v8/src/lithium-allocator.h
fschneider@chromium.org 17da434b29 Remove instruction summaries.
Instead of constructing a temporary container for all LOperands of each
instruction, the register works directly on the LIR instructions that
 provide an abstract interface for input/output/temp operands.

This saves allocation of zone memory and speeds up LIR construction,
but makes iterating over all uses in the register allocator slightly
more expensive because environment uses are stored in a linked list of
environments. We can fix this by using a flat representation of LOperands.


Review URL: http://codereview.chromium.org/6352006

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@6638 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-02-04 13:28:23 +00:00

647 lines
20 KiB
C++

// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_LITHIUM_ALLOCATOR_H_
#define V8_LITHIUM_ALLOCATOR_H_
#include "v8.h"
#include "data-flow.h"
#include "lithium.h"
#include "zone.h"
namespace v8 {
namespace internal {
// Forward declarations.
class HBasicBlock;
class HGraph;
class HInstruction;
class HPhi;
class HTracer;
class HValue;
class BitVector;
class StringStream;
class LArgument;
class LChunk;
class LOperand;
class LUnallocated;
class LConstantOperand;
class LGap;
class LParallelMove;
class LPointerMap;
class LStackSlot;
class LRegister;
// This class represents a single point of a LOperand's lifetime.
// For each lithium instruction there are exactly two lifetime positions:
// the beginning and the end of the instruction. Lifetime positions for
// different lithium instructions are disjoint.
class LifetimePosition {
public:
// Return the lifetime position that corresponds to the beginning of
// the instruction with the given index.
static LifetimePosition FromInstructionIndex(int index) {
return LifetimePosition(index * kStep);
}
// Returns a numeric representation of this lifetime position.
int Value() const {
return value_;
}
// Returns the index of the instruction to which this lifetime position
// corresponds.
int InstructionIndex() const {
ASSERT(IsValid());
return value_ / kStep;
}
// Returns true if this lifetime position corresponds to the instruction
// start.
bool IsInstructionStart() const {
return (value_ & (kStep - 1)) == 0;
}
// Returns the lifetime position for the start of the instruction which
// corresponds to this lifetime position.
LifetimePosition InstructionStart() const {
ASSERT(IsValid());
return LifetimePosition(value_ & ~(kStep - 1));
}
// Returns the lifetime position for the end of the instruction which
// corresponds to this lifetime position.
LifetimePosition InstructionEnd() const {
ASSERT(IsValid());
return LifetimePosition(InstructionStart().Value() + kStep/2);
}
// Returns the lifetime position for the beginning of the next instruction.
LifetimePosition NextInstruction() const {
ASSERT(IsValid());
return LifetimePosition(InstructionStart().Value() + kStep);
}
// Returns the lifetime position for the beginning of the previous
// instruction.
LifetimePosition PrevInstruction() const {
ASSERT(IsValid());
ASSERT(value_ > 1);
return LifetimePosition(InstructionStart().Value() - kStep);
}
// Constructs the lifetime position which does not correspond to any
// instruction.
LifetimePosition() : value_(-1) {}
// Returns true if this lifetime positions corrensponds to some
// instruction.
bool IsValid() const { return value_ != -1; }
static inline LifetimePosition Invalid() { return LifetimePosition(); }
static inline LifetimePosition MaxPosition() {
// We have to use this kind of getter instead of static member due to
// crash bug in GDB.
return LifetimePosition(kMaxInt);
}
private:
static const int kStep = 2;
// Code relies on kStep being a power of two.
STATIC_ASSERT(IS_POWER_OF_TWO(kStep));
explicit LifetimePosition(int value) : value_(value) { }
int value_;
};
enum RegisterKind {
NONE,
GENERAL_REGISTERS,
DOUBLE_REGISTERS
};
// A register-allocator view of a Lithium instruction. It contains the id of
// the output operand and a list of input operand uses.
class LInstruction;
class LEnvironment;
// Iterator for non-null temp operands.
class TempIterator BASE_EMBEDDED {
public:
inline explicit TempIterator(LInstruction* instr);
inline bool HasNext();
inline LOperand* Next();
inline void Advance();
private:
inline int AdvanceToNext(int start);
LInstruction* instr_;
int limit_;
int current_;
};
// Iterator for non-constant input operands.
class InputIterator BASE_EMBEDDED {
public:
inline explicit InputIterator(LInstruction* instr);
inline bool HasNext();
inline LOperand* Next();
inline void Advance();
private:
inline int AdvanceToNext(int start);
LInstruction* instr_;
int limit_;
int current_;
};
class UseIterator BASE_EMBEDDED {
public:
inline explicit UseIterator(LInstruction* instr);
inline bool HasNext();
inline LOperand* Next();
inline void Advance();
private:
InputIterator input_iterator_;
DeepIterator env_iterator_;
};
// Representation of the non-empty interval [start,end[.
class UseInterval: public ZoneObject {
public:
UseInterval(LifetimePosition start, LifetimePosition end)
: start_(start), end_(end), next_(NULL) {
ASSERT(start.Value() < end.Value());
}
LifetimePosition start() const { return start_; }
LifetimePosition end() const { return end_; }
UseInterval* next() const { return next_; }
// Split this interval at the given position without effecting the
// live range that owns it. The interval must contain the position.
void SplitAt(LifetimePosition pos);
// If this interval intersects with other return smallest position
// that belongs to both of them.
