v8/test/unittests/compiler/arm64/instruction-selector-arm64-unittest.cc
2015-01-15 06:31:07 +00:00

2206 lines
75 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/compiler/instruction-selector-unittest.h"
namespace v8 {
namespace internal {
namespace compiler {
namespace {
typedef RawMachineAssembler::Label MLabel;
template <typename T>
struct MachInst {
T constructor;
const char* constructor_name;
ArchOpcode arch_opcode;
MachineType machine_type;
};
typedef MachInst<Node* (RawMachineAssembler::*)(Node*)> MachInst1;
typedef MachInst<Node* (RawMachineAssembler::*)(Node*, Node*)> MachInst2;
template <typename T>
std::ostream& operator<<(std::ostream& os, const MachInst<T>& mi) {
return os << mi.constructor_name;
}
struct Shift {
MachInst2 mi;
AddressingMode mode;
};
std::ostream& operator<<(std::ostream& os, const Shift& shift) {
return os << shift.mi;
}
// Helper to build Int32Constant or Int64Constant depending on the given
// machine type.
Node* BuildConstant(InstructionSelectorTest::StreamBuilder& m, MachineType type,
int64_t value) {
switch (type) {
case kMachInt32:
return m.Int32Constant(value);
break;
case kMachInt64:
return m.Int64Constant(value);
break;
default:
UNIMPLEMENTED();
}
return NULL;
}
// ARM64 logical instructions.
const MachInst2 kLogicalInstructions[] = {
{&RawMachineAssembler::Word32And, "Word32And", kArm64And32, kMachInt32},
{&RawMachineAssembler::Word64And, "Word64And", kArm64And, kMachInt64},
{&RawMachineAssembler::Word32Or, "Word32Or", kArm64Or32, kMachInt32},
{&RawMachineAssembler::Word64Or, "Word64Or", kArm64Or, kMachInt64},
{&RawMachineAssembler::Word32Xor, "Word32Xor", kArm64Eor32, kMachInt32},
{&RawMachineAssembler::Word64Xor, "Word64Xor", kArm64Eor, kMachInt64}};
// ARM64 logical immediates: contiguous set bits, rotated about a power of two
// sized block. The block is then duplicated across the word. Below is a random
// subset of the 32-bit immediates.
const uint32_t kLogical32Immediates[] = {
0x00000002, 0x00000003, 0x00000070, 0x00000080, 0x00000100, 0x000001c0,
0x00000300, 0x000007e0, 0x00003ffc, 0x00007fc0, 0x0003c000, 0x0003f000,
0x0003ffc0, 0x0003fff8, 0x0007ff00, 0x0007ffe0, 0x000e0000, 0x001e0000,
0x001ffffc, 0x003f0000, 0x003f8000, 0x00780000, 0x007fc000, 0x00ff0000,
0x01800000, 0x01800180, 0x01f801f8, 0x03fe0000, 0x03ffffc0, 0x03fffffc,
0x06000000, 0x07fc0000, 0x07ffc000, 0x07ffffc0, 0x07ffffe0, 0x0ffe0ffe,
0x0ffff800, 0x0ffffff0, 0x0fffffff, 0x18001800, 0x1f001f00, 0x1f801f80,
0x30303030, 0x3ff03ff0, 0x3ff83ff8, 0x3fff0000, 0x3fff8000, 0x3fffffc0,
0x70007000, 0x7f7f7f7f, 0x7fc00000, 0x7fffffc0, 0x8000001f, 0x800001ff,
0x81818181, 0x9fff9fff, 0xc00007ff, 0xc0ffffff, 0xdddddddd, 0xe00001ff,
0xe00003ff, 0xe007ffff, 0xefffefff, 0xf000003f, 0xf001f001, 0xf3fff3ff,
0xf800001f, 0xf80fffff, 0xf87ff87f, 0xfbfbfbfb, 0xfc00001f, 0xfc0000ff,
0xfc0001ff, 0xfc03fc03, 0xfe0001ff, 0xff000001, 0xff03ff03, 0xff800000,
0xff800fff, 0xff801fff, 0xff87ffff, 0xffc0003f, 0xffc007ff, 0xffcfffcf,
0xffe00003, 0xffe1ffff, 0xfff0001f, 0xfff07fff, 0xfff80007, 0xfff87fff,
0xfffc00ff, 0xfffe07ff, 0xffff00ff, 0xffffc001, 0xfffff007, 0xfffff3ff,
0xfffff807, 0xfffff9ff, 0xfffffc0f, 0xfffffeff};
// Random subset of 64-bit logical immediates.
const uint64_t kLogical64Immediates[] = {
0x0000000000000001, 0x0000000000000002, 0x0000000000000003,
0x0000000000000070, 0x0000000000000080, 0x0000000000000100,
0x00000000000001c0, 0x0000000000000300, 0x0000000000000600,
0x00000000000007e0, 0x0000000000003ffc, 0x0000000000007fc0,
0x0000000600000000, 0x0000003ffffffffc, 0x000000f000000000,
0x000001f800000000, 0x0003fc0000000000, 0x0003fc000003fc00,
0x0003ffffffc00000, 0x0003ffffffffffc0, 0x0006000000060000,
0x003ffffffffc0000, 0x0180018001800180, 0x01f801f801f801f8,
0x0600000000000000, 0x1000000010000000, 0x1000100010001000,
0x1010101010101010, 0x1111111111111111, 0x1f001f001f001f00,
0x1f1f1f1f1f1f1f1f, 0x1ffffffffffffffe, 0x3ffc3ffc3ffc3ffc,
0x5555555555555555, 0x7f7f7f7f7f7f7f7f, 0x8000000000000000,
0x8000001f8000001f, 0x8181818181818181, 0x9999999999999999,
0x9fff9fff9fff9fff, 0xaaaaaaaaaaaaaaaa, 0xdddddddddddddddd,
0xe0000000000001ff, 0xf800000000000000, 0xf8000000000001ff,
0xf807f807f807f807, 0xfefefefefefefefe, 0xfffefffefffefffe,
0xfffff807fffff807, 0xfffff9fffffff9ff, 0xfffffc0ffffffc0f,
0xfffffc0fffffffff, 0xfffffefffffffeff, 0xfffffeffffffffff,
0xffffff8000000000, 0xfffffffefffffffe, 0xffffffffefffffff,
0xfffffffff9ffffff, 0xffffffffff800000, 0xffffffffffffc0ff,
0xfffffffffffffffe};
// ARM64 arithmetic instructions.
struct AddSub {
MachInst2 mi;
ArchOpcode negate_arch_opcode;
};
std::ostream& operator<<(std::ostream& os, const AddSub& op) {
return os << op.mi;
}
const AddSub kAddSubInstructions[] = {
{{&RawMachineAssembler::Int32Add, "Int32Add", kArm64Add32, kMachInt32},
kArm64Sub32},
{{&RawMachineAssembler::Int64Add, "Int64Add", kArm64Add, kMachInt64},
kArm64Sub},
{{&RawMachineAssembler::Int32Sub, "Int32Sub", kArm64Sub32, kMachInt32},
kArm64Add32},
{{&RawMachineAssembler::Int64Sub, "Int64Sub", kArm64Sub, kMachInt64},
kArm64Add}};
// ARM64 Add/Sub immediates: 12-bit immediate optionally shifted by 12.
