v8/src/json-parser.cc
Jakob Kummerow cfc6a5c2c6 Reland: [cleanup] Refactor the Factory
There is no good reason to have the meat of most objects' initialization
logic in heap.cc, all wrapped by the CALL_HEAP_FUNCTION macro. Instead,
this CL changes the protocol between Heap and Factory to be AllocateRaw,
and all object initialization work after (possibly retried) successful
raw allocation happens in the Factory.

This saves about 20KB of binary size on x64.

Original review: https://chromium-review.googlesource.com/c/v8/v8/+/959533
Originally landed as r52416 / f9a2e24bbc

Cq-Include-Trybots: luci.v8.try:v8_linux_noi18n_rel_ng
Change-Id: Id072cbe6b3ed30afd339c7e502844b99ca12a647
Reviewed-on: https://chromium-review.googlesource.com/1000540
Commit-Queue: Jakob Kummerow <jkummerow@chromium.org>
Reviewed-by: Hannes Payer <hpayer@chromium.org>
Reviewed-by: Michael Starzinger <mstarzinger@chromium.org>
Cr-Commit-Position: refs/heads/master@{#52492}
2018-04-09 19:52:22 +00:00

945 lines
30 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/json-parser.h"
#include "src/char-predicates-inl.h"
#include "src/conversions.h"
#include "src/debug/debug.h"
#include "src/field-type.h"
#include "src/messages.h"
#include "src/objects-inl.h"
#include "src/property-descriptor.h"
#include "src/string-hasher.h"
#include "src/transitions.h"
#include "src/unicode-cache.h"
namespace v8 {
namespace internal {
namespace {
// A vector-like data structure that uses a larger vector for allocation, and
// provides limited utility access. The original vector must not be used for the
// duration, and it may even be reallocated. This allows vector storage to be
// reused for the properties of sibling objects.
template <typename Container>
class VectorSegment {
public:
using value_type = typename Container::value_type;
explicit VectorSegment(Container* container)
: container_(*container), begin_(container->size()) {}
~VectorSegment() { container_.resize(begin_); }
Vector<const value_type> GetVector() const {
return Vector<const value_type>(container_.data() + begin_,
container_.size() - begin_);
}
template <typename T>
void push_back(T&& value) {
container_.push_back(std::forward<T>(value));
}
private:
Container& container_;
const typename Container::size_type begin_;
};
} // namespace
MaybeHandle<Object> JsonParseInternalizer::Internalize(Isolate* isolate,
Handle<Object> object,
Handle<Object> reviver) {
DCHECK(reviver->IsCallable());
JsonParseInternalizer internalizer(isolate,
Handle<JSReceiver>::cast(reviver));
Handle<JSObject> holder =
isolate->factory()->NewJSObject(isolate->object_function());
Handle<String> name = isolate->factory()->empty_string();
JSObject::AddProperty(holder, name, object, NONE);
return internalizer.InternalizeJsonProperty(holder, name);
}
MaybeHandle<Object> JsonParseInternalizer::InternalizeJsonProperty(
Handle<JSReceiver> holder, Handle<String> name) {
HandleScope outer_scope(isolate_);
Handle<Object> value;
ASSIGN_RETURN_ON_EXCEPTION(
isolate_, value, Object::GetPropertyOrElement(holder, name), Object);
if (value->IsJSReceiver()) {
Handle<JSReceiver> object = Handle<JSReceiver>::cast(value);
Maybe<bool> is_array = Object::IsArray(object);
if (is_array.IsNothing()) return MaybeHandle<Object>();
if (is_array.FromJust()) {
Handle<Object> length_object;
ASSIGN_RETURN_ON_EXCEPTION(
isolate_, length_object,
Object::GetLengthFromArrayLike(isolate_, object), Object);
double length = length_object->Number();
for (double i = 0; i < length; i++) {
