v8/test/cctest/compiler/test-js-constant-cache.cc
mstarzinger 16f133001f Move compiler cctests into v8::internal::compiler namespace.
This moves all cctest files for the compiler to live in the same
namespace as the components they are testing. Hence we can avoid the
forbidden using directives pulling in entire namespaces.

From the Google C++ style guide: "You may not use a using-directive to
make all names from a namespace available". This would be covered by
presubmit linter checks if build/namespaces were not blacklisted.

R=bmeurer@chromium.org

Review URL: https://codereview.chromium.org/1424943004

Cr-Commit-Position: refs/heads/master@{#31671}
2015-10-30 09:16:39 +00:00

482 lines
14 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// TODO(jochen): Remove this after the setting is turned on globally.
#define V8_IMMINENT_DEPRECATION_WARNINGS
#include "src/assembler.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/typer.h"
#include "src/types.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/value-helper.h"
namespace v8 {
namespace internal {
namespace compiler {
class JSCacheTesterHelper {
protected:
JSCacheTesterHelper(Isolate* isolate, Zone* zone)
: main_graph_(zone),
main_common_(zone),
main_javascript_(zone),
main_typer_(isolate, &main_graph_),
main_machine_(zone) {}
Graph main_graph_;
CommonOperatorBuilder main_common_;
JSOperatorBuilder main_javascript_;
Typer main_typer_;
MachineOperatorBuilder main_machine_;
};
// TODO(dcarney): JSConstantCacheTester inherits from JSGraph???
class JSConstantCacheTester : public HandleAndZoneScope,
public JSCacheTesterHelper,
public JSGraph {
public:
JSConstantCacheTester()
: JSCacheTesterHelper(main_isolate(), main_zone()),
JSGraph(main_isolate(), &main_graph_, &main_common_, &main_javascript_,
nullptr, &main_machine_) {
main_graph_.SetStart(main_graph_.NewNode(common()->Start(0)));
main_graph_.SetEnd(
main_graph_.NewNode(common()->End(1), main_graph_.start()));
main_typer_.Run();
}
Type* TypeOf(Node* node) { return NodeProperties::GetType(node); }
Handle<HeapObject> handle(Node* node) {
CHECK_EQ(IrOpcode::kHeapConstant, node->opcode());
return OpParameter<Handle<HeapObject>>(node);
}
Factory* factory() { return main_isolate()->factory(); }
};
TEST(ZeroConstant1) {
JSConstantCacheTester T;
Node* zero = T.ZeroConstant();
CHECK_EQ(IrOpcode::kNumberConstant, zero->opcode());
CHECK_EQ(zero, T.Constant(0));
CHECK_NE(zero, T.Constant(-0.0));
CHECK_NE(zero, T.Constant(1.0));
CHECK_NE(zero, T.Constant(std::numeric_limits<double>::quiet_NaN()));
CHECK_NE(zero, T.Float64Constant(0));
CHECK_NE(zero, T.Int32Constant(0));
Type* t = T.TypeOf(zero);
CHECK(t->Is(Type::Number()));
CHECK(t->Is(Type::Integral32()));
CHECK(t->Is(Type::Signed32()));
CHECK(t->Is(Type::Unsigned32()));
CHECK(t->Is(Type::SignedSmall()));
CHECK(t->Is(Type::UnsignedSmall()));
}
TEST(MinusZeroConstant) {
JSConstantCacheTester T;
Node* minus_zero = T.Constant(-0.0);
Node* zero = T.ZeroConstant();
CHECK_EQ(IrOpcode::kNumberConstant, minus_zero->opcode());
CHECK_EQ(minus_zero, T.Constant(-0.0));
CHECK_NE(zero, minus_zero);
Type* t = T.TypeOf(minus_zero);
CHECK(t->Is(Type::Number()));
CHECK(t->Is(Type::MinusZero()));
CHECK(!t->Is(Type::Integral32()));
CHECK(!t->Is(Type::Signed32()));
CHECK(!t->Is(Type::Unsigned32()));
CHECK(!t->Is(Type::SignedSmall()));
CHECK(!t->Is(Type::UnsignedSmall()));