// Below is a combination of a random subset and some edge values.
const int32_t kAddSubImmediates[] = {
0, 1, 69, 493, 599, 701, 719,
768, 818, 842, 945, 1246, 1286, 1429,
1669, 2171, 2179, 2182, 2254, 2334, 2338,
2343, 2396, 2449, 2610, 2732, 2855, 2876,
2944, 3377, 3458, 3475, 3476, 3540, 3574,
3601, 3813, 3871, 3917, 4095, 4096, 16384,
364544, 462848, 970752, 1523712, 1863680, 2363392, 3219456,
3280896, 4247552, 4526080, 4575232, 4960256, 5505024, 5894144,
6004736, 6193152, 6385664, 6795264, 7114752, 7233536, 7348224,
7499776, 7573504, 7729152, 8634368, 8937472, 9465856, 10354688,
10682368, 11059200, 11460608, 13168640, 13176832, 14336000, 15028224,
15597568, 15892480, 16773120};
// ARM64 flag setting data processing instructions.
const MachInst2 kDPFlagSetInstructions[] = {
{&RawMachineAssembler::Word32And, "Word32And", kArm64Tst32, kMachInt32},
{&RawMachineAssembler::Int32Add, "Int32Add", kArm64Cmn32, kMachInt32},
{&RawMachineAssembler::Int32Sub, "Int32Sub", kArm64Cmp32, kMachInt32},
{&RawMachineAssembler::Word64And, "Word64And", kArm64Tst, kMachInt64}};
// ARM64 arithmetic with overflow instructions.
const MachInst2 kOvfAddSubInstructions[] = {
{&RawMachineAssembler::Int32AddWithOverflow, "Int32AddWithOverflow",
kArm64Add32, kMachInt32},
{&RawMachineAssembler::Int32SubWithOverflow, "Int32SubWithOverflow",
kArm64Sub32, kMachInt32}};
// ARM64 shift instructions.
const Shift kShiftInstructions[] = {
{{&RawMachineAssembler::Word32Shl, "Word32Shl", kArm64Lsl32, kMachInt32},
kMode_Operand2_R_LSL_I},
{{&RawMachineAssembler::Word64Shl, "Word64Shl", kArm64Lsl, kMachInt64},
kMode_Operand2_R_LSL_I},
{{&RawMachineAssembler::Word32Shr, "Word32Shr", kArm64Lsr32, kMachInt32},
kMode_Operand2_R_LSR_I},
{{&RawMachineAssembler::Word64Shr, "Word64Shr", kArm64Lsr, kMachInt64},
kMode_Operand2_R_LSR_I},
{{&RawMachineAssembler::Word32Sar, "Word32Sar", kArm64Asr32, kMachInt32},
kMode_Operand2_R_ASR_I},
{{&RawMachineAssembler::Word64Sar, "Word64Sar", kArm64Asr, kMachInt64},
kMode_Operand2_R_ASR_I},
{{&RawMachineAssembler::Word32Ror, "Word32Ror", kArm64Ror32, kMachInt32},
kMode_Operand2_R_ROR_I},
{{&RawMachineAssembler::Word64Ror, "Word64Ror", kArm64Ror, kMachInt64},
kMode_Operand2_R_ROR_I}};
// ARM64 Mul/Div instructions.
const MachInst2 kMulDivInstructions[] = {
{&RawMachineAssembler::Int32Mul, "Int32Mul", kArm64Mul32, kMachInt32},
{&RawMachineAssembler::Int64Mul, "Int64Mul", kArm64Mul, kMachInt64},
{&RawMachineAssembler::Int32Div, "Int32Div", kArm64Idiv32, kMachInt32},
{&RawMachineAssembler::Int64Div, "Int64Div", kArm64Idiv, kMachInt64},
{&RawMachineAssembler::Uint32Div, "Uint32Div", kArm64Udiv32, kMachInt32},
{&RawMachineAssembler::Uint64Div, "Uint64Div", kArm64Udiv, kMachInt64}};
// ARM64 FP arithmetic instructions.
const MachInst2 kFPArithInstructions[] = {
{&RawMachineAssembler::Float64Add, "Float64Add", kArm64Float64Add,
kMachFloat64},
{&RawMachineAssembler::Float64Sub, "Float64Sub", kArm64Float64Sub,
kMachFloat64},
{&RawMachineAssembler::Float64Mul, "Float64Mul", kArm64Float64Mul,
kMachFloat64},
{&RawMachineAssembler::Float64Div, "Float64Div", kArm64Float64Div,
kMachFloat64}};
struct FPCmp {
MachInst2 mi;
FlagsCondition cond;
};
std::ostream& operator<<(std::ostream& os, const FPCmp& cmp) {
return os << cmp.mi;
}
// ARM64 FP comparison instructions.
const FPCmp kFPCmpInstructions[] = {
{{&RawMachineAssembler::Float64Equal, "Float64Equal", kArm64Float64Cmp,
kMachFloat64},
kEqual},
{{&RawMachineAssembler::Float64LessThan, "Float64LessThan",
kArm64Float64Cmp, kMachFloat64},
kUnsignedLessThan},
{{&RawMachineAssembler::Float64LessThanOrEqual, "Float64LessThanOrEqual",
kArm64Float64Cmp, kMachFloat64},
kUnsignedLessThanOrEqual}};
struct Conversion {
// The machine_type field in MachInst1 represents the destination type.
MachInst1 mi;
MachineType src_machine_type;
};
std::ostream& operator<<(std::ostream& os, const Conversion& conv) {
return os << conv.mi;
}
// ARM64 type conversion instructions.
const Conversion kConversionInstructions[] = {
{{&RawMachineAssembler::ChangeFloat32ToFloat64, "ChangeFloat32ToFloat64",
kArm64Float32ToFloat64, kMachFloat64},
kMachFloat32},
{{&RawMachineAssembler::TruncateFloat64ToFloat32,
"TruncateFloat64ToFloat32", kArm64Float64ToFloat32, kMachFloat32},
kMachFloat64},
{{&RawMachineAssembler::ChangeInt32ToInt64, "ChangeInt32ToInt64",
kArm64Sxtw, kMachInt64},
kMachInt32},
{{&RawMachineAssembler::ChangeUint32ToUint64, "ChangeUint32ToUint64",
kArm64Mov32, kMachUint64},
kMachUint32},
{{&RawMachineAssembler::TruncateInt64ToInt32, "TruncateInt64ToInt32",
kArm64Mov32, kMachInt32},
kMachInt64},
{{&RawMachineAssembler::ChangeInt32ToFloat64, "ChangeInt32ToFloat64",
kArm64Int32ToFloat64, kMachFloat64},
kMachInt32},
{{&RawMachineAssembler::ChangeUint32ToFloat64, "ChangeUint32ToFloat64",
kArm64Uint32ToFloat64, kMachFloat64},
kMachUint32},
{{&RawMachineAssembler::ChangeFloat64ToInt32, "ChangeFloat64ToInt32",
kArm64Float64ToInt32, kMachInt32},
kMachFloat64},
{{&RawMachineAssembler::ChangeFloat64ToUint32, "ChangeFloat64ToUint32",
kArm64Float64ToUint32, kMachUint32},
kMachFloat64}};
} // namespace
// -----------------------------------------------------------------------------
// Logical instructions.
typedef InstructionSelectorTestWithParam<MachInst2>
InstructionSelectorLogicalTest;
TEST_P(InstructionSelectorLogicalTest, Parameter) {
const MachInst2 dpi = GetParam();
const MachineType type = dpi.machine_type;
StreamBuilder m(this, type, type, type);
m.Return((m.*dpi.constructor)(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_P(InstructionSelectorLogicalTest, Immediate) {
const MachInst2 dpi = GetParam();
const MachineType type = dpi.machine_type;
// TODO(all): Add support for testing 64-bit immediates.
if (type == kMachInt32) {
// Immediate on the right.