HandleScope inner_scope(isolate_);
Handle<Object> index = isolate_->factory()->NewNumber(i);
Handle<String> name = isolate_->factory()->NumberToString(index);
if (!RecurseAndApply(object, name)) return MaybeHandle<Object>();
}
} else {
Handle<FixedArray> contents;
ASSIGN_RETURN_ON_EXCEPTION(
isolate_, contents,
KeyAccumulator::GetKeys(object, KeyCollectionMode::kOwnOnly,
ENUMERABLE_STRINGS,
GetKeysConversion::kConvertToString),
Object);
for (int i = 0; i < contents->length(); i++) {
HandleScope inner_scope(isolate_);
Handle<String> name(String::cast(contents->get(i)), isolate_);
if (!RecurseAndApply(object, name)) return MaybeHandle<Object>();
}
}
}
Handle<Object> argv[] = {name, value};
Handle<Object> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate_, result, Execution::Call(isolate_, reviver_, holder, 2, argv),
Object);
return outer_scope.CloseAndEscape(result);
}
bool JsonParseInternalizer::RecurseAndApply(Handle<JSReceiver> holder,
Handle<String> name) {
STACK_CHECK(isolate_, false);
Handle<Object> result;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate_, result, InternalizeJsonProperty(holder, name), false);
Maybe<bool> change_result = Nothing<bool>();
if (result->IsUndefined(isolate_)) {
change_result = JSReceiver::DeletePropertyOrElement(holder, name,
LanguageMode::kSloppy);
} else {
PropertyDescriptor desc;
desc.set_value(result);
desc.set_configurable(true);
desc.set_enumerable(true);
desc.set_writable(true);
change_result = JSReceiver::DefineOwnProperty(isolate_, holder, name, &desc,
kDontThrow);
}
MAYBE_RETURN(change_result, false);
return true;
}
template <bool seq_one_byte>
JsonParser<seq_one_byte>::JsonParser(Isolate* isolate, Handle<String> source)
: source_(source),
source_length_(source->length()),
isolate_(isolate),
zone_(isolate_->allocator(), ZONE_NAME),
object_constructor_(isolate_->native_context()->object_function(),
isolate_),
position_(-1),
properties_(&zone_) {
source_ = String::Flatten(source_);
pretenure_ = (source_length_ >= kPretenureTreshold) ? TENURED : NOT_TENURED;
// Optimized fast case where we only have Latin1 characters.
if (seq_one_byte) {
seq_source_ = Handle<SeqOneByteString>::cast(source_);
}
}
template <bool seq_one_byte>
MaybeHandle<Object> JsonParser<seq_one_byte>::ParseJson() {
// Advance to the first character (possibly EOS)
AdvanceSkipWhitespace();
Handle<Object> result = ParseJsonValue();
if (result.is_null() || c0_ != kEndOfString) {
// Some exception (for example stack overflow) is already pending.
if (isolate_->has_pending_exception()) return Handle<Object>::null();
// Parse failed. Current character is the unexpected token.
Factory* factory = this->factory();
MessageTemplate::Template message;
Handle<Object> arg1 = Handle<Smi>(Smi::FromInt(position_), isolate());
Handle<Object> arg2;
switch (c0_) {
case kEndOfString:
message = MessageTemplate::kJsonParseUnexpectedEOS;
break;
case '-':
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
message = MessageTemplate::kJsonParseUnexpectedTokenNumber;
break;
case '"':
message = MessageTemplate::kJsonParseUnexpectedTokenString;
break;
default:
message = MessageTemplate::kJsonParseUnexpectedToken;
arg2 = arg1;
arg1 = factory->LookupSingleCharacterStringFromCode(c0_);
break;
}
Handle<Script> script(factory->NewScript(source_));
if (isolate()->NeedsSourcePositionsForProfiling()) {
Script::InitLineEnds(script);
}
// We should sent compile error event because we compile JSON object in
// separated source file.
