v8/test/cctest/wasm/test-jump-table-assembler.cc
wenqin.yang a3a2284edc [pku][heap] Support PKUs for V8 heap
This CL adds PKU support for V8 heap, but we will not enable
PKU by default before adding bots that are able to test the
PKU machinery.

Bug: v8:13023
Change-Id: I0465604d56900536ad63311f119ea0324ebe4f2f
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3793944
Reviewed-by: Omer Katz <omerkatz@chromium.org>
Reviewed-by: Igor Sheludko <ishell@chromium.org>
Commit-Queue: Wenqin Yang <wenqin.yang@intel.com>
Reviewed-by: Clemens Backes <clemensb@chromium.org>
Reviewed-by: Camillo Bruni <cbruni@chromium.org>
Reviewed-by: Leszek Swirski <leszeks@chromium.org>
Cr-Commit-Position: refs/heads/main@{#82965}
2022-09-05 10:13:07 +00:00

318 lines
12 KiB
C++

// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <bitset>
#include "src/base/utils/random-number-generator.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/macro-assembler-inl.h"
#include "src/execution/simulator.h"
#include "src/utils/utils.h"
#include "src/wasm/code-space-access.h"
#include "src/wasm/jump-table-assembler.h"
#include "test/cctest/cctest.h"
#include "test/common/assembler-tester.h"
namespace v8 {
namespace internal {
namespace wasm {
#if 0
#define TRACE(...) PrintF(__VA_ARGS__)
#else
#define TRACE(...)
#endif
#define __ masm.
namespace {
static volatile int global_stop_bit = 0;
constexpr int kJumpTableSlotCount = 128;
constexpr uint32_t kJumpTableSize =
JumpTableAssembler::SizeForNumberOfSlots(kJumpTableSlotCount);
// This must be a safe commit page size so we pick the largest OS page size that
// V8 is known to support. Arm64 linux can support up to 64k at runtime.
constexpr size_t kThunkBufferSize = 64 * KB;
#if V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_X64
// We need the branches (from CompileJumpTableThunk) to be within near-call
// range of the jump table slots. The address hint to AllocateAssemblerBuffer
// is not reliable enough to guarantee that we can always achieve this with
// separate allocations, so we generate all code in a single
// kMaxCodeMemory-sized chunk.
constexpr size_t kAssemblerBufferSize = WasmCodeAllocator::kMaxCodeSpaceSize;
constexpr uint32_t kAvailableBufferSlots =
(WasmCodeAllocator::kMaxCodeSpaceSize - kJumpTableSize) / kThunkBufferSize;
constexpr uint32_t kBufferSlotStartOffset =
RoundUp<kThunkBufferSize>(kJumpTableSize);
#else
constexpr size_t kAssemblerBufferSize = kJumpTableSize;
constexpr uint32_t kAvailableBufferSlots = 0;
constexpr uint32_t kBufferSlotStartOffset = 0;
#endif
Address AllocateJumpTableThunk(
Address jump_target, byte* thunk_slot_buffer,
std::bitset<kAvailableBufferSlots>* used_slots,
std::vector<std::unique_ptr<TestingAssemblerBuffer>>* thunk_buffers) {
#if V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_X64
// To guarantee that the branch range lies within the near-call range,
// generate the thunk in the same (kMaxWasmCodeSpaceSize-sized) buffer as the
// jump_target itself.
//
// Allocate a slot that we haven't already used. This is necessary because
// each test iteration expects to generate two unique addresses and we leave
// each slot executable (and not writable).
base::RandomNumberGenerator* rng =
CcTest::i_isolate()->random_number_generator();
// Ensure a chance of completion without too much thrashing.