TRACED_FOREACH(int32_t, imm, kLogical32Immediates) {
StreamBuilder m(this, type, type);
m.Return((m.*dpi.constructor)(m.Parameter(0), m.Int32Constant(imm)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
// Immediate on the left; all logical ops should commute.
TRACED_FOREACH(int32_t, imm, kLogical32Immediates) {
StreamBuilder m(this, type, type);
m.Return((m.*dpi.constructor)(m.Int32Constant(imm), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
}
TEST_P(InstructionSelectorLogicalTest, ShiftByImmediate) {
const MachInst2 dpi = GetParam();
const MachineType type = dpi.machine_type;
TRACED_FOREACH(Shift, shift, kShiftInstructions) {
// Only test 64-bit shifted operands with 64-bit instructions.
if (shift.mi.machine_type != type) continue;
TRACED_FORRANGE(int, imm, 0, ((type == kMachInt32) ? 31 : 63)) {
StreamBuilder m(this, type, type, type);
m.Return((m.*dpi.constructor)(
m.Parameter(0),
(m.*shift.mi.constructor)(m.Parameter(1),
BuildConstant(m, type, imm))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.mode, s[0]->addressing_mode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt64(s[0]->InputAt(2)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
TRACED_FORRANGE(int, imm, 0, ((type == kMachInt32) ? 31 : 63)) {
StreamBuilder m(this, type, type, type);
m.Return((m.*dpi.constructor)(
(m.*shift.mi.constructor)(m.Parameter(1),
BuildConstant(m, type, imm)),
m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.mode, s[0]->addressing_mode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt64(s[0]->InputAt(2)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorLogicalTest,
::testing::ValuesIn(kLogicalInstructions));
// -----------------------------------------------------------------------------
// Add and Sub instructions.
typedef InstructionSelectorTestWithParam<AddSub> InstructionSelectorAddSubTest;
TEST_P(InstructionSelectorAddSubTest, Parameter) {
const AddSub dpi = GetParam();
const MachineType type = dpi.mi.machine_type;
StreamBuilder m(this, type, type, type);
m.Return((m.*dpi.mi.constructor)(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.mi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_P(InstructionSelectorAddSubTest, ImmediateOnRight) {
const AddSub dpi = GetParam();
const MachineType type = dpi.mi.machine_type;
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
StreamBuilder m(this, type, type);
m.Return(
(m.*dpi.mi.constructor)(m.Parameter(0), BuildConstant(m, type, imm)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.mi.arch_opcode, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
EXPECT_EQ(imm, s.ToInt64(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
TEST_P(InstructionSelectorAddSubTest, NegImmediateOnRight) {
const AddSub dpi = GetParam();
const MachineType type = dpi.mi.machine_type;
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
if (imm == 0) continue;
StreamBuilder m(this, type, type);
m.Return(
(m.*dpi.mi.constructor)(m.Parameter(0), BuildConstant(m, type, -imm)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.negate_arch_opcode, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
ASSERT_TRUE(s[0]->InputAt(1)->IsImmediate());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
TEST_P(InstructionSelectorAddSubTest, ShiftByImmediateOnRight) {
const AddSub dpi = GetParam();
const MachineType type = dpi.mi.machine_type;
TRACED_FOREACH(Shift, shift, kShiftInstructions) {
// Only test 64-bit shifted operands with 64-bit instructions.
if (shift.mi.machine_type != type) continue;
if ((shift.mi.arch_opcode == kArm64Ror32) ||
(shift.mi.arch_opcode == kArm64Ror)) {
// Not supported by add/sub instructions.
continue;
}
TRACED_FORRANGE(int, imm, 0, ((type == kMachInt32) ? 31 : 63)) {
StreamBuilder m(this, type, type, type);
m.Return((m.*dpi.mi.constructor)(
m.Parameter(0),
(m.*shift.mi.constructor)(m.Parameter(1),
BuildConstant(m, type, imm))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.mi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.mode, s[0]->addressing_mode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt64(s[0]->InputAt(2)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorAddSubTest,
::testing::ValuesIn(kAddSubInstructions));
TEST_F(InstructionSelectorTest, AddImmediateOnLeft) {
{
// 32-bit add.
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Int32Add(m.Int32Constant(imm), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Add32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
{
// 64-bit add.
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
StreamBuilder m(this, kMachInt64, kMachInt64);
m.Return(m.Int64Add(m.Int64Constant(imm), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Add, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
EXPECT_EQ(imm, s.ToInt64(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
}
TEST_F(InstructionSelectorTest, SubZeroOnLeft) {
// Subtraction with zero on the left maps to Neg.
{
// 32-bit subtract.
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Int32Sub(m.Int32Constant(0), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Neg32, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
{
// 64-bit subtract.
StreamBuilder m(this, kMachInt64, kMachInt64, kMachInt64);
m.Return(m.Int64Sub(m.Int64Constant(0), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Neg, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
TEST_F(InstructionSelectorTest, AddNegImmediateOnLeft) {
{
// 32-bit add.
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
if (imm == 0) continue;
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Int32Add(m.Int32Constant(-imm), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Sub32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
ASSERT_TRUE(s[0]->InputAt(1)->IsImmediate());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
{
// 64-bit add.
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
if (imm == 0) continue;
StreamBuilder m(this, kMachInt64, kMachInt64);
m.Return(m.Int64Add(m.Int64Constant(-imm), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Sub, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
ASSERT_TRUE(s[0]->InputAt(1)->IsImmediate());
EXPECT_EQ(imm, s.ToInt64(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
}
TEST_F(InstructionSelectorTest, AddShiftByImmediateOnLeft) {
// 32-bit add.
TRACED_FOREACH(Shift, shift, kShiftInstructions) {
// Only test relevant shifted operands.
if (shift.mi.machine_type != kMachInt32) continue;
if (shift.mi.arch_opcode == kArm64Ror32) continue;
TRACED_FORRANGE(int, imm, 0, 31) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return((m.Int32Add)(
(m.*shift.mi.constructor)(m.Parameter(1), m.Int32Constant(imm)),
m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Add32, s[0]->arch_opcode());
EXPECT_EQ(shift.mode, s[0]->addressing_mode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt64(s[0]->InputAt(2)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
// 64-bit add.
