v8/src/code-stubs.h
ishell 331b0df6e4 [stubs] Ensure that the stubs are recompiled in respective tests.
Removing elements from stub cache by Major key only does not always work.

BUG=

Review-Url: https://codereview.chromium.org/2551353003
Cr-Commit-Position: refs/heads/master@{#41544}
2016-12-07 10:23:21 +00:00

2653 lines
90 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_CODE_STUBS_H_
#define V8_CODE_STUBS_H_
#include "src/allocation.h"
#include "src/assembler.h"
#include "src/codegen.h"
#include "src/globals.h"
#include "src/ic/ic-state.h"
#include "src/interface-descriptors.h"
#include "src/macro-assembler.h"
#include "src/ostreams.h"
#include "src/type-hints.h"
namespace v8 {
namespace internal {
// Forward declarations.
class CodeStubAssembler;
class ObjectLiteral;
namespace compiler {
class CodeAssemblerLabel;
class CodeAssemblerState;
class Node;
}
// List of code stubs used on all platforms.
#define CODE_STUB_LIST_ALL_PLATFORMS(V) \
/* --- PlatformCodeStubs --- */ \
V(ArrayConstructor) \
V(BinaryOpICWithAllocationSite) \
V(CallApiCallback) \
V(CallApiGetter) \
V(CallConstruct) \
V(CallIC) \
V(CEntry) \
V(CompareIC) \
V(DoubleToI) \
V(FunctionPrototype) \
V(InternalArrayConstructor) \
V(JSEntry) \
V(LoadIndexedString) \
V(MathPow) \
V(ProfileEntryHook) \
V(RecordWrite) \
V(RegExpExec) \
V(StoreBufferOverflow) \
V(StoreElement) \
V(SubString) \
V(LoadGlobalIC) \
V(FastNewObject) \
V(FastNewRestParameter) \
V(FastNewSloppyArguments) \
V(FastNewStrictArguments) \
V(NameDictionaryLookup) \
/* This can be removed once there are no */ \
/* more deopting Hydrogen stubs. */ \
V(StubFailureTrampoline) \
/* These are only called from FCG */ \
/* They can be removed when only the TF */ \
/* version of the corresponding stub is */ \
/* used universally */ \
V(CallICTrampoline) \
/* --- HydrogenCodeStubs --- */ \
/* These will be ported/eliminated */ \
/* as part of the new IC system, ask */ \
/* ishell before doing anything */ \
V(LoadConstant) \
V(LoadDictionaryElement) \
V(LoadFastElement) \
V(LoadField) \
/* These should never be ported to TF */ \
/* because they are either used only by */ \
/* FCG/Crankshaft or are deprecated */ \
V(BinaryOpIC) \
V(BinaryOpWithAllocationSite) \
V(ToBooleanIC) \
V(TransitionElementsKind) \
/* --- TurboFanCodeStubs --- */ \
V(AllocateHeapNumber) \
V(AllocateFloat32x4) \
V(AllocateInt32x4) \
V(AllocateUint32x4) \
V(AllocateBool32x4) \
V(AllocateInt16x8) \
V(AllocateUint16x8) \
V(AllocateBool16x8) \
V(AllocateInt8x16) \
V(AllocateUint8x16) \
V(AllocateBool8x16) \
V(ArrayNoArgumentConstructor) \
V(ArraySingleArgumentConstructor) \
V(ArrayNArgumentsConstructor) \
V(CreateAllocationSite) \
V(CreateWeakCell) \
V(StringLength) \
V(AddWithFeedback) \
V(SubtractWithFeedback) \
V(MultiplyWithFeedback) \
V(DivideWithFeedback) \
V(ModulusWithFeedback) \
V(Inc) \
V(InternalArrayNoArgumentConstructor) \
V(InternalArraySingleArgumentConstructor) \
V(Dec) \
V(ElementsTransitionAndStore) \
V(FastCloneRegExp) \
V(FastCloneShallowArray) \
V(FastCloneShallowObject) \
V(FastNewClosure) \
V(FastNewFunctionContext) \
V(KeyedLoadSloppyArguments) \
V(KeyedStoreSloppyArguments) \
V(LoadScriptContextField) \
V(StoreScriptContextField) \
V(NumberToString) \
V(StringAdd) \
V(GetProperty) \
V(LoadIC) \
V(LoadICProtoArray) \
V(KeyedLoadICTF) \
V(StoreFastElement) \
V(StoreField) \
V(StoreGlobal) \
V(StoreIC) \
V(KeyedStoreICTF) \
V(StoreInterceptor) \
V(StoreMap) \
V(StoreTransition) \
V(LoadApiGetter) \
V(LoadIndexedInterceptor) \
V(GrowArrayElements) \
/* These are only called from FGC and */ \
/* can be removed when we use ignition */ \
/* only */ \
V(LoadICTrampoline) \
V(LoadGlobalICTrampoline) \
V(KeyedLoadICTrampolineTF) \
V(StoreICTrampoline) \
V(KeyedStoreICTrampolineTF)
// List of code stubs only used on ARM 32 bits platforms.
#if V8_TARGET_ARCH_ARM
#define CODE_STUB_LIST_ARM(V) V(DirectCEntry)
#else
#define CODE_STUB_LIST_ARM(V)
#endif
// List of code stubs only used on ARM 64 bits platforms.
#if V8_TARGET_ARCH_ARM64
#define CODE_STUB_LIST_ARM64(V) \
V(DirectCEntry) \
V(RestoreRegistersState) \
V(StoreRegistersState)
#else
#define CODE_STUB_LIST_ARM64(V)
#endif
// List of code stubs only used on PPC platforms.
#ifdef V8_TARGET_ARCH_PPC
#define CODE_STUB_LIST_PPC(V) \
V(DirectCEntry) \
V(StoreRegistersState) \
V(RestoreRegistersState)
#else
#define CODE_STUB_LIST_PPC(V)
#endif
// List of code stubs only used on MIPS platforms.
#if V8_TARGET_ARCH_MIPS
#define CODE_STUB_LIST_MIPS(V) \
V(DirectCEntry) \
V(RestoreRegistersState) \
V(StoreRegistersState)
#elif V8_TARGET_ARCH_MIPS64
#define CODE_STUB_LIST_MIPS(V) \
V(DirectCEntry) \
V(RestoreRegistersState) \
V(StoreRegistersState)
#else
#define CODE_STUB_LIST_MIPS(V)
#endif
// List of code stubs only used on S390 platforms.
#ifdef V8_TARGET_ARCH_S390
#define CODE_STUB_LIST_S390(V) \
V(DirectCEntry) \
V(StoreRegistersState) \
V(RestoreRegistersState)
#else
#define CODE_STUB_LIST_S390(V)
#endif
// Combined list of code stubs.
#define CODE_STUB_LIST(V) \
CODE_STUB_LIST_ALL_PLATFORMS(V) \
CODE_STUB_LIST_ARM(V) \
CODE_STUB_LIST_ARM64(V) \
CODE_STUB_LIST_PPC(V) \
CODE_STUB_LIST_MIPS(V) \
CODE_STUB_LIST_S390(V)
static const int kHasReturnedMinusZeroSentinel = 1;
// Stub is base classes of all stubs.
class CodeStub BASE_EMBEDDED {
public:
enum Major {
// TODO(mvstanton): eliminate the NoCache key by getting rid
// of the non-monomorphic-cache.
NoCache = 0, // marker for stubs that do custom caching]
#define DEF_ENUM(name) name,
CODE_STUB_LIST(DEF_ENUM)
#undef DEF_ENUM
NUMBER_OF_IDS
};
// Retrieve the code for the stub. Generate the code if needed.
Handle<Code> GetCode();
// Retrieve the code for the stub, make and return a copy of the code.
Handle<Code> GetCodeCopy(const Code::FindAndReplacePattern& pattern);
static Major MajorKeyFromKey(uint32_t key) {
return static_cast<Major>(MajorKeyBits::decode(key));
}
static uint32_t MinorKeyFromKey(uint32_t key) {
return MinorKeyBits::decode(key);
}
// Gets the major key from a code object that is a code stub or binary op IC.
static Major GetMajorKey(Code* code_stub) {
return MajorKeyFromKey(code_stub->stub_key());
}
static uint32_t NoCacheKey() { return MajorKeyBits::encode(NoCache); }
static const char* MajorName(Major major_key);
explicit CodeStub(Isolate* isolate) : minor_key_(0), isolate_(isolate) {}
virtual ~CodeStub() {}
static void GenerateStubsAheadOfTime(Isolate* isolate);
static void GenerateFPStubs(Isolate* isolate);
// Some stubs put untagged junk on the stack that cannot be scanned by the
// GC. This means that we must be statically sure that no GC can occur while
// they are running. If that is the case they should override this to return
// true, which will cause an assertion if we try to call something that can
// GC or if we try to put a stack frame on top of the junk, which would not
// result in a traversable stack.
virtual bool SometimesSetsUpAFrame() { return true; }
// Lookup the code in the (possibly custom) cache.
bool FindCodeInCache(Code** code_out);
virtual CallInterfaceDescriptor GetCallInterfaceDescriptor() const = 0;
virtual int GetStackParameterCount() const {
return GetCallInterfaceDescriptor().GetStackParameterCount();
}
virtual void InitializeDescriptor(CodeStubDescriptor* descriptor) {}
static void InitializeDescriptor(Isolate* isolate, uint32_t key,
CodeStubDescriptor* desc);
static MaybeHandle<Code> GetCode(Isolate* isolate, uint32_t key);
// Returns information for computing the number key.
virtual Major MajorKey() const = 0;
uint32_t MinorKey() const { return minor_key_; }
// BinaryOpStub needs to override this.
virtual Code::Kind GetCodeKind() const;
virtual ExtraICState GetExtraICState() const { return kNoExtraICState; }
Code::Flags GetCodeFlags() const;
friend std::ostream& operator<<(std::ostream& os, const CodeStub& s) {
s.PrintName(os);
return os;
}
Isolate* isolate() const { return isolate_; }
void DeleteStubFromCacheForTesting();
protected:
CodeStub(uint32_t key, Isolate* isolate)
: minor_key_(MinorKeyFromKey(key)), isolate_(isolate) {}
// Generates the assembler code for the stub.
virtual Handle<Code> GenerateCode() = 0;
// Returns whether the code generated for this stub needs to be allocated as
// a fixed (non-moveable) code object.
virtual bool NeedsImmovableCode() { return false; }
virtual void PrintName(std::ostream& os) const; // NOLINT
virtual void PrintBaseName(std::ostream& os) const; // NOLINT
virtual void PrintState(std::ostream& os) const { ; } // NOLINT
// Computes the key based on major and minor.
uint32_t GetKey() {
DCHECK(static_cast<int>(MajorKey()) < NUMBER_OF_IDS);
return MinorKeyBits::encode(MinorKey()) | MajorKeyBits::encode(MajorKey());
}
uint32_t minor_key_;
private:
// Perform bookkeeping required after code generation when stub code is
// initially generated.
void RecordCodeGeneration(Handle<Code> code);
// Finish the code object after it has been generated.
virtual void FinishCode(Handle<Code> code) { }
// Activate newly generated stub. Is called after
// registering stub in the stub cache.
virtual void Activate(Code* code) { }
// Add the code to a specialized cache, specific to an individual
// stub type. Please note, this method must add the code object to a
// roots object, otherwise we will remove the code during GC.
virtual void AddToSpecialCache(Handle<Code> new_object) { }
// Find code in a specialized cache, work is delegated to the specific stub.
virtual bool FindCodeInSpecialCache(Code** code_out) {
return false;
}
// If a stub uses a special cache override this.
virtual bool UseSpecialCache() { return false; }
// We use this dispatch to statically instantiate the correct code stub for
// the given stub key and call the passed function with that code stub.
