90b3370374
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5922 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
955 lines
29 KiB
C++
955 lines
29 KiB
C++
// Copyright 2010 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_LITHIUM_ALLOCATOR_H_
|
|
#define V8_LITHIUM_ALLOCATOR_H_
|
|
|
|
#include "v8.h"
|
|
|
|
#include "zone.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// Forward declarations.
|
|
class HBasicBlock;
|
|
class HGraph;
|
|
class HInstruction;
|
|
class HPhi;
|
|
class HTracer;
|
|
class HValue;
|
|
class BitVector;
|
|
class StringStream;
|
|
|
|
class LArgument;
|
|
class LChunk;
|
|
class LConstantOperand;
|
|
class LGap;
|
|
class LInstruction;
|
|
class LParallelMove;
|
|
class LPointerMap;
|
|
class LStackSlot;
|
|
class LRegister;
|
|
|
|
// This class represents a single point of a LOperand's lifetime.
|
|
// For each lithium instruction there are exactly two lifetime positions:
|
|
// the beginning and the end of the instruction. Lifetime positions for
|
|
// different lithium instructions are disjoint.
|
|
class LifetimePosition {
|
|
public:
|
|
// Return the lifetime position that corresponds to the beginning of
|
|
// the instruction with the given index.
|
|
static LifetimePosition FromInstructionIndex(int index) {
|
|
return LifetimePosition(index * kStep);
|
|
}
|
|
|
|
// Returns a numeric representation of this lifetime position.
|
|
int Value() const {
|
|
return value_;
|
|
}
|
|
|
|
// Returns the index of the instruction to which this lifetime position
|
|
// corresponds.
|
|
int InstructionIndex() const {
|
|
ASSERT(IsValid());
|
|
return value_ / kStep;
|
|
}
|
|
|
|
// Returns true if this lifetime position corresponds to the instruction
|
|
// start.
|
|
bool IsInstructionStart() const {
|
|
return (value_ & (kStep - 1)) == 0;
|
|
}
|
|
|
|
// Returns the lifetime position for the start of the instruction which
|
|
// corresponds to this lifetime position.
|
|
LifetimePosition InstructionStart() const {
|
|
ASSERT(IsValid());
|
|
return LifetimePosition(value_ & ~(kStep - 1));
|
|
}
|
|
|
|
// Returns the lifetime position for the end of the instruction which
|
|
// corresponds to this lifetime position.
|
|
LifetimePosition InstructionEnd() const {
|
|
ASSERT(IsValid());
|
|
return LifetimePosition(InstructionStart().Value() + kStep/2);
|
|
}
|
|
|
|
// Returns the lifetime position for the beginning of the next instruction.
|
|
LifetimePosition NextInstruction() const {
|
|
ASSERT(IsValid());
|
|
return LifetimePosition(InstructionStart().Value() + kStep);
|
|
}
|
|
|
|
// Returns the lifetime position for the beginning of the previous
|
|
// instruction.
|
|
LifetimePosition PrevInstruction() const {
|
|
ASSERT(IsValid());
|
|
ASSERT(value_ > 1);
|
|
return LifetimePosition(InstructionStart().Value() - kStep);
|
|
}
|
|
|
|
// Constructs the lifetime position which does not correspond to any
|
|
// instruction.
|
|
LifetimePosition() : value_(-1) {}
|
|
|
|
// Returns true if this lifetime positions corrensponds to some
|
|
// instruction.
|
|
bool IsValid() const { return value_ != -1; }
|
|
|
|
static LifetimePosition Invalid() { return LifetimePosition(); }
|
|
|
|
private:
|
|
static const int kStep = 2;
|
|
|
|
// Code relies on kStep being a power of two.