TRACED_FOREACH(Shift, shift, kShiftInstructions) {
// Only test relevant shifted operands.
if (shift.mi.machine_type != kMachInt64) continue;
if (shift.mi.arch_opcode == kArm64Ror) continue;
TRACED_FORRANGE(int, imm, 0, 63) {
StreamBuilder m(this, kMachInt64, kMachInt64, kMachInt64);
m.Return((m.Int64Add)(
(m.*shift.mi.constructor)(m.Parameter(1), m.Int64Constant(imm)),
m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Add, s[0]->arch_opcode());
EXPECT_EQ(shift.mode, s[0]->addressing_mode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt64(s[0]->InputAt(2)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
}
// -----------------------------------------------------------------------------
// Data processing controlled branches.
typedef InstructionSelectorTestWithParam<MachInst2>
InstructionSelectorDPFlagSetTest;
TEST_P(InstructionSelectorDPFlagSetTest, BranchWithParameters) {
const MachInst2 dpi = GetParam();
const MachineType type = dpi.machine_type;
StreamBuilder m(this, type, type, type);
MLabel a, b;
m.Branch((m.*dpi.constructor)(m.Parameter(0), m.Parameter(1)), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest,
InstructionSelectorDPFlagSetTest,
::testing::ValuesIn(kDPFlagSetInstructions));
TEST_F(InstructionSelectorTest, Word32AndBranchWithImmediateOnRight) {
TRACED_FOREACH(int32_t, imm, kLogical32Immediates) {
// Skip the cases where the instruction selector would use tbz/tbnz.
if (base::bits::CountPopulation32(imm) == 1) continue;
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch(m.Word32And(m.Parameter(0), m.Int32Constant(imm)), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Tst32, s[0]->arch_opcode());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
}
}
TEST_F(InstructionSelectorTest, Word64AndBranchWithImmediateOnRight) {
TRACED_FOREACH(int64_t, imm, kLogical64Immediates) {
// Skip the cases where the instruction selector would use tbz/tbnz.
if (base::bits::CountPopulation64(imm) == 1) continue;
StreamBuilder m(this, kMachInt64, kMachInt64);
MLabel a, b;
m.Branch(m.Word64And(m.Parameter(0), m.Int64Constant(imm)), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Tst, s[0]->arch_opcode());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
}
}
TEST_F(InstructionSelectorTest, AddBranchWithImmediateOnRight) {
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch(m.Int32Add(m.Parameter(0), m.Int32Constant(imm)), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Cmn32, s[0]->arch_opcode());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
}
}
TEST_F(InstructionSelectorTest, SubBranchWithImmediateOnRight) {
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch(m.Int32Sub(m.Parameter(0), m.Int32Constant(imm)), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Cmp32, s[0]->arch_opcode());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
}
}
TEST_F(InstructionSelectorTest, Word32AndBranchWithImmediateOnLeft) {
TRACED_FOREACH(int32_t, imm, kLogical32Immediates) {
// Skip the cases where the instruction selector would use tbz/tbnz.
if (base::bits::CountPopulation32(imm) == 1) continue;
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch(m.Word32And(m.Int32Constant(imm), m.Parameter(0)), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Tst32, s[0]->arch_opcode());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
ASSERT_LE(1U, s[0]->InputCount());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
}
}
TEST_F(InstructionSelectorTest, Word64AndBranchWithImmediateOnLeft) {
TRACED_FOREACH(int64_t, imm, kLogical64Immediates) {
// Skip the cases where the instruction selector would use tbz/tbnz.
if (base::bits::CountPopulation64(imm) == 1) continue;
StreamBuilder m(this, kMachInt64, kMachInt64);
MLabel a, b;
m.Branch(m.Word64And(m.Int64Constant(imm), m.Parameter(0)), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Tst, s[0]->arch_opcode());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
ASSERT_LE(1U, s[0]->InputCount());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
}
}
TEST_F(InstructionSelectorTest, AddBranchWithImmediateOnLeft) {
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch(m.Int32Add(m.Int32Constant(imm), m.Parameter(0)), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Cmn32, s[0]->arch_opcode());
ASSERT_LE(1U, s[0]->InputCount());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
}
}
TEST_F(InstructionSelectorTest, Word32AndBranchWithOneBitMaskOnRight) {
TRACED_FORRANGE(int, bit, 0, 31) {
uint32_t mask = 1 << bit;
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch(m.Word32And(m.Parameter(0), m.Int32Constant(mask)), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64TestAndBranch32, s[0]->arch_opcode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(bit, s.ToInt32(s[0]->InputAt(1)));
}
TRACED_FORRANGE(int, bit, 0, 31) {
uint32_t mask = 1 << bit;
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch(
m.Word32BinaryNot(m.Word32And(m.Parameter(0), m.Int32Constant(mask))),
&a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64TestAndBranch32, s[0]->arch_opcode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(bit, s.ToInt32(s[0]->InputAt(1)));
}
}
TEST_F(InstructionSelectorTest, Word32AndBranchWithOneBitMaskOnLeft) {
TRACED_FORRANGE(int, bit, 0, 31) {
uint32_t mask = 1 << bit;
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch(m.Word32And(m.Int32Constant(mask), m.Parameter(0)), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64TestAndBranch32, s[0]->arch_opcode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(bit, s.ToInt32(s[0]->InputAt(1)));
}
TRACED_FORRANGE(int, bit, 0, 31) {
uint32_t mask = 1 << bit;
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch(
m.Word32BinaryNot(m.Word32And(m.Int32Constant(mask), m.Parameter(0))),
&a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64TestAndBranch32, s[0]->arch_opcode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(bit, s.ToInt32(s[0]->InputAt(1)));
}
}
TEST_F(InstructionSelectorTest, Word64AndBranchWithOneBitMaskOnRight) {
TRACED_FORRANGE(int, bit, 0, 63) {
uint64_t mask = 1L << bit;
StreamBuilder m(this, kMachInt64, kMachInt64);
MLabel a, b;
m.Branch(m.Word64And(m.Parameter(0), m.Int64Constant(mask)), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64TestAndBranch, s[0]->arch_opcode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(bit, s.ToInt64(s[0]->InputAt(1)));
}
TRACED_FORRANGE(int, bit, 0, 63) {
uint64_t mask = 1L << bit;
StreamBuilder m(this, kMachInt64, kMachInt64);
MLabel a, b;
m.Branch(
m.Word64BinaryNot(m.Word64And(m.Parameter(0), m.Int64Constant(mask))),
&a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64TestAndBranch, s[0]->arch_opcode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(bit, s.ToInt64(s[0]->InputAt(1)));
}
}
TEST_F(InstructionSelectorTest, Word64AndBranchWithOneBitMaskOnLeft) {
TRACED_FORRANGE(int, bit, 0, 63) {
uint64_t mask = 1L << bit;
StreamBuilder m(this, kMachInt64, kMachInt64);
MLabel a, b;
m.Branch(m.Word64And(m.Int64Constant(mask), m.Parameter(0)), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64TestAndBranch, s[0]->arch_opcode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(bit, s.ToInt64(s[0]->InputAt(1)));
}
TRACED_FORRANGE(int, bit, 0, 63) {
uint64_t mask = 1L << bit;
StreamBuilder m(this, kMachInt64, kMachInt64);
MLabel a, b;
m.Branch(
m.Word64BinaryNot(m.Word64And(m.Int64Constant(mask), m.Parameter(0))),
&a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64TestAndBranch, s[0]->arch_opcode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(bit, s.ToInt64(s[0]->InputAt(1)));
}
}
TEST_F(InstructionSelectorTest, CompareAgainstZeroAndBranch) {
{
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
Node* p0 = m.Parameter(0);
m.Branch(p0, &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64CompareAndBranch32, s[0]->arch_opcode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
}
{
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
Node* p0 = m.Parameter(0);
m.Branch(m.Word32BinaryNot(p0), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64CompareAndBranch32, s[0]->arch_opcode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
}
}
// -----------------------------------------------------------------------------
// Add and subtract instructions with overflow.
