v8/src/arm/lithium-arm.h
kmillikin@chromium.org f1149734fc Partial fix for V8 issue 1079.
Record a safepoint with a deoptimization id for throw in optimized code.  We
don't seem to much care what the AST ID is because we will not be using it
for lazy deoptimization (throw doesn't return to the point of throw).  For
hygiene we use the actual ID of the throw expression.  Throw is no longer a
control-flow instruction, but it's followed by an unconditional abnormal
exit.  This is required to insert a simulate between the throw and the exit.

Make our optimized treatment of Function.prototype.apply act like a call and
have side effects.  This ensures that it will get a lazy deoptimization
environment.  Use that deoptimization ID in the safepoint for the call.

Deleting a property was also missing a deoptimization ID, though there was a
deoptimization environment assigned to the instruction.  Record the
environment and use the deoptimization ID at the safepoint.

Review URL: http://codereview.chromium.org/6250105

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@6576 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-02-02 13:55:29 +00:00

2005 lines
54 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_ARM_LITHIUM_ARM_H_
#define V8_ARM_LITHIUM_ARM_H_
#include "hydrogen.h"
#include "lithium-allocator.h"
#include "lithium.h"
#include "safepoint-table.h"
namespace v8 {
namespace internal {
// Forward declarations.
class LCodeGen;
// Type hierarchy:
//
// LInstruction
// LTemplateInstruction
// LControlInstruction
// LBranch
// LClassOfTestAndBranch
// LCmpJSObjectEqAndBranch
// LCmpIDAndBranch
// LHasCachedArrayIndexAndBranch
// LHasInstanceTypeAndBranch
// LInstanceOfAndBranch
// LIsNullAndBranch
// LIsObjectAndBranch
// LIsSmiAndBranch
// LTypeofIsAndBranch
// LAccessArgumentsAt
// LArgumentsElements
// LArgumentsLength
// LAddI
// LApplyArguments
// LArithmeticD
// LArithmeticT
// LBitI
// LBoundsCheck
// LCmpID
// LCmpJSObjectEq
// LCmpT
// LDivI
// LInstanceOf
// LInstanceOfKnownGlobal
// LLoadKeyedFastElement
// LLoadKeyedGeneric
// LModI
// LMulI
// LPower
// LShiftI
// LSubI
// LCallConstantFunction
// LCallFunction
// LCallGlobal
// LCallKeyed
// LCallKnownGlobal
// LCallNamed
// LCallRuntime
// LCallStub
// LConstant
// LConstantD
// LConstantI
// LConstantT
// LDeoptimize
// LFunctionLiteral
// LGap
// LLabel
// LGlobalObject
// LGlobalReceiver
// LGoto
// LLazyBailout
// LLoadGlobal
// LCheckPrototypeMaps
// LLoadContextSlot
// LArrayLiteral
// LObjectLiteral
// LRegExpLiteral
// LOsrEntry
// LParameter
// LRegExpConstructResult
// LStackCheck
// LStoreKeyed
// LStoreKeyedFastElement
// LStoreKeyedGeneric
// LStoreNamed
// LStoreNamedField
// LStoreNamedGeneric
// LStringCharCodeAt
// LBitNotI
// LCallNew
// LCheckFunction
// LCheckPrototypeMaps
// LCheckInstanceType
// LCheckMap
// LCheckSmi
// LClassOfTest
// LDeleteProperty
// LDoubleToI
// LFixedArrayLength
// LHasCachedArrayIndex
// LHasInstanceType
// LInteger32ToDouble
// LIsNull
// LIsObject
// LIsSmi
// LJSArrayLength
// LLoadNamedField
// LLoadNamedGeneric
// LLoadFunctionPrototype
// LNumberTagD
// LNumberTagI
// LPushArgument
// LReturn
// LSmiTag
// LStoreGlobal
// LStringLength
// LTaggedToI
// LThrow
// LTypeof
// LTypeofIs
// LUnaryMathOperation
// LValueOf
// LUnknownOSRValue
#define LITHIUM_ALL_INSTRUCTION_LIST(V) \
V(ControlInstruction) \
V(Constant) \
V(Call) \
V(StoreKeyed) \
V(StoreNamed) \
LITHIUM_CONCRETE_INSTRUCTION_LIST(V)
#define LITHIUM_CONCRETE_INSTRUCTION_LIST(V) \
V(AccessArgumentsAt) \
V(AddI) \
V(ApplyArguments) \
V(ArgumentsElements) \
V(ArgumentsLength) \
V(ArithmeticD) \
V(ArithmeticT) \
V(ArrayLiteral) \
V(BitI) \
V(BitNotI) \
V(BoundsCheck) \
V(Branch) \
V(CallConstantFunction) \
V(CallFunction) \
V(CallGlobal) \
V(CallKeyed) \
V(CallKnownGlobal) \
V(CallNamed) \
V(CallNew) \
V(CallRuntime) \
V(CallStub) \
V(CheckFunction) \
V(CheckInstanceType) \
V(CheckMap) \
V(CheckPrototypeMaps) \
V(CheckSmi) \
V(CmpID) \
V(CmpIDAndBranch) \
V(CmpJSObjectEq) \
V(CmpJSObjectEqAndBranch) \
V(CmpMapAndBranch) \
V(CmpT) \
V(CmpTAndBranch) \
V(ConstantD) \
V(ConstantI) \
V(ConstantT) \
V(DeleteProperty) \
V(Deoptimize) \
V(DivI) \
V(DoubleToI) \
V(FixedArrayLength) \
V(FunctionLiteral) \
V(Gap) \
V(GlobalObject) \
V(GlobalReceiver) \
V(Goto) \
V(InstanceOf) \
V(InstanceOfAndBranch) \
V(InstanceOfKnownGlobal) \
V(Integer32ToDouble) \
V(IsNull) \
V(IsNullAndBranch) \
V(IsObject) \
V(IsObjectAndBranch) \
V(IsSmi) \
V(IsSmiAndBranch) \
V(JSArrayLength) \
V(HasInstanceType) \
V(HasInstanceTypeAndBranch) \
V(HasCachedArrayIndex) \
V(HasCachedArrayIndexAndBranch) \
V(ClassOfTest) \
V(ClassOfTestAndBranch) \
V(Label) \
V(LazyBailout) \
V(LoadContextSlot) \
V(LoadElements) \
V(LoadGlobal) \
V(LoadKeyedFastElement) \
V(LoadKeyedGeneric) \
V(LoadNamedField) \
V(LoadNamedGeneric) \
V(LoadFunctionPrototype) \
V(ModI) \
V(MulI) \
V(NumberTagD) \
V(NumberTagI) \
V(NumberUntagD) \
V(ObjectLiteral) \
V(OsrEntry) \
V(Parameter) \
V(PushArgument) \
V(RegExpLiteral) \
V(Return) \
V(ShiftI) \
V(SmiTag) \
V(SmiUntag) \
V(StackCheck) \
V(StoreGlobal) \
V(StoreKeyedFastElement) \
V(StoreKeyedGeneric) \
V(StoreNamedField) \
V(StoreNamedGeneric) \
V(SubI) \
V(StringCharCodeAt) \
V(StringLength) \
V(TaggedToI) \
V(Throw) \
V(Typeof) \
V(TypeofIs) \
V(TypeofIsAndBranch) \
V(UnaryMathOperation) \
V(UnknownOSRValue) \
V(ValueOf)
#define DECLARE_INSTRUCTION(type) \
virtual bool Is##type() const { return true; } \
static L##type* cast(LInstruction* instr) { \
ASSERT(instr->Is##type()); \
return reinterpret_cast<L##type*>(instr); \
}
#define DECLARE_CONCRETE_INSTRUCTION(type, mnemonic) \
virtual void CompileToNative(LCodeGen* generator); \
virtual const char* Mnemonic() const { return mnemonic; } \
DECLARE_INSTRUCTION(type)
#define DECLARE_HYDROGEN_ACCESSOR(type) \
H##type* hydrogen() const { \
return H##type::cast(hydrogen_value()); \
}
class LInstruction: public ZoneObject {
public:
LInstruction()
: hydrogen_value_(NULL) { }
virtual ~LInstruction() { }
virtual void CompileToNative(LCodeGen* generator) = 0;
virtual const char* Mnemonic() const = 0;
virtual void PrintTo(StringStream* stream);
virtual void PrintDataTo(StringStream* stream) = 0;
virtual void PrintOutputOperandTo(StringStream* stream) = 0;
// Declare virtual type testers.
