v8/src/lithium-allocator.h
kasperl@chromium.org 90b3370374 Update V8 to version 3.0 (re-land r5920).
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5922 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2010-12-07 11:31:57 +00:00

955 lines
29 KiB
C++

// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_LITHIUM_ALLOCATOR_H_
#define V8_LITHIUM_ALLOCATOR_H_
#include "v8.h"
#include "zone.h"
namespace v8 {
namespace internal {
// Forward declarations.
class HBasicBlock;
class HGraph;
class HInstruction;
class HPhi;
class HTracer;
class HValue;
class BitVector;
class StringStream;
class LArgument;
class LChunk;
class LConstantOperand;
class LGap;
class LInstruction;
class LParallelMove;
class LPointerMap;
class LStackSlot;
class LRegister;
// This class represents a single point of a LOperand's lifetime.
// For each lithium instruction there are exactly two lifetime positions:
// the beginning and the end of the instruction. Lifetime positions for
// different lithium instructions are disjoint.
class LifetimePosition {
public:
// Return the lifetime position that corresponds to the beginning of
// the instruction with the given index.
static LifetimePosition FromInstructionIndex(int index) {
return LifetimePosition(index * kStep);
}
// Returns a numeric representation of this lifetime position.
int Value() const {
return value_;
}
// Returns the index of the instruction to which this lifetime position
// corresponds.
int InstructionIndex() const {
ASSERT(IsValid());
return value_ / kStep;
}
// Returns true if this lifetime position corresponds to the instruction
// start.
bool IsInstructionStart() const {
return (value_ & (kStep - 1)) == 0;
}
// Returns the lifetime position for the start of the instruction which
// corresponds to this lifetime position.
LifetimePosition InstructionStart() const {
ASSERT(IsValid());
return LifetimePosition(value_ & ~(kStep - 1));
}
// Returns the lifetime position for the end of the instruction which
// corresponds to this lifetime position.
LifetimePosition InstructionEnd() const {
ASSERT(IsValid());
return LifetimePosition(InstructionStart().Value() + kStep/2);
}
// Returns the lifetime position for the beginning of the next instruction.
LifetimePosition NextInstruction() const {
ASSERT(IsValid());
return LifetimePosition(InstructionStart().Value() + kStep);
}
// Returns the lifetime position for the beginning of the previous
// instruction.
LifetimePosition PrevInstruction() const {
ASSERT(IsValid());
ASSERT(value_ > 1);
return LifetimePosition(InstructionStart().Value() - kStep);
}
// Constructs the lifetime position which does not correspond to any
// instruction.
LifetimePosition() : value_(-1) {}
// Returns true if this lifetime positions corrensponds to some
// instruction.
bool IsValid() const { return value_ != -1; }
static LifetimePosition Invalid() { return LifetimePosition(); }
private:
static const int kStep = 2;
// Code relies on kStep being a power of two.
STATIC_ASSERT(IS_POWER_OF_TWO(kStep));
explicit LifetimePosition(int value) : value_(value) { }
int value_;
};
class LOperand: public ZoneObject {
public:
enum Kind {
INVALID,
UNALLOCATED,
CONSTANT_OPERAND,
STACK_SLOT,
DOUBLE_STACK_SLOT,
REGISTER,
DOUBLE_REGISTER,
ARGUMENT
};
LOperand() : value_(KindField::encode(INVALID)) { }
Kind kind() const { return KindField::decode(value_); }
int index() const { return static_cast<int>(value_) >> kKindFieldWidth; }
bool IsConstantOperand() const { return kind() == CONSTANT_OPERAND; }
bool IsStackSlot() const { return kind() == STACK_SLOT; }
bool IsDoubleStackSlot() const { return kind() == DOUBLE_STACK_SLOT; }
bool IsRegister() const { return kind() == REGISTER; }
bool IsDoubleRegister() const { return kind() == DOUBLE_REGISTER; }
bool IsArgument() const { return kind() == ARGUMENT; }
bool IsUnallocated() const { return kind() == UNALLOCATED; }
bool Equals(LOperand* other) const { return value_ == other->value_; }
int VirtualRegister();
void PrintTo(StringStream* stream);
void ConvertTo(Kind kind, int index) {
value_ = KindField::encode(kind);
value_ |= index << kKindFieldWidth;
ASSERT(this->index() == index);
}
protected:
static const int kKindFieldWidth = 3;
class KindField : public BitField<Kind, 0, kKindFieldWidth> { };
LOperand(Kind kind, int index) { ConvertTo(kind, index); }
unsigned value_;
};
class LUnallocated: public LOperand {
public:
enum Policy {
NONE,
ANY,
FIXED_REGISTER,
FIXED_DOUBLE_REGISTER,
FIXED_SLOT,
MUST_HAVE_REGISTER,
WRITABLE_REGISTER,
SAME_AS_FIRST_INPUT,
SAME_AS_ANY_INPUT,
IGNORE
};
// Lifetime of operand inside the instruction.
enum Lifetime {
// USED_AT_START operand is guaranteed to be live only at
// instruction start. Register allocator is free to assign the same register
// to some other operand used inside instruction (i.e. temporary or
// output).