typedef InstructionSelectorTestWithParam<MachInst2>
InstructionSelectorOvfAddSubTest;
TEST_P(InstructionSelectorOvfAddSubTest, OvfParameter) {
const MachInst2 dpi = GetParam();
const MachineType type = dpi.machine_type;
StreamBuilder m(this, type, type, type);
m.Return(
m.Projection(1, (m.*dpi.constructor)(m.Parameter(0), m.Parameter(1))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
TEST_P(InstructionSelectorOvfAddSubTest, OvfImmediateOnRight) {
const MachInst2 dpi = GetParam();
const MachineType type = dpi.machine_type;
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
StreamBuilder m(this, type, type);
m.Return(m.Projection(
1, (m.*dpi.constructor)(m.Parameter(0), m.Int32Constant(imm))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
}
TEST_P(InstructionSelectorOvfAddSubTest, ValParameter) {
const MachInst2 dpi = GetParam();
const MachineType type = dpi.machine_type;
StreamBuilder m(this, type, type, type);
m.Return(
m.Projection(0, (m.*dpi.constructor)(m.Parameter(0), m.Parameter(1))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
TEST_P(InstructionSelectorOvfAddSubTest, ValImmediateOnRight) {
const MachInst2 dpi = GetParam();
const MachineType type = dpi.machine_type;
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
StreamBuilder m(this, type, type);
m.Return(m.Projection(
0, (m.*dpi.constructor)(m.Parameter(0), m.Int32Constant(imm))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
}
TEST_P(InstructionSelectorOvfAddSubTest, BothParameter) {
const MachInst2 dpi = GetParam();
const MachineType type = dpi.machine_type;
StreamBuilder m(this, type, type, type);
Node* n = (m.*dpi.constructor)(m.Parameter(0), m.Parameter(1));
m.Return(m.Word32Equal(m.Projection(0, n), m.Projection(1, n)));
Stream s = m.Build();
ASSERT_LE(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(2U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
TEST_P(InstructionSelectorOvfAddSubTest, BothImmediateOnRight) {
const MachInst2 dpi = GetParam();
const MachineType type = dpi.machine_type;
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
StreamBuilder m(this, type, type);
Node* n = (m.*dpi.constructor)(m.Parameter(0), m.Int32Constant(imm));
m.Return(m.Word32Equal(m.Projection(0, n), m.Projection(1, n)));
Stream s = m.Build();
ASSERT_LE(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(2U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
}
TEST_P(InstructionSelectorOvfAddSubTest, BranchWithParameters) {
const MachInst2 dpi = GetParam();
const MachineType type = dpi.machine_type;
StreamBuilder m(this, type, type, type);
MLabel a, b;
Node* n = (m.*dpi.constructor)(m.Parameter(0), m.Parameter(1));
m.Branch(m.Projection(1, n), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(0));
m.Bind(&b);
m.Return(m.Projection(0, n));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
TEST_P(InstructionSelectorOvfAddSubTest, BranchWithImmediateOnRight) {
const MachInst2 dpi = GetParam();
const MachineType type = dpi.machine_type;
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
StreamBuilder m(this, type, type);
MLabel a, b;
Node* n = (m.*dpi.constructor)(m.Parameter(0), m.Int32Constant(imm));
m.Branch(m.Projection(1, n), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(0));
m.Bind(&b);
m.Return(m.Projection(0, n));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
ASSERT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest,
InstructionSelectorOvfAddSubTest,
::testing::ValuesIn(kOvfAddSubInstructions));
TEST_F(InstructionSelectorTest, OvfFlagAddImmediateOnLeft) {
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Projection(
1, m.Int32AddWithOverflow(m.Int32Constant(imm), m.Parameter(0))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Add32, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
}
TEST_F(InstructionSelectorTest, OvfValAddImmediateOnLeft) {
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Projection(
0, m.Int32AddWithOverflow(m.Int32Constant(imm), m.Parameter(0))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Add32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
}
TEST_F(InstructionSelectorTest, OvfBothAddImmediateOnLeft) {
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
Node* n = m.Int32AddWithOverflow(m.Int32Constant(imm), m.Parameter(0));
m.Return(m.Word32Equal(m.Projection(0, n), m.Projection(1, n)));
Stream s = m.Build();
ASSERT_LE(1U, s.size());
EXPECT_EQ(kArm64Add32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(2U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
}
TEST_F(InstructionSelectorTest, OvfBranchWithImmediateOnLeft) {
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
Node* n = m.Int32AddWithOverflow(m.Int32Constant(imm), m.Parameter(0));
m.Branch(m.Projection(1, n), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(0));
m.Bind(&b);
m.Return(m.Projection(0, n));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Add32, s[0]->arch_opcode());
ASSERT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
}
// -----------------------------------------------------------------------------
// Shift instructions.
typedef InstructionSelectorTestWithParam<Shift> InstructionSelectorShiftTest;
TEST_P(InstructionSelectorShiftTest, Parameter) {
const Shift shift = GetParam();
const MachineType type = shift.mi.machine_type;
StreamBuilder m(this, type, type, type);
m.Return((m.*shift.mi.constructor)(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(shift.mi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_P(InstructionSelectorShiftTest, Immediate) {
const Shift shift = GetParam();
const MachineType type = shift.mi.machine_type;
TRACED_FORRANGE(int32_t, imm, 0, (ElementSizeOf(type) * 8) - 1) {
StreamBuilder m(this, type, type);
m.Return((m.*shift.mi.constructor)(m.Parameter(0), m.Int32Constant(imm)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(shift.mi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorShiftTest,
::testing::ValuesIn(kShiftInstructions));
TEST_F(InstructionSelectorTest, Word64ShlWithChangeInt32ToInt64) {
TRACED_FORRANGE(int64_t, x, 32, 63) {
StreamBuilder m(this, kMachInt64, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const n = m.Word64Shl(m.ChangeInt32ToInt64(p0), m.Int64Constant(x));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Lsl, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(x, s.ToInt64(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Word64ShlWithChangeUint32ToUint64) {
TRACED_FORRANGE(int64_t, x, 32, 63) {
StreamBuilder m(this, kMachInt64, kMachUint32);
Node* const p0 = m.Parameter(0);
Node* const n = m.Word64Shl(m.ChangeUint32ToUint64(p0), m.Int64Constant(x));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Lsl, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(x, s.ToInt64(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, TruncateInt64ToInt32WithWord64Sar) {
StreamBuilder m(this, kMachInt32, kMachInt64);
Node* const p = m.Parameter(0);
Node* const t = m.TruncateInt64ToInt32(m.Word64Sar(p, m.Int64Constant(32)));
m.Return(t);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Lsr, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(32, s.ToInt64(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(t), s.ToVreg(s[0]->OutputAt(0)));
}
TEST_F(InstructionSelectorTest, TruncateInt64ToInt32WithWord64Shr) {
TRACED_FORRANGE(int64_t, x, 32, 63) {
StreamBuilder m(this, kMachInt32, kMachInt64);
Node* const p = m.Parameter(0);
Node* const t = m.TruncateInt64ToInt32(m.Word64Shr(p, m.Int64Constant(x)));
m.Return(t);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Lsr, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(x, s.ToInt64(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(t), s.ToVreg(s[0]->OutputAt(0)));
}
}
// -----------------------------------------------------------------------------
// Mul and Div instructions.