#define DECLARE_DO(type) virtual bool Is##type() const { return false; }
LITHIUM_ALL_INSTRUCTION_LIST(DECLARE_DO)
#undef DECLARE_DO
virtual bool IsControl() const { return false; }
virtual void SetBranchTargets(int true_block_id, int false_block_id) { }
void set_environment(LEnvironment* env) { environment_.set(env); }
LEnvironment* environment() const { return environment_.get(); }
bool HasEnvironment() const { return environment_.is_set(); }
void set_pointer_map(LPointerMap* p) { pointer_map_.set(p); }
LPointerMap* pointer_map() const { return pointer_map_.get(); }
bool HasPointerMap() const { return pointer_map_.is_set(); }
virtual bool HasResult() const = 0;
void set_hydrogen_value(HValue* value) { hydrogen_value_ = value; }
HValue* hydrogen_value() const { return hydrogen_value_; }
void set_deoptimization_environment(LEnvironment* env) {
deoptimization_environment_.set(env);
}
LEnvironment* deoptimization_environment() const {
return deoptimization_environment_.get();
}
bool HasDeoptimizationEnvironment() const {
return deoptimization_environment_.is_set();
}
private:
SetOncePointer<LEnvironment> environment_;
SetOncePointer<LPointerMap> pointer_map_;
HValue* hydrogen_value_;
SetOncePointer<LEnvironment> deoptimization_environment_;
};
template<typename ElementType, int NumElements>
class OperandContainer {
public:
OperandContainer() {
for (int i = 0; i < NumElements; i++) elems_[i] = NULL;
}
int length() { return NumElements; }
ElementType& operator[](int i) {
ASSERT(i < length());
return elems_[i];
}
void PrintOperandsTo(StringStream* stream);
private:
ElementType elems_[NumElements];
};
template<typename ElementType>
class OperandContainer<ElementType, 0> {
public:
int length() { return 0; }
void PrintOperandsTo(StringStream* stream) { }
};
// R = number of result operands (0 or 1).
// I = number of input operands.
// T = number of temporary operands.
template<int R, int I, int T>
class LTemplateInstruction: public LInstruction {
public:
// Allow 0 or 1 output operands.
STATIC_ASSERT(R == 0 || R == 1);
virtual bool HasResult() const { return R != 0; }
void set_result(LOperand* operand) { results_[0] = operand; }
LOperand* result() { return results_[0]; }
int InputCount() { return I; }
LOperand* InputAt(int i) { return inputs_[i]; }
int TempCount() { return T; }
LOperand* TempAt(int i) { return temps_[i]; }
virtual void PrintDataTo(StringStream* stream);
virtual void PrintOutputOperandTo(StringStream* stream);
protected:
OperandContainer<LOperand*, R> results_;
OperandContainer<LOperand*, I> inputs_;
OperandContainer<LOperand*, T> temps_;
};
class LGap: public LTemplateInstruction<0, 0, 0> {
public:
explicit LGap(HBasicBlock* block)
: block_(block) {
parallel_moves_[BEFORE] = NULL;
parallel_moves_[START] = NULL;
parallel_moves_[END] = NULL;
parallel_moves_[AFTER] = NULL;
}
DECLARE_CONCRETE_INSTRUCTION(Gap, "gap")
virtual void PrintDataTo(StringStream* stream) const;
bool IsRedundant() const;
HBasicBlock* block() const { return block_; }
enum InnerPosition {
BEFORE,
START,
END,
AFTER,
FIRST_INNER_POSITION = BEFORE,
LAST_INNER_POSITION = AFTER
};
LParallelMove* GetOrCreateParallelMove(InnerPosition pos) {
if (parallel_moves_[pos] == NULL) parallel_moves_[pos] = new LParallelMove;
return parallel_moves_[pos];
}
LParallelMove* GetParallelMove(InnerPosition pos) {
return parallel_moves_[pos];
}
private:
LParallelMove* parallel_moves_[LAST_INNER_POSITION + 1];
HBasicBlock* block_;
};
class LGoto: public LTemplateInstruction<0, 0, 0> {
public:
LGoto(int block_id, bool include_stack_check = false)
: block_id_(block_id), include_stack_check_(include_stack_check) { }
DECLARE_CONCRETE_INSTRUCTION(Goto, "goto")
virtual void PrintDataTo(StringStream* stream);
virtual bool IsControl() const { return true; }
int block_id() const { return block_id_; }
bool include_stack_check() const { return include_stack_check_; }
private:
int block_id_;
bool include_stack_check_;
};
class LLazyBailout: public LTemplateInstruction<0, 0, 0> {
public:
LLazyBailout() : gap_instructions_size_(0) { }
DECLARE_CONCRETE_INSTRUCTION(LazyBailout, "lazy-bailout")
void set_gap_instructions_size(int gap_instructions_size) {
gap_instructions_size_ = gap_instructions_size;
}
int gap_instructions_size() { return gap_instructions_size_; }
private:
int gap_instructions_size_;
};
class LDeoptimize: public LTemplateInstruction<0, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(Deoptimize, "deoptimize")
};
class LLabel: public LGap {
public:
explicit LLabel(HBasicBlock* block)
: LGap(block), replacement_(NULL) { }
DECLARE_CONCRETE_INSTRUCTION(Label, "label")
virtual void PrintDataTo(StringStream* stream);
int block_id() const { return block()->block_id(); }
bool is_loop_header() const { return block()->IsLoopHeader(); }
Label* label() { return &label_; }
LLabel* replacement() const { return replacement_; }
void set_replacement(LLabel* label) { replacement_ = label; }
bool HasReplacement() const { return replacement_ != NULL; }
private:
Label label_;
LLabel* replacement_;
};
class LParameter: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(Parameter, "parameter")
};
class LCallStub: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallStub, "call-stub")
DECLARE_HYDROGEN_ACCESSOR(CallStub)
TranscendentalCache::Type transcendental_type() {
return hydrogen()->transcendental_type();
}
};
class LUnknownOSRValue: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(UnknownOSRValue, "unknown-osr-value")
};
template<int I, int T>
class LControlInstruction: public LTemplateInstruction<0, I, T> {
public:
DECLARE_INSTRUCTION(ControlInstruction)
virtual bool IsControl() const { return true; }
int true_block_id() const { return true_block_id_; }
int false_block_id() const { return false_block_id_; }
void SetBranchTargets(int true_block_id, int false_block_id) {
true_block_id_ = true_block_id;
false_block_id_ = false_block_id;
}
private:
int true_block_id_;
int false_block_id_;
};
class LApplyArguments: public LTemplateInstruction<1, 4, 0> {
public:
LApplyArguments(LOperand* function,