|
|
STATIC_ASSERT(IS_POWER_OF_TWO(kStep));
|
|
|
|
explicit LifetimePosition(int value) : value_(value) { }
|
|
|
|
int value_;
|
|
};
|
|
|
|
|
|
class LOperand: public ZoneObject {
|
|
public:
|
|
enum Kind {
|
|
INVALID,
|
|
UNALLOCATED,
|
|
CONSTANT_OPERAND,
|
|
STACK_SLOT,
|
|
DOUBLE_STACK_SLOT,
|
|
REGISTER,
|
|
DOUBLE_REGISTER,
|
|
ARGUMENT
|
|
};
|
|
|
|
LOperand() : value_(KindField::encode(INVALID)) { }
|
|
|
|
Kind kind() const { return KindField::decode(value_); }
|
|
int index() const { return static_cast<int>(value_) >> kKindFieldWidth; }
|
|
bool IsConstantOperand() const { return kind() == CONSTANT_OPERAND; }
|
|
bool IsStackSlot() const { return kind() == STACK_SLOT; }
|
|
bool IsDoubleStackSlot() const { return kind() == DOUBLE_STACK_SLOT; }
|
|
bool IsRegister() const { return kind() == REGISTER; }
|
|
bool IsDoubleRegister() const { return kind() == DOUBLE_REGISTER; }
|
|
bool IsArgument() const { return kind() == ARGUMENT; }
|
|
bool IsUnallocated() const { return kind() == UNALLOCATED; }
|
|
bool Equals(LOperand* other) const { return value_ == other->value_; }
|
|
int VirtualRegister();
|
|
|
|
void PrintTo(StringStream* stream);
|
|
void ConvertTo(Kind kind, int index) {
|
|
value_ = KindField::encode(kind);
|
|
value_ |= index << kKindFieldWidth;
|
|
ASSERT(this->index() == index);
|
|
}
|
|
|
|
protected:
|
|
static const int kKindFieldWidth = 3;
|
|
class KindField : public BitField<Kind, 0, kKindFieldWidth> { };
|
|
|
|
LOperand(Kind kind, int index) { ConvertTo(kind, index); }
|
|
|
|
unsigned value_;
|
|
};
|
|
|
|
|
|
class LUnallocated: public LOperand {
|
|
public:
|
|
enum Policy {
|
|
NONE,
|
|
ANY,
|
|
FIXED_REGISTER,
|
|
FIXED_DOUBLE_REGISTER,
|
|
FIXED_SLOT,
|
|
MUST_HAVE_REGISTER,
|
|
WRITABLE_REGISTER,
|
|
SAME_AS_FIRST_INPUT,
|
|
SAME_AS_ANY_INPUT,
|
|
IGNORE
|
|
};
|
|
|
|
// Lifetime of operand inside the instruction.
|
|
enum Lifetime {
|
|
// USED_AT_START operand is guaranteed to be live only at
|
|
// instruction start. Register allocator is free to assign the same register
|
|
// to some other operand used inside instruction (i.e. temporary or
|
|
// output).
|
|
USED_AT_START,
|
|
|
|
// USED_AT_END operand is treated as live until the end of
|
|
// instruction. This means that register allocator will not reuse it's
|
|
// register for any other operand inside instruction.
|
|
USED_AT_END
|
|
};
|
|
|
|
explicit LUnallocated(Policy policy) : LOperand(UNALLOCATED, 0) {
|
|
Initialize(policy, 0, USED_AT_END);
|
|
}
|
|
|
|
LUnallocated(Policy policy, int fixed_index) : LOperand(UNALLOCATED, 0) {
|
|
Initialize(policy, fixed_index, USED_AT_END);
|
|
}
|
|
|
|
LUnallocated(Policy policy, Lifetime lifetime) : LOperand(UNALLOCATED, 0) {
|
|
Initialize(policy, 0, lifetime);
|
|
}
|
|
|
|
// The superclass has a KindField. Some policies have a signed fixed
|
|
// index in the upper bits.
|
|
static const int kPolicyWidth = 4;
|
|
static const int kLifetimeWidth = 1;
|
|
static const int kVirtualRegisterWidth = 17;
|
|
|
|
static const int kPolicyShift = kKindFieldWidth;
|
|
static const int kLifetimeShift = kPolicyShift + kPolicyWidth;
|
|
static const int kVirtualRegisterShift = kLifetimeShift + kLifetimeWidth;
|
|
static const int kFixedIndexShift =
|
|
kVirtualRegisterShift + kVirtualRegisterWidth;
|
|
|
|
class PolicyField : public BitField<Policy, kPolicyShift, kPolicyWidth> { };
|
|
|
|
class LifetimeField
|
|
: public BitField<Lifetime, kLifetimeShift, kLifetimeWidth> {
|
|
};
|
|
|
|
class VirtualRegisterField
|
|
: public BitField<unsigned,
|
|
kVirtualRegisterShift,
|
|
kVirtualRegisterWidth> {
|
|
};
|
|
|
|
