v8/src/property-details.h
jarin ef35f11c43 Remove the template magic from types.(h|cc), remove types-inl.h.
This CL removes the Config templatization from the types. It is not
necessary anymore, after the HeapTypes have been removed.

The CL also changes the type hierarchy - the specific type kinds are
not inner classes of the Type class and they do not inherit from Type.
This is partly because it seems impossible to make this work without
templates. Instead, a new TypeBase class is introduced and all the
structural (i.e., non-bitset) types inherit from it.

The bitset type still requires the bit-munging hack and some nasty
reinterpret-casts to pretend bitsets are of type Type*. Additionally,
there is now the same hack for TypeBase - all pointers to the sub-types
of TypeBase are reinterpret-casted to Type*. This is to keep the type
constructors in inline method definitions (although it is unclear how
much that actually buys us).

In future, we would like to move to a model where we encapsulate Type*
into a class (or possibly use Type where we used to use Type*). This
would loosen the coupling between bitset size and pointer size, and
eventually we would be able to have more bits.

TBR=bradnelson@chromium.org

Review URL: https://codereview.chromium.org/1655833002

Cr-Commit-Position: refs/heads/master@{#33656}
2016-02-02 07:26:06 +00:00

397 lines
13 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_PROPERTY_DETAILS_H_
#define V8_PROPERTY_DETAILS_H_
#include "include/v8.h"
#include "src/allocation.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
// ES6 6.1.7.1
enum PropertyAttributes {
NONE = ::v8::None,
READ_ONLY = ::v8::ReadOnly,
DONT_ENUM = ::v8::DontEnum,
DONT_DELETE = ::v8::DontDelete,
ALL_ATTRIBUTES_MASK = READ_ONLY | DONT_ENUM | DONT_DELETE,
SEALED = DONT_DELETE,
FROZEN = SEALED | READ_ONLY,
ABSENT = 64, // Used in runtime to indicate a property is absent.
// ABSENT can never be stored in or returned from a descriptor's attributes
// bitfield. It is only used as a return value meaning the attributes of
// a non-existent property.
// When creating a property, EVAL_DECLARED used to indicate that the property
// came from a sloppy-mode direct eval, and certain checks need to be done.
// Cannot be stored in or returned from a descriptor's attributes bitfield.
EVAL_DECLARED = 128
};
enum PropertyFilter {
ALL_PROPERTIES = 0,
ONLY_WRITABLE = 1,
ONLY_ENUMERABLE = 2,
ONLY_CONFIGURABLE = 4,
SKIP_STRINGS = 8,
SKIP_SYMBOLS = 16,
ONLY_ALL_CAN_READ = 32,
ENUMERABLE_STRINGS = ONLY_ENUMERABLE | SKIP_SYMBOLS,
};
// Enable fast comparisons of PropertyAttributes against PropertyFilters.
STATIC_ASSERT(ALL_PROPERTIES == static_cast<PropertyFilter>(NONE));
STATIC_ASSERT(ONLY_WRITABLE == static_cast<PropertyFilter>(READ_ONLY));
STATIC_ASSERT(ONLY_ENUMERABLE == static_cast<PropertyFilter>(DONT_ENUM));
STATIC_ASSERT(ONLY_CONFIGURABLE == static_cast<PropertyFilter>(DONT_DELETE));
STATIC_ASSERT(((SKIP_STRINGS | SKIP_SYMBOLS | ONLY_ALL_CAN_READ) &
ALL_ATTRIBUTES_MASK) == 0);
class Smi;
class Type;
class TypeInfo;
// Type of properties.
// Order of kinds is significant.
// Must fit in the BitField PropertyDetails::KindField.
enum PropertyKind { kData = 0, kAccessor = 1 };
// Order of modes is significant.
// Must fit in the BitField PropertyDetails::StoreModeField.
enum PropertyLocation { kField = 0, kDescriptor = 1 };
// Order of properties is significant.
// Must fit in the BitField PropertyDetails::TypeField.
// A copy of this is in debug/mirrors.js.
enum PropertyType {
DATA = (kField << 1) | kData,
DATA_CONSTANT = (kDescriptor << 1) | kData,
ACCESSOR = (kField << 1) | kAccessor,
ACCESSOR_CONSTANT = (kDescriptor << 1) | kAccessor
};
class Representation {
public:
enum Kind {
kNone,
kInteger8,
kUInteger8,
kInteger16,
kUInteger16,
kSmi,
kInteger32,
kDouble,
kHeapObject,
kTagged,
kExternal,
kNumRepresentations
};
Representation() : kind_(kNone) { }
static Representation None() { return Representation(kNone); }
static Representation Tagged() { return Representation(kTagged); }
static Representation Integer8() { return Representation(kInteger8); }
static Representation UInteger8() { return Representation(kUInteger8); }
static Representation Integer16() { return Representation(kInteger16); }
static Representation UInteger16() { return Representation(kUInteger16); }
static Representation Smi() { return Representation(kSmi); }
static Representation Integer32() { return Representation(kInteger32); }
static Representation Double() { return Representation(kDouble); }
static Representation HeapObject() { return Representation(kHeapObject); }
