v8/src/lithium.cc
bmeurer@chromium.org 9f05d61a1d Split HPhase for Lithium and Hydrogen using common CompilationPhase base.
Add new base class CompilationPhase, which is the base for both HPhase, LPhase and LAllocatorPhase. HPhase is now for Hydrogen passes only, LPhase is for Lithium passes and LAllocatorPhase is for LAllocator phases.

R=svenpanne@chromium.org
BUG=

Review URL: https://codereview.chromium.org/17572011

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@15321 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-06-25 12:22:26 +00:00

502 lines
15 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "lithium.h"
#include "scopes.h"
#if V8_TARGET_ARCH_IA32
#include "ia32/lithium-ia32.h"
#include "ia32/lithium-codegen-ia32.h"
#elif V8_TARGET_ARCH_X64
#include "x64/lithium-x64.h"
#include "x64/lithium-codegen-x64.h"
#elif V8_TARGET_ARCH_ARM
#include "arm/lithium-arm.h"
#include "arm/lithium-codegen-arm.h"
#elif V8_TARGET_ARCH_MIPS
#include "mips/lithium-mips.h"
#include "mips/lithium-codegen-mips.h"
#else
#error "Unknown architecture."
#endif
namespace v8 {
namespace internal {
void LOperand::PrintTo(StringStream* stream) {
LUnallocated* unalloc = NULL;
switch (kind()) {
case INVALID:
stream->Add("(0)");
break;
case UNALLOCATED:
unalloc = LUnallocated::cast(this);
stream->Add("v%d", unalloc->virtual_register());
if (unalloc->basic_policy() == LUnallocated::FIXED_SLOT) {
stream->Add("(=%dS)", unalloc->fixed_slot_index());
break;
}
switch (unalloc->extended_policy()) {
case LUnallocated::NONE:
break;
case LUnallocated::FIXED_REGISTER: {
int reg_index = unalloc->fixed_register_index();
const char* register_name =
Register::AllocationIndexToString(reg_index);
stream->Add("(=%s)", register_name);
break;
}
case LUnallocated::FIXED_DOUBLE_REGISTER: {
int reg_index = unalloc->fixed_register_index();
const char* double_register_name =
DoubleRegister::AllocationIndexToString(reg_index);
stream->Add("(=%s)", double_register_name);
break;
}
case LUnallocated::MUST_HAVE_REGISTER:
stream->Add("(R)");
break;
case LUnallocated::WRITABLE_REGISTER:
stream->Add("(WR)");
break;
case LUnallocated::SAME_AS_FIRST_INPUT:
stream->Add("(1)");
break;
case LUnallocated::ANY:
stream->Add("(-)");
break;
}
break;
case CONSTANT_OPERAND:
stream->Add("[constant:%d]", index());
break;
case STACK_SLOT:
stream->Add("[stack:%d]", index());
break;
case DOUBLE_STACK_SLOT:
stream->Add("[double_stack:%d]", index());
break;
case REGISTER:
stream->Add("[%s|R]", Register::AllocationIndexToString(index()));
break;
case DOUBLE_REGISTER:
stream->Add("[%s|R]", DoubleRegister::AllocationIndexToString(index()));
break;
case ARGUMENT:
stream->Add("[arg:%d]", index());
break;
}
}
#define DEFINE_OPERAND_CACHE(name, type) \
L##name* L##name::cache = NULL; \
\
void L##name::SetUpCache() { \
if (cache) return; \
cache = new L##name[kNumCachedOperands]; \
for (int i = 0; i < kNumCachedOperands; i++) { \
cache[i].ConvertTo(type, i); \
} \
} \
\
void L##name::TearDownCache() { \
delete[] cache; \
}
LITHIUM_OPERAND_LIST(DEFINE_OPERAND_CACHE)
#undef DEFINE_OPERAND_CACHE
void LOperand::SetUpCaches() {
#define LITHIUM_OPERAND_SETUP(name, type) L##name::SetUpCache();
LITHIUM_OPERAND_LIST(LITHIUM_OPERAND_SETUP)
#undef LITHIUM_OPERAND_SETUP
}
void LOperand::TearDownCaches() {
#define LITHIUM_OPERAND_TEARDOWN(name, type) L##name::TearDownCache();
LITHIUM_OPERAND_LIST(LITHIUM_OPERAND_TEARDOWN)
#undef LITHIUM_OPERAND_TEARDOWN
}
bool LParallelMove::IsRedundant() const {
for (int i = 0; i < move_operands_.length(); ++i) {
if (!move_operands_[i].IsRedundant()) return false;
}
return true;
}
void LParallelMove::PrintDataTo(StringStream* stream) const {
bool first = true;
for (int i = 0; i < move_operands_.length(); ++i) {
if (!move_operands_[i].IsEliminated()) {
LOperand* source = move_operands_[i].source();
LOperand* destination = move_operands_[i].destination();
if (!first) stream->Add(" ");
first = false;
if (source->Equals(destination)) {
destination->PrintTo(stream);
} else {
destination->PrintTo(stream);
stream->Add(" = ");
source->PrintTo(stream);
}
stream->Add(";");
}
}
}
void LEnvironment::PrintTo(StringStream* stream) {
stream->Add("[id=%d|", ast_id().ToInt());
if (deoptimization_index() != Safepoint::kNoDeoptimizationIndex) {
stream->Add("deopt_id=%d|", deoptimization_index());
}
stream->Add("parameters=%d|", parameter_count());
stream->Add("arguments_stack_height=%d|", arguments_stack_height());
for (int i = 0; i < values_.length(); ++i) {
if (i != 0) stream->Add(";");
if (values_[i] == NULL) {
stream->Add("[hole]");
} else {
values_[i]->PrintTo(stream);
}
}
stream->Add("]");
}
void LPointerMap::RecordPointer(LOperand* op, Zone* zone) {
// Do not record arguments as pointers.