typedef void (*DispatchedCall)(CodeStub* stub, void** value_out);
static void Dispatch(Isolate* isolate, uint32_t key, void** value_out,
DispatchedCall call);
static void GetCodeDispatchCall(CodeStub* stub, void** value_out);
STATIC_ASSERT(NUMBER_OF_IDS < (1 << kStubMajorKeyBits));
class MajorKeyBits: public BitField<uint32_t, 0, kStubMajorKeyBits> {};
class MinorKeyBits: public BitField<uint32_t,
kStubMajorKeyBits, kStubMinorKeyBits> {}; // NOLINT
friend class BreakPointIterator;
Isolate* isolate_;
};
#define DEFINE_CODE_STUB_BASE(NAME, SUPER) \
public: \
NAME(uint32_t key, Isolate* isolate) : SUPER(key, isolate) {} \
\
private: \
DISALLOW_COPY_AND_ASSIGN(NAME)
#define DEFINE_CODE_STUB(NAME, SUPER) \
public: \
inline Major MajorKey() const override { return NAME; }; \
\
DEFINE_CODE_STUB_BASE(NAME##Stub, SUPER)
#define DEFINE_PLATFORM_CODE_STUB(NAME, SUPER) \
private: \
void Generate(MacroAssembler* masm) override; \
DEFINE_CODE_STUB(NAME, SUPER)
#define DEFINE_HYDROGEN_CODE_STUB(NAME, SUPER) \
public: \
void InitializeDescriptor(CodeStubDescriptor* descriptor) override; \
Handle<Code> GenerateCode() override; \
DEFINE_CODE_STUB(NAME, SUPER)
#define DEFINE_TURBOFAN_CODE_STUB(NAME, SUPER) \
public: \
void GenerateAssembly(compiler::CodeAssemblerState* state) const override; \
DEFINE_CODE_STUB(NAME, SUPER)
#define DEFINE_TURBOFAN_BINARY_OP_CODE_STUB_WITH_FEEDBACK(NAME, SUPER) \
public: \
static compiler::Node* Generate( \
CodeStubAssembler* assembler, compiler::Node* left, \
compiler::Node* right, compiler::Node* slot_id, \
compiler::Node* type_feedback_vector, compiler::Node* context); \
void GenerateAssembly(compiler::CodeAssemblerState* state) const override; \
DEFINE_CODE_STUB(NAME, SUPER)
#define DEFINE_TURBOFAN_UNARY_OP_CODE_STUB_WITH_FEEDBACK(NAME, SUPER) \
public: \
static compiler::Node* Generate( \
CodeStubAssembler* assembler, compiler::Node* value, \
compiler::Node* context, compiler::Node* type_feedback_vector, \
compiler::Node* slot_id); \
void GenerateAssembly(compiler::CodeAssemblerState* state) const override; \
DEFINE_CODE_STUB(NAME, SUPER)
#define DEFINE_HANDLER_CODE_STUB(NAME, SUPER) \
public: \
Handle<Code> GenerateCode() override; \
DEFINE_CODE_STUB(NAME, SUPER)
#define DEFINE_CALL_INTERFACE_DESCRIPTOR(NAME) \
public: \
typedef NAME##Descriptor Descriptor; \
CallInterfaceDescriptor GetCallInterfaceDescriptor() const override { \
return Descriptor(isolate()); \
}
// There are some code stubs we just can't describe right now with a
// CallInterfaceDescriptor. Isolate behavior for those cases with this macro.
// An attempt to retrieve a descriptor will fail.
#define DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR() \
public: \
CallInterfaceDescriptor GetCallInterfaceDescriptor() const override { \
UNREACHABLE(); \
return CallInterfaceDescriptor(); \
}
class PlatformCodeStub : public CodeStub {
public:
// Retrieve the code for the stub. Generate the code if needed.
Handle<Code> GenerateCode() override;
protected:
explicit PlatformCodeStub(Isolate* isolate) : CodeStub(isolate) {}
// Generates the assembler code for the stub.
virtual void Generate(MacroAssembler* masm) = 0;
DEFINE_CODE_STUB_BASE(PlatformCodeStub, CodeStub);
};
enum StubFunctionMode { NOT_JS_FUNCTION_STUB_MODE, JS_FUNCTION_STUB_MODE };
class CodeStubDescriptor {
public:
explicit CodeStubDescriptor(CodeStub* stub);
CodeStubDescriptor(Isolate* isolate, uint32_t stub_key);
void Initialize(Address deoptimization_handler = NULL,
int hint_stack_parameter_count = -1,
StubFunctionMode function_mode = NOT_JS_FUNCTION_STUB_MODE);
void Initialize(Register stack_parameter_count,
Address deoptimization_handler = NULL,
int hint_stack_parameter_count = -1,
StubFunctionMode function_mode = NOT_JS_FUNCTION_STUB_MODE);
void SetMissHandler(Runtime::FunctionId id) {
miss_handler_id_ = id;
miss_handler_ = ExternalReference(Runtime::FunctionForId(id), isolate_);
has_miss_handler_ = true;
// Our miss handler infrastructure doesn't currently support
// variable stack parameter counts.
DCHECK(!stack_parameter_count_.is_valid());
}
void set_call_descriptor(CallInterfaceDescriptor d) { call_descriptor_ = d; }
CallInterfaceDescriptor call_descriptor() const { return call_descriptor_; }
int GetRegisterParameterCount() const {
return call_descriptor().GetRegisterParameterCount();
}
int GetStackParameterCount() const {
return call_descriptor().GetStackParameterCount();
}
int GetParameterCount() const {
return call_descriptor().GetParameterCount();
}
Register GetRegisterParameter(int index) const {
return call_descriptor().GetRegisterParameter(index);
}
MachineType GetParameterType(int index) const {
return call_descriptor().GetParameterType(index);
}
ExternalReference miss_handler() const {
DCHECK(has_miss_handler_);
return miss_handler_;
}
Runtime::FunctionId miss_handler_id() const {
DCHECK(has_miss_handler_);
return miss_handler_id_;
}
bool has_miss_handler() const {
return has_miss_handler_;
}
int GetHandlerParameterCount() const {
int params = GetParameterCount();
if (PassesArgumentsToDeoptimizationHandler()) {
params += 1;
}
return params;
}
int hint_stack_parameter_count() const { return hint_stack_parameter_count_; }
Register stack_parameter_count() const { return stack_parameter_count_; }
StubFunctionMode function_mode() const { return function_mode_; }
Address deoptimization_handler() const { return deoptimization_handler_; }
private:
bool PassesArgumentsToDeoptimizationHandler() const {
return stack_parameter_count_.is_valid();
}
Isolate* isolate_;
CallInterfaceDescriptor call_descriptor_;
Register stack_parameter_count_;
// If hint_stack_parameter_count_ > 0, the code stub can optimize the
// return sequence. Default value is -1, which means it is ignored.
int hint_stack_parameter_count_;
StubFunctionMode function_mode_;
Address deoptimization_handler_;
ExternalReference miss_handler_;
Runtime::FunctionId miss_handler_id_;
bool has_miss_handler_;
};
class HydrogenCodeStub : public CodeStub {
public:
enum InitializationState {
UNINITIALIZED,
INITIALIZED
};
template<class SubClass>
static Handle<Code> GetUninitialized(Isolate* isolate) {
SubClass::GenerateAheadOfTime(isolate);
return SubClass().GetCode(isolate);
}
// Retrieve the code for the stub. Generate the code if needed.
Handle<Code> GenerateCode() override = 0;
bool IsUninitialized() const { return IsMissBits::decode(minor_key_); }
Handle<Code> GenerateLightweightMissCode(ExternalReference miss);
Handle<Code> GenerateRuntimeTailCall(CodeStubDescriptor* descriptor);
template<class StateType>
void TraceTransition(StateType from, StateType to);
protected:
explicit HydrogenCodeStub(Isolate* isolate,
InitializationState state = INITIALIZED)
: CodeStub(isolate) {
minor_key_ = IsMissBits::encode(state == UNINITIALIZED);
}
void set_sub_minor_key(uint32_t key) {
minor_key_ = SubMinorKeyBits::update(minor_key_, key);
}
uint32_t sub_minor_key() const { return SubMinorKeyBits::decode(minor_key_); }
static const int kSubMinorKeyBits = kStubMinorKeyBits - 1;
private:
class IsMissBits : public BitField<bool, kSubMinorKeyBits, 1> {};
class SubMinorKeyBits : public BitField<int, 0, kSubMinorKeyBits> {};
void GenerateLightweightMiss(MacroAssembler* masm, ExternalReference miss);
DEFINE_CODE_STUB_BASE(HydrogenCodeStub, CodeStub);
};
class TurboFanCodeStub : public CodeStub {
public:
// Retrieve the code for the stub. Generate the code if needed.
Handle<Code> GenerateCode() override;
int GetStackParameterCount() const override {
return GetCallInterfaceDescriptor().GetStackParameterCount();
}
protected:
explicit TurboFanCodeStub(Isolate* isolate) : CodeStub(isolate) {}
virtual void GenerateAssembly(compiler::CodeAssemblerState* state) const = 0;
private:
DEFINE_CODE_STUB_BASE(TurboFanCodeStub, CodeStub);
};
// Helper interface to prepare to/restore after making runtime calls.
class RuntimeCallHelper {
public:
virtual ~RuntimeCallHelper() {}
virtual void BeforeCall(MacroAssembler* masm) const = 0;
virtual void AfterCall(MacroAssembler* masm) const = 0;
protected:
RuntimeCallHelper() {}
private:
DISALLOW_COPY_AND_ASSIGN(RuntimeCallHelper);
};
} // namespace internal
} // namespace v8
#if V8_TARGET_ARCH_IA32
#include "src/ia32/code-stubs-ia32.h"
#elif V8_TARGET_ARCH_X64
#include "src/x64/code-stubs-x64.h"
#elif V8_TARGET_ARCH_ARM64
#include "src/arm64/code-stubs-arm64.h"
#elif V8_TARGET_ARCH_ARM
#include "src/arm/code-stubs-arm.h"
#elif V8_TARGET_ARCH_PPC
#include "src/ppc/code-stubs-ppc.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/mips/code-stubs-mips.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/mips64/code-stubs-mips64.h"
#elif V8_TARGET_ARCH_S390
#include "src/s390/code-stubs-s390.h"
#elif V8_TARGET_ARCH_X87
#include "src/x87/code-stubs-x87.h"
#else
#error Unsupported target architecture.
#endif
namespace v8 {
namespace internal {
// RuntimeCallHelper implementation used in stubs: enters/leaves a
// newly created internal frame before/after the runtime call.
class StubRuntimeCallHelper : public RuntimeCallHelper {
public:
StubRuntimeCallHelper() {}
void BeforeCall(MacroAssembler* masm) const override;
void AfterCall(MacroAssembler* masm) const override;
};
// Trivial RuntimeCallHelper implementation.