static const int kMaxVirtualRegisters = 1 << (kVirtualRegisterWidth + 1);
|
|
static const int kMaxFixedIndices = 128;
|
|
|
|
bool HasIgnorePolicy() const { return policy() == IGNORE; }
|
|
bool HasNoPolicy() const { return policy() == NONE; }
|
|
bool HasAnyPolicy() const {
|
|
return policy() == ANY;
|
|
}
|
|
bool HasFixedPolicy() const {
|
|
return policy() == FIXED_REGISTER ||
|
|
policy() == FIXED_DOUBLE_REGISTER ||
|
|
policy() == FIXED_SLOT;
|
|
}
|
|
bool HasRegisterPolicy() const {
|
|
return policy() == WRITABLE_REGISTER || policy() == MUST_HAVE_REGISTER;
|
|
}
|
|
bool HasSameAsInputPolicy() const {
|
|
return policy() == SAME_AS_FIRST_INPUT || policy() == SAME_AS_ANY_INPUT;
|
|
}
|
|
Policy policy() const { return PolicyField::decode(value_); }
|
|
void set_policy(Policy policy) {
|
|
value_ &= ~PolicyField::mask();
|
|
value_ |= PolicyField::encode(policy);
|
|
}
|
|
int fixed_index() const {
|
|
return static_cast<int>(value_) >> kFixedIndexShift;
|
|
}
|
|
|
|
unsigned virtual_register() const {
|
|
return VirtualRegisterField::decode(value_);
|
|
}
|
|
|
|
void set_virtual_register(unsigned id) {
|
|
value_ &= ~VirtualRegisterField::mask();
|
|
value_ |= VirtualRegisterField::encode(id);
|
|
}
|
|
|
|
LUnallocated* CopyUnconstrained() {
|
|
LUnallocated* result = new LUnallocated(ANY);
|
|
result->set_virtual_register(virtual_register());
|
|
return result;
|
|
}
|
|
|
|
static LUnallocated* cast(LOperand* op) {
|
|
ASSERT(op->IsUnallocated());
|
|
return reinterpret_cast<LUnallocated*>(op);
|
|
}
|
|
|
|
bool IsUsedAtStart() {
|
|
return LifetimeField::decode(value_) == USED_AT_START;
|
|
}
|
|
|
|
private:
|
|
void Initialize(Policy policy, int fixed_index, Lifetime lifetime) {
|
|
value_ |= PolicyField::encode(policy);
|
|
value_ |= LifetimeField::encode(lifetime);
|
|
value_ |= fixed_index << kFixedIndexShift;
|
|
ASSERT(this->fixed_index() == fixed_index);
|
|
}
|
|
};
|
|
|
|
|
|
class LMoveOperands BASE_EMBEDDED {
|
|
public:
|
|
LMoveOperands(LOperand* from, LOperand* to) : from_(from), to_(to) { }
|
|
|
|
LOperand* from() const { return from_; }
|
|
LOperand* to() const { return to_; }
|
|
bool IsRedundant() const {
|
|
return IsEliminated() || from_->Equals(to_) || IsIgnored();
|
|
}
|
|
bool IsEliminated() const { return from_ == NULL; }
|
|
bool IsIgnored() const {
|
|
if (to_ != NULL && to_->IsUnallocated() &&
|
|
LUnallocated::cast(to_)->HasIgnorePolicy()) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Eliminate() { from_ = to_ = NULL; }
|
|
|
|
private:
|
|
LOperand* from_;
|
|
LOperand* to_;
|
|
};
|
|
|
|
|
|
class LConstantOperand: public LOperand {
|
|
public:
|
|
static LConstantOperand* Create(int index) {
|
|
ASSERT(index >= 0);
|
|
if (index < kNumCachedOperands) return &cache[index];
|
|
return new LConstantOperand(index);
|
|
}
|
|
|
|
static LConstantOperand* cast(LOperand* op) {
|
|
ASSERT(op->IsConstantOperand());
|
|
return reinterpret_cast<LConstantOperand*>(op);
|
|
}
|
|
|
|
static void SetupCache();
|
|
|
|
private:
|
|
static const int kNumCachedOperands = 128;
|
|
static LConstantOperand cache[];
|
|
|
|
LConstantOperand() : LOperand() { }
|
|
explicit LConstantOperand(int index) : LOperand(CONSTANT_OPERAND, index) { }
|
|
};
|
|
|
|
|
|
class LArgument: public LOperand {
|
|
public:
|
|
explicit LArgument(int index) : LOperand(ARGUMENT, index) { }
|
|
|
|
static LArgument* cast(LOperand* op) {
|
|
ASSERT(op->IsArgument());
|
|
return reinterpret_cast<LArgument*>(op);
|
|
}
|
|
};
|
|
|
|
|
|
class LStackSlot: public LOperand {
|
|
public:
|
|
static LStackSlot* Create(int index) {
|
|
ASSERT(index >= 0);
|
|
if (index < kNumCachedOperands) return &cache[index];