if (op->IsStackSlot() && op->index() < 0) return;
ASSERT(!op->IsDoubleRegister() && !op->IsDoubleStackSlot());
pointer_operands_.Add(op, zone);
}
void LPointerMap::RemovePointer(LOperand* op) {
// Do not record arguments as pointers.
if (op->IsStackSlot() && op->index() < 0) return;
ASSERT(!op->IsDoubleRegister() && !op->IsDoubleStackSlot());
for (int i = 0; i < pointer_operands_.length(); ++i) {
if (pointer_operands_[i]->Equals(op)) {
pointer_operands_.Remove(i);
--i;
}
}
}
void LPointerMap::RecordUntagged(LOperand* op, Zone* zone) {
// Do not record arguments as pointers.
if (op->IsStackSlot() && op->index() < 0) return;
ASSERT(!op->IsDoubleRegister() && !op->IsDoubleStackSlot());
untagged_operands_.Add(op, zone);
}
void LPointerMap::PrintTo(StringStream* stream) {
stream->Add("{");
for (int i = 0; i < pointer_operands_.length(); ++i) {
if (i != 0) stream->Add(";");
pointer_operands_[i]->PrintTo(stream);
}
stream->Add("} @%d", position());
}
int ElementsKindToShiftSize(ElementsKind elements_kind) {
switch (elements_kind) {
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_PIXEL_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
return 0;
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
return 1;
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
case EXTERNAL_FLOAT_ELEMENTS:
return 2;
case EXTERNAL_DOUBLE_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
return 3;
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
return kPointerSizeLog2;
}
UNREACHABLE();
return 0;
}
int StackSlotOffset(int index) {
if (index >= 0) {
// Local or spill slot. Skip the frame pointer, function, and
// context in the fixed part of the frame.
return -(index + 3) * kPointerSize;
} else {
// Incoming parameter. Skip the return address.
return -(index - 1) * kPointerSize;
}
}
LChunk::LChunk(CompilationInfo* info, HGraph* graph)
: spill_slot_count_(0),
info_(info),
graph_(graph),
instructions_(32, graph->zone()),
pointer_maps_(8, graph->zone()),
inlined_closures_(1, graph->zone()) {
}
LLabel* LChunk::GetLabel(int block_id) const {
HBasicBlock* block = graph_->blocks()->at(block_id);
int first_instruction = block->first_instruction_index();
return LLabel::cast(instructions_[first_instruction]);
}
int LChunk::LookupDestination(int block_id) const {
LLabel* cur = GetLabel(block_id);
while (cur->replacement() != NULL) {
cur = cur->replacement();
}
return cur->block_id();
}
Label* LChunk::GetAssemblyLabel(int block_id) const {
LLabel* label = GetLabel(block_id);
ASSERT(!label->HasReplacement());
return label->label();
}
void LChunk::MarkEmptyBlocks() {
LPhase phase("L_Mark empty blocks", this);
for (int i = 0; i < graph()->blocks()->length(); ++i) {
HBasicBlock* block = graph()->blocks()->at(i);
int first = block->first_instruction_index();
int last = block->last_instruction_index();
LInstruction* first_instr = instructions()->at(first);
LInstruction* last_instr = instructions()->at(last);
LLabel* label = LLabel::cast(first_instr);
if (last_instr->IsGoto()) {
LGoto* goto_instr = LGoto::cast(last_instr);
if (label->IsRedundant() &&
!label->is_loop_header()) {
bool can_eliminate = true;
for (int i = first + 1; i < last && can_eliminate; ++i) {
LInstruction* cur = instructions()->at(i);
if (cur->IsGap()) {
LGap* gap = LGap::cast(cur);
if (!gap->IsRedundant()) {
can_eliminate = false;
}
} else {
can_eliminate = false;
}
}
if (can_eliminate) {
label->set_replacement(GetLabel(goto_instr->block_id()));
}
}
}
}
}
void LChunk::AddInstruction(LInstruction* instr, HBasicBlock* block) {
LInstructionGap* gap = new(graph_->zone()) LInstructionGap(block);
gap->set_hydrogen_value(instr->hydrogen_value());
int index = -1;
if (instr->IsControl()) {
instructions_.Add(gap, zone());
index = instructions_.length();
instructions_.Add(instr, zone());
} else {
index = instructions_.length();
instructions_.Add(instr, zone());
instructions_.Add(gap, zone());
}
if (instr->HasPointerMap()) {
pointer_maps_.Add(instr->pointer_map(), zone());
instr->pointer_map()->set_lithium_position(index);
}
}
LConstantOperand* LChunk::DefineConstantOperand(HConstant* constant) {
return LConstantOperand::Create(constant->id(), zone());
}
int LChunk::GetParameterStackSlot(int index) const {
// The receiver is at index 0, the first parameter at index 1, so we
// shift all parameter indexes down by the number of parameters, and
// make sure they end up negative so they are distinguishable from
// spill slots.