isolate()->debug()->OnCompileError(script);
MessageLocation location(script, position_, position_ + 1);
Handle<Object> error = factory->NewSyntaxError(message, arg1, arg2);
return isolate()->template Throw<Object>(error, &location);
}
return result;
}
MaybeHandle<Object> InternalizeJsonProperty(Handle<JSObject> holder,
Handle<String> key);
template <bool seq_one_byte>
void JsonParser<seq_one_byte>::Advance() {
position_++;
if (position_ >= source_length_) {
c0_ = kEndOfString;
} else if (seq_one_byte) {
c0_ = seq_source_->SeqOneByteStringGet(position_);
} else {
c0_ = source_->Get(position_);
}
}
template <bool seq_one_byte>
void JsonParser<seq_one_byte>::AdvanceSkipWhitespace() {
do {
Advance();
} while (c0_ == ' ' || c0_ == '\t' || c0_ == '\n' || c0_ == '\r');
}
template <bool seq_one_byte>
void JsonParser<seq_one_byte>::SkipWhitespace() {
while (c0_ == ' ' || c0_ == '\t' || c0_ == '\n' || c0_ == '\r') {
Advance();
}
}
template <bool seq_one_byte>
uc32 JsonParser<seq_one_byte>::AdvanceGetChar() {
Advance();
return c0_;
}
template <bool seq_one_byte>
bool JsonParser<seq_one_byte>::MatchSkipWhiteSpace(uc32 c) {
if (c0_ == c) {
AdvanceSkipWhitespace();
return true;
}
return false;
}
template <bool seq_one_byte>
bool JsonParser<seq_one_byte>::ParseJsonString(Handle<String> expected) {
int length = expected->length();
if (source_->length() - position_ - 1 > length) {
DisallowHeapAllocation no_gc;
String::FlatContent content = expected->GetFlatContent();
if (content.IsOneByte()) {
DCHECK_EQ('"', c0_);
const uint8_t* input_chars = seq_source_->GetChars() + position_ + 1;
const uint8_t* expected_chars = content.ToOneByteVector().start();
for (int i = 0; i < length; i++) {
uint8_t c0 = input_chars[i];
if (c0 != expected_chars[i] || c0 == '"' || c0 < 0x20 || c0 == '\\') {
return false;
}
}
if (input_chars[length] == '"') {
position_ = position_ + length + 1;
AdvanceSkipWhitespace();
return true;
}
}
}
return false;
}
// Parse any JSON value.
template <bool seq_one_byte>
Handle<Object> JsonParser<seq_one_byte>::ParseJsonValue() {
StackLimitCheck stack_check(isolate_);
if (stack_check.HasOverflowed()) {
isolate_->StackOverflow();
return Handle<Object>::null();
}
if (stack_check.InterruptRequested() &&
isolate_->stack_guard()->HandleInterrupts()->IsException(isolate_)) {
return Handle<Object>::null();
}
if (c0_ == '"') return ParseJsonString();
if ((c0_ >= '0' && c0_ <= '9') || c0_ == '-') return ParseJsonNumber();
if (c0_ == '{') return ParseJsonObject();
if (c0_ == '[') return ParseJsonArray();
if (c0_ == 'f') {
if (AdvanceGetChar() == 'a' && AdvanceGetChar() == 'l' &&
AdvanceGetChar() == 's' && AdvanceGetChar() == 'e') {
AdvanceSkipWhitespace();
return factory()->false_value();
}
return ReportUnexpectedCharacter();
}
if (c0_ == 't') {
if (AdvanceGetChar() == 'r' && AdvanceGetChar() == 'u' &&
AdvanceGetChar() == 'e') {
AdvanceSkipWhitespace();
return factory()->true_value();
}
return ReportUnexpectedCharacter();
}
if (c0_ == 'n') {
if (AdvanceGetChar() == 'u' && AdvanceGetChar() == 'l' &&
AdvanceGetChar() == 'l') {
AdvanceSkipWhitespace();
return factory()->null_value();
}
return ReportUnexpectedCharacter();
}
return ReportUnexpectedCharacter();
}
template <bool seq_one_byte>
ParseElementResult JsonParser<seq_one_byte>::ParseElement(
Handle<JSObject> json_object) {
uint32_t index = 0;
// Maybe an array index, try to parse it.
if (c0_ == '0') {
// With a leading zero, the string has to be "0" only to be an index.