LifetimePosition Intersect(const UseInterval* other) const {
if (other->start().Value() < start_.Value()) return other->Intersect(this);
if (other->start().Value() < end_.Value()) return other->start();
return LifetimePosition::Invalid();
}
bool Contains(LifetimePosition point) const {
return start_.Value() <= point.Value() && point.Value() < end_.Value();
}
private:
void set_start(LifetimePosition start) { start_ = start; }
void set_next(UseInterval* next) { next_ = next; }
LifetimePosition start_;
LifetimePosition end_;
UseInterval* next_;
friend class LiveRange; // Assigns to start_.
};
// Representation of a use position.
class UsePosition: public ZoneObject {
public:
UsePosition(LifetimePosition pos, LOperand* operand);
LOperand* operand() const { return operand_; }
bool HasOperand() const { return operand_ != NULL; }
LOperand* hint() const { return hint_; }
void set_hint(LOperand* hint) { hint_ = hint; }
bool HasHint() const;
bool RequiresRegister() const;
bool RegisterIsBeneficial() const;
LifetimePosition pos() const { return pos_; }
UsePosition* next() const { return next_; }
private:
void set_next(UsePosition* next) { next_ = next; }
LOperand* operand_;
LOperand* hint_;
LifetimePosition pos_;
UsePosition* next_;
bool requires_reg_;
bool register_beneficial_;
friend class LiveRange;
};
// Representation of SSA values' live ranges as a collection of (continuous)
// intervals over the instruction ordering.
class LiveRange: public ZoneObject {
public:
static const int kInvalidAssignment = 0x7fffffff;
explicit LiveRange(int id);
UseInterval* first_interval() const { return first_interval_; }
UsePosition* first_pos() const { return first_pos_; }
LiveRange* parent() const { return parent_; }
LiveRange* TopLevel() { return (parent_ == NULL) ? this : parent_; }
LiveRange* next() const { return next_; }
bool IsChild() const { return parent() != NULL; }
bool IsParent() const { return parent() == NULL; }
int id() const { return id_; }
bool IsFixed() const { return id_ < 0; }
bool IsEmpty() const { return first_interval() == NULL; }
LOperand* CreateAssignedOperand();
int assigned_register() const { return assigned_register_; }
int spill_start_index() const { return spill_start_index_; }
void set_assigned_register(int reg, RegisterKind register_kind);
void MakeSpilled();
// Returns use position in this live range that follows both start
// and last processed use position.
// Modifies internal state of live range!
UsePosition* NextUsePosition(LifetimePosition start);
// Returns use position for which register is required in this live
// range and which follows both start and last processed use position
// Modifies internal state of live range!
UsePosition* NextRegisterPosition(LifetimePosition start);
// Returns use position for which register is beneficial in this live
// range and which follows both start and last processed use position
// Modifies internal state of live range!
UsePosition* NextUsePositionRegisterIsBeneficial(LifetimePosition start);
// Can this live range be spilled at this position.
bool CanBeSpilled(LifetimePosition pos);
// Split this live range at the given position which must follow the start of
// the range.
// All uses following the given position will be moved from this
// live range to the result live range.
void SplitAt(LifetimePosition position, LiveRange* result);
bool IsDouble() const { return assigned_register_kind_ == DOUBLE_REGISTERS; }
bool HasRegisterAssigned() const {
return assigned_register_ != kInvalidAssignment;
}
bool IsSpilled() const { return spilled_; }
UsePosition* FirstPosWithHint() const;
LOperand* FirstHint() const {
UsePosition* pos = FirstPosWithHint();
if (pos != NULL) return pos->hint();
return NULL;
}
LifetimePosition Start() const {
ASSERT(!IsEmpty());
return first_interval()->start();
}
LifetimePosition End() const {
ASSERT(!IsEmpty());
return last_interval_->end();
}
bool HasAllocatedSpillOperand() const;
LOperand* GetSpillOperand() const { return spill_operand_; }
void SetSpillOperand(LOperand* operand);
void SetSpillStartIndex(int start) {
spill_start_index_ = Min(start, spill_start_index_);
}
bool ShouldBeAllocatedBefore(const LiveRange* other) const;
bool CanCover(LifetimePosition position) const;
bool Covers(LifetimePosition position);
LifetimePosition FirstIntersection(LiveRange* other);
// Add a new interval or a new use position to this live range.