static Representation External() { return Representation(kExternal); }
static Representation FromKind(Kind kind) { return Representation(kind); }
bool Equals(const Representation& other) const {
return kind_ == other.kind_;
}
bool IsCompatibleForLoad(const Representation& other) const {
return (IsDouble() && other.IsDouble()) ||
(!IsDouble() && !other.IsDouble());
}
bool IsCompatibleForStore(const Representation& other) const {
return Equals(other);
}
bool is_more_general_than(const Representation& other) const {
if (kind_ == kExternal && other.kind_ == kNone) return true;
if (kind_ == kExternal && other.kind_ == kExternal) return false;
if (kind_ == kNone && other.kind_ == kExternal) return false;
DCHECK(kind_ != kExternal);
DCHECK(other.kind_ != kExternal);
if (IsHeapObject()) return other.IsNone();
if (kind_ == kUInteger8 && other.kind_ == kInteger8) return false;
if (kind_ == kUInteger16 && other.kind_ == kInteger16) return false;
return kind_ > other.kind_;
}
bool fits_into(const Representation& other) const {
return other.is_more_general_than(*this) || other.Equals(*this);
}
Representation generalize(Representation other) {
if (other.fits_into(*this)) return *this;
if (other.is_more_general_than(*this)) return other;
return Representation::Tagged();
}
int size() const {
DCHECK(!IsNone());
if (IsInteger8() || IsUInteger8()) {
return sizeof(uint8_t);
}
if (IsInteger16() || IsUInteger16()) {
return sizeof(uint16_t);
}
if (IsInteger32()) {
return sizeof(uint32_t);
}
return kPointerSize;
}
Kind kind() const { return static_cast<Kind>(kind_); }
bool IsNone() const { return kind_ == kNone; }
bool IsInteger8() const { return kind_ == kInteger8; }
bool IsUInteger8() const { return kind_ == kUInteger8; }
bool IsInteger16() const { return kind_ == kInteger16; }
bool IsUInteger16() const { return kind_ == kUInteger16; }
bool IsTagged() const { return kind_ == kTagged; }
bool IsSmi() const { return kind_ == kSmi; }
bool IsSmiOrTagged() const { return IsSmi() || IsTagged(); }
bool IsInteger32() const { return kind_ == kInteger32; }
bool IsSmiOrInteger32() const { return IsSmi() || IsInteger32(); }
bool IsDouble() const { return kind_ == kDouble; }
bool IsHeapObject() const { return kind_ == kHeapObject; }
bool IsExternal() const { return kind_ == kExternal; }
bool IsSpecialization() const {
return IsInteger8() || IsUInteger8() ||
IsInteger16() || IsUInteger16() ||
IsSmi() || IsInteger32() || IsDouble();
}
const char* Mnemonic() const;
private:
explicit Representation(Kind k) : kind_(k) { }
// Make sure kind fits in int8.
STATIC_ASSERT(kNumRepresentations <= (1 << kBitsPerByte));
int8_t kind_;
};
static const int kDescriptorIndexBitCount = 10;
// The maximum number of descriptors we want in a descriptor array (should
// fit in a page).
static const int kMaxNumberOfDescriptors =
(1 << kDescriptorIndexBitCount) - 2;
static const int kInvalidEnumCacheSentinel =
(1 << kDescriptorIndexBitCount) - 1;
enum class PropertyCellType {
// Meaningful when a property cell does not contain the hole.
kUndefined, // The PREMONOMORPHIC of property cells.
kConstant, // Cell has been assigned only once.
kConstantType, // Cell has been assigned only one type.
kMutable, // Cell will no longer be tracked as constant.
// Meaningful when a property cell contains the hole.
kUninitialized = kUndefined, // Cell has never been initialized.
kInvalidated = kConstant, // Cell has been deleted or invalidated.
// For dictionaries not holding cells.
kNoCell = kMutable,
};
enum class PropertyCellConstantType {
kSmi,
kStableMap,
};
// PropertyDetails captures type and attributes for a property.
// They are used both in property dictionaries and instance descriptors.
class PropertyDetails BASE_EMBEDDED {
public:
PropertyDetails(PropertyAttributes attributes, PropertyType type, int index,
PropertyCellType cell_type) {
value_ = TypeField::encode(type) | AttributesField::encode(attributes) |
DictionaryStorageField::encode(index) |
PropertyCellTypeField::encode(cell_type);
DCHECK(type == this->type());
DCHECK(attributes == this->attributes());
}
PropertyDetails(PropertyAttributes attributes,
PropertyType type,
Representation representation,
int field_index = 0) {
value_ = TypeField::encode(type)
| AttributesField::encode(attributes)
| RepresentationField::encode(EncodeRepresentation(representation))
| FieldIndexField::encode(field_index);
}
PropertyDetails(PropertyAttributes attributes, PropertyKind kind,
PropertyLocation location, Representation representation,
int field_index = 0) {