typedef InstructionSelectorTestWithParam<MachInst2>
InstructionSelectorMulDivTest;
TEST_P(InstructionSelectorMulDivTest, Parameter) {
const MachInst2 dpi = GetParam();
const MachineType type = dpi.machine_type;
StreamBuilder m(this, type, type, type);
m.Return((m.*dpi.constructor)(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorMulDivTest,
::testing::ValuesIn(kMulDivInstructions));
namespace {
struct MulDPInst {
const char* mul_constructor_name;
Node* (RawMachineAssembler::*mul_constructor)(Node*, Node*);
Node* (RawMachineAssembler::*add_constructor)(Node*, Node*);
Node* (RawMachineAssembler::*sub_constructor)(Node*, Node*);
ArchOpcode add_arch_opcode;
ArchOpcode sub_arch_opcode;
ArchOpcode neg_arch_opcode;
MachineType machine_type;
};
std::ostream& operator<<(std::ostream& os, const MulDPInst& inst) {
return os << inst.mul_constructor_name;
}
} // namespace
static const MulDPInst kMulDPInstructions[] = {
{"Int32Mul", &RawMachineAssembler::Int32Mul, &RawMachineAssembler::Int32Add,
&RawMachineAssembler::Int32Sub, kArm64Madd32, kArm64Msub32, kArm64Mneg32,
kMachInt32},
{"Int64Mul", &RawMachineAssembler::Int64Mul, &RawMachineAssembler::Int64Add,
&RawMachineAssembler::Int64Sub, kArm64Madd, kArm64Msub, kArm64Mneg,
kMachInt64}};
typedef InstructionSelectorTestWithParam<MulDPInst>
InstructionSelectorIntDPWithIntMulTest;
TEST_P(InstructionSelectorIntDPWithIntMulTest, AddWithMul) {
const MulDPInst mdpi = GetParam();
const MachineType type = mdpi.machine_type;
{
StreamBuilder m(this, type, type, type, type);
Node* n = (m.*mdpi.mul_constructor)(m.Parameter(1), m.Parameter(2));
m.Return((m.*mdpi.add_constructor)(m.Parameter(0), n));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(mdpi.add_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
{
StreamBuilder m(this, type, type, type, type);
Node* n = (m.*mdpi.mul_constructor)(m.Parameter(0), m.Parameter(1));
m.Return((m.*mdpi.add_constructor)(n, m.Parameter(2)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(mdpi.add_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
TEST_P(InstructionSelectorIntDPWithIntMulTest, SubWithMul) {
const MulDPInst mdpi = GetParam();
const MachineType type = mdpi.machine_type;
{
StreamBuilder m(this, type, type, type, type);
Node* n = (m.*mdpi.mul_constructor)(m.Parameter(1), m.Parameter(2));
m.Return((m.*mdpi.sub_constructor)(m.Parameter(0), n));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(mdpi.sub_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
TEST_P(InstructionSelectorIntDPWithIntMulTest, NegativeMul) {
const MulDPInst mdpi = GetParam();
const MachineType type = mdpi.machine_type;
{
StreamBuilder m(this, type, type, type);
Node* n =
(m.*mdpi.sub_constructor)(BuildConstant(m, type, 0), m.Parameter(0));
m.Return((m.*mdpi.mul_constructor)(n, m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(mdpi.neg_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
{
StreamBuilder m(this, type, type, type);
Node* n =
(m.*mdpi.sub_constructor)(BuildConstant(m, type, 0), m.Parameter(1));
m.Return((m.*mdpi.mul_constructor)(m.Parameter(0), n));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(mdpi.neg_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest,
InstructionSelectorIntDPWithIntMulTest,
::testing::ValuesIn(kMulDPInstructions));
// -----------------------------------------------------------------------------
// Floating point instructions.
typedef InstructionSelectorTestWithParam<MachInst2>
InstructionSelectorFPArithTest;
TEST_P(InstructionSelectorFPArithTest, Parameter) {
const MachInst2 fpa = GetParam();
StreamBuilder m(this, fpa.machine_type, fpa.machine_type, fpa.machine_type);
m.Return((m.*fpa.constructor)(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(fpa.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorFPArithTest,
::testing::ValuesIn(kFPArithInstructions));
typedef InstructionSelectorTestWithParam<FPCmp> InstructionSelectorFPCmpTest;
TEST_P(InstructionSelectorFPCmpTest, Parameter) {
const FPCmp cmp = GetParam();
StreamBuilder m(this, kMachInt32, cmp.mi.machine_type, cmp.mi.machine_type);
m.Return((m.*cmp.mi.constructor)(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(cmp.mi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(cmp.cond, s[0]->flags_condition());
}
TEST_P(InstructionSelectorFPCmpTest, WithImmediateZeroOnRight) {
const FPCmp cmp = GetParam();
StreamBuilder m(this, kMachInt32, cmp.mi.machine_type);
m.Return((m.*cmp.mi.constructor)(m.Parameter(0), m.Float64Constant(0.0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(cmp.mi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(cmp.cond, s[0]->flags_condition());
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorFPCmpTest,
::testing::ValuesIn(kFPCmpInstructions));
TEST_F(InstructionSelectorTest, Float64EqualWithImmediateZeroOnLeft) {
StreamBuilder m(this, kMachInt32, kMachFloat64);
m.Return(m.Float64Equal(m.Float64Constant(0.0), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Float64Cmp, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
// -----------------------------------------------------------------------------
// Conversions.
typedef InstructionSelectorTestWithParam<Conversion>
InstructionSelectorConversionTest;
TEST_P(InstructionSelectorConversionTest, Parameter) {
const Conversion conv = GetParam();
StreamBuilder m(this, conv.mi.machine_type, conv.src_machine_type);
m.Return((m.*conv.mi.constructor)(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(conv.mi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest,
InstructionSelectorConversionTest,
::testing::ValuesIn(kConversionInstructions));
// -----------------------------------------------------------------------------
// Memory access instructions.