Advance();
} else {
do {
int d = c0_ - '0';
if (index > 429496729U - ((d + 3) >> 3)) break;
index = (index * 10) + d;
Advance();
} while (IsDecimalDigit(c0_));
}
if (c0_ == '"') {
// Successfully parsed index, parse and store element.
AdvanceSkipWhitespace();
if (c0_ == ':') {
AdvanceSkipWhitespace();
Handle<Object> value = ParseJsonValue();
if (!value.is_null()) {
JSObject::SetOwnElementIgnoreAttributes(json_object, index, value, NONE)
.Assert();
return kElementFound;
} else {
return kNullHandle;
}
}
}
return kElementNotFound;
}
// Parse a JSON object. Position must be right at '{'.
template <bool seq_one_byte>
Handle<Object> JsonParser<seq_one_byte>::ParseJsonObject() {
HandleScope scope(isolate());
Handle<JSObject> json_object =
factory()->NewJSObject(object_constructor(), pretenure_);
Handle<Map> map(json_object->map());
int descriptor = 0;
VectorSegment<ZoneVector<Handle<Object>>> properties(&properties_);
DCHECK_EQ(c0_, '{');
bool transitioning = true;
AdvanceSkipWhitespace();
if (c0_ != '}') {
do {
if (c0_ != '"') return ReportUnexpectedCharacter();
int start_position = position_;
Advance();
if (IsDecimalDigit(c0_)) {
ParseElementResult element_result = ParseElement(json_object);
if (element_result == kNullHandle) return Handle<Object>::null();
if (element_result == kElementFound) continue;
}
// Not an index, fallback to the slow path.
position_ = start_position;
#ifdef DEBUG
c0_ = '"';
#endif
Handle<String> key;
Handle<Object> value;
// Try to follow existing transitions as long as possible. Once we stop
// transitioning, no transition can be found anymore.
DCHECK(transitioning);
// First check whether there is a single expected transition. If so, try
// to parse it first.
bool follow_expected = false;
Handle<Map> target;
if (seq_one_byte) {
DisallowHeapAllocation no_gc;
TransitionsAccessor transitions(*map, &no_gc);
key = transitions.ExpectedTransitionKey();
follow_expected = !key.is_null() && ParseJsonString(key);
// If the expected transition hits, follow it.
if (follow_expected) {
target = transitions.ExpectedTransitionTarget();
}
}
if (!follow_expected) {
// If the expected transition failed, parse an internalized string and
// try to find a matching transition.
key = ParseJsonString();
if (key.is_null()) return ReportUnexpectedCharacter();
// If a transition was found, follow it and continue.
transitioning =
TransitionsAccessor(map).FindTransitionToField(key).ToHandle(
&target);
}
if (c0_ != ':') return ReportUnexpectedCharacter();
AdvanceSkipWhitespace();
value = ParseJsonValue();
if (value.is_null()) return ReportUnexpectedCharacter();
if (transitioning) {
PropertyDetails details =
target->instance_descriptors()->GetDetails(descriptor);
Representation expected_representation = details.representation();
if (value->FitsRepresentation(expected_representation)) {
if (expected_representation.IsHeapObject() &&
!target->instance_descriptors()
->GetFieldType(descriptor)
->NowContains(value)) {
Handle<FieldType> value_type(
value->OptimalType(isolate(), expected_representation));
Map::GeneralizeField(target, descriptor, details.constness(),
expected_representation, value_type);
}
DCHECK(target->instance_descriptors()
->GetFieldType(descriptor)
->NowContains(value));
properties.push_back(value);
map = target;
descriptor++;
continue;
} else {
transitioning = false;
}
}
DCHECK(!transitioning);
// Commit the intermediate state to the object and stop transitioning.