|
|
return new LStackSlot(index);
|
|
}
|
|
|
|
static LStackSlot* cast(LOperand* op) {
|
|
ASSERT(op->IsStackSlot());
|
|
return reinterpret_cast<LStackSlot*>(op);
|
|
}
|
|
|
|
static void SetupCache();
|
|
|
|
private:
|
|
static const int kNumCachedOperands = 128;
|
|
static LStackSlot cache[];
|
|
|
|
LStackSlot() : LOperand() { }
|
|
explicit LStackSlot(int index) : LOperand(STACK_SLOT, index) { }
|
|
};
|
|
|
|
|
|
class LDoubleStackSlot: public LOperand {
|
|
public:
|
|
static LDoubleStackSlot* Create(int index) {
|
|
ASSERT(index >= 0);
|
|
if (index < kNumCachedOperands) return &cache[index];
|
|
return new LDoubleStackSlot(index);
|
|
}
|
|
|
|
static LDoubleStackSlot* cast(LOperand* op) {
|
|
ASSERT(op->IsStackSlot());
|
|
return reinterpret_cast<LDoubleStackSlot*>(op);
|
|
}
|
|
|
|
static void SetupCache();
|
|
|
|
private:
|
|
static const int kNumCachedOperands = 128;
|
|
static LDoubleStackSlot cache[];
|
|
|
|
LDoubleStackSlot() : LOperand() { }
|
|
explicit LDoubleStackSlot(int index) : LOperand(DOUBLE_STACK_SLOT, index) { }
|
|
};
|
|
|
|
|
|
class LRegister: public LOperand {
|
|
public:
|
|
static LRegister* Create(int index) {
|
|
ASSERT(index >= 0);
|
|
if (index < kNumCachedOperands) return &cache[index];
|
|
return new LRegister(index);
|
|
}
|
|
|
|
static LRegister* cast(LOperand* op) {
|
|
ASSERT(op->IsRegister());
|
|
return reinterpret_cast<LRegister*>(op);
|
|
}
|
|
|
|
static void SetupCache();
|
|
|
|
private:
|
|
static const int kNumCachedOperands = 16;
|
|
static LRegister cache[];
|
|
|
|
LRegister() : LOperand() { }
|
|
explicit LRegister(int index) : LOperand(REGISTER, index) { }
|
|
};
|
|
|
|
|
|
class LDoubleRegister: public LOperand {
|
|
public:
|
|
static LDoubleRegister* Create(int index) {
|
|
ASSERT(index >= 0);
|
|
if (index < kNumCachedOperands) return &cache[index];
|
|
return new LDoubleRegister(index);
|
|
}
|
|
|
|
static LDoubleRegister* cast(LOperand* op) {
|
|
ASSERT(op->IsDoubleRegister());
|
|
return reinterpret_cast<LDoubleRegister*>(op);
|
|
}
|
|
|
|
static void SetupCache();
|
|
|
|
private:
|
|
static const int kNumCachedOperands = 16;
|
|
static LDoubleRegister cache[];
|
|
|
|
LDoubleRegister() : LOperand() { }
|
|
explicit LDoubleRegister(int index) : LOperand(DOUBLE_REGISTER, index) { }
|
|
};
|
|
|
|
|
|
// A register-allocator view of a Lithium instruction. It contains the id of
|
|
// the output operand and a list of input operand uses.
|
|
class InstructionSummary: public ZoneObject {
|
|
public:
|
|
InstructionSummary()
|
|
: output_operand_(NULL), input_count_(0), operands_(4), is_call_(false) {}
|
|
|
|
// Output operands.
|
|
LOperand* Output() const { return output_operand_; }
|
|
void SetOutput(LOperand* output) {
|
|
ASSERT(output_operand_ == NULL);
|
|
output_operand_ = output;
|
|
}
|
|
|
|
// Input operands.
|
|
int InputCount() const { return input_count_; }
|
|
LOperand* InputAt(int i) const {
|
|
ASSERT(i < input_count_);
|
|
return operands_[i];
|
|
}
|
|
void AddInput(LOperand* input) {
|
|
operands_.InsertAt(input_count_, input);
|
|
input_count_++;
|
|
}
|
|
|
|
// Temporary operands.
|
|
int TempCount() const { return operands_.length() - input_count_; }
|
|
LOperand* TempAt(int i) const { return operands_[i + input_count_]; }
|
|
void AddTemp(LOperand* temp) { operands_.Add(temp); }
|
|
|
|
void MarkAsCall() { is_call_ = true; }
|
|
bool IsCall() const { return is_call_; }
|
|
|
|
private:
|
|
LOperand* output_operand_;
|
|
int input_count_;
|
|
ZoneList<LOperand*> operands_;
|
|
bool is_call_;
|
|
};
|
|
|
|
// Representation of the non-empty interval [start,end[.