namespace {
struct MemoryAccess {
MachineType type;
ArchOpcode ldr_opcode;
ArchOpcode str_opcode;
const int32_t immediates[20];
};
std::ostream& operator<<(std::ostream& os, const MemoryAccess& memacc) {
return os << memacc.type;
}
} // namespace
static const MemoryAccess kMemoryAccesses[] = {
{kMachInt8,
kArm64Ldrsb,
kArm64Strb,
{-256, -255, -3, -2, -1, 0, 1, 2, 3, 255, 256, 257, 258, 1000, 1001, 2121,
2442, 4093, 4094, 4095}},
{kMachUint8,
kArm64Ldrb,
kArm64Strb,
{-256, -255, -3, -2, -1, 0, 1, 2, 3, 255, 256, 257, 258, 1000, 1001, 2121,
2442, 4093, 4094, 4095}},
{kMachInt16,
kArm64Ldrsh,
kArm64Strh,
{-256, -255, -3, -2, -1, 0, 1, 2, 3, 255, 256, 258, 260, 4096, 4098, 4100,
4242, 6786, 8188, 8190}},
{kMachUint16,
kArm64Ldrh,
kArm64Strh,
{-256, -255, -3, -2, -1, 0, 1, 2, 3, 255, 256, 258, 260, 4096, 4098, 4100,
4242, 6786, 8188, 8190}},
{kMachInt32,
kArm64LdrW,
kArm64StrW,
{-256, -255, -3, -2, -1, 0, 1, 2, 3, 255, 256, 260, 4096, 4100, 8192, 8196,
3276, 3280, 16376, 16380}},
{kMachUint32,
kArm64LdrW,
kArm64StrW,
{-256, -255, -3, -2, -1, 0, 1, 2, 3, 255, 256, 260, 4096, 4100, 8192, 8196,
3276, 3280, 16376, 16380}},
{kMachInt64,
kArm64Ldr,
kArm64Str,
{-256, -255, -3, -2, -1, 0, 1, 2, 3, 255, 256, 264, 4096, 4104, 8192, 8200,
16384, 16392, 32752, 32760}},
{kMachUint64,
kArm64Ldr,
kArm64Str,
{-256, -255, -3, -2, -1, 0, 1, 2, 3, 255, 256, 264, 4096, 4104, 8192, 8200,
16384, 16392, 32752, 32760}},
{kMachFloat32,
kArm64LdrS,
kArm64StrS,
{-256, -255, -3, -2, -1, 0, 1, 2, 3, 255, 256, 260, 4096, 4100, 8192, 8196,
3276, 3280, 16376, 16380}},
{kMachFloat64,
kArm64LdrD,
kArm64StrD,
{-256, -255, -3, -2, -1, 0, 1, 2, 3, 255, 256, 264, 4096, 4104, 8192, 8200,
16384, 16392, 32752, 32760}}};
typedef InstructionSelectorTestWithParam<MemoryAccess>
InstructionSelectorMemoryAccessTest;
TEST_P(InstructionSelectorMemoryAccessTest, LoadWithParameters) {
const MemoryAccess memacc = GetParam();
StreamBuilder m(this, memacc.type, kMachPtr, kMachInt32);
m.Return(m.Load(memacc.type, m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.ldr_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRR, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_P(InstructionSelectorMemoryAccessTest, LoadWithImmediateIndex) {
const MemoryAccess memacc = GetParam();
TRACED_FOREACH(int32_t, index, memacc.immediates) {
StreamBuilder m(this, memacc.type, kMachPtr);
m.Return(m.Load(memacc.type, m.Parameter(0), m.Int32Constant(index)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.ldr_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(index, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
}
}
TEST_P(InstructionSelectorMemoryAccessTest, StoreWithParameters) {
const MemoryAccess memacc = GetParam();
StreamBuilder m(this, kMachInt32, kMachPtr, kMachInt32, memacc.type);
m.Store(memacc.type, m.Parameter(0), m.Parameter(1), m.Parameter(2));
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.str_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRR, s[0]->addressing_mode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(0U, s[0]->OutputCount());
}
TEST_P(InstructionSelectorMemoryAccessTest, StoreWithImmediateIndex) {
const MemoryAccess memacc = GetParam();
TRACED_FOREACH(int32_t, index, memacc.immediates) {
StreamBuilder m(this, kMachInt32, kMachPtr, memacc.type);
m.Store(memacc.type, m.Parameter(0), m.Int32Constant(index),
m.Parameter(1));
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.str_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(index, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(0U, s[0]->OutputCount());
}
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest,
InstructionSelectorMemoryAccessTest,
::testing::ValuesIn(kMemoryAccesses));
// -----------------------------------------------------------------------------
// Comparison instructions.
static const MachInst2 kComparisonInstructions[] = {
{&RawMachineAssembler::Word32Equal, "Word32Equal", kArm64Cmp32, kMachInt32},
{&RawMachineAssembler::Word64Equal, "Word64Equal", kArm64Cmp, kMachInt64},
};
typedef InstructionSelectorTestWithParam<MachInst2>
InstructionSelectorComparisonTest;
TEST_P(InstructionSelectorComparisonTest, WithParameters) {
const MachInst2 cmp = GetParam();
const MachineType type = cmp.machine_type;
StreamBuilder m(this, type, type, type);
m.Return((m.*cmp.constructor)(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(cmp.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
TEST_P(InstructionSelectorComparisonTest, WithImmediate) {
const MachInst2 cmp = GetParam();
const MachineType type = cmp.machine_type;
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
// Compare with 0 are turned into tst instruction.
if (imm == 0) continue;
StreamBuilder m(this, type, type);
m.Return((m.*cmp.constructor)(m.Parameter(0), BuildConstant(m, type, imm)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(cmp.arch_opcode, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(imm, s.ToInt64(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
TRACED_FOREACH(int32_t, imm, kAddSubImmediates) {
// Compare with 0 are turned into tst instruction.
if (imm == 0) continue;
StreamBuilder m(this, type, type);
m.Return((m.*cmp.constructor)(BuildConstant(m, type, imm), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(cmp.arch_opcode, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(imm, s.ToInt64(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest,
InstructionSelectorComparisonTest,
::testing::ValuesIn(kComparisonInstructions));
TEST_F(InstructionSelectorTest, Word32EqualWithZero) {
{
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32Equal(m.Parameter(0), m.Int32Constant(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Tst32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->InputAt(0)), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
{
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32Equal(m.Int32Constant(0), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Tst32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->InputAt(0)), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
}
TEST_F(InstructionSelectorTest, Word64EqualWithZero) {
{
StreamBuilder m(this, kMachInt64, kMachInt64);
m.Return(m.Word64Equal(m.Parameter(0), m.Int64Constant(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Tst, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->InputAt(0)), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
{
StreamBuilder m(this, kMachInt64, kMachInt64);
m.Return(m.Word64Equal(m.Int64Constant(0), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Tst, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->InputAt(0)), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
}
// -----------------------------------------------------------------------------
// Miscellaneous
static const MachInst2 kLogicalWithNotRHSs[] = {
{&RawMachineAssembler::Word32And, "Word32And", kArm64Bic32, kMachInt32},
{&RawMachineAssembler::Word64And, "Word64And", kArm64Bic, kMachInt64},
{&RawMachineAssembler::Word32Or, "Word32Or", kArm64Orn32, kMachInt32},
{&RawMachineAssembler::Word64Or, "Word64Or", kArm64Orn, kMachInt64},
{&RawMachineAssembler::Word32Xor, "Word32Xor", kArm64Eon32, kMachInt32},
{&RawMachineAssembler::Word64Xor, "Word64Xor", kArm64Eon, kMachInt64}};
typedef InstructionSelectorTestWithParam<MachInst2>
InstructionSelectorLogicalWithNotRHSTest;
TEST_P(InstructionSelectorLogicalWithNotRHSTest, Parameter) {
const MachInst2 inst = GetParam();
const MachineType type = inst.machine_type;
// Test cases where RHS is Xor(x, -1).
{
StreamBuilder m(this, type, type, type);
if (type == kMachInt32) {
m.Return((m.*inst.constructor)(
m.Parameter(0), m.Word32Xor(m.Parameter(1), m.Int32Constant(-1))));
} else {
ASSERT_EQ(kMachInt64, type);
m.Return((m.*inst.constructor)(
m.Parameter(0), m.Word64Xor(m.Parameter(1), m.Int64Constant(-1))));
}
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(inst.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
{
StreamBuilder m(this, type, type, type);
if (type == kMachInt32) {
m.Return((m.*inst.constructor)(
m.Word32Xor(m.Parameter(0), m.Int32Constant(-1)), m.Parameter(1)));
} else {
ASSERT_EQ(kMachInt64, type);
m.Return((m.*inst.constructor)(
m.Word64Xor(m.Parameter(0), m.Int64Constant(-1)), m.Parameter(1)));
}
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(inst.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
// Test cases where RHS is Not(x).