CommitStateToJsonObject(json_object, map, properties.GetVector());
JSObject::DefinePropertyOrElementIgnoreAttributes(json_object, key, value)
.Check();
} while (transitioning && MatchSkipWhiteSpace(','));
// If we transitioned until the very end, transition the map now.
if (transitioning) {
CommitStateToJsonObject(json_object, map, properties.GetVector());
} else {
while (MatchSkipWhiteSpace(',')) {
HandleScope local_scope(isolate());
if (c0_ != '"') return ReportUnexpectedCharacter();
int start_position = position_;
Advance();
if (IsDecimalDigit(c0_)) {
ParseElementResult element_result = ParseElement(json_object);
if (element_result == kNullHandle) return Handle<Object>::null();
if (element_result == kElementFound) continue;
}
// Not an index, fallback to the slow path.
position_ = start_position;
#ifdef DEBUG
c0_ = '"';
#endif
Handle<String> key;
Handle<Object> value;
key = ParseJsonString();
if (key.is_null() || c0_ != ':') return ReportUnexpectedCharacter();
AdvanceSkipWhitespace();
value = ParseJsonValue();
if (value.is_null()) return ReportUnexpectedCharacter();
JSObject::DefinePropertyOrElementIgnoreAttributes(json_object, key,
value)
.Check();
}
}
if (c0_ != '}') {
return ReportUnexpectedCharacter();
}
}
AdvanceSkipWhitespace();
return scope.CloseAndEscape(json_object);
}
template <bool seq_one_byte>
void JsonParser<seq_one_byte>::CommitStateToJsonObject(
Handle<JSObject> json_object, Handle<Map> map,
Vector<const Handle<Object>> properties) {
JSObject::AllocateStorageForMap(json_object, map);
DCHECK(!json_object->map()->is_dictionary_map());
DisallowHeapAllocation no_gc;
DescriptorArray* descriptors = json_object->map()->instance_descriptors();
for (int i = 0; i < properties.length(); i++) {
Handle<Object> value = properties[i];
// Initializing store.
json_object->WriteToField(i, descriptors->GetDetails(i), *value);
}
}
class ElementKindLattice {
private:
enum {
SMI_ELEMENTS,
NUMBER_ELEMENTS,
OBJECT_ELEMENTS,
};
public:
ElementKindLattice() : value_(SMI_ELEMENTS) {}
void Update(Handle<Object> o) {
if (o->IsSmi()) {
return;
} else if (o->IsHeapNumber()) {
if (value_ < NUMBER_ELEMENTS) value_ = NUMBER_ELEMENTS;
} else {
DCHECK(!o->IsNumber());
value_ = OBJECT_ELEMENTS;
}
}
ElementsKind GetElementsKind() const {
switch (value_) {
case SMI_ELEMENTS:
return PACKED_SMI_ELEMENTS;
case NUMBER_ELEMENTS:
return PACKED_DOUBLE_ELEMENTS;
case OBJECT_ELEMENTS:
return PACKED_ELEMENTS;
default:
UNREACHABLE();
return PACKED_ELEMENTS;
}
}
private:
int value_;
};
// Parse a JSON array. Position must be right at '['.
template <bool seq_one_byte>
Handle<Object> JsonParser<seq_one_byte>::ParseJsonArray() {
HandleScope scope(isolate());
ZoneVector<Handle<Object>> elements(zone());
DCHECK_EQ(c0_, '[');
ElementKindLattice lattice;
AdvanceSkipWhitespace();
if (c0_ != ']') {
do {
Handle<Object> element = ParseJsonValue();
if (element.is_null()) return ReportUnexpectedCharacter();
elements.push_back(element);
lattice.Update(element);
} while (MatchSkipWhiteSpace(','));
if (c0_ != ']') {
return ReportUnexpectedCharacter();
}
}
AdvanceSkipWhitespace();
// Allocate a fixed array with all the elements.