|
|
class UseInterval: public ZoneObject {
|
|
public:
|
|
UseInterval(LifetimePosition start, LifetimePosition end)
|
|
: start_(start), end_(end), next_(NULL) {
|
|
ASSERT(start.Value() < end.Value());
|
|
}
|
|
|
|
LifetimePosition start() const { return start_; }
|
|
LifetimePosition end() const { return end_; }
|
|
UseInterval* next() const { return next_; }
|
|
|
|
// Split this interval at the given position without effecting the
|
|
// live range that owns it. The interval must contain the position.
|
|
void SplitAt(LifetimePosition pos);
|
|
|
|
// If this interval intersects with other return smallest position
|
|
// that belongs to both of them.
|
|
LifetimePosition Intersect(const UseInterval* other) const {
|
|
if (other->start().Value() < start_.Value()) return other->Intersect(this);
|
|
if (other->start().Value() < end_.Value()) return other->start();
|
|
return LifetimePosition::Invalid();
|
|
}
|
|
|
|
bool Contains(LifetimePosition point) const {
|
|
return start_.Value() <= point.Value() && point.Value() < end_.Value();
|
|
}
|
|
|
|
private:
|
|
void set_start(LifetimePosition start) { start_ = start; }
|
|
void set_next(UseInterval* next) { next_ = next; }
|
|
|
|
LifetimePosition start_;
|
|
LifetimePosition end_;
|
|
UseInterval* next_;
|
|
|
|
friend class LiveRange; // Assigns to start_.
|
|
};
|
|
|
|
// Representation of a use position.
|
|
class UsePosition: public ZoneObject {
|
|
public:
|
|
UsePosition(LifetimePosition pos, LOperand* operand)
|
|
: operand_(operand),
|
|
hint_(NULL),
|
|
pos_(pos),
|
|
next_(NULL),
|
|
requires_reg_(false),
|
|
register_beneficial_(true) {
|
|
if (operand_ != NULL && operand_->IsUnallocated()) {
|
|
LUnallocated* unalloc = LUnallocated::cast(operand_);
|
|
requires_reg_ = unalloc->HasRegisterPolicy();
|
|
register_beneficial_ = !unalloc->HasAnyPolicy();
|
|
}
|
|
ASSERT(pos_.IsValid());
|
|
}
|
|
|
|
LOperand* operand() const { return operand_; }
|
|
bool HasOperand() const { return operand_ != NULL; }
|
|
|
|
LOperand* hint() const { return hint_; }
|
|
void set_hint(LOperand* hint) { hint_ = hint; }
|
|
bool HasHint() const { return hint_ != NULL && !hint_->IsUnallocated(); }
|
|
bool RequiresRegister() const;
|
|
bool RegisterIsBeneficial() const;
|
|
|
|
LifetimePosition pos() const { return pos_; }
|
|
UsePosition* next() const { return next_; }
|
|
|
|
private:
|
|
void set_next(UsePosition* next) { next_ = next; }
|
|
|
|
LOperand* operand_;
|
|
LOperand* hint_;
|
|
LifetimePosition pos_;
|
|
UsePosition* next_;
|
|
bool requires_reg_;
|
|
bool register_beneficial_;
|
|
|
|
friend class LiveRange;
|
|
};
|
|
|
|
// Representation of SSA values' live ranges as a collection of (continuous)
|
|
// intervals over the instruction ordering.
|
|
class LiveRange: public ZoneObject {
|
|
public:
|
|
static const int kInvalidAssignment = 0x7fffffff;
|
|
|
|
explicit LiveRange(int id)
|
|
: id_(id),
|
|
spilled_(false),
|
|
assigned_double_(false),
|
|
assigned_register_(kInvalidAssignment),
|
|
last_interval_(NULL),
|
|
first_interval_(NULL),
|
|
first_pos_(NULL),
|
|
parent_(NULL),
|
|
next_(NULL),
|
|
current_interval_(NULL),
|
|
last_processed_use_(NULL),
|
|
spill_start_index_(kMaxInt) {
|
|
spill_operand_ = new LUnallocated(LUnallocated::IGNORE);
|
|
}
|
|
|
|
UseInterval* first_interval() const { return first_interval_; }
|
|
UsePosition* first_pos() const { return first_pos_; }
|
|
LiveRange* parent() const { return parent_; }
|
|
LiveRange* TopLevel() { return (parent_ == NULL) ? this : parent_; }
|
|
LiveRange* next() const { return next_; }
|
|
bool IsChild() const { return parent() != NULL; }
|
|
bool IsParent() const { return parent() == NULL; }
|
|
int id() const { return id_; }
|
|
bool IsFixed() const { return id_ < 0; }
|
|
bool IsEmpty() const { return first_interval() == NULL; }
|
|
LOperand* CreateAssignedOperand();
|
|
int assigned_register() const { return assigned_register_; }
|
|
int spill_start_index() const { return spill_start_index_; }
|
|
void set_assigned_register(int reg, bool double_reg) {
|
|
ASSERT(!HasRegisterAssigned() && !IsSpilled());
|
|
assigned_register_ = reg;
|
|
assigned_double_ = double_reg;
|
|
ConvertOperands();
|
|
}
|
|
void MakeSpilled() {
|
|
ASSERT(!IsSpilled());
|
|
ASSERT(TopLevel()->HasAllocatedSpillOperand());
|
|
spilled_ = true;
|
|
assigned_register_ = kInvalidAssignment;
|
|
ConvertOperands();
|
|
}
|
|
|
|
// Returns use position in this live range that follows both start
|
|
// and last processed use position.
