faked_space->CommittedPhysicalMemory(), committed_memory);
|
|
|
|
// Capacity will be 3 OS pages minus the page header.
|
|
CHECK_EQ(faked_space->Capacity(),
|
|
committed_memory - MemoryChunkLayout::ObjectStartOffsetInDataPage());
|
|
}
|
|
|
|
TEST(ReadOnlySpaceMetrics_TwoPages) {
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
|
|
// Create a read-only space and allocate some memory, shrink the pages and
|
|
// check the allocated object size is as expected.
|
|
|
|
ReadOnlySpaceScope scope(heap);
|
|
ReadOnlySpace* faked_space = scope.space();
|
|
|
|
// Initially no memory.
|
|
CHECK_EQ(faked_space->Size(), 0);
|
|
CHECK_EQ(faked_space->Capacity(), 0);
|
|
CHECK_EQ(faked_space->CommittedMemory(), 0);
|
|
CHECK_EQ(faked_space->CommittedPhysicalMemory(), 0);
|
|
|
|
// Allocate an object that's too big to have more than one on a page.
|
|
|
|
int object_size = RoundUp(
|
|
static_cast<int>(
|
|
MemoryChunkLayout::AllocatableMemoryInMemoryChunk(RO_SPACE) / 2 + 16),
|
|
kTaggedSize);
|
|
CHECK_GT(object_size * 2,
|
|
MemoryChunkLayout::AllocatableMemoryInMemoryChunk(RO_SPACE));
|
|
faked_space->AllocateRaw(object_size, kTaggedAligned);
|
|
|
|
// Then allocate another so it expands the space to two pages.
|
|
faked_space->AllocateRaw(object_size, kTaggedAligned);
|
|
|
|
faked_space->ShrinkPages();
|
|
faked_space->Seal(ReadOnlySpace::SealMode::kDoNotDetachFromHeap);
|
|
|
|
// Allocated objects size.
|
|
CHECK_EQ(faked_space->Size(), object_size * 2);
|
|
|
|
// Amount of OS allocated memory.
|
|
size_t committed_memory_per_page =
|
|
RoundUp(MemoryChunkLayout::ObjectStartOffsetInDataPage() + object_size,
|
|
MemoryAllocator::GetCommitPageSize());
|
|
CHECK_EQ(faked_space->CommittedMemory(), 2 * committed_memory_per_page);
|
|
CHECK_EQ(faked_space->CommittedPhysicalMemory(),
|
|
2 * committed_memory_per_page);
|
|
|
|
// Capacity will be the space up to the amount of committed memory minus the
|
|
// page headers.
|
|
size_t capacity_per_page =
|
|
RoundUp(MemoryChunkLayout::ObjectStartOffsetInDataPage() + object_size,
|
|
MemoryAllocator::GetCommitPageSize()) -
|
|
MemoryChunkLayout::ObjectStartOffsetInDataPage();
|
|
CHECK_EQ(faked_space->Capacity(), 2 * capacity_per_page);
|
|
}
|
|
|
|
} // namespace heap
|
|
} // namespace internal
|
|
} // namespace v8
|