Handle<Object> json_array;
const ElementsKind kind = lattice.GetElementsKind();
int elements_size = static_cast<int>(elements.size());
switch (kind) {
case PACKED_ELEMENTS:
case PACKED_SMI_ELEMENTS: {
Handle<FixedArray> elems =
factory()->NewFixedArray(elements_size, pretenure_);
for (int i = 0; i < elements_size; i++) elems->set(i, *elements[i]);
json_array = factory()->NewJSArrayWithElements(elems, kind, pretenure_);
break;
}
case PACKED_DOUBLE_ELEMENTS: {
Handle<FixedDoubleArray> elems = Handle<FixedDoubleArray>::cast(
factory()->NewFixedDoubleArray(elements_size, pretenure_));
for (int i = 0; i < elements_size; i++) {
elems->set(i, elements[i]->Number());
}
json_array = factory()->NewJSArrayWithElements(elems, kind, pretenure_);
break;
}
default:
UNREACHABLE();
}
return scope.CloseAndEscape(json_array);
}
template <bool seq_one_byte>
Handle<Object> JsonParser<seq_one_byte>::ParseJsonNumber() {
bool negative = false;
int beg_pos = position_;
if (c0_ == '-') {
Advance();
negative = true;
}
if (c0_ == '0') {
Advance();
// Prefix zero is only allowed if it's the only digit before
// a decimal point or exponent.
if (IsDecimalDigit(c0_)) return ReportUnexpectedCharacter();
} else {
int i = 0;
int digits = 0;
if (c0_ < '1' || c0_ > '9') return ReportUnexpectedCharacter();
do {
i = i * 10 + c0_ - '0';
digits++;
Advance();
} while (IsDecimalDigit(c0_));
if (c0_ != '.' && c0_ != 'e' && c0_ != 'E' && digits < 10) {
SkipWhitespace();
return Handle<Smi>(Smi::FromInt((negative ? -i : i)), isolate());
}
}
if (c0_ == '.') {
Advance();
if (!IsDecimalDigit(c0_)) return ReportUnexpectedCharacter();
do {
Advance();
} while (IsDecimalDigit(c0_));
}
if (AsciiAlphaToLower(c0_) == 'e') {
Advance();
if (c0_ == '-' || c0_ == '+') Advance();
if (!IsDecimalDigit(c0_)) return ReportUnexpectedCharacter();
do {
Advance();
} while (IsDecimalDigit(c0_));
}
int length = position_ - beg_pos;
double number;
if (seq_one_byte) {
Vector<const uint8_t> chars(seq_source_->GetChars() + beg_pos, length);
number = StringToDouble(isolate()->unicode_cache(), chars,
NO_FLAGS, // Hex, octal or trailing junk.
std::numeric_limits<double>::quiet_NaN());
} else {
Vector<uint8_t> buffer = Vector<uint8_t>::New(length);
String::WriteToFlat(*source_, buffer.start(), beg_pos, position_);
Vector<const uint8_t> result =
Vector<const uint8_t>(buffer.start(), length);
number = StringToDouble(isolate()->unicode_cache(), result,
NO_FLAGS, // Hex, octal or trailing junk.