{
StreamBuilder m(this, type, type, type);
if (type == kMachInt32) {
m.Return(
(m.*inst.constructor)(m.Parameter(0), m.Word32Not(m.Parameter(1))));
} else {
ASSERT_EQ(kMachInt64, type);
m.Return(
(m.*inst.constructor)(m.Parameter(0), m.Word64Not(m.Parameter(1))));
}
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(inst.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
{
StreamBuilder m(this, type, type, type);
if (type == kMachInt32) {
m.Return(
(m.*inst.constructor)(m.Word32Not(m.Parameter(0)), m.Parameter(1)));
} else {
ASSERT_EQ(kMachInt64, type);
m.Return(
(m.*inst.constructor)(m.Word64Not(m.Parameter(0)), m.Parameter(1)));
}
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(inst.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest,
InstructionSelectorLogicalWithNotRHSTest,
::testing::ValuesIn(kLogicalWithNotRHSs));
TEST_F(InstructionSelectorTest, Word32NotWithParameter) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32Not(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Not32, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_F(InstructionSelectorTest, Word64NotWithParameter) {
StreamBuilder m(this, kMachInt64, kMachInt64);
m.Return(m.Word64Not(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Not, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_F(InstructionSelectorTest, Word32XorMinusOneWithParameter) {
{
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32Xor(m.Parameter(0), m.Int32Constant(-1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Not32, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
{
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32Xor(m.Int32Constant(-1), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Not32, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
TEST_F(InstructionSelectorTest, Word64XorMinusOneWithParameter) {
{
StreamBuilder m(this, kMachInt64, kMachInt64);
m.Return(m.Word64Xor(m.Parameter(0), m.Int64Constant(-1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Not, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
{
StreamBuilder m(this, kMachInt64, kMachInt64);
m.Return(m.Word64Xor(m.Int64Constant(-1), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Not, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
TEST_F(InstructionSelectorTest, Word32ShrWithWord32AndWithImmediate) {
TRACED_FORRANGE(int32_t, lsb, 1, 31) {
TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) {
uint32_t jnk = rng()->NextInt();
jnk >>= 32 - lsb;
uint32_t msk = ((0xffffffffu >> (32 - width)) << lsb) | jnk;
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32Shr(m.Word32And(m.Parameter(0), m.Int32Constant(msk)),
m.Int32Constant(lsb)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Ubfx32, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2)));
}
}
TRACED_FORRANGE(int32_t, lsb, 1, 31) {
TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) {
uint32_t jnk = rng()->NextInt();
jnk >>= 32 - lsb;
uint32_t msk = ((0xffffffffu >> (32 - width)) << lsb) | jnk;
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32Shr(m.Word32And(m.Int32Constant(msk), m.Parameter(0)),
m.Int32Constant(lsb)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Ubfx32, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2)));
}
}
}
TEST_F(InstructionSelectorTest, Word64ShrWithWord64AndWithImmediate) {
TRACED_FORRANGE(int32_t, lsb, 1, 63) {
TRACED_FORRANGE(int32_t, width, 1, 64 - lsb) {
uint64_t jnk = rng()->NextInt64();
jnk >>= 64 - lsb;
uint64_t msk =
((V8_UINT64_C(0xffffffffffffffff) >> (64 - width)) << lsb) | jnk;
StreamBuilder m(this, kMachInt64, kMachInt64);
m.Return(m.Word64Shr(m.Word64And(m.Parameter(0), m.Int64Constant(msk)),
m.Int64Constant(lsb)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Ubfx, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(lsb, s.ToInt64(s[0]->InputAt(1)));
EXPECT_EQ(width, s.ToInt64(s[0]->InputAt(2)));
}
}
TRACED_FORRANGE(int32_t, lsb, 1, 63) {
TRACED_FORRANGE(int32_t, width, 1, 64 - lsb) {
uint64_t jnk = rng()->NextInt64();
jnk >>= 64 - lsb;
uint64_t msk =
((V8_UINT64_C(0xffffffffffffffff) >> (64 - width)) << lsb) | jnk;
StreamBuilder m(this, kMachInt64, kMachInt64);
m.Return(m.Word64Shr(m.Word64And(m.Int64Constant(msk), m.Parameter(0)),
m.Int64Constant(lsb)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Ubfx, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(lsb, s.ToInt64(s[0]->InputAt(1)));
EXPECT_EQ(width, s.ToInt64(s[0]->InputAt(2)));
}
}
}
TEST_F(InstructionSelectorTest, Word32AndWithImmediateWithWord32Shr) {
TRACED_FORRANGE(int32_t, lsb, 1, 31) {
TRACED_FORRANGE(int32_t, width, 1, 31) {
uint32_t msk = (1 << width) - 1;
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32And(m.Word32Shr(m.Parameter(0), m.Int32Constant(lsb)),
m.Int32Constant(msk)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Ubfx32, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1)));
int32_t actual_width = (lsb + width > 32) ? (32 - lsb) : width;
EXPECT_EQ(actual_width, s.ToInt32(s[0]->InputAt(2)));
}
}
TRACED_FORRANGE(int32_t, lsb, 1, 31) {
TRACED_FORRANGE(int32_t, width, 1, 31) {
uint32_t msk = (1 << width) - 1;
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32And(m.Int32Constant(msk),
m.Word32Shr(m.Parameter(0), m.Int32Constant(lsb))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Ubfx32, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1)));
int32_t actual_width = (lsb + width > 32) ? (32 - lsb) : width;
EXPECT_EQ(actual_width, s.ToInt32(s[0]->InputAt(2)));
}
}
}
TEST_F(InstructionSelectorTest, Word64AndWithImmediateWithWord64Shr) {
TRACED_FORRANGE(int64_t, lsb, 1, 63) {
TRACED_FORRANGE(int64_t, width, 1, 63) {
uint64_t msk = (V8_UINT64_C(1) << width) - 1;
StreamBuilder m(this, kMachInt64, kMachInt64);
m.Return(m.Word64And(m.Word64Shr(m.Parameter(0), m.Int64Constant(lsb)),
m.Int64Constant(msk)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Ubfx, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(lsb, s.ToInt64(s[0]->InputAt(1)));
int64_t actual_width = (lsb + width > 64) ? (64 - lsb) : width;
EXPECT_EQ(actual_width, s.ToInt64(s[0]->InputAt(2)));
}
}
TRACED_FORRANGE(int64_t, lsb, 1, 63) {
TRACED_FORRANGE(int64_t, width, 1, 63) {
uint64_t msk = (V8_UINT64_C(1) << width) - 1;
StreamBuilder m(this, kMachInt64, kMachInt64);
m.Return(m.Word64And(m.Int64Constant(msk),
m.Word64Shr(m.Parameter(0), m.Int64Constant(lsb))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Ubfx, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(lsb, s.ToInt64(s[0]->InputAt(1)));
int64_t actual_width = (lsb + width > 64) ? (64 - lsb) : width;
EXPECT_EQ(actual_width, s.ToInt64(s[0]->InputAt(2)));
}
}
}
TEST_F(InstructionSelectorTest, Int32MulHighWithParameters) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const n = m.Int32MulHigh(p0, p1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kArm64Smull, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kArm64Asr, s[1]->arch_opcode());
ASSERT_EQ(2U, s[1]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->Output()), s.ToVreg(s[1]->InputAt(0)));
EXPECT_EQ(32, s.ToInt64(s[1]->InputAt(1)));
ASSERT_EQ(1U, s[1]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[1]->Output()));
}
TEST_F(InstructionSelectorTest, Word32SarWithWord32Shl) {
{
StreamBuilder m(this, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const r =
m.Word32Sar(m.Word32Shl(p0, m.Int32Constant(24)), m.Int32Constant(24));
m.Return(r);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Sxtb32, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const r =
m.Word32Sar(m.Word32Shl(p0, m.Int32Constant(16)), m.Int32Constant(16));
m.Return(r);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArm64Sxth32, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output()));
}
}
} // namespace compiler
} // namespace internal
} // namespace v8