LOperand* receiver,
LOperand* length,
LOperand* elements) {
inputs_[0] = function;
inputs_[1] = receiver;
inputs_[2] = length;
inputs_[3] = elements;
}
DECLARE_CONCRETE_INSTRUCTION(ApplyArguments, "apply-arguments")
LOperand* function() { return inputs_[0]; }
LOperand* receiver() { return inputs_[1]; }
LOperand* length() { return inputs_[2]; }
LOperand* elements() { return inputs_[3]; }
};
class LAccessArgumentsAt: public LTemplateInstruction<1, 3, 0> {
public:
LAccessArgumentsAt(LOperand* arguments, LOperand* length, LOperand* index) {
inputs_[0] = arguments;
inputs_[1] = length;
inputs_[2] = index;
}
DECLARE_CONCRETE_INSTRUCTION(AccessArgumentsAt, "access-arguments-at")
LOperand* arguments() { return inputs_[0]; }
LOperand* length() { return inputs_[1]; }
LOperand* index() { return inputs_[2]; }
virtual void PrintDataTo(StringStream* stream);
};
class LArgumentsLength: public LTemplateInstruction<1, 1, 0> {
public:
explicit LArgumentsLength(LOperand* elements) {
inputs_[0] = elements;
}
DECLARE_CONCRETE_INSTRUCTION(ArgumentsLength, "arguments-length")
};
class LArgumentsElements: public LTemplateInstruction<1, 0, 0> {
public:
LArgumentsElements() { }
DECLARE_CONCRETE_INSTRUCTION(ArgumentsElements, "arguments-elements")
};
class LModI: public LTemplateInstruction<1, 2, 0> {
public:
LModI(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(ModI, "mod-i")
DECLARE_HYDROGEN_ACCESSOR(Mod)
};
class LDivI: public LTemplateInstruction<1, 2, 0> {
public:
LDivI(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(DivI, "div-i")
DECLARE_HYDROGEN_ACCESSOR(Div)
};
class LMulI: public LTemplateInstruction<1, 2, 1> {
public:
LMulI(LOperand* left, LOperand* right, LOperand* temp) {
inputs_[0] = left;
inputs_[1] = right;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(MulI, "mul-i")
DECLARE_HYDROGEN_ACCESSOR(Mul)
};
class LCmpID: public LTemplateInstruction<1, 2, 0> {
public:
LCmpID(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(CmpID, "cmp-id")
DECLARE_HYDROGEN_ACCESSOR(Compare)
Token::Value op() const { return hydrogen()->token(); }
bool is_double() const {
return hydrogen()->GetInputRepresentation().IsDouble();
}
};
class LCmpIDAndBranch: public LControlInstruction<2, 0> {
public:
LCmpIDAndBranch(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(CmpIDAndBranch, "cmp-id-and-branch")
DECLARE_HYDROGEN_ACCESSOR(Compare)
Token::Value op() const { return hydrogen()->token(); }
bool is_double() const {
return hydrogen()->GetInputRepresentation().IsDouble();
}
virtual void PrintDataTo(StringStream* stream);
};
class LUnaryMathOperation: public LTemplateInstruction<1, 1, 1> {
public:
LUnaryMathOperation(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(UnaryMathOperation, "unary-math-operation")
DECLARE_HYDROGEN_ACCESSOR(UnaryMathOperation)
virtual void PrintDataTo(StringStream* stream);
BuiltinFunctionId op() const { return hydrogen()->op(); }
};
class LCmpJSObjectEq: public LTemplateInstruction<1, 2, 0> {
public:
LCmpJSObjectEq(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(CmpJSObjectEq, "cmp-jsobject-eq")
};
class LCmpJSObjectEqAndBranch: public LControlInstruction<2, 0> {
public:
LCmpJSObjectEqAndBranch(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(CmpJSObjectEqAndBranch,
"cmp-jsobject-eq-and-branch")
};
class LIsNull: public LTemplateInstruction<1, 1, 0> {
public:
explicit LIsNull(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(IsNull, "is-null")
DECLARE_HYDROGEN_ACCESSOR(IsNull)
bool is_strict() const { return hydrogen()->is_strict(); }
};
class LIsNullAndBranch: public LControlInstruction<1, 0> {
public:
explicit LIsNullAndBranch(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(IsNullAndBranch, "is-null-and-branch")
DECLARE_HYDROGEN_ACCESSOR(IsNull)
bool is_strict() const { return hydrogen()->is_strict(); }
virtual void PrintDataTo(StringStream* stream);
};
class LIsObject: public LTemplateInstruction<1, 1, 1> {
public:
explicit LIsObject(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(IsObject, "is-object")
};
class LIsObjectAndBranch: public LControlInstruction<1, 2> {
public:
LIsObjectAndBranch(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(IsObjectAndBranch, "is-object-and-branch")
virtual void PrintDataTo(StringStream* stream);
};
class LIsSmi: public LTemplateInstruction<1, 1, 0> {
public:
explicit LIsSmi(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(IsSmi, "is-smi")
DECLARE_HYDROGEN_ACCESSOR(IsSmi)
};
class LIsSmiAndBranch: public LControlInstruction<1, 0> {
public:
explicit LIsSmiAndBranch(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(IsSmiAndBranch, "is-smi-and-branch")
virtual void PrintDataTo(StringStream* stream);
};
class LHasInstanceType: public LTemplateInstruction<1, 1, 0> {
public:
explicit LHasInstanceType(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(HasInstanceType, "has-instance-type")
DECLARE_HYDROGEN_ACCESSOR(HasInstanceType)
};
class LHasInstanceTypeAndBranch: public LControlInstruction<1, 0> {
public:
explicit LHasInstanceTypeAndBranch(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(HasInstanceTypeAndBranch,
"has-instance-type-and-branch")
DECLARE_HYDROGEN_ACCESSOR(HasInstanceType)
virtual void PrintDataTo(StringStream* stream);
};
class LHasCachedArrayIndex: public LTemplateInstruction<1, 1, 0> {
public:
explicit LHasCachedArrayIndex(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(HasCachedArrayIndex, "has-cached-array-index")
DECLARE_HYDROGEN_ACCESSOR(HasCachedArrayIndex)
};
class LHasCachedArrayIndexAndBranch: public LControlInstruction<1, 0> {
public:
explicit LHasCachedArrayIndexAndBranch(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(HasCachedArrayIndexAndBranch,
"has-cached-array-index-and-branch")
virtual void PrintDataTo(StringStream* stream);
};
class LClassOfTest: public LTemplateInstruction<1, 1, 0> {
public:
explicit LClassOfTest(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(ClassOfTest, "class-of-test")
DECLARE_HYDROGEN_ACCESSOR(ClassOfTest)
virtual void PrintDataTo(StringStream* stream);