value_ = KindField::encode(kind) | LocationField::encode(location) |
AttributesField::encode(attributes) |
RepresentationField::encode(EncodeRepresentation(representation)) |
FieldIndexField::encode(field_index);
}
static PropertyDetails Empty() {
return PropertyDetails(NONE, DATA, 0, PropertyCellType::kNoCell);
}
int pointer() const { return DescriptorPointer::decode(value_); }
PropertyDetails set_pointer(int i) const {
return PropertyDetails(value_, i);
}
PropertyDetails set_cell_type(PropertyCellType type) const {
PropertyDetails details = *this;
details.value_ = PropertyCellTypeField::update(details.value_, type);
return details;
}
PropertyDetails set_index(int index) const {
PropertyDetails details = *this;
details.value_ = DictionaryStorageField::update(details.value_, index);
return details;
}
PropertyDetails CopyWithRepresentation(Representation representation) const {
return PropertyDetails(value_, representation);
}
PropertyDetails CopyAddAttributes(PropertyAttributes new_attributes) const {
new_attributes =
static_cast<PropertyAttributes>(attributes() | new_attributes);
return PropertyDetails(value_, new_attributes);
}
// Conversion for storing details as Object*.
explicit inline PropertyDetails(Smi* smi);
inline Smi* AsSmi() const;
static uint8_t EncodeRepresentation(Representation representation) {
return representation.kind();
}
static Representation DecodeRepresentation(uint32_t bits) {
return Representation::FromKind(static_cast<Representation::Kind>(bits));
}
PropertyKind kind() const { return KindField::decode(value_); }
PropertyLocation location() const { return LocationField::decode(value_); }
PropertyType type() const { return TypeField::decode(value_); }
PropertyAttributes attributes() const {
return AttributesField::decode(value_);
}
int dictionary_index() const {
return DictionaryStorageField::decode(value_);
}
Representation representation() const {
return DecodeRepresentation(RepresentationField::decode(value_));
}
int field_index() const { return FieldIndexField::decode(value_); }
inline int field_width_in_words() const;
static bool IsValidIndex(int index) {
return DictionaryStorageField::is_valid(index);
}
bool IsReadOnly() const { return (attributes() & READ_ONLY) != 0; }
bool IsConfigurable() const { return (attributes() & DONT_DELETE) == 0; }
bool IsDontEnum() const { return (attributes() & DONT_ENUM) != 0; }
PropertyCellType cell_type() const {
return PropertyCellTypeField::decode(value_);
}
// Bit fields in value_ (type, shift, size). Must be public so the
// constants can be embedded in generated code.
class KindField : public BitField<PropertyKind, 0, 1> {};
class LocationField : public BitField<PropertyLocation, 1, 1> {};
class AttributesField : public BitField<PropertyAttributes, 2, 3> {};
static const int kAttributesReadOnlyMask =
(READ_ONLY << AttributesField::kShift);
// Bit fields for normalized objects.
class PropertyCellTypeField : public BitField<PropertyCellType, 5, 2> {};
class DictionaryStorageField : public BitField<uint32_t, 7, 24> {};
// Bit fields for fast objects.
class RepresentationField : public BitField<uint32_t, 5, 4> {};
class DescriptorPointer
: public BitField<uint32_t, 9, kDescriptorIndexBitCount> {}; // NOLINT
class FieldIndexField
: public BitField<uint32_t, 9 + kDescriptorIndexBitCount,
kDescriptorIndexBitCount> {}; // NOLINT
// NOTE: TypeField overlaps with KindField and LocationField.
class TypeField : public BitField<PropertyType, 0, 2> {};
STATIC_ASSERT(KindField::kNext == LocationField::kShift);
STATIC_ASSERT(TypeField::kShift == KindField::kShift);
STATIC_ASSERT(TypeField::kNext == LocationField::kNext);
// All bits for both fast and slow objects must fit in a smi.
STATIC_ASSERT(DictionaryStorageField::kNext <= 31);
STATIC_ASSERT(FieldIndexField::kNext <= 31);
static const int kInitialIndex = 1;
#ifdef OBJECT_PRINT
// For our gdb macros, we should perhaps change these in the future.
void Print(bool dictionary_mode);
#endif
private:
PropertyDetails(int value, int pointer) {
value_ = DescriptorPointer::update(value, pointer);
}
PropertyDetails(int value, Representation representation) {
value_ = RepresentationField::update(
value, EncodeRepresentation(representation));
}
PropertyDetails(int value, PropertyAttributes attributes) {
value_ = AttributesField::update(value, attributes);
}
uint32_t value_;
};
std::ostream& operator<<(std::ostream& os,
const PropertyAttributes& attributes);
std::ostream& operator<<(std::ostream& os, const PropertyDetails& details);
} // namespace internal
} // namespace v8
#endif // V8_PROPERTY_DETAILS_H_