void EnsureInterval(LifetimePosition start, LifetimePosition end);
void AddUseInterval(LifetimePosition start, LifetimePosition end);
UsePosition* AddUsePosition(LifetimePosition pos, LOperand* operand);
UsePosition* AddUsePosition(LifetimePosition pos);
// Shorten the most recently added interval by setting a new start.
void ShortenTo(LifetimePosition start);
#ifdef DEBUG
// True if target overlaps an existing interval.
bool HasOverlap(UseInterval* target) const;
void Verify() const;
#endif
private:
void ConvertOperands();
UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const;
void AdvanceLastProcessedMarker(UseInterval* to_start_of,
LifetimePosition but_not_past) const;
int id_;
bool spilled_;
int assigned_register_;
RegisterKind assigned_register_kind_;
UseInterval* last_interval_;
UseInterval* first_interval_;
UsePosition* first_pos_;
LiveRange* parent_;
LiveRange* next_;
// This is used as a cache, it doesn't affect correctness.
mutable UseInterval* current_interval_;
UsePosition* last_processed_use_;
LOperand* spill_operand_;
int spill_start_index_;
};
class GrowableBitVector BASE_EMBEDDED {
public:
GrowableBitVector() : bits_(NULL) { }
bool Contains(int value) const {
if (!InBitsRange(value)) return false;
return bits_->Contains(value);
}
void Add(int value) {
EnsureCapacity(value);
bits_->Add(value);
}
private:
static const int kInitialLength = 1024;
bool InBitsRange(int value) const {
return bits_ != NULL && bits_->length() > value;
}
void EnsureCapacity(int value) {
if (InBitsRange(value)) return;
int new_length = bits_ == NULL ? kInitialLength : bits_->length();
while (new_length <= value) new_length *= 2;
BitVector* new_bits = new BitVector(new_length);
if (bits_ != NULL) new_bits->CopyFrom(*bits_);
bits_ = new_bits;
}
BitVector* bits_;
};
class LAllocator BASE_EMBEDDED {
public:
explicit LAllocator(int first_virtual_register, HGraph* graph)
: chunk_(NULL),
live_in_sets_(0),
live_ranges_(16),
fixed_live_ranges_(8),
fixed_double_live_ranges_(8),
unhandled_live_ranges_(8),
active_live_ranges_(8),
inactive_live_ranges_(8),
reusable_slots_(8),
next_virtual_register_(first_virtual_register),
first_artificial_register_(first_virtual_register),
mode_(NONE),
num_registers_(-1),
graph_(graph),
has_osr_entry_(false) {}
static void Setup();
static void TraceAlloc(const char* msg, ...);
// Lithium translation support.
// Record a use of an input operand in the current instruction.
void RecordUse(HValue* value, LUnallocated* operand);
// Record the definition of the output operand.
void RecordDefinition(HInstruction* instr, LUnallocated* operand);
// Record a temporary operand.
void RecordTemporary(LUnallocated* operand);
// Checks whether the value of a given virtual register is tagged.
bool HasTaggedValue(int virtual_register) const;
// Returns the register kind required by the given virtual register.
RegisterKind RequiredRegisterKind(int virtual_register) const;
// Control max function size.
static int max_initial_value_ids();
void Allocate(LChunk* chunk);
const ZoneList<LiveRange*>* live_ranges() const { return &live_ranges_; }
const ZoneList<LiveRange*>* fixed_live_ranges() const {
return &fixed_live_ranges_;
}
const ZoneList<LiveRange*>* fixed_double_live_ranges() const {
return &fixed_double_live_ranges_;
}
LChunk* chunk() const { return chunk_; }
HGraph* graph() const { return graph_; }
void MarkAsOsrEntry() {
// There can be only one.
ASSERT(!has_osr_entry_);
// Simply set a flag to find and process instruction later.
has_osr_entry_ = true;
}
#ifdef DEBUG
void Verify() const;
#endif
private:
void MeetRegisterConstraints();
void ResolvePhis();
void BuildLiveRanges();
void AllocateGeneralRegisters();
void AllocateDoubleRegisters();
void ConnectRanges();
void ResolveControlFlow();
void PopulatePointerMaps();
void ProcessOsrEntry();
void AllocateRegisters();
bool CanEagerlyResolveControlFlow(HBasicBlock* block) const;
inline bool SafePointsAreInOrder() const;
// Liveness analysis support.
void InitializeLivenessAnalysis();
BitVector* ComputeLiveOut(HBasicBlock* block);
void AddInitialIntervals(HBasicBlock* block, BitVector* live_out);
void ProcessInstructions(HBasicBlock* block, BitVector* live);
void MeetRegisterConstraints(HBasicBlock* block);
void MeetConstraintsBetween(LInstruction* first,
LInstruction* second,
int gap_index);
void ResolvePhis(HBasicBlock* block);
// Helper methods for building intervals.