class NopRuntimeCallHelper : public RuntimeCallHelper {
public:
NopRuntimeCallHelper() {}
void BeforeCall(MacroAssembler* masm) const override {}
void AfterCall(MacroAssembler* masm) const override {}
};
class StringLengthStub : public TurboFanCodeStub {
public:
explicit StringLengthStub(Isolate* isolate) : TurboFanCodeStub(isolate) {}
Code::Kind GetCodeKind() const override { return Code::HANDLER; }
ExtraICState GetExtraICState() const override { return Code::LOAD_IC; }
DEFINE_CALL_INTERFACE_DESCRIPTOR(LoadWithVector);
DEFINE_TURBOFAN_CODE_STUB(StringLength, TurboFanCodeStub);
};
class AddWithFeedbackStub final : public TurboFanCodeStub {
public:
explicit AddWithFeedbackStub(Isolate* isolate) : TurboFanCodeStub(isolate) {}
DEFINE_CALL_INTERFACE_DESCRIPTOR(BinaryOpWithVector);
DEFINE_TURBOFAN_BINARY_OP_CODE_STUB_WITH_FEEDBACK(AddWithFeedback,
TurboFanCodeStub);
};
class SubtractWithFeedbackStub final : public TurboFanCodeStub {
public:
explicit SubtractWithFeedbackStub(Isolate* isolate)
: TurboFanCodeStub(isolate) {}
DEFINE_CALL_INTERFACE_DESCRIPTOR(BinaryOpWithVector);
DEFINE_TURBOFAN_BINARY_OP_CODE_STUB_WITH_FEEDBACK(SubtractWithFeedback,
TurboFanCodeStub);
};
class MultiplyWithFeedbackStub final : public TurboFanCodeStub {
public:
explicit MultiplyWithFeedbackStub(Isolate* isolate)
: TurboFanCodeStub(isolate) {}
DEFINE_CALL_INTERFACE_DESCRIPTOR(BinaryOpWithVector);
DEFINE_TURBOFAN_BINARY_OP_CODE_STUB_WITH_FEEDBACK(MultiplyWithFeedback,
TurboFanCodeStub);
};
class DivideWithFeedbackStub final : public TurboFanCodeStub {
public:
explicit DivideWithFeedbackStub(Isolate* isolate)
: TurboFanCodeStub(isolate) {}
DEFINE_CALL_INTERFACE_DESCRIPTOR(BinaryOpWithVector);
DEFINE_TURBOFAN_BINARY_OP_CODE_STUB_WITH_FEEDBACK(DivideWithFeedback,
TurboFanCodeStub);
};
class ModulusWithFeedbackStub final : public TurboFanCodeStub {
public:
explicit ModulusWithFeedbackStub(Isolate* isolate)
: TurboFanCodeStub(isolate) {}
DEFINE_CALL_INTERFACE_DESCRIPTOR(BinaryOpWithVector);
DEFINE_TURBOFAN_BINARY_OP_CODE_STUB_WITH_FEEDBACK(ModulusWithFeedback,
TurboFanCodeStub);
};
class IncStub final : public TurboFanCodeStub {
public:
explicit IncStub(Isolate* isolate) : TurboFanCodeStub(isolate) {}
DEFINE_CALL_INTERFACE_DESCRIPTOR(CountOp);
DEFINE_TURBOFAN_UNARY_OP_CODE_STUB_WITH_FEEDBACK(Inc, TurboFanCodeStub);
};
class DecStub final : public TurboFanCodeStub {
public:
explicit DecStub(Isolate* isolate) : TurboFanCodeStub(isolate) {}
DEFINE_CALL_INTERFACE_DESCRIPTOR(CountOp);
DEFINE_TURBOFAN_UNARY_OP_CODE_STUB_WITH_FEEDBACK(Dec, TurboFanCodeStub);
};
class StoreInterceptorStub : public TurboFanCodeStub {
public:
explicit StoreInterceptorStub(Isolate* isolate) : TurboFanCodeStub(isolate) {}
Code::Kind GetCodeKind() const override { return Code::HANDLER; }
ExtraICState GetExtraICState() const override { return Code::STORE_IC; }
DEFINE_CALL_INTERFACE_DESCRIPTOR(StoreWithVector);
DEFINE_TURBOFAN_CODE_STUB(StoreInterceptor, TurboFanCodeStub);
};
class LoadIndexedInterceptorStub : public TurboFanCodeStub {
public:
explicit LoadIndexedInterceptorStub(Isolate* isolate)
: TurboFanCodeStub(isolate) {}
Code::Kind GetCodeKind() const override { return Code::HANDLER; }
ExtraICState GetExtraICState() const override { return Code::KEYED_LOAD_IC; }
DEFINE_CALL_INTERFACE_DESCRIPTOR(LoadWithVector);
DEFINE_TURBOFAN_CODE_STUB(LoadIndexedInterceptor, TurboFanCodeStub);
};
// ES6 [[Get]] operation.
class GetPropertyStub : public TurboFanCodeStub {
public:
explicit GetPropertyStub(Isolate* isolate) : TurboFanCodeStub(isolate) {}
DEFINE_CALL_INTERFACE_DESCRIPTOR(GetProperty);
DEFINE_TURBOFAN_CODE_STUB(GetProperty, TurboFanCodeStub);
};
class NumberToStringStub final : public TurboFanCodeStub {
public:
explicit NumberToStringStub(Isolate* isolate) : TurboFanCodeStub(isolate) {}
DEFINE_CALL_INTERFACE_DESCRIPTOR(TypeConversion);
DEFINE_TURBOFAN_CODE_STUB(NumberToString, TurboFanCodeStub);
};
class FastNewClosureStub : public TurboFanCodeStub {
public:
explicit FastNewClosureStub(Isolate* isolate) : TurboFanCodeStub(isolate) {}
static compiler::Node* Generate(CodeStubAssembler* assembler,
compiler::Node* shared_info,
compiler::Node* context);
DEFINE_CALL_INTERFACE_DESCRIPTOR(FastNewClosure);
DEFINE_TURBOFAN_CODE_STUB(FastNewClosure, TurboFanCodeStub);
};
class FastNewFunctionContextStub final : public TurboFanCodeStub {
public:
static const int kMaximumSlots = 0x8000;
explicit FastNewFunctionContextStub(Isolate* isolate)
: TurboFanCodeStub(isolate) {}
static compiler::Node* Generate(CodeStubAssembler* assembler,
compiler::Node* function,
compiler::Node* slots,
compiler::Node* context);
private:
// FastNewFunctionContextStub can only allocate closures which fit in the
// new space.
STATIC_ASSERT(((kMaximumSlots + Context::MIN_CONTEXT_SLOTS) * kPointerSize +
FixedArray::kHeaderSize) < kMaxRegularHeapObjectSize);
DEFINE_CALL_INTERFACE_DESCRIPTOR(FastNewFunctionContext);
DEFINE_TURBOFAN_CODE_STUB(FastNewFunctionContext, TurboFanCodeStub);
};
class FastNewObjectStub final : public PlatformCodeStub {
public:
explicit FastNewObjectStub(Isolate* isolate) : PlatformCodeStub(isolate) {}
DEFINE_CALL_INTERFACE_DESCRIPTOR(FastNewObject);
DEFINE_PLATFORM_CODE_STUB(FastNewObject, PlatformCodeStub);
};
// TODO(turbofan): This stub should be possible to write in TurboFan
// using the CodeStubAssembler very soon in a way that is as efficient
// and easy as the current handwritten version, which is partly a copy
// of the strict arguments object materialization code.
class FastNewRestParameterStub final : public PlatformCodeStub {
public:
explicit FastNewRestParameterStub(Isolate* isolate,
bool skip_stub_frame = false)
: PlatformCodeStub(isolate) {
minor_key_ = SkipStubFrameBits::encode(skip_stub_frame);
}
DEFINE_CALL_INTERFACE_DESCRIPTOR(FastNewRestParameter);
DEFINE_PLATFORM_CODE_STUB(FastNewRestParameter, PlatformCodeStub);
int skip_stub_frame() const { return SkipStubFrameBits::decode(minor_key_); }
private:
class SkipStubFrameBits : public BitField<bool, 0, 1> {};
};
// TODO(turbofan): This stub should be possible to write in TurboFan
// using the CodeStubAssembler very soon in a way that is as efficient
// and easy as the current handwritten version.
class FastNewSloppyArgumentsStub final : public PlatformCodeStub {
public:
explicit FastNewSloppyArgumentsStub(Isolate* isolate,
bool skip_stub_frame = false)
: PlatformCodeStub(isolate) {
minor_key_ = SkipStubFrameBits::encode(skip_stub_frame);
}
int skip_stub_frame() const { return SkipStubFrameBits::decode(minor_key_); }
DEFINE_CALL_INTERFACE_DESCRIPTOR(FastNewSloppyArguments);
DEFINE_PLATFORM_CODE_STUB(FastNewSloppyArguments, PlatformCodeStub);
private:
class SkipStubFrameBits : public BitField<bool, 0, 1> {};
};
// TODO(turbofan): This stub should be possible to write in TurboFan
// using the CodeStubAssembler very soon in a way that is as efficient
// and easy as the current handwritten version.
class FastNewStrictArgumentsStub final : public PlatformCodeStub {
public:
explicit FastNewStrictArgumentsStub(Isolate* isolate,
bool skip_stub_frame = false)
: PlatformCodeStub(isolate) {
minor_key_ = SkipStubFrameBits::encode(skip_stub_frame);
}
DEFINE_CALL_INTERFACE_DESCRIPTOR(FastNewStrictArguments);
DEFINE_PLATFORM_CODE_STUB(FastNewStrictArguments, PlatformCodeStub);
int skip_stub_frame() const { return SkipStubFrameBits::decode(minor_key_); }
private:
class SkipStubFrameBits : public BitField<bool, 0, 1> {};
};
class FastCloneRegExpStub final : public TurboFanCodeStub {
public:
explicit FastCloneRegExpStub(Isolate* isolate) : TurboFanCodeStub(isolate) {}
static compiler::Node* Generate(CodeStubAssembler* assembler,
compiler::Node* closure,
compiler::Node* literal_index,
compiler::Node* pattern,
compiler::Node* flags,
compiler::Node* context);
private:
DEFINE_CALL_INTERFACE_DESCRIPTOR(FastCloneRegExp);
DEFINE_TURBOFAN_CODE_STUB(FastCloneRegExp, TurboFanCodeStub);
};
class FastCloneShallowArrayStub : public TurboFanCodeStub {
public:
FastCloneShallowArrayStub(Isolate* isolate,
AllocationSiteMode allocation_site_mode)
: TurboFanCodeStub(isolate) {
minor_key_ = AllocationSiteModeBits::encode(allocation_site_mode);
}
static compiler::Node* Generate(CodeStubAssembler* assembler,
compiler::Node* closure,
compiler::Node* literal_index,
compiler::Node* context,
compiler::CodeAssemblerLabel* call_runtime,
AllocationSiteMode allocation_site_mode);
AllocationSiteMode allocation_site_mode() const {
return AllocationSiteModeBits::decode(minor_key_);
}
private:
class AllocationSiteModeBits: public BitField<AllocationSiteMode, 0, 1> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(FastCloneShallowArray);
DEFINE_TURBOFAN_CODE_STUB(FastCloneShallowArray, TurboFanCodeStub);
};
class FastCloneShallowObjectStub : public TurboFanCodeStub {
public:
// Maximum number of properties in copied object.
static const int kMaximumClonedProperties = 6;
FastCloneShallowObjectStub(Isolate* isolate, int length)
: TurboFanCodeStub(isolate) {
DCHECK_GE(length, 0);
DCHECK_LE(length, kMaximumClonedProperties);
minor_key_ = LengthBits::encode(LengthBits::encode(length));
}
static compiler::Node* GenerateFastPath(
CodeStubAssembler* assembler, compiler::CodeAssemblerLabel* call_runtime,
compiler::Node* closure, compiler::Node* literals_index,
compiler::Node* properties_count);
static bool IsSupported(ObjectLiteral* expr);
static int PropertiesCount(int literal_length);
int length() const { return LengthBits::decode(minor_key_); }
private:
class LengthBits : public BitField<int, 0, 4> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(FastCloneShallowObject);
DEFINE_TURBOFAN_CODE_STUB(FastCloneShallowObject, TurboFanCodeStub);
};
class CreateAllocationSiteStub : public TurboFanCodeStub {
public:
explicit CreateAllocationSiteStub(Isolate* isolate)
: TurboFanCodeStub(isolate) {}
static void GenerateAheadOfTime(Isolate* isolate);
DEFINE_CALL_INTERFACE_DESCRIPTOR(CreateAllocationSite);
DEFINE_TURBOFAN_CODE_STUB(CreateAllocationSite, TurboFanCodeStub);
};
class CreateWeakCellStub : public TurboFanCodeStub {
public:
explicit CreateWeakCellStub(Isolate* isolate) : TurboFanCodeStub(isolate) {}
static void GenerateAheadOfTime(Isolate* isolate);
DEFINE_CALL_INTERFACE_DESCRIPTOR(CreateWeakCell);
DEFINE_TURBOFAN_CODE_STUB(CreateWeakCell, TurboFanCodeStub);
};
class GrowArrayElementsStub : public TurboFanCodeStub {
public:
GrowArrayElementsStub(Isolate* isolate, ElementsKind kind)
: TurboFanCodeStub(isolate) {
minor_key_ = ElementsKindBits::encode(GetHoleyElementsKind(kind));
}
ElementsKind elements_kind() const {
return ElementsKindBits::decode(minor_key_);
}
private:
class ElementsKindBits : public BitField<ElementsKind, 0, 8> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(GrowArrayElements);
DEFINE_TURBOFAN_CODE_STUB(GrowArrayElements, TurboFanCodeStub);
};
enum AllocationSiteOverrideMode {
DONT_OVERRIDE,
DISABLE_ALLOCATION_SITES,
LAST_ALLOCATION_SITE_OVERRIDE_MODE = DISABLE_ALLOCATION_SITES
};
class ArrayConstructorStub: public PlatformCodeStub {
public:
explicit ArrayConstructorStub(Isolate* isolate);
private:
void GenerateDispatchToArrayStub(MacroAssembler* masm,
AllocationSiteOverrideMode mode);
DEFINE_CALL_INTERFACE_DESCRIPTOR(ArrayNArgumentsConstructor);
DEFINE_PLATFORM_CODE_STUB(ArrayConstructor, PlatformCodeStub);
};
class InternalArrayConstructorStub: public PlatformCodeStub {
public:
explicit InternalArrayConstructorStub(Isolate* isolate);
private:
void GenerateCase(MacroAssembler* masm, ElementsKind kind);
DEFINE_CALL_INTERFACE_DESCRIPTOR(ArrayNArgumentsConstructor);
DEFINE_PLATFORM_CODE_STUB(InternalArrayConstructor, PlatformCodeStub);
};
class MathPowStub: public PlatformCodeStub {
public:
enum ExponentType { INTEGER, DOUBLE, TAGGED };
MathPowStub(Isolate* isolate, ExponentType exponent_type)
: PlatformCodeStub(isolate) {
minor_key_ = ExponentTypeBits::encode(exponent_type);
}
CallInterfaceDescriptor GetCallInterfaceDescriptor() const override {
if (exponent_type() == TAGGED) {
return MathPowTaggedDescriptor(isolate());
} else if (exponent_type() == INTEGER) {
return MathPowIntegerDescriptor(isolate());
} else {
// A CallInterfaceDescriptor doesn't specify double registers (yet).