|
|
// Modifies internal state of live range!
|
|
UsePosition* NextUsePosition(LifetimePosition start);
|
|
|
|
// Returns use position for which register is required in this live
|
|
// range and which follows both start and last processed use position
|
|
// Modifies internal state of live range!
|
|
UsePosition* NextRegisterPosition(LifetimePosition start);
|
|
|
|
// Returns use position for which register is beneficial in this live
|
|
// range and which follows both start and last processed use position
|
|
// Modifies internal state of live range!
|
|
UsePosition* NextUsePositionRegisterIsBeneficial(LifetimePosition start);
|
|
|
|
// Can this live range be spilled at this position.
|
|
bool CanBeSpilled(LifetimePosition pos);
|
|
|
|
void SplitAt(LifetimePosition position, LiveRange* result);
|
|
|
|
bool IsDouble() const { return assigned_double_; }
|
|
bool HasRegisterAssigned() const {
|
|
return assigned_register_ != kInvalidAssignment;
|
|
}
|
|
bool IsSpilled() const { return spilled_; }
|
|
UsePosition* FirstPosWithHint() const;
|
|
|
|
LOperand* FirstHint() const {
|
|
UsePosition* pos = FirstPosWithHint();
|
|
if (pos != NULL) return pos->hint();
|
|
return NULL;
|
|
}
|
|
|
|
LifetimePosition Start() const {
|
|
ASSERT(!IsEmpty());
|
|
return first_interval()->start();
|
|
}
|
|
|
|
LifetimePosition End() const {
|
|
ASSERT(!IsEmpty());
|
|
return last_interval_->end();
|
|
}
|
|
|
|
bool HasAllocatedSpillOperand() const {
|
|
return spill_operand_ != NULL && !spill_operand_->IsUnallocated();
|
|
}
|
|
LOperand* GetSpillOperand() const { return spill_operand_; }
|
|
void SetSpillOperand(LOperand* operand) {
|
|
ASSERT(!operand->IsUnallocated());
|
|
ASSERT(spill_operand_ != NULL);
|
|
ASSERT(spill_operand_->IsUnallocated());
|
|
spill_operand_->ConvertTo(operand->kind(), operand->index());
|
|
}
|
|
|
|
void SetSpillStartIndex(int start) {
|
|
spill_start_index_ = Min(start, spill_start_index_);
|
|
}
|
|
|
|
bool ShouldBeAllocatedBefore(const LiveRange* other) const;
|
|
bool CanCover(LifetimePosition position) const;
|
|
bool Covers(LifetimePosition position);
|
|
LifetimePosition FirstIntersection(LiveRange* other);
|
|
|
|
|
|
// Add a new interval or a new use position to this live range.
|
|
void EnsureInterval(LifetimePosition start, LifetimePosition end);
|
|
void AddUseInterval(LifetimePosition start, LifetimePosition end);
|
|
UsePosition* AddUsePosition(LifetimePosition pos, LOperand* operand);
|
|
UsePosition* AddUsePosition(LifetimePosition pos);
|
|
|
|
// Shorten the most recently added interval by setting a new start.
|
|
void ShortenTo(LifetimePosition start);
|
|
|
|
#ifdef DEBUG
|
|
// True if target overlaps an existing interval.
|
|
bool HasOverlap(UseInterval* target) const;
|
|
void Verify() const;
|
|
#endif
|
|
|
|
private:
|
|
void ConvertOperands();
|
|
UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const;
|
|
void AdvanceLastProcessedMarker(UseInterval* to_start_of,
|
|
LifetimePosition but_not_past) const;
|
|
|
|
int id_;
|
|
bool spilled_;
|
|
bool assigned_double_;
|
|
int assigned_register_;
|
|
UseInterval* last_interval_;
|
|
UseInterval* first_interval_;
|
|
UsePosition* first_pos_;
|
|
LiveRange* parent_;
|
|
LiveRange* next_;
|
|
// This is used as a cache, it doesn't affect correctness.