DCHECK(used_slots->count() < (used_slots->size() / 2));
int buffer_index;
do {
buffer_index = rng->NextInt(kAvailableBufferSlots);
} while (used_slots->test(buffer_index));
used_slots->set(buffer_index);
return reinterpret_cast<Address>(thunk_slot_buffer +
buffer_index * kThunkBufferSize);
#else
USE(thunk_slot_buffer);
USE(used_slots);
thunk_buffers->emplace_back(
AllocateAssemblerBuffer(kThunkBufferSize, GetRandomMmapAddr()));
return reinterpret_cast<Address>(thunk_buffers->back()->start());
#endif
}
void CompileJumpTableThunk(Address thunk, Address jump_target) {
MacroAssembler masm(nullptr, AssemblerOptions{}, CodeObjectRequired::kNo,
ExternalAssemblerBuffer(reinterpret_cast<void*>(thunk),
kThunkBufferSize));
Label exit;
Register scratch = kReturnRegister0;
Address stop_bit_address = reinterpret_cast<Address>(&global_stop_bit);
#if V8_TARGET_ARCH_X64
__ Move(scratch, stop_bit_address, RelocInfo::NO_INFO);
__ testl(MemOperand(scratch, 0), Immediate(1));
__ j(not_zero, &exit);
__ Jump(jump_target, RelocInfo::NO_INFO);
#elif V8_TARGET_ARCH_IA32
__ Move(scratch, Immediate(stop_bit_address, RelocInfo::NO_INFO));
__ test(MemOperand(scratch, 0), Immediate(1));
__ j(not_zero, &exit);
__ jmp(jump_target, RelocInfo::NO_INFO);
#elif V8_TARGET_ARCH_ARM
__ mov(scratch, Operand(stop_bit_address, RelocInfo::NO_INFO));
__ ldr(scratch, MemOperand(scratch, 0));
__ tst(scratch, Operand(1));
__ b(ne, &exit);
__ Jump(jump_target, RelocInfo::NO_INFO);
#elif V8_TARGET_ARCH_ARM64
UseScratchRegisterScope temps(&masm);
temps.Exclude(x16);
scratch = x16;
__ Mov(scratch, Operand(stop_bit_address, RelocInfo::NO_INFO));
__ Ldr(scratch, MemOperand(scratch, 0));
__ Tbnz(scratch, 0, &exit);
__ Mov(scratch, Immediate(jump_target, RelocInfo::NO_INFO));
__ Br(scratch);
#elif V8_TARGET_ARCH_PPC64
__ mov(scratch, Operand(stop_bit_address, RelocInfo::NO_INFO));
__ LoadU64(scratch, MemOperand(scratch));
__ cmpi(scratch, Operand::Zero());
__ bne(&exit);
__ mov(scratch, Operand(jump_target, RelocInfo::NO_INFO));
__ Jump(scratch);
#elif V8_TARGET_ARCH_S390X
__ mov(scratch, Operand(stop_bit_address, RelocInfo::NO_INFO));
__ LoadU64(scratch, MemOperand(scratch));
__ CmpP(scratch, Operand(0));
__ bne(&exit);
__ mov(scratch, Operand(jump_target, RelocInfo::NO_INFO));
__ Jump(scratch);
#elif V8_TARGET_ARCH_MIPS64
__ li(scratch, Operand(stop_bit_address, RelocInfo::NO_INFO));
__ Lw(scratch, MemOperand(scratch, 0));
__ Branch(&exit, ne, scratch, Operand(zero_reg));
__ Jump(jump_target, RelocInfo::NO_INFO);
#elif V8_TARGET_ARCH_LOONG64
__ li(scratch, Operand(stop_bit_address, RelocInfo::NO_INFO));
__ Ld_w(scratch, MemOperand(scratch, 0));
__ Branch(&exit, ne, scratch, Operand(zero_reg));
__ Jump(jump_target, RelocInfo::NO_INFO);
#elif V8_TARGET_ARCH_MIPS
__ li(scratch, Operand(stop_bit_address, RelocInfo::NO_INFO));
__ lw(scratch, MemOperand(scratch, 0));
__ Branch(&exit, ne, scratch, Operand(zero_reg));
__ Jump(jump_target, RelocInfo::NO_INFO);
#elif V8_TARGET_ARCH_RISCV64 || V8_TARGET_ARCH_RISCV32
__ li(scratch, Operand(stop_bit_address, RelocInfo::NO_INFO));
__ Lw(scratch, MemOperand(scratch, 0));
__ Branch(&exit, ne, scratch, Operand(zero_reg));
__ Jump(jump_target, RelocInfo::NO_INFO);
#else
#error Unsupported architecture
#endif
__ bind(&exit);
__ Ret();
FlushInstructionCache(thunk, kThunkBufferSize);
#if defined(V8_OS_DARWIN) && defined(V8_HOST_ARCH_ARM64)
// MacOS on arm64 refuses {mprotect} calls to toggle permissions of RWX
// memory. Simply do nothing here, as the space will by default be executable
// and non-writable for the JumpTableRunner.
#else
CHECK(SetPermissions(GetPlatformPageAllocator(), thunk, kThunkBufferSize,
v8::PageAllocator::kReadExecute));
#endif
}
class JumpTableRunner : public v8::base::Thread {
public:
JumpTableRunner(Address slot_address, int runner_id)
: Thread(Options("JumpTableRunner")),
slot_address_(slot_address),
runner_id_(runner_id) {}
void Run() override {
TRACE("Runner #%d is starting ...\n", runner_id_);
GeneratedCode<void>::FromAddress(CcTest::i_isolate(), slot_address_).Call();
TRACE("Runner #%d is stopping ...\n", runner_id_);
USE(runner_id_);
}
private:
Address slot_address_;
int runner_id_;
};
class JumpTablePatcher : public v8::base::Thread {
public:
JumpTablePatcher(Address slot_start, uint32_t slot_index, Address thunk1,
Address thunk2, base::Mutex* jump_table_mutex)
: Thread(Options("JumpTablePatcher")),
slot_start_(slot_start),
slot_index_(slot_index),
thunks_{thunk1, thunk2},
jump_table_mutex_(jump_table_mutex) {}
void Run() override {
RwxMemoryWriteScope::SetDefaultPermissionsForNewThread();
TRACE("Patcher %p is starting ...\n", this);
RwxMemoryWriteScopeForTesting rwx_write_scope;
Address slot_address =
slot_start_ + JumpTableAssembler::JumpSlotIndexToOffset(slot_index_);
// First, emit code to the two thunks.