double zero_value = OpParameter<double>(zero);
double minus_zero_value = OpParameter<double>(minus_zero);
CHECK(bit_cast<uint64_t>(0.0) == bit_cast<uint64_t>(zero_value));
CHECK(bit_cast<uint64_t>(-0.0) != bit_cast<uint64_t>(zero_value));
CHECK(bit_cast<uint64_t>(0.0) != bit_cast<uint64_t>(minus_zero_value));
CHECK(bit_cast<uint64_t>(-0.0) == bit_cast<uint64_t>(minus_zero_value));
}
TEST(ZeroConstant2) {
JSConstantCacheTester T;
Node* zero = T.Constant(0);
CHECK_EQ(IrOpcode::kNumberConstant, zero->opcode());
CHECK_EQ(zero, T.ZeroConstant());
CHECK_NE(zero, T.Constant(-0.0));
CHECK_NE(zero, T.Constant(1.0));
CHECK_NE(zero, T.Constant(std::numeric_limits<double>::quiet_NaN()));
CHECK_NE(zero, T.Float64Constant(0));
CHECK_NE(zero, T.Int32Constant(0));
Type* t = T.TypeOf(zero);
CHECK(t->Is(Type::Number()));
CHECK(t->Is(Type::Integral32()));
CHECK(t->Is(Type::Signed32()));
CHECK(t->Is(Type::Unsigned32()));
CHECK(t->Is(Type::SignedSmall()));
CHECK(t->Is(Type::UnsignedSmall()));
}
TEST(OneConstant1) {
JSConstantCacheTester T;
Node* one = T.OneConstant();
CHECK_EQ(IrOpcode::kNumberConstant, one->opcode());
CHECK_EQ(one, T.Constant(1));
CHECK_EQ(one, T.Constant(1.0));
CHECK_NE(one, T.Constant(1.01));
CHECK_NE(one, T.Constant(-1.01));
CHECK_NE(one, T.Constant(std::numeric_limits<double>::quiet_NaN()));
CHECK_NE(one, T.Float64Constant(1.0));
CHECK_NE(one, T.Int32Constant(1));
Type* t = T.TypeOf(one);
CHECK(t->Is(Type::Number()));
CHECK(t->Is(Type::Integral32()));
CHECK(t->Is(Type::Signed32()));
CHECK(t->Is(Type::Unsigned32()));
CHECK(t->Is(Type::SignedSmall()));
CHECK(t->Is(Type::UnsignedSmall()));
}
TEST(OneConstant2) {
JSConstantCacheTester T;
Node* one = T.Constant(1);
CHECK_EQ(IrOpcode::kNumberConstant, one->opcode());
CHECK_EQ(one, T.OneConstant());
CHECK_EQ(one, T.Constant(1.0));
CHECK_NE(one, T.Constant(1.01));
CHECK_NE(one, T.Constant(-1.01));
CHECK_NE(one, T.Constant(std::numeric_limits<double>::quiet_NaN()));
CHECK_NE(one, T.Float64Constant(1.0));
CHECK_NE(one, T.Int32Constant(1));
Type* t = T.TypeOf(one);
CHECK(t->Is(Type::Number()));
CHECK(t->Is(Type::Integral32()));
CHECK(t->Is(Type::Signed32()));
CHECK(t->Is(Type::Unsigned32()));
CHECK(t->Is(Type::SignedSmall()));
CHECK(t->Is(Type::UnsignedSmall()));
}
TEST(Canonicalizations) {
JSConstantCacheTester T;
CHECK_EQ(T.ZeroConstant(), T.ZeroConstant());
CHECK_EQ(T.UndefinedConstant(), T.UndefinedConstant());
CHECK_EQ(T.TheHoleConstant(), T.TheHoleConstant());
CHECK_EQ(T.TrueConstant(), T.TrueConstant());
CHECK_EQ(T.FalseConstant(), T.FalseConstant());
CHECK_EQ(T.NullConstant(), T.NullConstant());
CHECK_EQ(T.ZeroConstant(), T.ZeroConstant());
CHECK_EQ(T.OneConstant(), T.OneConstant());
CHECK_EQ(T.NaNConstant(), T.NaNConstant());
}
TEST(NoAliasing) {
JSConstantCacheTester T;
Node* nodes[] = {T.UndefinedConstant(), T.TheHoleConstant(), T.TrueConstant(),
T.FalseConstant(), T.NullConstant(), T.ZeroConstant(),
T.OneConstant(), T.NaNConstant(), T.Constant(21),
T.Constant(22.2)};
for (size_t i = 0; i < arraysize(nodes); i++) {
for (size_t j = 0; j < arraysize(nodes); j++) {
if (i != j) CHECK_NE(nodes[i], nodes[j]);
}
}
}
TEST(CanonicalizingNumbers) {
JSConstantCacheTester T;
FOR_FLOAT64_INPUTS(i) {
Node* node = T.Constant(*i);
for (int j = 0; j < 5; j++) {
CHECK_EQ(node, T.Constant(*i));
}
}
}
TEST(NumberTypes) {
JSConstantCacheTester T;
FOR_FLOAT64_INPUTS(i) {