DCHECK_EQ(DOUBLE, exponent_type());
return ContextOnlyDescriptor(isolate());
}
}
private:
ExponentType exponent_type() const {
return ExponentTypeBits::decode(minor_key_);
}
class ExponentTypeBits : public BitField<ExponentType, 0, 2> {};
DEFINE_PLATFORM_CODE_STUB(MathPow, PlatformCodeStub);
};
class CallICStub: public PlatformCodeStub {
public:
CallICStub(Isolate* isolate, const CallICState& state)
: PlatformCodeStub(isolate) {
minor_key_ = state.GetExtraICState();
}
Code::Kind GetCodeKind() const override { return Code::CALL_IC; }
ExtraICState GetExtraICState() const final {
return static_cast<ExtraICState>(minor_key_);
}
protected:
ConvertReceiverMode convert_mode() const { return state().convert_mode(); }
TailCallMode tail_call_mode() const { return state().tail_call_mode(); }
CallICState state() const { return CallICState(GetExtraICState()); }
// Code generation helpers.
void GenerateMiss(MacroAssembler* masm);
void HandleArrayCase(MacroAssembler* masm, Label* miss);
private:
void PrintState(std::ostream& os) const override; // NOLINT
DEFINE_CALL_INTERFACE_DESCRIPTOR(CallFunctionWithFeedbackAndVector);
DEFINE_PLATFORM_CODE_STUB(CallIC, PlatformCodeStub);
};
// TODO(verwaest): Translate to hydrogen code stub.
class FunctionPrototypeStub : public PlatformCodeStub {
public:
explicit FunctionPrototypeStub(Isolate* isolate)
: PlatformCodeStub(isolate) {}
Code::Kind GetCodeKind() const override { return Code::HANDLER; }
ExtraICState GetExtraICState() const override { return Code::LOAD_IC; }
// TODO(mvstanton): only the receiver register is accessed. When this is
// translated to a hydrogen code stub, a new CallInterfaceDescriptor
// should be created that just uses that register for more efficient code.
CallInterfaceDescriptor GetCallInterfaceDescriptor() const override {
return LoadWithVectorDescriptor(isolate());
}
DEFINE_PLATFORM_CODE_STUB(FunctionPrototype, PlatformCodeStub);
};
class LoadIndexedStringStub : public PlatformCodeStub {
public:
explicit LoadIndexedStringStub(Isolate* isolate)
: PlatformCodeStub(isolate) {}
Code::Kind GetCodeKind() const override { return Code::HANDLER; }
ExtraICState GetExtraICState() const override { return Code::KEYED_LOAD_IC; }
DEFINE_CALL_INTERFACE_DESCRIPTOR(Load);
DEFINE_PLATFORM_CODE_STUB(LoadIndexedString, PlatformCodeStub);
};
class HandlerStub : public HydrogenCodeStub {
public:
Code::Kind GetCodeKind() const override { return Code::HANDLER; }
ExtraICState GetExtraICState() const override { return kind(); }
void InitializeDescriptor(CodeStubDescriptor* descriptor) override;
CallInterfaceDescriptor GetCallInterfaceDescriptor() const override;
protected:
explicit HandlerStub(Isolate* isolate) : HydrogenCodeStub(isolate) {}
virtual Code::Kind kind() const = 0;
DEFINE_CODE_STUB_BASE(HandlerStub, HydrogenCodeStub);
};
class LoadFieldStub: public HandlerStub {
public:
LoadFieldStub(Isolate* isolate, FieldIndex index) : HandlerStub(isolate) {
int property_index_key = index.GetFieldAccessStubKey();
set_sub_minor_key(LoadFieldByIndexBits::encode(property_index_key));
}
FieldIndex index() const {
int property_index_key = LoadFieldByIndexBits::decode(sub_minor_key());
return FieldIndex::FromFieldAccessStubKey(property_index_key);
}
protected:
Code::Kind kind() const override { return Code::LOAD_IC; }
private:
class LoadFieldByIndexBits : public BitField<int, 0, 13> {};
// TODO(ishell): The stub uses only kReceiver parameter.
DEFINE_CALL_INTERFACE_DESCRIPTOR(LoadWithVector);
DEFINE_HANDLER_CODE_STUB(LoadField, HandlerStub);
};
class KeyedLoadSloppyArgumentsStub : public TurboFanCodeStub {
public:
explicit KeyedLoadSloppyArgumentsStub(Isolate* isolate)
: TurboFanCodeStub(isolate) {}
Code::Kind GetCodeKind() const override { return Code::HANDLER; }
ExtraICState GetExtraICState() const override { return Code::LOAD_IC; }
protected:
DEFINE_CALL_INTERFACE_DESCRIPTOR(LoadWithVector);
DEFINE_TURBOFAN_CODE_STUB(KeyedLoadSloppyArguments, TurboFanCodeStub);
};
class CommonStoreModeBits : public BitField<KeyedAccessStoreMode, 0, 3> {};
class KeyedStoreSloppyArgumentsStub : public TurboFanCodeStub {
public:
explicit KeyedStoreSloppyArgumentsStub(Isolate* isolate,
KeyedAccessStoreMode mode)
: TurboFanCodeStub(isolate) {
minor_key_ = CommonStoreModeBits::encode(mode);
}
Code::Kind GetCodeKind() const override { return Code::HANDLER; }
ExtraICState GetExtraICState() const override { return Code::STORE_IC; }
protected:
DEFINE_CALL_INTERFACE_DESCRIPTOR(StoreWithVector);
DEFINE_TURBOFAN_CODE_STUB(KeyedStoreSloppyArguments, TurboFanCodeStub);
};
class LoadConstantStub : public HandlerStub {
public:
LoadConstantStub(Isolate* isolate, int constant_index)
: HandlerStub(isolate) {
set_sub_minor_key(ConstantIndexBits::encode(constant_index));
}
int constant_index() const {
return ConstantIndexBits::decode(sub_minor_key());
}
protected:
Code::Kind kind() const override { return Code::LOAD_IC; }
private:
class ConstantIndexBits : public BitField<int, 0, kSubMinorKeyBits> {};
// TODO(ishell): The stub uses only kReceiver parameter.
DEFINE_CALL_INTERFACE_DESCRIPTOR(LoadWithVector);
DEFINE_HANDLER_CODE_STUB(LoadConstant, HandlerStub);
};
class LoadApiGetterStub : public TurboFanCodeStub {
public:
LoadApiGetterStub(Isolate* isolate, bool receiver_is_holder, int index)
: TurboFanCodeStub(isolate) {
// If that's not true, we need to ensure that the receiver is actually a
// JSReceiver. http://crbug.com/609134
DCHECK(receiver_is_holder);
minor_key_ = IndexBits::encode(index) |
ReceiverIsHolderBits::encode(receiver_is_holder);
}
Code::Kind GetCodeKind() const override { return Code::HANDLER; }
ExtraICState GetExtraICState() const override { return Code::LOAD_IC; }
int index() const { return IndexBits::decode(minor_key_); }
bool receiver_is_holder() const {
return ReceiverIsHolderBits::decode(minor_key_);
}
private:
class ReceiverIsHolderBits : public BitField<bool, 0, 1> {};
class IndexBits : public BitField<int, 1, kDescriptorIndexBitCount> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(Load);
DEFINE_TURBOFAN_CODE_STUB(LoadApiGetter, TurboFanCodeStub);
};
class StoreFieldStub : public TurboFanCodeStub {
public:
StoreFieldStub(Isolate* isolate, FieldIndex index,
Representation representation)
: TurboFanCodeStub(isolate) {
int property_index_key = index.GetFieldAccessStubKey();
minor_key_ = StoreFieldByIndexBits::encode(property_index_key) |
RepresentationBits::encode(representation.kind());
}
Code::Kind GetCodeKind() const override { return Code::HANDLER; }
ExtraICState GetExtraICState() const override { return Code::STORE_IC; }
FieldIndex index() const {
int property_index_key = StoreFieldByIndexBits::decode(minor_key_);
return FieldIndex::FromFieldAccessStubKey(property_index_key);
}
Representation representation() const {
return Representation::FromKind(RepresentationBits::decode(minor_key_));
}
private:
class StoreFieldByIndexBits : public BitField<int, 0, 13> {};
class RepresentationBits
: public BitField<Representation::Kind, StoreFieldByIndexBits::kNext, 4> {
};
STATIC_ASSERT(Representation::kNumRepresentations - 1 <
RepresentationBits::kMax);
DEFINE_CALL_INTERFACE_DESCRIPTOR(StoreWithVector);
DEFINE_TURBOFAN_CODE_STUB(StoreField, TurboFanCodeStub);
};
class StoreMapStub : public TurboFanCodeStub {
public:
explicit StoreMapStub(Isolate* isolate) : TurboFanCodeStub(isolate) {}
Code::Kind GetCodeKind() const override { return Code::HANDLER; }
ExtraICState GetExtraICState() const override { return Code::STORE_IC; }
private:
DEFINE_CALL_INTERFACE_DESCRIPTOR(StoreTransition);
DEFINE_TURBOFAN_CODE_STUB(StoreMap, TurboFanCodeStub);
};
class StoreTransitionStub : public TurboFanCodeStub {
public:
enum StoreMode {
StoreMapAndValue,
ExtendStorageAndStoreMapAndValue
};
StoreTransitionStub(Isolate* isolate, bool is_inobject,
Representation representation, StoreMode store_mode)
: TurboFanCodeStub(isolate) {
minor_key_ = IsInobjectBits::encode(is_inobject) |
RepresentationBits::encode(representation.kind()) |
StoreModeBits::encode(store_mode);
}
Code::Kind GetCodeKind() const override { return Code::HANDLER; }
ExtraICState GetExtraICState() const override { return Code::STORE_IC; }
bool is_inobject() const { return IsInobjectBits::decode(minor_key_); }
Representation representation() const {
return Representation::FromKind(RepresentationBits::decode(minor_key_));
}
StoreMode store_mode() const { return StoreModeBits::decode(minor_key_); }
private:
class IsInobjectBits : public BitField<bool, 0, 1> {};
class RepresentationBits
: public BitField<Representation::Kind, IsInobjectBits::kNext, 4> {};
STATIC_ASSERT(Representation::kNumRepresentations - 1 <
RepresentationBits::kMax);
class StoreModeBits
: public BitField<StoreMode, RepresentationBits::kNext, 1> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(StoreNamedTransition);
DEFINE_TURBOFAN_CODE_STUB(StoreTransition, TurboFanCodeStub);
};
class StoreGlobalStub : public TurboFanCodeStub {
public:
StoreGlobalStub(Isolate* isolate, PropertyCellType type,
Maybe<PropertyCellConstantType> constant_type,
bool check_global)
: TurboFanCodeStub(isolate) {
PropertyCellConstantType encoded_constant_type =
constant_type.FromMaybe(PropertyCellConstantType::kSmi);
minor_key_ = CellTypeBits::encode(type) |
ConstantTypeBits::encode(encoded_constant_type) |
CheckGlobalBits::encode(check_global);
}
Code::Kind GetCodeKind() const override { return Code::HANDLER; }
ExtraICState GetExtraICState() const override { return Code::STORE_IC; }
static Handle<HeapObject> property_cell_placeholder(Isolate* isolate) {
return isolate->factory()->uninitialized_value();
}
static Handle<HeapObject> global_map_placeholder(Isolate* isolate) {
return isolate->factory()->termination_exception();
}
Handle<Code> GetCodeCopyFromTemplate(Handle<JSGlobalObject> global,
Handle<PropertyCell> cell) {
Code::FindAndReplacePattern pattern;
if (check_global()) {
pattern.Add(handle(global_map_placeholder(isolate())->map()),
Map::WeakCellForMap(Handle<Map>(global->map())));
}
pattern.Add(handle(property_cell_placeholder(isolate())->map()),
isolate()->factory()->NewWeakCell(cell));
return CodeStub::GetCodeCopy(pattern);
}
PropertyCellType cell_type() const {
return CellTypeBits::decode(minor_key_);
}
PropertyCellConstantType constant_type() const {
DCHECK(PropertyCellType::kConstantType == cell_type());
return ConstantTypeBits::decode(minor_key_);
}
bool check_global() const { return CheckGlobalBits::decode(minor_key_); }
private:
class CellTypeBits : public BitField<PropertyCellType, 0, 2> {};
class ConstantTypeBits
: public BitField<PropertyCellConstantType, CellTypeBits::kNext, 2> {};
class CheckGlobalBits : public BitField<bool, ConstantTypeBits::kNext, 1> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(StoreWithVector);
DEFINE_TURBOFAN_CODE_STUB(StoreGlobal, TurboFanCodeStub);
};
class CallApiCallbackStub : public PlatformCodeStub {
public:
static const int kArgBits = 3;
static const int kArgMax = (1 << kArgBits) - 1;
// CallApiCallbackStub for regular setters and getters.