LOperand* AllocateFixed(LUnallocated* operand, int pos, bool is_tagged);
LiveRange* LiveRangeFor(LOperand* operand);
void Define(LifetimePosition position, LOperand* operand, LOperand* hint);
void Use(LifetimePosition block_start,
LifetimePosition position,
LOperand* operand,
LOperand* hint);
void AddConstraintsGapMove(int index, LOperand* from, LOperand* to);
// Helper methods for updating the life range lists.
void AddToActive(LiveRange* range);
void AddToInactive(LiveRange* range);
void AddToUnhandledSorted(LiveRange* range);
void AddToUnhandledUnsorted(LiveRange* range);
void SortUnhandled();
bool UnhandledIsSorted();
void ActiveToHandled(LiveRange* range);
void ActiveToInactive(LiveRange* range);
void InactiveToHandled(LiveRange* range);
void InactiveToActive(LiveRange* range);
void FreeSpillSlot(LiveRange* range);
LOperand* TryReuseSpillSlot(LiveRange* range);
// Helper methods for allocating registers.
bool TryAllocateFreeReg(LiveRange* range);
void AllocateBlockedReg(LiveRange* range);
// Live range splitting helpers.
// Split the given range at the given position.
// If range starts at or after the given position then the
// original range is returned.
// Otherwise returns the live range that starts at pos and contains
// all uses from the original range that follow pos. Uses at pos will
// still be owned by the original range after splitting.
LiveRange* SplitAt(LiveRange* range, LifetimePosition pos);
// Split the given range in a position from the interval [start, end].
LiveRange* SplitBetween(LiveRange* range,
LifetimePosition start,
LifetimePosition end);
// Find a lifetime position in the interval [start, end] which
// is optimal for splitting: it is either header of the outermost
// loop covered by this interval or the latest possible position.
LifetimePosition FindOptimalSplitPos(LifetimePosition start,
LifetimePosition end);
// Spill the given life range after position pos.
void SpillAfter(LiveRange* range, LifetimePosition pos);
// Spill the given life range after position start and up to position end.
void SpillBetween(LiveRange* range,
LifetimePosition start,
LifetimePosition end);
void SplitAndSpillIntersecting(LiveRange* range);
void Spill(LiveRange* range);
bool IsBlockBoundary(LifetimePosition pos);
// Helper methods for resolving control flow.
void ResolveControlFlow(LiveRange* range,
HBasicBlock* block,
HBasicBlock* pred);
// Return parallel move that should be used to connect ranges split at the
// given position.
LParallelMove* GetConnectingParallelMove(LifetimePosition pos);
// Return the block which contains give lifetime position.
HBasicBlock* GetBlock(LifetimePosition pos);
// Helper methods for the fixed registers.
int RegisterCount() const;
static int FixedLiveRangeID(int index) { return -index - 1; }
static int FixedDoubleLiveRangeID(int index);
LiveRange* FixedLiveRangeFor(int index);
LiveRange* FixedDoubleLiveRangeFor(int index);
LiveRange* LiveRangeFor(int index);
HPhi* LookupPhi(LOperand* operand) const;
LGap* GetLastGap(HBasicBlock* block);
const char* RegisterName(int allocation_index);
inline bool IsGapAt(int index);
inline LInstruction* InstructionAt(int index);
inline LGap* GapAt(int index);
LChunk* chunk_;
// During liveness analysis keep a mapping from block id to live_in sets
// for blocks already analyzed.
ZoneList<BitVector*> live_in_sets_;
// Liveness analysis results.
ZoneList<LiveRange*> live_ranges_;
// Lists of live ranges
ZoneList<LiveRange*> fixed_live_ranges_;
ZoneList<LiveRange*> fixed_double_live_ranges_;
ZoneList<LiveRange*> unhandled_live_ranges_;
ZoneList<LiveRange*> active_live_ranges_;
ZoneList<LiveRange*> inactive_live_ranges_;
ZoneList<LiveRange*> reusable_slots_;
// Next virtual register number to be assigned to temporaries.
int next_virtual_register_;
int first_artificial_register_;
GrowableBitVector double_artificial_registers_;
RegisterKind mode_;
int num_registers_;
HGraph* graph_;
bool has_osr_entry_;
DISALLOW_COPY_AND_ASSIGN(LAllocator);
};
} } // namespace v8::internal
#endif // V8_LITHIUM_ALLOCATOR_H_