double value = *i;
Node* node = T.Constant(value);
CHECK(T.TypeOf(node)->Is(Type::Of(value, T.main_zone())));
}
}
TEST(HeapNumbers) {
JSConstantCacheTester T;
FOR_FLOAT64_INPUTS(i) {
double value = *i;
Handle<Object> num = T.factory()->NewNumber(value);
Handle<HeapNumber> heap = T.factory()->NewHeapNumber(value);
Node* node1 = T.Constant(value);
Node* node2 = T.Constant(num);
Node* node3 = T.Constant(heap);
CHECK_EQ(node1, node2);
CHECK_EQ(node1, node3);
}
}
TEST(OddballHandle) {
JSConstantCacheTester T;
CHECK_EQ(T.UndefinedConstant(), T.Constant(T.factory()->undefined_value()));
CHECK_EQ(T.TheHoleConstant(), T.Constant(T.factory()->the_hole_value()));
CHECK_EQ(T.TrueConstant(), T.Constant(T.factory()->true_value()));
CHECK_EQ(T.FalseConstant(), T.Constant(T.factory()->false_value()));
CHECK_EQ(T.NullConstant(), T.Constant(T.factory()->null_value()));
CHECK_EQ(T.NaNConstant(), T.Constant(T.factory()->nan_value()));
}
TEST(OddballValues) {
JSConstantCacheTester T;
CHECK_EQ(*T.factory()->undefined_value(), *T.handle(T.UndefinedConstant()));
CHECK_EQ(*T.factory()->the_hole_value(), *T.handle(T.TheHoleConstant()));
CHECK_EQ(*T.factory()->true_value(), *T.handle(T.TrueConstant()));
CHECK_EQ(*T.factory()->false_value(), *T.handle(T.FalseConstant()));
CHECK_EQ(*T.factory()->null_value(), *T.handle(T.NullConstant()));
}
TEST(OddballTypes) {
JSConstantCacheTester T;
CHECK(T.TypeOf(T.UndefinedConstant())->Is(Type::Undefined()));
// TODO(dcarney): figure this out.
// CHECK(T.TypeOf(T.TheHoleConstant())->Is(Type::Internal()));
CHECK(T.TypeOf(T.TrueConstant())->Is(Type::Boolean()));
CHECK(T.TypeOf(T.FalseConstant())->Is(Type::Boolean()));
CHECK(T.TypeOf(T.NullConstant())->Is(Type::Null()));
CHECK(T.TypeOf(T.ZeroConstant())->Is(Type::Number()));
CHECK(T.TypeOf(T.OneConstant())->Is(Type::Number()));
CHECK(T.TypeOf(T.NaNConstant())->Is(Type::NaN()));
}
TEST(ExternalReferences) {
// TODO(titzer): test canonicalization of external references.
}
static bool Contains(NodeVector* nodes, Node* n) {
for (size_t i = 0; i < nodes->size(); i++) {
if (nodes->at(i) == n) return true;
}
return false;
}
static void CheckGetCachedNodesContains(JSConstantCacheTester* T, Node* n) {
NodeVector nodes(T->main_zone());
T->GetCachedNodes(&nodes);
CHECK(Contains(&nodes, n));
}
TEST(JSGraph_GetCachedNodes1) {
JSConstantCacheTester T;
CheckGetCachedNodesContains(&T, T.TrueConstant());
CheckGetCachedNodesContains(&T, T.UndefinedConstant());
CheckGetCachedNodesContains(&T, T.TheHoleConstant());
CheckGetCachedNodesContains(&T, T.TrueConstant());
CheckGetCachedNodesContains(&T, T.FalseConstant());
CheckGetCachedNodesContains(&T, T.NullConstant());
CheckGetCachedNodesContains(&T, T.ZeroConstant());
CheckGetCachedNodesContains(&T, T.OneConstant());
CheckGetCachedNodesContains(&T, T.NaNConstant());
}
TEST(JSGraph_GetCachedNodes_int32) {
JSConstantCacheTester T;
int32_t constants[] = {0, 1, 1, 1, 1, 2, 3, 4, 11, 12, 13,
14, 55, -55, -44, -33, -22, -11, 16, 16, 17, 17,
18, 18, 19, 19, 20, 20, 21, 21, 22, 23, 24,
25, 15, 30, 31, 45, 46, 47, 48};
for (size_t i = 0; i < arraysize(constants); i++) {
size_t count_before = T.graph()->NodeCount();
NodeVector nodes_before(T.main_zone());
T.GetCachedNodes(&nodes_before);
Node* n = T.Int32Constant(constants[i]);
if (n->id() < count_before) {
// An old ID indicates a cached node. It should have been in the set.