CallApiCallbackStub(Isolate* isolate, bool is_store, bool call_data_undefined,
bool is_lazy)
: CallApiCallbackStub(isolate, is_store ? 1 : 0, is_store,
call_data_undefined, is_lazy) {}
// CallApiCallbackStub for callback functions.
CallApiCallbackStub(Isolate* isolate, int argc, bool call_data_undefined,
bool is_lazy)
: CallApiCallbackStub(isolate, argc, false, call_data_undefined,
is_lazy) {}
private:
CallApiCallbackStub(Isolate* isolate, int argc, bool is_store,
bool call_data_undefined, bool is_lazy)
: PlatformCodeStub(isolate) {
CHECK(0 <= argc && argc <= kArgMax);
minor_key_ = IsStoreBits::encode(is_store) |
CallDataUndefinedBits::encode(call_data_undefined) |
ArgumentBits::encode(argc) |
IsLazyAccessorBits::encode(is_lazy);
}
bool is_store() const { return IsStoreBits::decode(minor_key_); }
bool is_lazy() const { return IsLazyAccessorBits::decode(minor_key_); }
bool call_data_undefined() const {
return CallDataUndefinedBits::decode(minor_key_);
}
int argc() const { return ArgumentBits::decode(minor_key_); }
class IsStoreBits: public BitField<bool, 0, 1> {};
class CallDataUndefinedBits: public BitField<bool, 1, 1> {};
class ArgumentBits : public BitField<int, 2, kArgBits> {};
class IsLazyAccessorBits : public BitField<bool, 3 + kArgBits, 1> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(ApiCallback);
DEFINE_PLATFORM_CODE_STUB(CallApiCallback, PlatformCodeStub);
};
class CallApiGetterStub : public PlatformCodeStub {
public:
explicit CallApiGetterStub(Isolate* isolate) : PlatformCodeStub(isolate) {}
DEFINE_CALL_INTERFACE_DESCRIPTOR(ApiGetter);
DEFINE_PLATFORM_CODE_STUB(CallApiGetter, PlatformCodeStub);
};
class BinaryOpICStub : public HydrogenCodeStub {
public:
BinaryOpICStub(Isolate* isolate, Token::Value op)
: HydrogenCodeStub(isolate, UNINITIALIZED) {
BinaryOpICState state(isolate, op);
set_sub_minor_key(state.GetExtraICState());
}
BinaryOpICStub(Isolate* isolate, const BinaryOpICState& state)
: HydrogenCodeStub(isolate) {
set_sub_minor_key(state.GetExtraICState());
}
static void GenerateAheadOfTime(Isolate* isolate);
Code::Kind GetCodeKind() const override { return Code::BINARY_OP_IC; }
ExtraICState GetExtraICState() const final {
return static_cast<ExtraICState>(sub_minor_key());
}
BinaryOpICState state() const {
return BinaryOpICState(isolate(), GetExtraICState());
}
void PrintState(std::ostream& os) const final; // NOLINT
private:
static void GenerateAheadOfTime(Isolate* isolate,
const BinaryOpICState& state);
DEFINE_CALL_INTERFACE_DESCRIPTOR(BinaryOp);
DEFINE_HYDROGEN_CODE_STUB(BinaryOpIC, HydrogenCodeStub);
};
// TODO(bmeurer): Merge this into the BinaryOpICStub once we have proper tail
// call support for stubs in Hydrogen.
class BinaryOpICWithAllocationSiteStub final : public PlatformCodeStub {
public:
BinaryOpICWithAllocationSiteStub(Isolate* isolate,
const BinaryOpICState& state)
: PlatformCodeStub(isolate) {
minor_key_ = state.GetExtraICState();
}
static void GenerateAheadOfTime(Isolate* isolate);
Handle<Code> GetCodeCopyFromTemplate(Handle<AllocationSite> allocation_site) {
Code::FindAndReplacePattern pattern;
pattern.Add(isolate()->factory()->undefined_map(), allocation_site);
return CodeStub::GetCodeCopy(pattern);
}
Code::Kind GetCodeKind() const override { return Code::BINARY_OP_IC; }
ExtraICState GetExtraICState() const override {
return static_cast<ExtraICState>(minor_key_);
}
void PrintState(std::ostream& os) const override; // NOLINT
private:
BinaryOpICState state() const {
return BinaryOpICState(isolate(), GetExtraICState());
}
static void GenerateAheadOfTime(Isolate* isolate,
const BinaryOpICState& state);
DEFINE_CALL_INTERFACE_DESCRIPTOR(BinaryOpWithAllocationSite);
DEFINE_PLATFORM_CODE_STUB(BinaryOpICWithAllocationSite, PlatformCodeStub);
};
class BinaryOpWithAllocationSiteStub final : public BinaryOpICStub {
public:
BinaryOpWithAllocationSiteStub(Isolate* isolate, Token::Value op)
: BinaryOpICStub(isolate, op) {}
BinaryOpWithAllocationSiteStub(Isolate* isolate, const BinaryOpICState& state)
: BinaryOpICStub(isolate, state) {}
Code::Kind GetCodeKind() const final { return Code::STUB; }
DEFINE_CALL_INTERFACE_DESCRIPTOR(BinaryOpWithAllocationSite);
DEFINE_HYDROGEN_CODE_STUB(BinaryOpWithAllocationSite, BinaryOpICStub);
};
class StringAddStub final : public TurboFanCodeStub {
public:
StringAddStub(Isolate* isolate, StringAddFlags flags,
PretenureFlag pretenure_flag)
: TurboFanCodeStub(isolate) {
minor_key_ = (StringAddFlagsBits::encode(flags) |
PretenureFlagBits::encode(pretenure_flag));
}
StringAddFlags flags() const {
return StringAddFlagsBits::decode(minor_key_);
}
PretenureFlag pretenure_flag() const {
return PretenureFlagBits::decode(minor_key_);
}
private:
class StringAddFlagsBits : public BitField<StringAddFlags, 0, 3> {};
class PretenureFlagBits : public BitField<PretenureFlag, 3, 1> {};
void PrintBaseName(std::ostream& os) const override; // NOLINT
DEFINE_CALL_INTERFACE_DESCRIPTOR(StringAdd);
DEFINE_TURBOFAN_CODE_STUB(StringAdd, TurboFanCodeStub);
};
class CompareICStub : public PlatformCodeStub {
public:
CompareICStub(Isolate* isolate, Token::Value op, CompareICState::State left,
CompareICState::State right, CompareICState::State state)
: PlatformCodeStub(isolate) {
DCHECK(Token::IsCompareOp(op));
DCHECK(OpBits::is_valid(op - Token::EQ));
minor_key_ = OpBits::encode(op - Token::EQ) |
LeftStateBits::encode(left) | RightStateBits::encode(right) |
StateBits::encode(state);
}
// Creates uninitialized compare stub.
CompareICStub(Isolate* isolate, Token::Value op)
: CompareICStub(isolate, op, CompareICState::UNINITIALIZED,
CompareICState::UNINITIALIZED,
CompareICState::UNINITIALIZED) {}
CompareICStub(Isolate* isolate, ExtraICState extra_ic_state)
: PlatformCodeStub(isolate) {
minor_key_ = extra_ic_state;
}
ExtraICState GetExtraICState() const final {
return static_cast<ExtraICState>(minor_key_);
}
void set_known_map(Handle<Map> map) { known_map_ = map; }
InlineCacheState GetICState() const;
Token::Value op() const {
return static_cast<Token::Value>(Token::EQ + OpBits::decode(minor_key_));
}
CompareICState::State left() const {
return LeftStateBits::decode(minor_key_);
}
CompareICState::State right() const {
return RightStateBits::decode(minor_key_);
}
CompareICState::State state() const { return StateBits::decode(minor_key_); }
private:
Code::Kind GetCodeKind() const override { return Code::COMPARE_IC; }
void GenerateBooleans(MacroAssembler* masm);
void GenerateSmis(MacroAssembler* masm);
void GenerateNumbers(MacroAssembler* masm);
void GenerateInternalizedStrings(MacroAssembler* masm);
void GenerateStrings(MacroAssembler* masm);
void GenerateUniqueNames(MacroAssembler* masm);
void GenerateReceivers(MacroAssembler* masm);
void GenerateMiss(MacroAssembler* masm);
void GenerateKnownReceivers(MacroAssembler* masm);
void GenerateGeneric(MacroAssembler* masm);
bool strict() const { return op() == Token::EQ_STRICT; }
Condition GetCondition() const;
// Although we don't cache anything in the special cache we have to define
// this predicate to avoid appearance of code stubs with embedded maps in
// the global stub cache.
bool UseSpecialCache() override {
return state() == CompareICState::KNOWN_RECEIVER;
}
class OpBits : public BitField<int, 0, 3> {};
class LeftStateBits : public BitField<CompareICState::State, 3, 4> {};
class RightStateBits : public BitField<CompareICState::State, 7, 4> {};
class StateBits : public BitField<CompareICState::State, 11, 4> {};
Handle<Map> known_map_;
DEFINE_CALL_INTERFACE_DESCRIPTOR(BinaryOp);
DEFINE_PLATFORM_CODE_STUB(CompareIC, PlatformCodeStub);
};
class CEntryStub : public PlatformCodeStub {
public:
CEntryStub(Isolate* isolate, int result_size,
SaveFPRegsMode save_doubles = kDontSaveFPRegs,
ArgvMode argv_mode = kArgvOnStack, bool builtin_exit_frame = false)
: PlatformCodeStub(isolate) {
minor_key_ = SaveDoublesBits::encode(save_doubles == kSaveFPRegs) |
FrameTypeBits::encode(builtin_exit_frame) |
ArgvMode::encode(argv_mode == kArgvInRegister);
DCHECK(result_size == 1 || result_size == 2 || result_size == 3);
minor_key_ = ResultSizeBits::update(minor_key_, result_size);
}
// The version of this stub that doesn't save doubles is generated ahead of
// time, so it's OK to call it from other stubs that can't cope with GC during
// their code generation. On machines that always have gp registers (x64) we
// can generate both variants ahead of time.