|
|
mutable UseInterval* current_interval_;
|
|
UsePosition* last_processed_use_;
|
|
LOperand* spill_operand_;
|
|
int spill_start_index_;
|
|
};
|
|
|
|
|
|
class LAllocator BASE_EMBEDDED {
|
|
public:
|
|
explicit LAllocator(int first_virtual_register, HGraph* graph)
|
|
: chunk_(NULL),
|
|
summaries_(0),
|
|
next_summary_(NULL),
|
|
summary_stack_(2),
|
|
live_in_sets_(0),
|
|
live_ranges_(16),
|
|
fixed_live_ranges_(8),
|
|
fixed_double_live_ranges_(8),
|
|
unhandled_live_ranges_(8),
|
|
active_live_ranges_(8),
|
|
inactive_live_ranges_(8),
|
|
reusable_slots_(8),
|
|
next_virtual_register_(first_virtual_register),
|
|
mode_(NONE),
|
|
num_registers_(-1),
|
|
graph_(graph),
|
|
has_osr_entry_(false) {}
|
|
|
|
static void Setup();
|
|
static void TraceAlloc(const char* msg, ...);
|
|
|
|
// Lithium translation support.
|
|
// Record a use of an input operand in the current instruction.
|
|
void RecordUse(HValue* value, LUnallocated* operand);
|
|
// Record the definition of the output operand.
|
|
void RecordDefinition(HInstruction* instr, LUnallocated* operand);
|
|
// Record a temporary operand.
|
|
void RecordTemporary(LUnallocated* operand);
|
|
|
|
// Marks the current instruction as a call.
|
|
void MarkAsCall();
|
|
|
|
// Checks whether the value of a given virtual register is tagged.
|
|
bool HasTaggedValue(int virtual_register) const;
|
|
|
|
// Checks whether the value of a given virtual register is a double.
|
|
bool HasDoubleValue(int virtual_register) const;
|
|
|
|
// Begin a new instruction.
|
|
void BeginInstruction();
|
|
|
|
// Summarize the current instruction.
|
|
void SummarizeInstruction(int index);
|
|
|
|
// Summarize the current instruction.
|
|
void OmitInstruction();
|
|
|
|
// Control max function size.
|
|
static int max_initial_value_ids();
|
|
|
|
void Allocate(LChunk* chunk);
|
|
|
|
const ZoneList<LiveRange*>* live_ranges() const { return &live_ranges_; }
|
|
const ZoneList<LiveRange*>* fixed_live_ranges() const {
|
|
return &fixed_live_ranges_;
|
|
}
|
|
const ZoneList<LiveRange*>* fixed_double_live_ranges() const {
|
|
return &fixed_double_live_ranges_;
|
|
}
|
|
|
|
LChunk* chunk() const { return chunk_; }
|
|
HGraph* graph() const { return graph_; }
|
|
|
|
void MarkAsOsrEntry() {
|
|
// There can be only one.
|
|
ASSERT(!has_osr_entry_);
|
|
// Simply set a flag to find and process instruction later.
|
|
has_osr_entry_ = true;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
void Verify() const;
|
|
#endif
|
|
|
|
private:
|
|
enum OperationMode {
|
|
NONE,
|
|
CPU_REGISTERS,
|
|
XMM_REGISTERS
|
|
};
|
|
|
|
void MeetRegisterConstraints();
|
|
void ResolvePhis();
|
|
void BuildLiveRanges();
|
|
void AllocateGeneralRegisters();
|
|
void AllocateDoubleRegisters();
|
|
void ConnectRanges();
|
|
void ResolveControlFlow();
|
|
void PopulatePointerMaps();
|
|
void ProcessOsrEntry();
|
|
void AllocateRegisters();
|
|
bool CanEagerlyResolveControlFlow(HBasicBlock* block) const;
|
|
inline bool SafePointsAreInOrder() const;
|
|
|
|
// Liveness analysis support.
|
|
void InitializeLivenessAnalysis();
|
|
BitVector* ComputeLiveOut(HBasicBlock* block);
|
|
void AddInitialIntervals(HBasicBlock* block, BitVector* live_out);
|
|
void ProcessInstructions(HBasicBlock* block, BitVector* live);
|
|
void MeetRegisterConstraints(HBasicBlock* block);
|
|
void MeetConstraintsBetween(InstructionSummary* first,
|
|
InstructionSummary* second,
|
|
int gap_index);
|
|
void ResolvePhis(HBasicBlock* block);
|
|
|
|
// Helper methods for building intervals.