0.0);
buffer.Dispose();
}
SkipWhitespace();
return factory()->NewNumber(number, pretenure_);
}
template <typename StringType>
inline void SeqStringSet(Handle<StringType> seq_str, int i, uc32 c);
template <>
inline void SeqStringSet(Handle<SeqTwoByteString> seq_str, int i, uc32 c) {
seq_str->SeqTwoByteStringSet(i, c);
}
template <>
inline void SeqStringSet(Handle<SeqOneByteString> seq_str, int i, uc32 c) {
seq_str->SeqOneByteStringSet(i, c);
}
template <typename StringType>
inline Handle<StringType> NewRawString(Factory* factory, int length,
PretenureFlag pretenure);
template <>
inline Handle<SeqTwoByteString> NewRawString(Factory* factory, int length,
PretenureFlag pretenure) {
return factory->NewRawTwoByteString(length, pretenure).ToHandleChecked();
}
template <>
inline Handle<SeqOneByteString> NewRawString(Factory* factory, int length,
PretenureFlag pretenure) {
return factory->NewRawOneByteString(length, pretenure).ToHandleChecked();
}
// Scans the rest of a JSON string starting from position_ and writes
// prefix[start..end] along with the scanned characters into a
// sequential string of type StringType.
template <bool seq_one_byte>
template <typename StringType, typename SinkChar>
Handle<String> JsonParser<seq_one_byte>::SlowScanJsonString(
Handle<String> prefix, int start, int end) {
int count = end - start;
int max_length = count + source_length_ - position_;
int length = Min(max_length, Max(kInitialSpecialStringLength, 2 * count));
Handle<StringType> seq_string =
NewRawString<StringType>(factory(), length, pretenure_);
// Copy prefix into seq_str.
SinkChar* dest = seq_string->GetChars();
String::WriteToFlat(*prefix, dest, start, end);
while (c0_ != '"') {
// Check for control character (0x00-0x1F) or unterminated string (<0).
if (c0_ < 0x20) return Handle<String>::null();
if (count >= length) {
// We need to create a longer sequential string for the result.
return SlowScanJsonString<StringType, SinkChar>(seq_string, 0, count);
}
if (c0_ != '\\') {
// If the sink can contain UC16 characters, or source_ contains only
// Latin1 characters, there's no need to test whether we can store the
// character. Otherwise check whether the UC16 source character can fit
// in the Latin1 sink.
if (sizeof(SinkChar) == kUC16Size || seq_one_byte ||
c0_ <= String::kMaxOneByteCharCode) {
SeqStringSet(seq_string, count++, c0_);
Advance();
} else {
// StringType is SeqOneByteString and we just read a non-Latin1 char.
return SlowScanJsonString<SeqTwoByteString, uc16>(seq_string, 0, count);
}
} else {
Advance(); // Advance past the \.
switch (c0_) {
case '"':
case '\\':
case '/':
SeqStringSet(seq_string, count++, c0_);
break;
case 'b':
SeqStringSet(seq_string, count++, '\x08');
break;
case 'f':
SeqStringSet(seq_string, count++, '\x0C');
break;
case 'n':
SeqStringSet(seq_string, count++, '\x0A');
break;
case 'r':
SeqStringSet(seq_string, count++, '\x0D');
break;
case 't':
SeqStringSet(seq_string, count++, '\x09');
break;
case 'u': {
uc32 value = 0;
for (int i = 0; i < 4; i++) {
Advance();
int digit = HexValue(c0_);
if (digit < 0) {
return Handle<String>::null();
}
value = value * 16 + digit;
}
if (sizeof(SinkChar) == kUC16Size ||
value <= String::kMaxOneByteCharCode) {
SeqStringSet(seq_string, count++, value);
break;
} else {
// StringType is SeqOneByteString and we just read a non-Latin1
// char.
position_ -= 6; // Rewind position_ to \ in \uxxxx.
Advance();
return SlowScanJsonString<SeqTwoByteString, uc16>(seq_string, 0,
count);
}
}
default:
return Handle<String>::null();
}
Advance();
}
}
DCHECK_EQ('"', c0_);
// Advance past the last '"'.
AdvanceSkipWhitespace();
// Shrink seq_string length to count and return.
return SeqString::Truncate(seq_string, count);
}
template <bool seq_one_byte>
Handle<String> JsonParser<seq_one_byte>::ScanJsonString() {
DCHECK_EQ('"', c0_);
Advance();
if (c0_ == '"') {
AdvanceSkipWhitespace();
return factory()->empty_string();
}
if (seq_one_byte) {
// Fast path for existing internalized strings. If the the string being
// parsed is not a known internalized string, contains backslashes or
// unexpectedly reaches the end of string, return with an empty handle.