static void GenerateAheadOfTime(Isolate* isolate);
private:
bool save_doubles() const { return SaveDoublesBits::decode(minor_key_); }
bool argv_in_register() const { return ArgvMode::decode(minor_key_); }
bool is_builtin_exit() const { return FrameTypeBits::decode(minor_key_); }
int result_size() const { return ResultSizeBits::decode(minor_key_); }
bool NeedsImmovableCode() override;
class SaveDoublesBits : public BitField<bool, 0, 1> {};
class ArgvMode : public BitField<bool, 1, 1> {};
class FrameTypeBits : public BitField<bool, 2, 1> {};
class ResultSizeBits : public BitField<int, 3, 3> {};
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(CEntry, PlatformCodeStub);
};
class JSEntryStub : public PlatformCodeStub {
public:
JSEntryStub(Isolate* isolate, StackFrame::Type type)
: PlatformCodeStub(isolate) {
DCHECK(type == StackFrame::ENTRY || type == StackFrame::ENTRY_CONSTRUCT);
minor_key_ = StackFrameTypeBits::encode(type);
}
private:
void FinishCode(Handle<Code> code) override;
void PrintName(std::ostream& os) const override { // NOLINT
os << (type() == StackFrame::ENTRY ? "JSEntryStub"
: "JSConstructEntryStub");
}
StackFrame::Type type() const {
return StackFrameTypeBits::decode(minor_key_);
}
class StackFrameTypeBits : public BitField<StackFrame::Type, 0, 5> {};
int handler_offset_;
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(JSEntry, PlatformCodeStub);
};
class RegExpExecStub: public PlatformCodeStub {
public:
explicit RegExpExecStub(Isolate* isolate) : PlatformCodeStub(isolate) { }
DEFINE_CALL_INTERFACE_DESCRIPTOR(RegExpExec);
DEFINE_PLATFORM_CODE_STUB(RegExpExec, PlatformCodeStub);
};
// TODO(bmeurer/mvstanton): Turn CallConstructStub into ConstructICStub.
class CallConstructStub final : public PlatformCodeStub {
public:
explicit CallConstructStub(Isolate* isolate) : PlatformCodeStub(isolate) {}
DEFINE_CALL_INTERFACE_DESCRIPTOR(CallConstruct);
DEFINE_PLATFORM_CODE_STUB(CallConstruct, PlatformCodeStub);
};
enum ReceiverCheckMode {
// We don't know anything about the receiver.
RECEIVER_IS_UNKNOWN,
// We know the receiver is a string.
RECEIVER_IS_STRING
};
enum EmbedMode {
// The code being generated is part of an IC handler, which may MISS
// to an IC in failure cases.
PART_OF_IC_HANDLER,
NOT_PART_OF_IC_HANDLER
};
// Generates code implementing String.prototype.charCodeAt.
//
// Only supports the case when the receiver is a string and the index
// is a number (smi or heap number) that is a valid index into the
// string. Additional index constraints are specified by the
// flags. Otherwise, bails out to the provided labels.
//
// Register usage: |object| may be changed to another string in a way
// that doesn't affect charCodeAt/charAt semantics, |index| is
// preserved, |scratch| and |result| are clobbered.
class StringCharCodeAtGenerator {
public:
StringCharCodeAtGenerator(Register object, Register index, Register result,
Label* receiver_not_string, Label* index_not_number,
Label* index_out_of_range,
ReceiverCheckMode check_mode = RECEIVER_IS_UNKNOWN)
: object_(object),
index_(index),
result_(result),
receiver_not_string_(receiver_not_string),
index_not_number_(index_not_number),
index_out_of_range_(index_out_of_range),
check_mode_(check_mode) {
DCHECK(!result_.is(object_));
DCHECK(!result_.is(index_));
}
// Generates the fast case code. On the fallthrough path |result|
// register contains the result.
void GenerateFast(MacroAssembler* masm);
// Generates the slow case code. Must not be naturally
// reachable. Expected to be put after a ret instruction (e.g., in
// deferred code). Always jumps back to the fast case.
void GenerateSlow(MacroAssembler* masm, EmbedMode embed_mode,
const RuntimeCallHelper& call_helper);
// Skip handling slow case and directly jump to bailout.
void SkipSlow(MacroAssembler* masm, Label* bailout) {
masm->bind(&index_not_smi_);
masm->bind(&call_runtime_);
masm->jmp(bailout);
}
private:
Register object_;
Register index_;
Register result_;
Label* receiver_not_string_;
Label* index_not_number_;
Label* index_out_of_range_;
ReceiverCheckMode check_mode_;
Label call_runtime_;
Label index_not_smi_;
Label got_smi_index_;
Label exit_;
DISALLOW_COPY_AND_ASSIGN(StringCharCodeAtGenerator);
};
// Generates code for creating a one-char string from a char code.
class StringCharFromCodeGenerator {
public:
StringCharFromCodeGenerator(Register code,
Register result)
: code_(code),
result_(result) {
DCHECK(!code_.is(result_));
}
// Generates the fast case code. On the fallthrough path |result|
// register contains the result.
void GenerateFast(MacroAssembler* masm);
// Generates the slow case code. Must not be naturally
// reachable. Expected to be put after a ret instruction (e.g., in
// deferred code). Always jumps back to the fast case.
void GenerateSlow(MacroAssembler* masm,
const RuntimeCallHelper& call_helper);
// Skip handling slow case and directly jump to bailout.
void SkipSlow(MacroAssembler* masm, Label* bailout) {
masm->bind(&slow_case_);
masm->jmp(bailout);
}
private:
Register code_;
Register result_;
Label slow_case_;
Label exit_;
DISALLOW_COPY_AND_ASSIGN(StringCharFromCodeGenerator);
};
// Generates code implementing String.prototype.charAt.
//
// Only supports the case when the receiver is a string and the index
// is a number (smi or heap number) that is a valid index into the
// string. Additional index constraints are specified by the
// flags. Otherwise, bails out to the provided labels.
//
// Register usage: |object| may be changed to another string in a way
// that doesn't affect charCodeAt/charAt semantics, |index| is
// preserved, |scratch1|, |scratch2|, and |result| are clobbered.
class StringCharAtGenerator {
public:
StringCharAtGenerator(Register object, Register index, Register scratch,
Register result, Label* receiver_not_string,
Label* index_not_number, Label* index_out_of_range,
ReceiverCheckMode check_mode = RECEIVER_IS_UNKNOWN)
: char_code_at_generator_(object, index, scratch, receiver_not_string,
index_not_number, index_out_of_range,
check_mode),
char_from_code_generator_(scratch, result) {}
// Generates the fast case code. On the fallthrough path |result|
// register contains the result.
void GenerateFast(MacroAssembler* masm) {
char_code_at_generator_.GenerateFast(masm);
char_from_code_generator_.GenerateFast(masm);
}
// Generates the slow case code. Must not be naturally
// reachable. Expected to be put after a ret instruction (e.g., in
// deferred code). Always jumps back to the fast case.
void GenerateSlow(MacroAssembler* masm, EmbedMode embed_mode,
const RuntimeCallHelper& call_helper) {
char_code_at_generator_.GenerateSlow(masm, embed_mode, call_helper);
char_from_code_generator_.GenerateSlow(masm, call_helper);
}
// Skip handling slow case and directly jump to bailout.
void SkipSlow(MacroAssembler* masm, Label* bailout) {
char_code_at_generator_.SkipSlow(masm, bailout);
char_from_code_generator_.SkipSlow(masm, bailout);
}
private:
StringCharCodeAtGenerator char_code_at_generator_;
StringCharFromCodeGenerator char_from_code_generator_;
DISALLOW_COPY_AND_ASSIGN(StringCharAtGenerator);
};
class LoadDictionaryElementStub : public HydrogenCodeStub {
public:
explicit LoadDictionaryElementStub(Isolate* isolate)
: HydrogenCodeStub(isolate) {}
DEFINE_CALL_INTERFACE_DESCRIPTOR(LoadWithVector);
DEFINE_HYDROGEN_CODE_STUB(LoadDictionaryElement, HydrogenCodeStub);
};
class LoadICTrampolineStub : public TurboFanCodeStub {
public:
explicit LoadICTrampolineStub(Isolate* isolate) : TurboFanCodeStub(isolate) {}
Code::Kind GetCodeKind() const override { return Code::LOAD_IC; }
DEFINE_CALL_INTERFACE_DESCRIPTOR(Load);
DEFINE_TURBOFAN_CODE_STUB(LoadICTrampoline, TurboFanCodeStub);
};
class LoadGlobalICTrampolineStub : public TurboFanCodeStub {
public:
explicit LoadGlobalICTrampolineStub(Isolate* isolate,
const LoadGlobalICState& state)
: TurboFanCodeStub(isolate) {
minor_key_ = state.GetExtraICState();
}
Code::Kind GetCodeKind() const override { return Code::LOAD_GLOBAL_IC; }
TypeofMode typeof_mode() const {
LoadGlobalICState state(GetExtraICState());
return state.typeof_mode();
}
ExtraICState GetExtraICState() const final {
return static_cast<ExtraICState>(minor_key_);
}
DEFINE_CALL_INTERFACE_DESCRIPTOR(LoadGlobal);
DEFINE_TURBOFAN_CODE_STUB(LoadGlobalICTrampoline, TurboFanCodeStub);
};
class KeyedLoadICTrampolineTFStub : public LoadICTrampolineStub {
public:
explicit KeyedLoadICTrampolineTFStub(Isolate* isolate)
: LoadICTrampolineStub(isolate) {}
Code::Kind GetCodeKind() const override { return Code::KEYED_LOAD_IC; }
DEFINE_TURBOFAN_CODE_STUB(KeyedLoadICTrampolineTF, LoadICTrampolineStub);
};
class StoreICTrampolineStub : public TurboFanCodeStub {
public:
StoreICTrampolineStub(Isolate* isolate, const StoreICState& state)
: TurboFanCodeStub(isolate) {
minor_key_ = state.GetExtraICState();
}
Code::Kind GetCodeKind() const override { return Code::STORE_IC; }
ExtraICState GetExtraICState() const final {
return static_cast<ExtraICState>(minor_key_);
}
protected:
StoreICState state() const { return StoreICState(GetExtraICState()); }
DEFINE_CALL_INTERFACE_DESCRIPTOR(Store);
DEFINE_TURBOFAN_CODE_STUB(StoreICTrampoline, TurboFanCodeStub);
};
class KeyedStoreICTrampolineTFStub : public StoreICTrampolineStub {
public:
KeyedStoreICTrampolineTFStub(Isolate* isolate, const StoreICState& state)
: StoreICTrampolineStub(isolate, state) {}
Code::Kind GetCodeKind() const override { return Code::KEYED_STORE_IC; }
LanguageMode language_mode() const {
return StoreICState(GetExtraICState()).language_mode();
}
DEFINE_TURBOFAN_CODE_STUB(KeyedStoreICTrampolineTF, StoreICTrampolineStub);
};
class CallICTrampolineStub : public PlatformCodeStub {
public:
CallICTrampolineStub(Isolate* isolate, const CallICState& state)
: PlatformCodeStub(isolate) {
minor_key_ = state.GetExtraICState();
}
Code::Kind GetCodeKind() const override { return Code::CALL_IC; }
ExtraICState GetExtraICState() const final {
return static_cast<ExtraICState>(minor_key_);
}
protected:
CallICState state() const {
return CallICState(static_cast<ExtraICState>(minor_key_));
}
DEFINE_CALL_INTERFACE_DESCRIPTOR(CallFunctionWithFeedback);
DEFINE_PLATFORM_CODE_STUB(CallICTrampoline, PlatformCodeStub);
};
class LoadICStub : public TurboFanCodeStub {
public:
explicit LoadICStub(Isolate* isolate) : TurboFanCodeStub(isolate) {}
Code::Kind GetCodeKind() const override { return Code::LOAD_IC; }