};
class LClassOfTestAndBranch: public LControlInstruction<1, 1> {
public:
LClassOfTestAndBranch(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(ClassOfTestAndBranch,
"class-of-test-and-branch")
DECLARE_HYDROGEN_ACCESSOR(ClassOfTest)
virtual void PrintDataTo(StringStream* stream);
};
class LCmpT: public LTemplateInstruction<1, 2, 0> {
public:
LCmpT(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(CmpT, "cmp-t")
DECLARE_HYDROGEN_ACCESSOR(Compare)
Token::Value op() const { return hydrogen()->token(); }
};
class LCmpTAndBranch: public LControlInstruction<2, 0> {
public:
LCmpTAndBranch(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(CmpTAndBranch, "cmp-t-and-branch")
DECLARE_HYDROGEN_ACCESSOR(Compare)
Token::Value op() const { return hydrogen()->token(); }
};
class LInstanceOf: public LTemplateInstruction<1, 2, 0> {
public:
LInstanceOf(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(InstanceOf, "instance-of")
};
class LInstanceOfAndBranch: public LControlInstruction<2, 0> {
public:
LInstanceOfAndBranch(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(InstanceOfAndBranch, "instance-of-and-branch")
};
class LInstanceOfKnownGlobal: public LTemplateInstruction<1, 1, 1> {
public:
LInstanceOfKnownGlobal(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(InstanceOfKnownGlobal,
"instance-of-known-global")
DECLARE_HYDROGEN_ACCESSOR(InstanceOfKnownGlobal)
Handle<JSFunction> function() const { return hydrogen()->function(); }
};
class LBoundsCheck: public LTemplateInstruction<0, 2, 0> {
public:
LBoundsCheck(LOperand* index, LOperand* length) {
inputs_[0] = index;
inputs_[1] = length;
}
LOperand* index() { return inputs_[0]; }
LOperand* length() { return inputs_[1]; }
DECLARE_CONCRETE_INSTRUCTION(BoundsCheck, "bounds-check")
};
class LBitI: public LTemplateInstruction<1, 2, 0> {
public:
LBitI(Token::Value op, LOperand* left, LOperand* right)
: op_(op) {
inputs_[0] = left;
inputs_[1] = right;
}
Token::Value op() const { return op_; }
DECLARE_CONCRETE_INSTRUCTION(BitI, "bit-i")
private:
Token::Value op_;
};
class LShiftI: public LTemplateInstruction<1, 2, 0> {
public:
LShiftI(Token::Value op, LOperand* left, LOperand* right, bool can_deopt)
: op_(op), can_deopt_(can_deopt) {
inputs_[0] = left;
inputs_[1] = right;
}
Token::Value op() const { return op_; }
bool can_deopt() const { return can_deopt_; }
DECLARE_CONCRETE_INSTRUCTION(ShiftI, "shift-i")
private:
Token::Value op_;
bool can_deopt_;
};
class LSubI: public LTemplateInstruction<1, 2, 0> {
public:
LSubI(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(SubI, "sub-i")
DECLARE_HYDROGEN_ACCESSOR(Sub)
};
class LConstant: public LTemplateInstruction<1, 0, 0> {
DECLARE_INSTRUCTION(Constant)
};
class LConstantI: public LConstant {
public:
explicit LConstantI(int32_t value) : value_(value) { }
int32_t value() const { return value_; }
DECLARE_CONCRETE_INSTRUCTION(ConstantI, "constant-i")
private:
int32_t value_;
};
class LConstantD: public LConstant {
public:
explicit LConstantD(double value) : value_(value) { }
double value() const { return value_; }
DECLARE_CONCRETE_INSTRUCTION(ConstantD, "constant-d")
private:
double value_;
};
class LConstantT: public LConstant {
public:
explicit LConstantT(Handle<Object> value) : value_(value) { }
Handle<Object> value() const { return value_; }
DECLARE_CONCRETE_INSTRUCTION(ConstantT, "constant-t")
private:
Handle<Object> value_;
};
class LBranch: public LControlInstruction<1, 0> {
public:
explicit LBranch(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(Branch, "branch")
DECLARE_HYDROGEN_ACCESSOR(Value)
virtual void PrintDataTo(StringStream* stream);
};
class LCmpMapAndBranch: public LTemplateInstruction<0, 1, 1> {
public:
LCmpMapAndBranch(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(CmpMapAndBranch, "cmp-map-and-branch")
DECLARE_HYDROGEN_ACCESSOR(CompareMap)
virtual bool IsControl() const { return true; }
Handle<Map> map() const { return hydrogen()->map(); }
int true_block_id() const {
return hydrogen()->FirstSuccessor()->block_id();
}
int false_block_id() const {
return hydrogen()->SecondSuccessor()->block_id();
}
};
class LJSArrayLength: public LTemplateInstruction<1, 1, 0> {
public:
explicit LJSArrayLength(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(JSArrayLength, "js-array-length")
DECLARE_HYDROGEN_ACCESSOR(JSArrayLength)
};
class LFixedArrayLength: public LTemplateInstruction<1, 1, 0> {
public:
explicit LFixedArrayLength(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(FixedArrayLength, "fixed-array-length")
DECLARE_HYDROGEN_ACCESSOR(FixedArrayLength)
};
class LValueOf: public LTemplateInstruction<1, 1, 1> {
public:
LValueOf(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(ValueOf, "value-of")
DECLARE_HYDROGEN_ACCESSOR(ValueOf)
};
class LThrow: public LTemplateInstruction<0, 1, 0> {
public:
explicit LThrow(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(Throw, "throw")
};
class LBitNotI: public LTemplateInstruction<1, 1, 0> {
public:
explicit LBitNotI(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(BitNotI, "bit-not-i")
};
class LAddI: public LTemplateInstruction<1, 2, 0> {
public:
LAddI(LOperand* left, LOperand* right) {
inputs_[0] = left;
inputs_[1] = right;
}
DECLARE_CONCRETE_INSTRUCTION(AddI, "add-i")
DECLARE_HYDROGEN_ACCESSOR(Add)
};
class LArithmeticD: public LTemplateInstruction<1, 2, 0> {
public:
LArithmeticD(Token::Value op, LOperand* left, LOperand* right)
: op_(op) {
inputs_[0] = left;
inputs_[1] = right;
}
Token::Value op() const { return op_; }
virtual void CompileToNative(LCodeGen* generator);
virtual const char* Mnemonic() const;
private:
Token::Value op_;
};
class LArithmeticT: public LTemplateInstruction<1, 2, 0> {
public:
LArithmeticT(Token::Value op, LOperand* left, LOperand* right)
: op_(op) {
inputs_[0] = left;
inputs_[1] = right;
}
virtual void CompileToNative(LCodeGen* generator);
virtual const char* Mnemonic() const;
Token::Value op() const { return op_; }
private:
Token::Value op_;
};
class LReturn: public LTemplateInstruction<0, 1, 0> {
public:
explicit LReturn(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(Return, "return")
};
class LLoadNamedField: public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadNamedField(LOperand* object) {
inputs_[0] = object;
}
DECLARE_CONCRETE_INSTRUCTION(LoadNamedField, "load-named-field")
DECLARE_HYDROGEN_ACCESSOR(LoadNamedField)
};
class LLoadNamedGeneric: public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadNamedGeneric(LOperand* object) {
inputs_[0] = object;
}
DECLARE_CONCRETE_INSTRUCTION(LoadNamedGeneric, "load-named-generic")
DECLARE_HYDROGEN_ACCESSOR(LoadNamedGeneric)
LOperand* object() { return inputs_[0]; }
Handle<Object> name() const { return hydrogen()->name(); }
};
class LLoadFunctionPrototype: public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadFunctionPrototype(LOperand* function) {
inputs_[0] = function;
}
DECLARE_CONCRETE_INSTRUCTION(LoadFunctionPrototype, "load-function-prototype")
DECLARE_HYDROGEN_ACCESSOR(LoadFunctionPrototype)
LOperand* function() { return inputs_[0]; }
};
class LLoadElements: public LTemplateInstruction<1, 1, 0> {
public:
explicit LLoadElements(LOperand* object) {
inputs_[0] = object;
}
DECLARE_CONCRETE_INSTRUCTION(LoadElements, "load-elements")
};
class LLoadKeyedFastElement: public LTemplateInstruction<1, 2, 0> {
public:
LLoadKeyedFastElement(LOperand* elements, LOperand* key) {
inputs_[0] = elements;
inputs_[1] = key;
}
DECLARE_CONCRETE_INSTRUCTION(LoadKeyedFastElement, "load-keyed-fast-element")
DECLARE_HYDROGEN_ACCESSOR(LoadKeyedFastElement)
LOperand* elements() { return inputs_[0]; }
LOperand* key() { return inputs_[1]; }
};
class LLoadKeyedGeneric: public LTemplateInstruction<1, 2, 0> {
public:
LLoadKeyedGeneric(LOperand* obj, LOperand* key) {
inputs_[0] = obj;
inputs_[1] = key;
}
DECLARE_CONCRETE_INSTRUCTION(LoadKeyedGeneric, "load-keyed-generic")
LOperand* object() { return inputs_[0]; }
LOperand* key() { return inputs_[1]; }
};
class LLoadGlobal: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(LoadGlobal, "load-global")
DECLARE_HYDROGEN_ACCESSOR(LoadGlobal)
};
class LStoreGlobal: public LTemplateInstruction<0, 1, 1> {
public:
LStoreGlobal(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(StoreGlobal, "store-global")
DECLARE_HYDROGEN_ACCESSOR(StoreGlobal)
};
class LLoadContextSlot: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(LoadContextSlot, "load-context-slot")
DECLARE_HYDROGEN_ACCESSOR(LoadContextSlot)
int context_chain_length() { return hydrogen()->context_chain_length(); }
int slot_index() { return hydrogen()->slot_index(); }
virtual void PrintDataTo(StringStream* stream);
};
class LPushArgument: public LTemplateInstruction<0, 1, 0> {
public:
explicit LPushArgument(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(PushArgument, "push-argument")
};
class LGlobalObject: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(GlobalObject, "global-object")
};
class LGlobalReceiver: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(GlobalReceiver, "global-receiver")
};
class LCallConstantFunction: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallConstantFunction, "call-constant-function")
DECLARE_HYDROGEN_ACCESSOR(CallConstantFunction)
virtual void PrintDataTo(StringStream* stream);
Handle<JSFunction> function() { return hydrogen()->function(); }
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallKeyed: public LTemplateInstruction<1, 1, 0> {
public:
explicit LCallKeyed(LOperand* key) {
inputs_[0] = key;
}
DECLARE_CONCRETE_INSTRUCTION(CallKeyed, "call-keyed")
DECLARE_HYDROGEN_ACCESSOR(CallKeyed)
virtual void PrintDataTo(StringStream* stream);
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallNamed: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallNamed, "call-named")
DECLARE_HYDROGEN_ACCESSOR(CallNamed)
virtual void PrintDataTo(StringStream* stream);
Handle<String> name() const { return hydrogen()->name(); }
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallFunction: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallFunction, "call-function")
DECLARE_HYDROGEN_ACCESSOR(CallFunction)
int arity() const { return hydrogen()->argument_count() - 2; }
};
class LCallGlobal: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallGlobal, "call-global")
DECLARE_HYDROGEN_ACCESSOR(CallGlobal)
virtual void PrintDataTo(StringStream* stream);
Handle<String> name() const {return hydrogen()->name(); }
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallKnownGlobal: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallKnownGlobal, "call-known-global")
DECLARE_HYDROGEN_ACCESSOR(CallKnownGlobal)
virtual void PrintDataTo(StringStream* stream);
Handle<JSFunction> target() const { return hydrogen()->target(); }
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallNew: public LTemplateInstruction<1, 1, 0> {
public:
explicit LCallNew(LOperand* constructor) {
inputs_[0] = constructor;
}
DECLARE_CONCRETE_INSTRUCTION(CallNew, "call-new")
DECLARE_HYDROGEN_ACCESSOR(CallNew)
virtual void PrintDataTo(StringStream* stream);
int arity() const { return hydrogen()->argument_count() - 1; }
};
class LCallRuntime: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(CallRuntime, "call-runtime")
DECLARE_HYDROGEN_ACCESSOR(CallRuntime)
Runtime::Function* function() const { return hydrogen()->function(); }
int arity() const { return hydrogen()->argument_count(); }
};
class LInteger32ToDouble: public LTemplateInstruction<1, 1, 0> {
public:
explicit LInteger32ToDouble(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(Integer32ToDouble, "int32-to-double")
};
class LNumberTagI: public LTemplateInstruction<1, 1, 0> {
public:
explicit LNumberTagI(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(NumberTagI, "number-tag-i")
};
class LNumberTagD: public LTemplateInstruction<1, 1, 2> {
public:
LNumberTagD(LOperand* value, LOperand* temp1, LOperand* temp2) {
inputs_[0] = value;
temps_[0] = temp1;
temps_[1] = temp2;
}
DECLARE_CONCRETE_INSTRUCTION(NumberTagD, "number-tag-d")
};
// Sometimes truncating conversion from a tagged value to an int32.
