v8/test/unittests/register-configuration-unittest.cc
bbudge 09ab8e6ad9 [Turbofan] Add concept of FP register aliasing on ARM 32.
- Modifies RegisterConfiguration to specify complex aliasing on ARM 32.
- Modifies RegisterAllocator to consider aliasing.
- Modifies ParallelMove::PrepareInsertAfter to handle aliasing.
- Modifies GapResolver to split wider register moves when interference
with smaller moves is detected.
- Modifies MoveOptimizer to handle aliasing.
- Adds ARM 32 macro-assembler pseudo move instructions to handle cases where
  split moves don't correspond to actual s-registers.
- Modifies CodeGenerator::AssembleMove and AssembleSwap to handle moves of
  different widths, and moves involving pseudo-s-registers.
- Adds unit tests for FP operand interference checking and PrepareInsertAfter.
- Adds more tests of FP for the move optimizer and register allocator.

LOG=N
BUG=v8:4124

Review-Url: https://codereview.chromium.org/2410673002
Cr-Commit-Position: refs/heads/master@{#40597}
2016-10-26 16:04:33 +00:00

164 lines
7.4 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/register-configuration.h"
#include "testing/gtest-support.h"
namespace v8 {
namespace internal {
const MachineRepresentation kFloat32 = MachineRepresentation::kFloat32;
const MachineRepresentation kFloat64 = MachineRepresentation::kFloat64;
const MachineRepresentation kSimd128 = MachineRepresentation::kSimd128;
class RegisterConfigurationUnitTest : public ::testing::Test {
public:
RegisterConfigurationUnitTest() {}
virtual ~RegisterConfigurationUnitTest() {}
};
TEST_F(RegisterConfigurationUnitTest, BasicProperties) {
const int kNumGeneralRegs = 3;
const int kNumDoubleRegs = 4;
const int kNumAllocatableGeneralRegs = 2;
const int kNumAllocatableDoubleRegs = 2;
int general_codes[kNumAllocatableGeneralRegs] = {1, 2};
int double_codes[kNumAllocatableDoubleRegs] = {2, 3};
RegisterConfiguration test(
kNumGeneralRegs, kNumDoubleRegs, kNumAllocatableGeneralRegs,
kNumAllocatableDoubleRegs, general_codes, double_codes,
RegisterConfiguration::OVERLAP, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(test.num_general_registers(), kNumGeneralRegs);
EXPECT_EQ(test.num_double_registers(), kNumDoubleRegs);
EXPECT_EQ(test.num_allocatable_general_registers(),
kNumAllocatableGeneralRegs);
EXPECT_EQ(test.num_allocatable_double_registers(), kNumAllocatableDoubleRegs);
EXPECT_EQ(test.num_allocatable_float_registers(), kNumAllocatableDoubleRegs);
EXPECT_EQ(test.num_allocatable_simd128_registers(),
kNumAllocatableDoubleRegs);
EXPECT_EQ(test.allocatable_general_codes_mask(),
(1 << general_codes[0]) | (1 << general_codes[1]));
EXPECT_EQ(test.GetAllocatableGeneralCode(0), general_codes[0]);
EXPECT_EQ(test.GetAllocatableGeneralCode(1), general_codes[1]);
EXPECT_EQ(test.allocatable_double_codes_mask(),
(1 << double_codes[0]) | (1 << double_codes[1]));
EXPECT_EQ(test.GetAllocatableFloatCode(0), double_codes[0]);
EXPECT_EQ(test.GetAllocatableDoubleCode(0), double_codes[0]);
EXPECT_EQ(test.GetAllocatableSimd128Code(0), double_codes[0]);
EXPECT_EQ(test.GetAllocatableFloatCode(1), double_codes[1]);
EXPECT_EQ(test.GetAllocatableDoubleCode(1), double_codes[1]);
EXPECT_EQ(test.GetAllocatableSimd128Code(1), double_codes[1]);
}
TEST_F(RegisterConfigurationUnitTest, CombineAliasing) {
const int kNumGeneralRegs = 3;
const int kNumDoubleRegs = 4;
const int kNumAllocatableGeneralRegs = 2;
const int kNumAllocatableDoubleRegs = 3;
int general_codes[] = {1, 2};
int double_codes[] = {2, 3, 16}; // reg 16 should not alias registers 32, 33.
RegisterConfiguration test(
kNumGeneralRegs, kNumDoubleRegs, kNumAllocatableGeneralRegs,
kNumAllocatableDoubleRegs, general_codes, double_codes,
RegisterConfiguration::COMBINE, nullptr, nullptr, nullptr, nullptr);
// There are 3 allocatable double regs, but only 2 can alias float regs.
EXPECT_EQ(test.num_allocatable_float_registers(), 4);
// Test that float registers combine in pairs to form double registers.
EXPECT_EQ(test.GetAllocatableFloatCode(0), double_codes[0] * 2);