DEFINE_CALL_INTERFACE_DESCRIPTOR(LoadWithVector);
DEFINE_TURBOFAN_CODE_STUB(LoadIC, TurboFanCodeStub);
};
class LoadICProtoArrayStub : public TurboFanCodeStub {
public:
explicit LoadICProtoArrayStub(Isolate* isolate,
bool throw_reference_error_if_nonexistent)
: TurboFanCodeStub(isolate) {
minor_key_ = ThrowReferenceErrorIfNonexistentBits::encode(
throw_reference_error_if_nonexistent);
}
bool throw_reference_error_if_nonexistent() const {
return ThrowReferenceErrorIfNonexistentBits::decode(minor_key_);
}
ExtraICState GetExtraICState() const final {
return static_cast<ExtraICState>(minor_key_);
}
private:
class ThrowReferenceErrorIfNonexistentBits : public BitField<bool, 0, 1> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(LoadICProtoArray);
DEFINE_TURBOFAN_CODE_STUB(LoadICProtoArray, TurboFanCodeStub);
};
class LoadGlobalICStub : public TurboFanCodeStub {
public:
explicit LoadGlobalICStub(Isolate* isolate, const LoadGlobalICState& state)
: TurboFanCodeStub(isolate) {
minor_key_ = state.GetExtraICState();
}
Code::Kind GetCodeKind() const override { return Code::LOAD_GLOBAL_IC; }
TypeofMode typeof_mode() const {
LoadGlobalICState state(GetExtraICState());
return state.typeof_mode();
}
ExtraICState GetExtraICState() const final {
return static_cast<ExtraICState>(minor_key_);
}
DEFINE_CALL_INTERFACE_DESCRIPTOR(LoadGlobalWithVector);
DEFINE_TURBOFAN_CODE_STUB(LoadGlobalIC, TurboFanCodeStub);
};
class KeyedLoadICTFStub : public LoadICStub {
public:
explicit KeyedLoadICTFStub(Isolate* isolate) : LoadICStub(isolate) {}
Code::Kind GetCodeKind() const override { return Code::KEYED_LOAD_IC; }
DEFINE_TURBOFAN_CODE_STUB(KeyedLoadICTF, LoadICStub);
};
class StoreICStub : public TurboFanCodeStub {
public:
StoreICStub(Isolate* isolate, const StoreICState& state)
: TurboFanCodeStub(isolate) {
minor_key_ = state.GetExtraICState();
}
Code::Kind GetCodeKind() const override { return Code::STORE_IC; }
LanguageMode language_mode() const {
return StoreICState(GetExtraICState()).language_mode();
}
ExtraICState GetExtraICState() const final {
return static_cast<ExtraICState>(minor_key_);
}
DEFINE_CALL_INTERFACE_DESCRIPTOR(StoreWithVector);
DEFINE_TURBOFAN_CODE_STUB(StoreIC, TurboFanCodeStub);
};
class KeyedStoreICTFStub : public StoreICStub {
public:
KeyedStoreICTFStub(Isolate* isolate, const StoreICState& state)
: StoreICStub(isolate, state) {}
Code::Kind GetCodeKind() const override { return Code::KEYED_STORE_IC; }
LanguageMode language_mode() const {
return StoreICState(GetExtraICState()).language_mode();
}
DEFINE_TURBOFAN_CODE_STUB(KeyedStoreICTF, StoreICStub);
};
class DoubleToIStub : public PlatformCodeStub {
public:
DoubleToIStub(Isolate* isolate, Register source, Register destination,
int offset, bool is_truncating, bool skip_fastpath = false)
: PlatformCodeStub(isolate) {
minor_key_ = SourceRegisterBits::encode(source.code()) |
DestinationRegisterBits::encode(destination.code()) |
OffsetBits::encode(offset) |
IsTruncatingBits::encode(is_truncating) |
SkipFastPathBits::encode(skip_fastpath) |
SSE3Bits::encode(CpuFeatures::IsSupported(SSE3) ? 1 : 0);
}
bool SometimesSetsUpAFrame() override { return false; }
private:
Register source() const {
return Register::from_code(SourceRegisterBits::decode(minor_key_));
}
Register destination() const {
return Register::from_code(DestinationRegisterBits::decode(minor_key_));
}
bool is_truncating() const { return IsTruncatingBits::decode(minor_key_); }
bool skip_fastpath() const { return SkipFastPathBits::decode(minor_key_); }
int offset() const { return OffsetBits::decode(minor_key_); }
static const int kBitsPerRegisterNumber = 6;
STATIC_ASSERT((1L << kBitsPerRegisterNumber) >= Register::kNumRegisters);
class SourceRegisterBits:
public BitField<int, 0, kBitsPerRegisterNumber> {}; // NOLINT
class DestinationRegisterBits:
public BitField<int, kBitsPerRegisterNumber,
kBitsPerRegisterNumber> {}; // NOLINT
class IsTruncatingBits:
public BitField<bool, 2 * kBitsPerRegisterNumber, 1> {}; // NOLINT
class OffsetBits:
public BitField<int, 2 * kBitsPerRegisterNumber + 1, 3> {}; // NOLINT
class SkipFastPathBits:
public BitField<int, 2 * kBitsPerRegisterNumber + 4, 1> {}; // NOLINT
class SSE3Bits:
public BitField<int, 2 * kBitsPerRegisterNumber + 5, 1> {}; // NOLINT
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(DoubleToI, PlatformCodeStub);
};
class ScriptContextFieldStub : public TurboFanCodeStub {
public:
ScriptContextFieldStub(Isolate* isolate,
const ScriptContextTable::LookupResult* lookup_result)
: TurboFanCodeStub(isolate) {
DCHECK(Accepted(lookup_result));
minor_key_ = ContextIndexBits::encode(lookup_result->context_index) |
SlotIndexBits::encode(lookup_result->slot_index);
}
Code::Kind GetCodeKind() const override { return Code::HANDLER; }
int context_index() const { return ContextIndexBits::decode(minor_key_); }
int slot_index() const { return SlotIndexBits::decode(minor_key_); }
static bool Accepted(const ScriptContextTable::LookupResult* lookup_result) {
return ContextIndexBits::is_valid(lookup_result->context_index) &&
SlotIndexBits::is_valid(lookup_result->slot_index);
}
private:
static const int kContextIndexBits = 9;
static const int kSlotIndexBits = 12;
class ContextIndexBits : public BitField<int, 0, kContextIndexBits> {};
class SlotIndexBits
: public BitField<int, kContextIndexBits, kSlotIndexBits> {};
DEFINE_CODE_STUB_BASE(ScriptContextFieldStub, TurboFanCodeStub);
};
class LoadScriptContextFieldStub : public ScriptContextFieldStub {
public:
LoadScriptContextFieldStub(
Isolate* isolate, const ScriptContextTable::LookupResult* lookup_result)
: ScriptContextFieldStub(isolate, lookup_result) {}
ExtraICState GetExtraICState() const override { return Code::LOAD_IC; }
private:
DEFINE_CALL_INTERFACE_DESCRIPTOR(LoadWithVector);
DEFINE_TURBOFAN_CODE_STUB(LoadScriptContextField, ScriptContextFieldStub);
};
class StoreScriptContextFieldStub : public ScriptContextFieldStub {
public:
StoreScriptContextFieldStub(
Isolate* isolate, const ScriptContextTable::LookupResult* lookup_result)
: ScriptContextFieldStub(isolate, lookup_result) {}
ExtraICState GetExtraICState() const override { return Code::STORE_IC; }
private:
DEFINE_CALL_INTERFACE_DESCRIPTOR(StoreWithVector);
DEFINE_TURBOFAN_CODE_STUB(StoreScriptContextField, ScriptContextFieldStub);
};
class LoadFastElementStub : public HandlerStub {
public:
LoadFastElementStub(Isolate* isolate, bool is_js_array,
ElementsKind elements_kind,
bool convert_hole_to_undefined = false)
: HandlerStub(isolate) {
set_sub_minor_key(
ElementsKindBits::encode(elements_kind) |
IsJSArrayBits::encode(is_js_array) |
CanConvertHoleToUndefined::encode(convert_hole_to_undefined));
}
Code::Kind kind() const override { return Code::KEYED_LOAD_IC; }
bool is_js_array() const { return IsJSArrayBits::decode(sub_minor_key()); }
bool convert_hole_to_undefined() const {
return CanConvertHoleToUndefined::decode(sub_minor_key());
}
ElementsKind elements_kind() const {
return ElementsKindBits::decode(sub_minor_key());
}
private:
class ElementsKindBits: public BitField<ElementsKind, 0, 8> {};
class IsJSArrayBits: public BitField<bool, 8, 1> {};
class CanConvertHoleToUndefined : public BitField<bool, 9, 1> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(LoadWithVector);
DEFINE_HANDLER_CODE_STUB(LoadFastElement, HandlerStub);
};
class StoreFastElementStub : public TurboFanCodeStub {
public:
StoreFastElementStub(Isolate* isolate, bool is_js_array,
ElementsKind elements_kind, KeyedAccessStoreMode mode)
: TurboFanCodeStub(isolate) {
minor_key_ = CommonStoreModeBits::encode(mode) |
ElementsKindBits::encode(elements_kind) |
IsJSArrayBits::encode(is_js_array);
}
static void GenerateAheadOfTime(Isolate* isolate);
bool is_js_array() const { return IsJSArrayBits::decode(minor_key_); }
ElementsKind elements_kind() const {
return ElementsKindBits::decode(minor_key_);
}
KeyedAccessStoreMode store_mode() const {
return CommonStoreModeBits::decode(minor_key_);
}
Code::Kind GetCodeKind() const override { return Code::HANDLER; }
ExtraICState GetExtraICState() const override { return Code::KEYED_STORE_IC; }
private:
class ElementsKindBits
: public BitField<ElementsKind, CommonStoreModeBits::kNext, 8> {};
class IsJSArrayBits : public BitField<bool, ElementsKindBits::kNext, 1> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(StoreWithVector);
DEFINE_TURBOFAN_CODE_STUB(StoreFastElement, TurboFanCodeStub);
};
class TransitionElementsKindStub : public HydrogenCodeStub {
public:
TransitionElementsKindStub(Isolate* isolate, ElementsKind from_kind,
ElementsKind to_kind)
: HydrogenCodeStub(isolate) {
set_sub_minor_key(FromKindBits::encode(from_kind) |
ToKindBits::encode(to_kind));
}
ElementsKind from_kind() const {
return FromKindBits::decode(sub_minor_key());
}
ElementsKind to_kind() const { return ToKindBits::decode(sub_minor_key()); }
private:
class FromKindBits: public BitField<ElementsKind, 8, 8> {};
class ToKindBits: public BitField<ElementsKind, 0, 8> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(TransitionElementsKind);
DEFINE_HYDROGEN_CODE_STUB(TransitionElementsKind, HydrogenCodeStub);
};
class AllocateHeapNumberStub : public TurboFanCodeStub {
public:
explicit AllocateHeapNumberStub(Isolate* isolate)
: TurboFanCodeStub(isolate) {}
void InitializeDescriptor(CodeStubDescriptor* descriptor) override;
DEFINE_CALL_INTERFACE_DESCRIPTOR(AllocateHeapNumber);
DEFINE_TURBOFAN_CODE_STUB(AllocateHeapNumber, TurboFanCodeStub);
};
#define SIMD128_ALLOC_STUB(TYPE, Type, type, lane_count, lane_type) \
class Allocate##Type##Stub : public TurboFanCodeStub { \
public: \
explicit Allocate##Type##Stub(Isolate* isolate) \
: TurboFanCodeStub(isolate) {} \
\
void InitializeDescriptor(CodeStubDescriptor* descriptor) override; \
void GenerateAssembly(compiler::CodeAssemblerState* state) const override; \
\
DEFINE_CALL_INTERFACE_DESCRIPTOR(Allocate##Type); \
DEFINE_CODE_STUB(Allocate##Type, TurboFanCodeStub); \
};
SIMD128_TYPES(SIMD128_ALLOC_STUB)
#undef SIMD128_ALLOC_STUB
class CommonArrayConstructorStub : public TurboFanCodeStub {
protected:
CommonArrayConstructorStub(Isolate* isolate, ElementsKind kind,
AllocationSiteOverrideMode override_mode)
: TurboFanCodeStub(isolate) {
// It only makes sense to override local allocation site behavior
// if there is a difference between the global allocation site policy
// for an ElementsKind and the desired usage of the stub.
