v8/src/list-inl.h
jochen@chromium.org a4506cd3f2 Move platform abstraction to base library
Also split v8-core independent methods from checks.h to base/logging.h and
merge v8checks with the rest of checks.

The CPU::FlushICache method is moved to CpuFeatures::FlushICache

RoundUp and related methods are moved to base/macros.h

Remove all layering violations from src/libplatform

BUG=none
R=jkummerow@chromium.org
LOG=n

Review URL: https://codereview.chromium.org/358363002

git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22092 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-06-30 13:25:46 +00:00

262 lines
5.6 KiB
C++

// Copyright 2006-2009 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_LIST_INL_H_
#define V8_LIST_INL_H_
#include "src/list.h"
#include "src/base/platform/platform.h"
namespace v8 {
namespace internal {
template<typename T, class P>
void List<T, P>::Add(const T& element, P alloc) {
if (length_ < capacity_) {
data_[length_++] = element;
} else {
List<T, P>::ResizeAdd(element, alloc);
}
}
template<typename T, class P>
void List<T, P>::AddAll(const List<T, P>& other, P alloc) {
AddAll(other.ToVector(), alloc);
}
template<typename T, class P>
void List<T, P>::AddAll(const Vector<T>& other, P alloc) {
int result_length = length_ + other.length();
if (capacity_ < result_length) Resize(result_length, alloc);
for (int i = 0; i < other.length(); i++) {
data_[length_ + i] = other.at(i);
}
length_ = result_length;
}
// Use two layers of inlining so that the non-inlined function can
// use the same implementation as the inlined version.
template<typename T, class P>
void List<T, P>::ResizeAdd(const T& element, P alloc) {
ResizeAddInternal(element, alloc);
}
template<typename T, class P>
void List<T, P>::ResizeAddInternal(const T& element, P alloc) {
ASSERT(length_ >= capacity_);
// Grow the list capacity by 100%, but make sure to let it grow
// even when the capacity is zero (possible initial case).
int new_capacity = 1 + 2 * capacity_;
// Since the element reference could be an element of the list, copy
// it out of the old backing storage before resizing.
T temp = element;
Resize(new_capacity, alloc);
data_[length_++] = temp;
}
template<typename T, class P>
void List<T, P>::Resize(int new_capacity, P alloc) {
ASSERT_LE(length_, new_capacity);
T* new_data = NewData(new_capacity, alloc);
MemCopy(new_data, data_, length_ * sizeof(T));
List<T, P>::DeleteData(data_);
data_ = new_data;
capacity_ = new_capacity;
}
template<typename T, class P>
Vector<T> List<T, P>::AddBlock(T value, int count, P alloc) {
int start = length_;
for (int i = 0; i < count; i++) Add(value, alloc);
return Vector<T>(&data_[start], count);
}
template<typename T, class P>
void List<T, P>::Set(int index, const T& elm) {
ASSERT(index >= 0 && index <= length_);
data_[index] = elm;
}
template<typename T, class P>
void List<T, P>::InsertAt(int index, const T& elm, P alloc) {
ASSERT(index >= 0 && index <= length_);
Add(elm, alloc);
for (int i = length_ - 1; i > index; --i) {
data_[i] = data_[i - 1];
}
data_[index] = elm;
}
template<typename T, class P>
T List<T, P>::Remove(int i) {
T element = at(i);
length_--;
while (i < length_) {
data_[i] = data_[i + 1];
i++;
}
return element;
}
template<typename T, class P>
bool List<T, P>::RemoveElement(const T& elm) {
for (int i = 0; i < length_; i++) {
if (data_[i] == elm) {
Remove(i);
return true;
}
}
return false;
}
template<typename T, class P>
void List<T, P>::Allocate(int length, P allocator) {
DeleteData(data_);
Initialize(length, allocator);
length_ = length;
}
template<typename T, class P>
void List<T, P>::Clear() {
DeleteData(data_);
// We don't call Initialize(0) since that requires passing a Zone,
// which we don't really need.
data_ = NULL;
capacity_ = 0;
length_ = 0;
}
template<typename T, class P>
void List<T, P>::Rewind(int pos) {
ASSERT(0 <= pos && pos <= length_);
length_ = pos;
}
template<typename T, class P>
void List<T, P>::Trim(P alloc) {
if (length_ < capacity_ / 4) {
Resize(capacity_ / 2, alloc);
}
}
template<typename T, class P>
void List<T, P>::Iterate(void (*callback)(T* x)) {
for (int i = 0; i < length_; i++) callback(&data_[i]);
}
template<typename T, class P>
template<class Visitor>
void List<T, P>::Iterate(Visitor* visitor) {
for (int i = 0; i < length_; i++) visitor->Apply(&data_[i]);
}
template<typename T, class P>
bool List<T, P>::Contains(const T& elm) const {
for (int i = 0; i < length_; i++) {
if (data_[i] == elm)
return true;
}
return false;
}
template<typename T, class P>
int List<T, P>::CountOccurrences(const T& elm, int start, int end) const {
int result = 0;
for (int i = start; i <= end; i++) {
if (data_[i] == elm) ++result;
}
return result;
}
template<typename T, class P>
void List<T, P>::Sort(int (*cmp)(const T* x, const T* y)) {
ToVector().Sort(cmp);
#ifdef DEBUG
for (int i = 1; i < length_; i++)
ASSERT(cmp(&data_[i - 1], &data_[i]) <= 0);
#endif
}
template<typename T, class P>
void List<T, P>::Sort() {
ToVector().Sort();
}
template<typename T, class P>
void List<T, P>::Initialize(int capacity, P allocator) {
ASSERT(capacity >= 0);
data_ = (capacity > 0) ? NewData(capacity, allocator) : NULL;
capacity_ = capacity;
length_ = 0;
}
template <typename T, typename P>
int SortedListBSearch(const List<T>& list, P cmp) {
int low = 0;
int high = list.length() - 1;
while (low <= high) {
int mid = low + (high - low) / 2;
T mid_elem = list[mid];
if (cmp(&mid_elem) > 0) {
high = mid - 1;
continue;
}
if (cmp(&mid_elem) < 0) {
low = mid + 1;
continue;
}
// Found the elememt.
return mid;
}
return -1;
}
template<typename T>
class ElementCmp {
public:
explicit ElementCmp(T e) : elem_(e) {}
int operator()(const T* other) {
return PointerValueCompare(other, &elem_);
}
private:
T elem_;
};
template <typename T>
int SortedListBSearch(const List<T>& list, T elem) {
return SortedListBSearch<T, ElementCmp<T> > (list, ElementCmp<T>(elem));
}
} } // namespace v8::internal
#endif // V8_LIST_INL_H_