EXPECT_EQ(test.GetAllocatableFloatCode(1), double_codes[0] * 2 + 1);
EXPECT_EQ(test.GetAllocatableFloatCode(2), double_codes[1] * 2);
EXPECT_EQ(test.GetAllocatableFloatCode(3), double_codes[1] * 2 + 1);
// There are 3 allocatable double regs, but only 2 pair to form 1 SIMD reg.
EXPECT_EQ(test.num_allocatable_simd128_registers(), 1);
// Test that even-odd pairs of double regs combine to form a SIMD reg.
EXPECT_EQ(test.GetAllocatableSimd128Code(0), double_codes[0] / 2);
// Registers alias themselves.
EXPECT_TRUE(test.AreAliases(kFloat32, 0, kFloat32, 0));
EXPECT_TRUE(test.AreAliases(kFloat64, 0, kFloat64, 0));
EXPECT_TRUE(test.AreAliases(kSimd128, 0, kSimd128, 0));
// Registers don't alias other registers of the same size.
EXPECT_FALSE(test.AreAliases(kFloat32, 1, kFloat32, 0));
EXPECT_FALSE(test.AreAliases(kFloat64, 1, kFloat64, 0));
EXPECT_FALSE(test.AreAliases(kSimd128, 1, kSimd128, 0));
// Float registers combine in pairs to alias a double with index / 2, and
// in 4's to alias a simd128 with index / 4.
EXPECT_TRUE(test.AreAliases(kFloat32, 0, kFloat64, 0));
EXPECT_TRUE(test.AreAliases(kFloat32, 1, kFloat64, 0));
EXPECT_TRUE(test.AreAliases(kFloat32, 0, kSimd128, 0));
EXPECT_TRUE(test.AreAliases(kFloat32, 1, kSimd128, 0));
EXPECT_TRUE(test.AreAliases(kFloat32, 2, kSimd128, 0));
EXPECT_TRUE(test.AreAliases(kFloat32, 3, kSimd128, 0));
EXPECT_TRUE(test.AreAliases(kFloat64, 0, kFloat32, 0));
EXPECT_TRUE(test.AreAliases(kFloat64, 0, kFloat32, 1));
EXPECT_TRUE(test.AreAliases(kSimd128, 0, kFloat32, 0));
EXPECT_TRUE(test.AreAliases(kSimd128, 0, kFloat32, 1));
EXPECT_TRUE(test.AreAliases(kSimd128, 0, kFloat32, 2));
EXPECT_TRUE(test.AreAliases(kSimd128, 0, kFloat32, 3));
EXPECT_FALSE(test.AreAliases(kFloat32, 0, kFloat64, 1));
EXPECT_FALSE(test.AreAliases(kFloat32, 1, kFloat64, 1));
EXPECT_FALSE(test.AreAliases(kFloat32, 0, kSimd128, 1));
EXPECT_FALSE(test.AreAliases(kFloat32, 1, kSimd128, 1));
EXPECT_FALSE(test.AreAliases(kFloat64, 0, kSimd128, 1));
EXPECT_FALSE(test.AreAliases(kFloat64, 1, kSimd128, 1));
EXPECT_TRUE(test.AreAliases(kFloat64, 0, kFloat32, 1));
EXPECT_TRUE(test.AreAliases(kFloat64, 1, kFloat32, 2));
EXPECT_TRUE(test.AreAliases(kFloat64, 1, kFloat32, 3));
EXPECT_TRUE(test.AreAliases(kFloat64, 2, kFloat32, 4));
EXPECT_TRUE(test.AreAliases(kFloat64, 2, kFloat32, 5));
EXPECT_TRUE(test.AreAliases(kSimd128, 0, kFloat64, 1));
EXPECT_TRUE(test.AreAliases(kSimd128, 1, kFloat64, 2));
EXPECT_TRUE(test.AreAliases(kSimd128, 1, kFloat64, 3));
EXPECT_TRUE(test.AreAliases(kSimd128, 2, kFloat64, 4));
EXPECT_TRUE(test.AreAliases(kSimd128, 2, kFloat64, 5));
int alias_base_index = -1;
EXPECT_EQ(test.GetAliases(kFloat32, 0, kFloat32, &alias_base_index), 1);
EXPECT_EQ(alias_base_index, 0);
EXPECT_EQ(test.GetAliases(kFloat64, 1, kFloat64, &alias_base_index), 1);
EXPECT_EQ(alias_base_index, 1);
EXPECT_EQ(test.GetAliases(kFloat32, 0, kFloat64, &alias_base_index), 1);
EXPECT_EQ(alias_base_index, 0);
EXPECT_EQ(test.GetAliases(kFloat32, 1, kFloat64, &alias_base_index), 1);
EXPECT_EQ(test.GetAliases(kFloat32, 2, kFloat64, &alias_base_index), 1);
EXPECT_EQ(alias_base_index, 1);
EXPECT_EQ(test.GetAliases(kFloat32, 3, kFloat64, &alias_base_index), 1);
EXPECT_EQ(alias_base_index, 1);
EXPECT_EQ(test.GetAliases(kFloat64, 0, kFloat32, &alias_base_index), 2);
EXPECT_EQ(alias_base_index, 0);
EXPECT_EQ(test.GetAliases(kFloat64, 1, kFloat32, &alias_base_index), 2);
EXPECT_EQ(alias_base_index, 2);
// Non-allocatable codes still alias.
EXPECT_EQ(test.GetAliases(kFloat64, 2, kFloat32, &alias_base_index), 2);
EXPECT_EQ(alias_base_index, 4);
// High numbered double and simd regs don't alias nonexistent float registers.
EXPECT_EQ(
test.GetAliases(kFloat64, RegisterConfiguration::kMaxFPRegisters / 2,
kFloat32, &alias_base_index),
0);
EXPECT_EQ(
test.GetAliases(kFloat64, RegisterConfiguration::kMaxFPRegisters / 2 + 1,
kFloat32, &alias_base_index),
0);
EXPECT_EQ(
test.GetAliases(kFloat64, RegisterConfiguration::kMaxFPRegisters - 1,
kFloat32, &alias_base_index),
0);
}
} // namespace internal
} // namespace v8