DCHECK(override_mode != DISABLE_ALLOCATION_SITES ||
AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE);
set_sub_minor_key(ElementsKindBits::encode(kind) |
AllocationSiteOverrideModeBits::encode(override_mode));
}
void set_sub_minor_key(uint32_t key) { minor_key_ = key; }
uint32_t sub_minor_key() const { return minor_key_; }
CommonArrayConstructorStub(uint32_t key, Isolate* isolate)
: TurboFanCodeStub(key, isolate) {}
public:
ElementsKind elements_kind() const {
return ElementsKindBits::decode(sub_minor_key());
}
AllocationSiteOverrideMode override_mode() const {
return AllocationSiteOverrideModeBits::decode(sub_minor_key());
}
static void GenerateStubsAheadOfTime(Isolate* isolate);
private:
// Ensure data fits within available bits.
STATIC_ASSERT(LAST_ALLOCATION_SITE_OVERRIDE_MODE == 1);
class ElementsKindBits : public BitField<ElementsKind, 0, 8> {};
class AllocationSiteOverrideModeBits
: public BitField<AllocationSiteOverrideMode, 8, 1> {}; // NOLINT
};
class ArrayNoArgumentConstructorStub : public CommonArrayConstructorStub {
public:
ArrayNoArgumentConstructorStub(
Isolate* isolate, ElementsKind kind,
AllocationSiteOverrideMode override_mode = DONT_OVERRIDE)
: CommonArrayConstructorStub(isolate, kind, override_mode) {}
private:
void PrintName(std::ostream& os) const override { // NOLINT
os << "ArrayNoArgumentConstructorStub";
}
DEFINE_CALL_INTERFACE_DESCRIPTOR(ArrayNoArgumentConstructor);
DEFINE_TURBOFAN_CODE_STUB(ArrayNoArgumentConstructor,
CommonArrayConstructorStub);
};
class InternalArrayNoArgumentConstructorStub
: public CommonArrayConstructorStub {
public:
InternalArrayNoArgumentConstructorStub(Isolate* isolate, ElementsKind kind)
: CommonArrayConstructorStub(isolate, kind, DONT_OVERRIDE) {}
private:
void PrintName(std::ostream& os) const override { // NOLINT
os << "InternalArrayNoArgumentConstructorStub";
}
DEFINE_CALL_INTERFACE_DESCRIPTOR(ArrayNoArgumentConstructor);
DEFINE_TURBOFAN_CODE_STUB(InternalArrayNoArgumentConstructor,
CommonArrayConstructorStub);
};
class ArraySingleArgumentConstructorStub : public CommonArrayConstructorStub {
public:
ArraySingleArgumentConstructorStub(
Isolate* isolate, ElementsKind kind,
AllocationSiteOverrideMode override_mode = DONT_OVERRIDE)
: CommonArrayConstructorStub(isolate, kind, override_mode) {}
private:
void PrintName(std::ostream& os) const override { // NOLINT
os << "ArraySingleArgumentConstructorStub";
}
DEFINE_CALL_INTERFACE_DESCRIPTOR(ArraySingleArgumentConstructor);
DEFINE_TURBOFAN_CODE_STUB(ArraySingleArgumentConstructor,
CommonArrayConstructorStub);
};
class InternalArraySingleArgumentConstructorStub
: public CommonArrayConstructorStub {
public:
InternalArraySingleArgumentConstructorStub(Isolate* isolate,
ElementsKind kind)
: CommonArrayConstructorStub(isolate, kind, DONT_OVERRIDE) {}
private:
void PrintName(std::ostream& os) const override { // NOLINT
os << "InternalArraySingleArgumentConstructorStub";
}
DEFINE_CALL_INTERFACE_DESCRIPTOR(ArraySingleArgumentConstructor);
DEFINE_TURBOFAN_CODE_STUB(InternalArraySingleArgumentConstructor,
CommonArrayConstructorStub);
};
class ArrayNArgumentsConstructorStub : public PlatformCodeStub {
public:
explicit ArrayNArgumentsConstructorStub(Isolate* isolate)
: PlatformCodeStub(isolate) {}
CallInterfaceDescriptor GetCallInterfaceDescriptor() const override {
return ArrayNArgumentsConstructorDescriptor(isolate());
}
private:
DEFINE_PLATFORM_CODE_STUB(ArrayNArgumentsConstructor, PlatformCodeStub);
};
class StoreElementStub : public PlatformCodeStub {
public:
StoreElementStub(Isolate* isolate, ElementsKind elements_kind,
KeyedAccessStoreMode mode)
: PlatformCodeStub(isolate) {
// TODO(jkummerow): Rename this stub to StoreSlowElementStub,
// drop elements_kind parameter.
DCHECK_EQ(DICTIONARY_ELEMENTS, elements_kind);
minor_key_ = ElementsKindBits::encode(elements_kind) |
CommonStoreModeBits::encode(mode);
}
Code::Kind GetCodeKind() const override { return Code::HANDLER; }
ExtraICState GetExtraICState() const override { return Code::KEYED_STORE_IC; }
private:
ElementsKind elements_kind() const {
return ElementsKindBits::decode(minor_key_);
}
class ElementsKindBits
: public BitField<ElementsKind, CommonStoreModeBits::kNext, 8> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(StoreWithVector);
DEFINE_PLATFORM_CODE_STUB(StoreElement, PlatformCodeStub);
};
class ToBooleanICStub : public HydrogenCodeStub {
public:
ToBooleanICStub(Isolate* isolate, ExtraICState state)
: HydrogenCodeStub(isolate) {
set_sub_minor_key(HintsBits::encode(static_cast<uint16_t>(state)));
}
bool UpdateStatus(Handle<Object> object);
ToBooleanHints hints() const {
return ToBooleanHints(HintsBits::decode(sub_minor_key()));
}
Code::Kind GetCodeKind() const override { return Code::TO_BOOLEAN_IC; }
void PrintState(std::ostream& os) const override; // NOLINT
bool SometimesSetsUpAFrame() override { return false; }
static Handle<Code> GetUninitialized(Isolate* isolate) {
return ToBooleanICStub(isolate, UNINITIALIZED).GetCode();
}
ExtraICState GetExtraICState() const override { return hints(); }
InlineCacheState GetICState() const {
if (hints() == ToBooleanHint::kNone) {
return ::v8::internal::UNINITIALIZED;
} else {
return MONOMORPHIC;
}
}
private:
ToBooleanICStub(Isolate* isolate, InitializationState init_state)
: HydrogenCodeStub(isolate, init_state) {}
static const int kNumHints = 9;
STATIC_ASSERT(static_cast<int>(ToBooleanHint::kAny) ==
((1 << kNumHints) - 1));
class HintsBits : public BitField<uint16_t, 0, kNumHints> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(TypeConversion);
DEFINE_HYDROGEN_CODE_STUB(ToBooleanIC, HydrogenCodeStub);
};
class ElementsTransitionAndStoreStub : public TurboFanCodeStub {
public:
ElementsTransitionAndStoreStub(Isolate* isolate, ElementsKind from_kind,
ElementsKind to_kind, bool is_jsarray,
KeyedAccessStoreMode store_mode)
: TurboFanCodeStub(isolate) {
minor_key_ = CommonStoreModeBits::encode(store_mode) |
FromBits::encode(from_kind) | ToBits::encode(to_kind) |
IsJSArrayBits::encode(is_jsarray);
}
ElementsKind from_kind() const { return FromBits::decode(minor_key_); }
ElementsKind to_kind() const { return ToBits::decode(minor_key_); }
bool is_jsarray() const { return IsJSArrayBits::decode(minor_key_); }
KeyedAccessStoreMode store_mode() const {
return CommonStoreModeBits::decode(minor_key_);
}
Code::Kind GetCodeKind() const override { return Code::HANDLER; }
ExtraICState GetExtraICState() const override { return Code::KEYED_STORE_IC; }
private:
class FromBits
: public BitField<ElementsKind, CommonStoreModeBits::kNext, 8> {};
class ToBits : public BitField<ElementsKind, 11, 8> {};
class IsJSArrayBits : public BitField<bool, 19, 1> {};
DEFINE_CALL_INTERFACE_DESCRIPTOR(StoreTransition);
DEFINE_TURBOFAN_CODE_STUB(ElementsTransitionAndStore, TurboFanCodeStub);
};
class StubFailureTrampolineStub : public PlatformCodeStub {
public:
StubFailureTrampolineStub(Isolate* isolate, StubFunctionMode function_mode)
: PlatformCodeStub(isolate) {
minor_key_ = FunctionModeField::encode(function_mode);
}
static void GenerateAheadOfTime(Isolate* isolate);
private:
StubFunctionMode function_mode() const {
return FunctionModeField::decode(minor_key_);
}
class FunctionModeField : public BitField<StubFunctionMode, 0, 1> {};
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(StubFailureTrampoline, PlatformCodeStub);
};
class ProfileEntryHookStub : public PlatformCodeStub {
public:
explicit ProfileEntryHookStub(Isolate* isolate) : PlatformCodeStub(isolate) {}
// The profile entry hook function is not allowed to cause a GC.
bool SometimesSetsUpAFrame() override { return false; }
// Generates a call to the entry hook if it's enabled.
static void MaybeCallEntryHook(MacroAssembler* masm);
private:
static void EntryHookTrampoline(intptr_t function,
intptr_t stack_pointer,
Isolate* isolate);
// ProfileEntryHookStub is called at the start of a function, so it has the
// same register set.
DEFINE_CALL_INTERFACE_DESCRIPTOR(CallFunction)
DEFINE_PLATFORM_CODE_STUB(ProfileEntryHook, PlatformCodeStub);
};
class StoreBufferOverflowStub : public PlatformCodeStub {
public:
StoreBufferOverflowStub(Isolate* isolate, SaveFPRegsMode save_fp)
: PlatformCodeStub(isolate) {
minor_key_ = SaveDoublesBits::encode(save_fp == kSaveFPRegs);
}
static void GenerateFixedRegStubsAheadOfTime(Isolate* isolate);
bool SometimesSetsUpAFrame() override { return false; }
private:
bool save_doubles() const { return SaveDoublesBits::decode(minor_key_); }
class SaveDoublesBits : public BitField<bool, 0, 1> {};
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(StoreBufferOverflow, PlatformCodeStub);
};
class SubStringStub : public TurboFanCodeStub {
public:
explicit SubStringStub(Isolate* isolate) : TurboFanCodeStub(isolate) {}
static compiler::Node* Generate(CodeStubAssembler* assembler,
compiler::Node* string, compiler::Node* from,
compiler::Node* to, compiler::Node* context);
DEFINE_CALL_INTERFACE_DESCRIPTOR(SubString);
DEFINE_TURBOFAN_CODE_STUB(SubString, TurboFanCodeStub);
};
#undef DEFINE_CALL_INTERFACE_DESCRIPTOR
#undef DEFINE_PLATFORM_CODE_STUB
#undef DEFINE_HANDLER_CODE_STUB
#undef DEFINE_HYDROGEN_CODE_STUB
#undef DEFINE_CODE_STUB
#undef DEFINE_CODE_STUB_BASE
} // namespace internal
} // namespace v8
#endif // V8_CODE_STUBS_H_