// We intentionally use local variables instead of fields, compute hash
// while we are iterating a string and manually inline StringTable lookup
// here.
int position = position_;
uc32 c0 = c0_;
uint32_t running_hash = isolate()->heap()->HashSeed();
uint32_t index = 0;
bool is_array_index = true;
do {
if (c0 == '\\') {
c0_ = c0;
int beg_pos = position_;
position_ = position;
return SlowScanJsonString<SeqOneByteString, uint8_t>(source_, beg_pos,
position_);
}
if (c0 < 0x20) {
c0_ = c0;
position_ = position;
return Handle<String>::null();
}
if (is_array_index) {
// With leading zero, the string has to be "0" to be a valid index.
if (!IsDecimalDigit(c0) || (position > position_ && index == 0)) {
is_array_index = false;
} else {
int d = c0 - '0';
is_array_index = index <= 429496729U - ((d + 3) >> 3);
index = (index * 10) + d;
}
}
running_hash = StringHasher::AddCharacterCore(running_hash,
static_cast<uint16_t>(c0));
position++;
if (position >= source_length_) {
c0_ = kEndOfString;
position_ = position;
return Handle<String>::null();
}
c0 = seq_source_->SeqOneByteStringGet(position);
} while (c0 != '"');
int length = position - position_;
uint32_t hash;
if (is_array_index) {
hash =
StringHasher::MakeArrayIndexHash(index, length) >> String::kHashShift;
} else if (length <= String::kMaxHashCalcLength) {
hash = StringHasher::GetHashCore(running_hash);
} else {
hash = static_cast<uint32_t>(length);
}
Vector<const uint8_t> string_vector(seq_source_->GetChars() + position_,
length);
StringTable* string_table = isolate()->heap()->string_table();
uint32_t capacity = string_table->Capacity();
uint32_t entry = StringTable::FirstProbe(hash, capacity);
uint32_t count = 1;
Handle<String> result;
while (true) {
Object* element = string_table->KeyAt(entry);
if (element->IsUndefined(isolate())) {
// Lookup failure.
result =
factory()->InternalizeOneByteString(seq_source_, position_, length);
break;
}
if (!element->IsTheHole(isolate()) &&
String::cast(element)->IsOneByteEqualTo(string_vector)) {
result = Handle<String>(String::cast(element), isolate());
DCHECK_EQ(result->Hash(),
(hash << String::kHashShift) >> String::kHashShift);
break;
}
entry = StringTable::NextProbe(entry, count++, capacity);
}
position_ = position;
// Advance past the last '"'.
AdvanceSkipWhitespace();
return result;
}
int beg_pos = position_;
// Fast case for Latin1 only without escape characters.
do {
// Check for control character (0x00-0x1F) or unterminated string (<0).
if (c0_ < 0x20) return Handle<String>::null();
if (c0_ != '\\') {
if (seq_one_byte || c0_ <= String::kMaxOneByteCharCode) {
Advance();
} else {
return SlowScanJsonString<SeqTwoByteString, uc16>(source_, beg_pos,
position_);
}
} else {
return SlowScanJsonString<SeqOneByteString, uint8_t>(source_, beg_pos,
position_);
}
} while (c0_ != '"');
int length = position_ - beg_pos;
Handle<String> result =
factory()->NewRawOneByteString(length, pretenure_).ToHandleChecked();
uint8_t* dest = SeqOneByteString::cast(*result)->GetChars();
String::WriteToFlat(*source_, dest, beg_pos, position_);
DCHECK_EQ('"', c0_);
// Advance past the last '"'.
AdvanceSkipWhitespace();
return result;
}
// Explicit instantiation.
template class JsonParser<true>;
template class JsonParser<false>;
} // namespace internal
} // namespace v8