int result = index - info()->scope()->num_parameters() - 1;
ASSERT(result < 0);
return result;
}
// A parameter relative to ebp in the arguments stub.
int LChunk::ParameterAt(int index) {
ASSERT(-1 <= index); // -1 is the receiver.
return (1 + info()->scope()->num_parameters() - index) *
kPointerSize;
}
LGap* LChunk::GetGapAt(int index) const {
return LGap::cast(instructions_[index]);
}
bool LChunk::IsGapAt(int index) const {
return instructions_[index]->IsGap();
}
int LChunk::NearestGapPos(int index) const {
while (!IsGapAt(index)) index--;
return index;
}
void LChunk::AddGapMove(int index, LOperand* from, LOperand* to) {
GetGapAt(index)->GetOrCreateParallelMove(
LGap::START, zone())->AddMove(from, to, zone());
}
HConstant* LChunk::LookupConstant(LConstantOperand* operand) const {
return HConstant::cast(graph_->LookupValue(operand->index()));
}
Representation LChunk::LookupLiteralRepresentation(
LConstantOperand* operand) const {
return graph_->LookupValue(operand->index())->representation();
}
LChunk* LChunk::NewChunk(HGraph* graph) {
DisallowHandleAllocation no_handles;
DisallowHeapAllocation no_gc;
int values = graph->GetMaximumValueID();
CompilationInfo* info = graph->info();
if (values > LUnallocated::kMaxVirtualRegisters) {
info->set_bailout_reason("not enough virtual registers for values");
return NULL;
}
LAllocator allocator(values, graph);
LChunkBuilder builder(info, graph, &allocator);
LChunk* chunk = builder.Build();
if (chunk == NULL) return NULL;
if (!allocator.Allocate(chunk)) {
info->set_bailout_reason("not enough virtual registers (regalloc)");
return NULL;
}
chunk->set_allocated_double_registers(
allocator.assigned_double_registers());
return chunk;
}
Handle<Code> LChunk::Codegen() {
MacroAssembler assembler(info()->isolate(), NULL, 0);
LOG_CODE_EVENT(info()->isolate(),
CodeStartLinePosInfoRecordEvent(
assembler.positions_recorder()));
LCodeGen generator(this, &assembler, info());
MarkEmptyBlocks();
if (generator.GenerateCode()) {
CodeGenerator::MakeCodePrologue(info(), "optimized");
Code::Flags flags = info()->flags();
Handle<Code> code =
CodeGenerator::MakeCodeEpilogue(&assembler, flags, info());
generator.FinishCode(code);
code->set_is_crankshafted(true);
if (!code.is_null()) {
void* jit_handler_data =
assembler.positions_recorder()->DetachJITHandlerData();
LOG_CODE_EVENT(info()->isolate(),
CodeEndLinePosInfoRecordEvent(*code, jit_handler_data));
}
CodeGenerator::PrintCode(code, info());
return code;
}
return Handle<Code>::null();
}
void LChunk::set_allocated_double_registers(BitVector* allocated_registers) {
allocated_double_registers_ = allocated_registers;
BitVector* doubles = allocated_double_registers();
BitVector::Iterator iterator(doubles);
while (!iterator.Done()) {
if (info()->saves_caller_doubles()) {
if (kDoubleSize == kPointerSize * 2) {
spill_slot_count_ += 2;
} else {
spill_slot_count_++;
}
}
iterator.Advance();
}
}
LPhase::~LPhase() {
if (ShouldProduceTraceOutput()) {
isolate()->GetHTracer()->TraceLithium(name(), chunk_);
}
}
} } // namespace v8::internal