|
|
LOperand* AllocateFixed(LUnallocated* operand, int pos, bool is_tagged);
|
|
LiveRange* LiveRangeFor(LOperand* operand);
|
|
void Define(LifetimePosition position, LOperand* operand, LOperand* hint);
|
|
void Use(LifetimePosition block_start,
|
|
LifetimePosition position,
|
|
LOperand* operand,
|
|
LOperand* hint);
|
|
void AddConstraintsGapMove(int index, LOperand* from, LOperand* to);
|
|
|
|
// Helper methods for updating the life range lists.
|
|
void AddToActive(LiveRange* range);
|
|
void AddToInactive(LiveRange* range);
|
|
void AddToUnhandledSorted(LiveRange* range);
|
|
void AddToUnhandledUnsorted(LiveRange* range);
|
|
void SortUnhandled();
|
|
bool UnhandledIsSorted();
|
|
void ActiveToHandled(LiveRange* range);
|
|
void ActiveToInactive(LiveRange* range);
|
|
void InactiveToHandled(LiveRange* range);
|
|
void InactiveToActive(LiveRange* range);
|
|
void FreeSpillSlot(LiveRange* range);
|
|
LOperand* TryReuseSpillSlot(LiveRange* range);
|
|
|
|
// Helper methods for allocating registers.
|
|
bool TryAllocateFreeReg(LiveRange* range);
|
|
void AllocateBlockedReg(LiveRange* range);
|
|
void SplitAndSpillIntersecting(LiveRange* range);
|
|
LifetimePosition FindOptimalSplitPos(LifetimePosition start,
|
|
LifetimePosition end);
|
|
LiveRange* Split(LiveRange* range,
|
|
LifetimePosition start,
|
|
LifetimePosition end);
|
|
LiveRange* Split(LiveRange* range, LifetimePosition split_pos);
|
|
void SplitAndSpill(LiveRange* range,
|
|
LifetimePosition start,
|
|
LifetimePosition end);
|
|
void SplitAndSpill(LiveRange* range, LifetimePosition at);
|
|
void Spill(LiveRange* range);
|
|
bool IsBlockBoundary(LifetimePosition pos);
|
|
void AddGapMove(int pos, LiveRange* prev, LiveRange* next);
|
|
|
|
// Helper methods for resolving control flow.
|
|
void ResolveControlFlow(LiveRange* range,
|
|
HBasicBlock* block,
|
|
HBasicBlock* pred);
|
|
|
|
// Return parallel move that should be used to connect ranges split at the
|
|
// given position.
|
|
LParallelMove* GetConnectingParallelMove(LifetimePosition pos);
|
|
|
|
// Return the block which contains give lifetime position.
|
|
HBasicBlock* GetBlock(LifetimePosition pos);
|
|
|
|
// Current active summary.
|
|
InstructionSummary* current_summary() const { return summary_stack_.last(); }
|
|
|
|
// Get summary for given instruction index.
|
|
InstructionSummary* GetSummary(int index) const { return summaries_[index]; }
|
|
|
|
// Helper methods for the fixed registers.
|
|
int RegisterCount() const;
|
|
static int FixedLiveRangeID(int index) { return -index - 1; }
|
|
static int FixedDoubleLiveRangeID(int index);
|
|
LiveRange* FixedLiveRangeFor(int index);
|
|
LiveRange* FixedDoubleLiveRangeFor(int index);
|
|
LiveRange* LiveRangeFor(int index);
|
|
HPhi* LookupPhi(LOperand* operand) const;
|
|
LGap* GetLastGap(HBasicBlock* block) const;
|
|
|
|
LChunk* chunk_;
|
|
ZoneList<InstructionSummary*> summaries_;
|
|
InstructionSummary* next_summary_;
|
|
|
|
ZoneList<InstructionSummary*> summary_stack_;
|
|
|
|
// During liveness analysis keep a mapping from block id to live_in sets
|
|
// for blocks already analyzed.
|
|
ZoneList<BitVector*> live_in_sets_;
|
|
|
|
// Liveness analysis results.
|
|
ZoneList<LiveRange*> live_ranges_;
|
|
|
|
// Lists of live ranges
|
|
ZoneList<LiveRange*> fixed_live_ranges_;
|
|
ZoneList<LiveRange*> fixed_double_live_ranges_;
|
|
ZoneList<LiveRange*> unhandled_live_ranges_;
|
|
ZoneList<LiveRange*> active_live_ranges_;
|
|
ZoneList<LiveRange*> inactive_live_ranges_;
|
|
ZoneList<LiveRange*> reusable_slots_;
|
|
|
|
// Next virtual register number to be assigned to temporaries.
|
|
int next_virtual_register_;
|
|
|
|
OperationMode mode_;
|
|
int num_registers_;
|
|
|
|
HGraph* graph_;
|
|
|
|
bool has_osr_entry_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(LAllocator);
|
|
};
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_LITHIUM_ALLOCATOR_H_
|