class LDoubleToI: public LTemplateInstruction<1, 1, 0> {
public:
explicit LDoubleToI(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(DoubleToI, "double-to-i")
DECLARE_HYDROGEN_ACCESSOR(Change)
bool truncating() { return hydrogen()->CanTruncateToInt32(); }
};
// Truncating conversion from a tagged value to an int32.
class LTaggedToI: public LTemplateInstruction<1, 1, 1> {
public:
LTaggedToI(LOperand* value, LOperand* temp) {
inputs_[0] = value;
temps_[0] = temp;
}
DECLARE_CONCRETE_INSTRUCTION(TaggedToI, "tagged-to-i")
DECLARE_HYDROGEN_ACCESSOR(Change)
bool truncating() { return hydrogen()->CanTruncateToInt32(); }
};
class LSmiTag: public LTemplateInstruction<1, 1, 0> {
public:
explicit LSmiTag(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(SmiTag, "smi-tag")
};
class LNumberUntagD: public LTemplateInstruction<1, 1, 0> {
public:
explicit LNumberUntagD(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(NumberUntagD, "double-untag")
};
class LSmiUntag: public LTemplateInstruction<1, 1, 0> {
public:
LSmiUntag(LOperand* value, bool needs_check)
: needs_check_(needs_check) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(SmiUntag, "smi-untag")
bool needs_check() const { return needs_check_; }
private:
bool needs_check_;
};
class LStoreNamed: public LTemplateInstruction<0, 2, 0> {
public:
LStoreNamed(LOperand* obj, LOperand* val) {
inputs_[0] = obj;
inputs_[1] = val;
}
DECLARE_INSTRUCTION(StoreNamed)
DECLARE_HYDROGEN_ACCESSOR(StoreNamed)
virtual void PrintDataTo(StringStream* stream);
LOperand* object() { return inputs_[0]; }
LOperand* value() { return inputs_[1]; }
Handle<Object> name() const { return hydrogen()->name(); }
};
class LStoreNamedField: public LStoreNamed {
public:
LStoreNamedField(LOperand* obj, LOperand* val)
: LStoreNamed(obj, val) { }
DECLARE_CONCRETE_INSTRUCTION(StoreNamedField, "store-named-field")
DECLARE_HYDROGEN_ACCESSOR(StoreNamedField)
bool is_in_object() { return hydrogen()->is_in_object(); }
int offset() { return hydrogen()->offset(); }
bool needs_write_barrier() { return hydrogen()->NeedsWriteBarrier(); }
Handle<Map> transition() const { return hydrogen()->transition(); }
};
class LStoreNamedGeneric: public LStoreNamed {
public:
LStoreNamedGeneric(LOperand* obj, LOperand* val)
: LStoreNamed(obj, val) { }
DECLARE_CONCRETE_INSTRUCTION(StoreNamedGeneric, "store-named-generic")
DECLARE_HYDROGEN_ACCESSOR(StoreNamedGeneric)
};
class LStoreKeyed: public LTemplateInstruction<0, 3, 0> {
public:
LStoreKeyed(LOperand* obj, LOperand* key, LOperand* val) {
inputs_[0] = obj;
inputs_[1] = key;
inputs_[2] = val;
}
DECLARE_INSTRUCTION(StoreKeyed)
virtual void PrintDataTo(StringStream* stream);
LOperand* object() { return inputs_[0]; }
LOperand* key() { return inputs_[1]; }
LOperand* value() { return inputs_[2]; }
};
class LStoreKeyedFastElement: public LStoreKeyed {
public:
LStoreKeyedFastElement(LOperand* obj, LOperand* key, LOperand* val)
: LStoreKeyed(obj, key, val) {}
DECLARE_CONCRETE_INSTRUCTION(StoreKeyedFastElement,
"store-keyed-fast-element")
DECLARE_HYDROGEN_ACCESSOR(StoreKeyedFastElement)
};
class LStoreKeyedGeneric: public LStoreKeyed {
public:
LStoreKeyedGeneric(LOperand* obj, LOperand* key, LOperand* val)
: LStoreKeyed(obj, key, val) { }
DECLARE_CONCRETE_INSTRUCTION(StoreKeyedGeneric, "store-keyed-generic")
};
class LStringCharCodeAt: public LTemplateInstruction<1, 2, 0> {
public:
LStringCharCodeAt(LOperand* string, LOperand* index) {
inputs_[0] = string;
inputs_[1] = index;
}
DECLARE_CONCRETE_INSTRUCTION(StringCharCodeAt, "string-char-code-at")
DECLARE_HYDROGEN_ACCESSOR(StringCharCodeAt)
LOperand* string() { return inputs_[0]; }
LOperand* index() { return inputs_[1]; }
};
class LStringLength: public LTemplateInstruction<1, 1, 0> {
public:
explicit LStringLength(LOperand* string) {
inputs_[0] = string;
}
DECLARE_CONCRETE_INSTRUCTION(StringLength, "string-length")
DECLARE_HYDROGEN_ACCESSOR(StringLength)
LOperand* string() { return inputs_[0]; }
};
class LCheckFunction: public LTemplateInstruction<0, 1, 0> {
public:
explicit LCheckFunction(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(CheckFunction, "check-function")
DECLARE_HYDROGEN_ACCESSOR(CheckFunction)
};
class LCheckInstanceType: public LTemplateInstruction<0, 1, 0> {
public:
explicit LCheckInstanceType(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(CheckInstanceType, "check-instance-type")
DECLARE_HYDROGEN_ACCESSOR(CheckInstanceType)
};
class LCheckMap: public LTemplateInstruction<0, 1, 0> {
public:
explicit LCheckMap(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(CheckMap, "check-map")
DECLARE_HYDROGEN_ACCESSOR(CheckMap)
};
class LCheckPrototypeMaps: public LTemplateInstruction<0, 0, 2> {
public:
LCheckPrototypeMaps(LOperand* temp1, LOperand* temp2) {
temps_[0] = temp1;
temps_[1] = temp2;
}
DECLARE_CONCRETE_INSTRUCTION(CheckPrototypeMaps, "check-prototype-maps")
DECLARE_HYDROGEN_ACCESSOR(CheckPrototypeMaps)
Handle<JSObject> prototype() const { return hydrogen()->prototype(); }
Handle<JSObject> holder() const { return hydrogen()->holder(); }
};
class LCheckSmi: public LTemplateInstruction<0, 1, 0> {
public:
LCheckSmi(LOperand* value, Condition condition)
: condition_(condition) {
inputs_[0] = value;
}
Condition condition() const { return condition_; }