CHECK(Contains(&nodes_before, n));
}
// Old or new, it should be in the cached set afterwards.
CheckGetCachedNodesContains(&T, n);
}
}
TEST(JSGraph_GetCachedNodes_float64) {
JSConstantCacheTester T;
double constants[] = {0, 11.1, 12.2, 13, 14, 55.5, -55.5, -44.4,
-33, -22, -11, 0, 11.1, 11.1, 12.3, 12.3,
11, 11, -33.3, -33.3, -22, -11};
for (size_t i = 0; i < arraysize(constants); i++) {
size_t count_before = T.graph()->NodeCount();
NodeVector nodes_before(T.main_zone());
T.GetCachedNodes(&nodes_before);
Node* n = T.Float64Constant(constants[i]);
if (n->id() < count_before) {
// An old ID indicates a cached node. It should have been in the set.
CHECK(Contains(&nodes_before, n));
}
// Old or new, it should be in the cached set afterwards.
CheckGetCachedNodesContains(&T, n);
}
}
TEST(JSGraph_GetCachedNodes_int64) {
JSConstantCacheTester T;
int32_t constants[] = {0, 11, 12, 13, 14, 55, -55, -44, -33,
-22, -11, 16, 16, 17, 17, 18, 18, 19,
19, 20, 20, 21, 21, 22, 23, 24, 25};
for (size_t i = 0; i < arraysize(constants); i++) {
size_t count_before = T.graph()->NodeCount();
NodeVector nodes_before(T.main_zone());
T.GetCachedNodes(&nodes_before);
Node* n = T.Int64Constant(constants[i]);
if (n->id() < count_before) {
// An old ID indicates a cached node. It should have been in the set.
CHECK(Contains(&nodes_before, n));
}
// Old or new, it should be in the cached set afterwards.
CheckGetCachedNodesContains(&T, n);
}
}
TEST(JSGraph_GetCachedNodes_number) {
JSConstantCacheTester T;
double constants[] = {0, 11.1, 12.2, 13, 14, 55.5, -55.5, -44.4,
-33, -22, -11, 0, 11.1, 11.1, 12.3, 12.3,
11, 11, -33.3, -33.3, -22, -11};
for (size_t i = 0; i < arraysize(constants); i++) {
size_t count_before = T.graph()->NodeCount();
NodeVector nodes_before(T.main_zone());
T.GetCachedNodes(&nodes_before);
Node* n = T.Constant(constants[i]);
if (n->id() < count_before) {
// An old ID indicates a cached node. It should have been in the set.
CHECK(Contains(&nodes_before, n));
}
// Old or new, it should be in the cached set afterwards.
CheckGetCachedNodesContains(&T, n);
}
}
TEST(JSGraph_GetCachedNodes_external) {
JSConstantCacheTester T;
ExternalReference constants[] = {ExternalReference::address_of_min_int(),
ExternalReference::address_of_min_int(),
ExternalReference::address_of_min_int(),
ExternalReference::address_of_one_half(),
ExternalReference::address_of_one_half(),
ExternalReference::address_of_min_int(),
ExternalReference::address_of_the_hole_nan(),
ExternalReference::address_of_one_half()};
for (size_t i = 0; i < arraysize(constants); i++) {
size_t count_before = T.graph()->NodeCount();
NodeVector nodes_before(T.main_zone());
T.GetCachedNodes(&nodes_before);
Node* n = T.ExternalConstant(constants[i]);
if (n->id() < count_before) {
// An old ID indicates a cached node. It should have been in the set.
CHECK(Contains(&nodes_before, n));
}
// Old or new, it should be in the cached set afterwards.
CheckGetCachedNodesContains(&T, n);
}
}
TEST(JSGraph_GetCachedNodes_together) {
JSConstantCacheTester T;
Node* constants[] = {
T.TrueConstant(),
T.UndefinedConstant(),
T.TheHoleConstant(),
T.TrueConstant(),
T.FalseConstant(),
T.NullConstant(),
T.ZeroConstant(),
T.OneConstant(),
T.NaNConstant(),
T.Int32Constant(0),
T.Int32Constant(1),
T.Int64Constant(-2),
T.Int64Constant(-4),
T.Float64Constant(0.9),
T.Float64Constant(V8_INFINITY),
T.Constant(0.99),
T.Constant(1.11),
T.ExternalConstant(ExternalReference::address_of_one_half())};
NodeVector nodes(T.main_zone());
T.GetCachedNodes(&nodes);
for (size_t i = 0; i < arraysize(constants); i++) {
CHECK(Contains(&nodes, constants[i]));
}
}
} // namespace compiler
} // namespace internal
} // namespace v8