for (Address thunk : thunks_) {
CompileJumpTableThunk(thunk, slot_address);
}
// Then, repeatedly patch the jump table to jump to one of the two thunks.
constexpr int kNumberOfPatchIterations = 64;
for (int i = 0; i < kNumberOfPatchIterations; ++i) {
TRACE(" patcher %p patch slot " V8PRIxPTR_FMT
" to thunk #%d (" V8PRIxPTR_FMT ")\n",
this, slot_address, i % 2, thunks_[i % 2]);
base::MutexGuard jump_table_guard(jump_table_mutex_);
JumpTableAssembler::PatchJumpTableSlot(
slot_start_ + JumpTableAssembler::JumpSlotIndexToOffset(slot_index_),
kNullAddress, thunks_[i % 2]);
}
TRACE("Patcher %p is stopping ...\n", this);
}
private:
Address slot_start_;
uint32_t slot_index_;
Address thunks_[2];
base::Mutex* jump_table_mutex_;
};
} // namespace
// This test is intended to stress concurrent patching of jump-table slots. It
// uses the following setup:
// 1) Picks a particular slot of the jump-table. Slots are iterated over to
// ensure multiple entries (at different offset alignments) are tested.
// 2) Starts multiple runners that spin through the above slot. The runners
// use thunk code that will jump to the same jump-table slot repeatedly
// until the {global_stop_bit} indicates a test-end condition.
// 3) Start a patcher that repeatedly patches the jump-table slot back and
// forth between two thunk. If there is a race then chances are high that
// one of the runners is currently executing the jump-table slot.
TEST(JumpTablePatchingStress) {
constexpr int kNumberOfRunnerThreads = 5;
constexpr int kNumberOfPatcherThreads = 3;
static_assert(kAssemblerBufferSize >= kJumpTableSize);
auto buffer = AllocateAssemblerBuffer(kAssemblerBufferSize, nullptr,
JitPermission::kMapAsJittable);
byte* thunk_slot_buffer = buffer->start() + kBufferSlotStartOffset;
std::bitset<kAvailableBufferSlots> used_thunk_slots;
buffer->MakeWritableAndExecutable();
// Iterate through jump-table slots to hammer at different alignments within
// the jump-table, thereby increasing stress for variable-length ISAs.
Address slot_start = reinterpret_cast<Address>(buffer->start());
for (int slot = 0; slot < kJumpTableSlotCount; ++slot) {
TRACE("Hammering on jump table slot #%d ...\n", slot);
uint32_t slot_offset = JumpTableAssembler::JumpSlotIndexToOffset(slot);
std::vector<std::unique_ptr<TestingAssemblerBuffer>> thunk_buffers;
std::vector<Address> patcher_thunks;
{
RwxMemoryWriteScopeForTesting rwx_write_scope;
// Patch the jump table slot to jump to itself. This will later be patched
// by the patchers.
Address slot_addr =
slot_start + JumpTableAssembler::JumpSlotIndexToOffset(slot);
JumpTableAssembler::PatchJumpTableSlot(slot_addr, kNullAddress,
slot_addr);
// For each patcher, generate two thunks where this patcher can emit code
// which finally jumps back to {slot} in the jump table.
for (int i = 0; i < 2 * kNumberOfPatcherThreads; ++i) {
Address thunk =
AllocateJumpTableThunk(slot_start + slot_offset, thunk_slot_buffer,
&used_thunk_slots, &thunk_buffers);
ZapCode(thunk, kThunkBufferSize);
patcher_thunks.push_back(thunk);
TRACE(" generated jump thunk: " V8PRIxPTR_FMT "\n",
patcher_thunks.back());
}
}
// Start multiple runner threads that execute the jump table slot
// concurrently.
std::list<JumpTableRunner> runners;
for (int runner = 0; runner < kNumberOfRunnerThreads; ++runner) {
runners.emplace_back(slot_start + slot_offset, runner);
}
// Start multiple patcher thread that concurrently generate code and insert
// jumps to that into the jump table slot.
std::list<JumpTablePatcher> patchers;
// Only one patcher should modify the jump table at a time.
base::Mutex jump_table_mutex;
for (int i = 0; i < kNumberOfPatcherThreads; ++i) {
patchers.emplace_back(slot_start, slot, patcher_thunks[2 * i],
patcher_thunks[2 * i + 1], &jump_table_mutex);
}
global_stop_bit = 0; // Signal runners to keep going.
for (auto& runner : runners) CHECK(runner.Start());
for (auto& patcher : patchers) CHECK(patcher.Start());
for (auto& patcher : patchers) patcher.Join();
global_stop_bit = -1; // Signal runners to stop.
for (auto& runner : runners) runner.Join();
}
}
#undef __
#undef TRACE
} // namespace wasm
} // namespace internal
} // namespace v8