virtual void CompileToNative(LCodeGen* generator);
virtual const char* Mnemonic() const {
return (condition_ == eq) ? "check-non-smi" : "check-smi";
}
private:
Condition condition_;
};
class LArrayLiteral: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ArrayLiteral, "array-literal")
DECLARE_HYDROGEN_ACCESSOR(ArrayLiteral)
};
class LObjectLiteral: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(ObjectLiteral, "object-literal")
DECLARE_HYDROGEN_ACCESSOR(ObjectLiteral)
};
class LRegExpLiteral: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(RegExpLiteral, "regexp-literal")
DECLARE_HYDROGEN_ACCESSOR(RegExpLiteral)
};
class LFunctionLiteral: public LTemplateInstruction<1, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(FunctionLiteral, "function-literal")
DECLARE_HYDROGEN_ACCESSOR(FunctionLiteral)
Handle<SharedFunctionInfo> shared_info() { return hydrogen()->shared_info(); }
};
class LTypeof: public LTemplateInstruction<1, 1, 0> {
public:
explicit LTypeof(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(Typeof, "typeof")
};
class LTypeofIs: public LTemplateInstruction<1, 1, 0> {
public:
explicit LTypeofIs(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(TypeofIs, "typeof-is")
DECLARE_HYDROGEN_ACCESSOR(TypeofIs)
Handle<String> type_literal() { return hydrogen()->type_literal(); }
virtual void PrintDataTo(StringStream* stream);
};
class LTypeofIsAndBranch: public LControlInstruction<1, 0> {
public:
explicit LTypeofIsAndBranch(LOperand* value) {
inputs_[0] = value;
}
DECLARE_CONCRETE_INSTRUCTION(TypeofIsAndBranch, "typeof-is-and-branch")
DECLARE_HYDROGEN_ACCESSOR(TypeofIs)
Handle<String> type_literal() { return hydrogen()->type_literal(); }
virtual void PrintDataTo(StringStream* stream);
};
class LDeleteProperty: public LTemplateInstruction<1, 2, 0> {
public:
LDeleteProperty(LOperand* obj, LOperand* key) {
inputs_[0] = obj;
inputs_[1] = key;
}
DECLARE_CONCRETE_INSTRUCTION(DeleteProperty, "delete-property")
LOperand* object() { return inputs_[0]; }
LOperand* key() { return inputs_[1]; }
};
class LOsrEntry: public LTemplateInstruction<0, 0, 0> {
public:
LOsrEntry();
DECLARE_CONCRETE_INSTRUCTION(OsrEntry, "osr-entry")
LOperand** SpilledRegisterArray() { return register_spills_; }
LOperand** SpilledDoubleRegisterArray() { return double_register_spills_; }
void MarkSpilledRegister(int allocation_index, LOperand* spill_operand);
void MarkSpilledDoubleRegister(int allocation_index,
LOperand* spill_operand);
private:
// Arrays of spill slot operands for registers with an assigned spill
// slot, i.e., that must also be restored to the spill slot on OSR entry.
// NULL if the register has no assigned spill slot. Indexed by allocation
// index.
LOperand* register_spills_[Register::kNumAllocatableRegisters];
LOperand* double_register_spills_[DoubleRegister::kNumAllocatableRegisters];
};
class LStackCheck: public LTemplateInstruction<0, 0, 0> {
public:
DECLARE_CONCRETE_INSTRUCTION(StackCheck, "stack-check")
};
class LChunkBuilder;
class LChunk: public ZoneObject {
public:
explicit LChunk(HGraph* graph);
int AddInstruction(LInstruction* instruction, HBasicBlock* block);
LConstantOperand* DefineConstantOperand(HConstant* constant);
Handle<Object> LookupLiteral(LConstantOperand* operand) const;
Representation LookupLiteralRepresentation(LConstantOperand* operand) const;
int GetNextSpillIndex(bool is_double);
LOperand* GetNextSpillSlot(bool is_double);
int ParameterAt(int index);
int GetParameterStackSlot(int index) const;
int spill_slot_count() const { return spill_slot_count_; }
HGraph* graph() const { return graph_; }
const ZoneList<LInstruction*>* instructions() const { return &instructions_; }
void AddGapMove(int index, LOperand* from, LOperand* to);
LGap* GetGapAt(int index) const;
bool IsGapAt(int index) const;
int NearestGapPos(int index) const;
void MarkEmptyBlocks();
const ZoneList<LPointerMap*>* pointer_maps() const { return &pointer_maps_; }
LLabel* GetLabel(int block_id) const {
HBasicBlock* block = graph_->blocks()->at(block_id);
int first_instruction = block->first_instruction_index();
return LLabel::cast(instructions_[first_instruction]);
}
int LookupDestination(int block_id) const {
LLabel* cur = GetLabel(block_id);
while (cur->replacement() != NULL) {
cur = cur->replacement();
}
return cur->block_id();
}
Label* GetAssemblyLabel(int block_id) const {
LLabel* label = GetLabel(block_id);
ASSERT(!label->HasReplacement());
return label->label();
}
const ZoneList<Handle<JSFunction> >* inlined_closures() const {
return &inlined_closures_;
}
void AddInlinedClosure(Handle<JSFunction> closure) {
inlined_closures_.Add(closure);
}
private:
int spill_slot_count_;
HGraph* const graph_;
ZoneList<LInstruction*> instructions_;
ZoneList<LPointerMap*> pointer_maps_;
ZoneList<Handle<JSFunction> > inlined_closures_;
};
class LChunkBuilder BASE_EMBEDDED {
public:
LChunkBuilder(HGraph* graph, LAllocator* allocator)
: chunk_(NULL),
graph_(graph),
status_(UNUSED),
current_instruction_(NULL),
current_block_(NULL),
next_block_(NULL),
argument_count_(0),
allocator_(allocator),
position_(RelocInfo::kNoPosition),
instruction_pending_deoptimization_environment_(NULL),
pending_deoptimization_ast_id_(AstNode::kNoNumber) { }
// Build the sequence for the graph.
LChunk* Build();
// Declare methods that deal with the individual node types.
#define DECLARE_DO(type) LInstruction* Do##type(H##type* node);
HYDROGEN_CONCRETE_INSTRUCTION_LIST(DECLARE_DO)
#undef DECLARE_DO
private:
enum Status {
UNUSED,
BUILDING,
DONE,
ABORTED
};
LChunk* chunk() const { return chunk_; }
HGraph* graph() const { return graph_; }
bool is_unused() const { return status_ == UNUSED; }
bool is_building() const { return status_ == BUILDING; }
bool is_done() const { return status_ == DONE; }
bool is_aborted() const { return status_ == ABORTED; }
void Abort(const char* format, ...);
// Methods for getting operands for Use / Define / Temp.
LRegister* ToOperand(Register reg);
LUnallocated* ToUnallocated(Register reg);
LUnallocated* ToUnallocated(DoubleRegister reg);
// Methods for setting up define-use relationships.
MUST_USE_RESULT LOperand* Use(HValue* value, LUnallocated* operand);
MUST_USE_RESULT LOperand* UseFixed(HValue* value, Register fixed_register);
MUST_USE_RESULT LOperand* UseFixedDouble(HValue* value,
DoubleRegister fixed_register);
// A value that is guaranteed to be allocated to a register.
// Operand created by UseRegister is guaranteed to be live until the end of
// instruction. This means that register allocator will not reuse it's
// register for any other operand inside instruction.
// Operand created by UseRegisterAtStart is guaranteed to be live only at
// instruction start. Register allocator is free to assign the same register
// to some other operand used inside instruction (i.e. temporary or
// output).
MUST_USE_RESULT LOperand* UseRegister(HValue* value);
MUST_USE_RESULT LOperand* UseRegisterAtStart(HValue* value);
// An input operand in a register that may be trashed.
MUST_USE_RESULT LOperand* UseTempRegister(HValue* value);
// An input operand in a register or stack slot.
MUST_USE_RESULT LOperand* Use(HValue* value);
MUST_USE_RESULT LOperand* UseAtStart(HValue* value);
// An input operand in a register, stack slot or a constant operand.
MUST_USE_RESULT LOperand* UseOrConstant(HValue* value);
MUST_USE_RESULT LOperand* UseOrConstantAtStart(HValue* value);
// An input operand in a register or a constant operand.
MUST_USE_RESULT LOperand* UseRegisterOrConstant(HValue* value);
MUST_USE_RESULT LOperand* UseRegisterOrConstantAtStart(HValue* value);
// An input operand in register, stack slot or a constant operand.
// Will not be moved to a register even if one is freely available.
MUST_USE_RESULT LOperand* UseAny(HValue* value);
// Temporary operand that must be in a register.
MUST_USE_RESULT LUnallocated* TempRegister();
MUST_USE_RESULT LOperand* FixedTemp(Register reg);
MUST_USE_RESULT LOperand* FixedTemp(DoubleRegister reg);
// Methods for setting up define-use relationships.
// Return the same instruction that they are passed.
template<int I, int T>
LInstruction* Define(LTemplateInstruction<1, I, T>* instr,
LUnallocated* result);
template<int I, int T>
LInstruction* Define(LTemplateInstruction<1, I, T>* instr);
template<int I, int T>
LInstruction* DefineAsRegister(LTemplateInstruction<1, I, T>* instr);
template<int I, int T>
LInstruction* DefineAsSpilled(LTemplateInstruction<1, I, T>* instr,
int index);
template<int I, int T>
LInstruction* DefineSameAsFirst(LTemplateInstruction<1, I, T>* instr);
template<int I, int T>
LInstruction* DefineFixed(LTemplateInstruction<1, I, T>* instr,
Register reg);
template<int I, int T>
LInstruction* DefineFixedDouble(LTemplateInstruction<1, I, T>* instr,
DoubleRegister reg);
LInstruction* AssignEnvironment(LInstruction* instr);
LInstruction* AssignPointerMap(LInstruction* instr);
enum CanDeoptimize { CAN_DEOPTIMIZE_EAGERLY, CANNOT_DEOPTIMIZE_EAGERLY };
// By default we assume that instruction sequences generated for calls
// cannot deoptimize eagerly and we do not attach environment to this
// instruction.
LInstruction* MarkAsCall(
LInstruction* instr,
HInstruction* hinstr,
CanDeoptimize can_deoptimize = CANNOT_DEOPTIMIZE_EAGERLY);
LInstruction* MarkAsSaveDoubles(LInstruction* instr);
LInstruction* SetInstructionPendingDeoptimizationEnvironment(
LInstruction* instr, int ast_id);
void ClearInstructionPendingDeoptimizationEnvironment();
LEnvironment* CreateEnvironment(HEnvironment* hydrogen_env);
void VisitInstruction(HInstruction* current);
void DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block);
LInstruction* DoBit(Token::Value op, HBitwiseBinaryOperation* instr);
LInstruction* DoShift(Token::Value op, HBitwiseBinaryOperation* instr);
LInstruction* DoArithmeticD(Token::Value op,
HArithmeticBinaryOperation* instr);
LInstruction* DoArithmeticT(Token::Value op,
HArithmeticBinaryOperation* instr);
LChunk* chunk_;
HGraph* const graph_;
Status status_;
HInstruction* current_instruction_;
HBasicBlock* current_block_;
HBasicBlock* next_block_;
int argument_count_;
LAllocator* allocator_;
int position_;
LInstruction* instruction_pending_deoptimization_environment_;
int pending_deoptimization_ast_id_;
DISALLOW_COPY_AND_ASSIGN(LChunkBuilder);
};
#undef DECLARE_HYDROGEN_ACCESSOR
#undef DECLARE_INSTRUCTION
#undef DECLARE_CONCRETE_INSTRUCTION
} } // namespace v8::internal
#endif // V8_ARM_LITHIUM_ARM_H_