USED_AT_START,
// USED_AT_END operand is treated as live until the end of
// instruction. This means that register allocator will not reuse it's
// register for any other operand inside instruction.
USED_AT_END
};
explicit LUnallocated(Policy policy) : LOperand(UNALLOCATED, 0) {
Initialize(policy, 0, USED_AT_END);
}
LUnallocated(Policy policy, int fixed_index) : LOperand(UNALLOCATED, 0) {
Initialize(policy, fixed_index, USED_AT_END);
}
LUnallocated(Policy policy, Lifetime lifetime) : LOperand(UNALLOCATED, 0) {
Initialize(policy, 0, lifetime);
}
// The superclass has a KindField. Some policies have a signed fixed
// index in the upper bits.
static const int kPolicyWidth = 4;
static const int kLifetimeWidth = 1;
static const int kVirtualRegisterWidth = 17;
static const int kPolicyShift = kKindFieldWidth;
static const int kLifetimeShift = kPolicyShift + kPolicyWidth;
static const int kVirtualRegisterShift = kLifetimeShift + kLifetimeWidth;
static const int kFixedIndexShift =
kVirtualRegisterShift + kVirtualRegisterWidth;
class PolicyField : public BitField<Policy, kPolicyShift, kPolicyWidth> { };
class LifetimeField
: public BitField<Lifetime, kLifetimeShift, kLifetimeWidth> {
};
class VirtualRegisterField
: public BitField<unsigned,
kVirtualRegisterShift,
kVirtualRegisterWidth> {
};
static const int kMaxVirtualRegisters = 1 << (kVirtualRegisterWidth + 1);
static const int kMaxFixedIndices = 128;
bool HasIgnorePolicy() const { return policy() == IGNORE; }
bool HasNoPolicy() const { return policy() == NONE; }
bool HasAnyPolicy() const {
return policy() == ANY;
}
bool HasFixedPolicy() const {
return policy() == FIXED_REGISTER ||
policy() == FIXED_DOUBLE_REGISTER ||
policy() == FIXED_SLOT;
}
bool HasRegisterPolicy() const {
return policy() == WRITABLE_REGISTER || policy() == MUST_HAVE_REGISTER;
}
bool HasSameAsInputPolicy() const {
return policy() == SAME_AS_FIRST_INPUT || policy() == SAME_AS_ANY_INPUT;
}
Policy policy() const { return PolicyField::decode(value_); }
void set_policy(Policy policy) {
value_ &= ~PolicyField::mask();
value_ |= PolicyField::encode(policy);
}
int fixed_index() const {
return static_cast<int>(value_) >> kFixedIndexShift;
}
unsigned virtual_register() const {
return VirtualRegisterField::decode(value_);
}
void set_virtual_register(unsigned id) {
value_ &= ~VirtualRegisterField::mask();
value_ |= VirtualRegisterField::encode(id);
}
LUnallocated* CopyUnconstrained() {
LUnallocated* result = new LUnallocated(ANY);
result->set_virtual_register(virtual_register());
return result;
}
static LUnallocated* cast(LOperand* op) {
ASSERT(op->IsUnallocated());
return reinterpret_cast<LUnallocated*>(op);
}
bool IsUsedAtStart() {
return LifetimeField::decode(value_) == USED_AT_START;
}
private:
void Initialize(Policy policy, int fixed_index, Lifetime lifetime) {
value_ |= PolicyField::encode(policy);
value_ |= LifetimeField::encode(lifetime);
value_ |= fixed_index << kFixedIndexShift;
ASSERT(this->fixed_index() == fixed_index);
}
};
class LMoveOperands BASE_EMBEDDED {
public:
LMoveOperands(LOperand* from, LOperand* to) : from_(from), to_(to) { }
LOperand* from() const { return from_; }
LOperand* to() const { return to_; }
bool IsRedundant() const {
return IsEliminated() || from_->Equals(to_) || IsIgnored();
}
bool IsEliminated() const { return from_ == NULL; }
bool IsIgnored() const {
if (to_ != NULL && to_->IsUnallocated() &&
LUnallocated::cast(to_)->HasIgnorePolicy()) {
return true;
}
return false;
}
void Eliminate() { from_ = to_ = NULL; }
private:
LOperand* from_;
LOperand* to_;
};
class LConstantOperand: public LOperand {
public:
static LConstantOperand* Create(int index) {
ASSERT(index >= 0);
if (index < kNumCachedOperands) return &cache[index];
return new LConstantOperand(index);
}
static LConstantOperand* cast(LOperand* op) {
ASSERT(op->IsConstantOperand());
return reinterpret_cast<LConstantOperand*>(op);
}
static void SetupCache();
private:
static const int kNumCachedOperands = 128;
static LConstantOperand cache[];
LConstantOperand() : LOperand() { }
explicit LConstantOperand(int index) : LOperand(CONSTANT_OPERAND, index) { }
};
class LArgument: public LOperand {
public:
explicit LArgument(int index) : LOperand(ARGUMENT, index) { }
static LArgument* cast(LOperand* op) {
ASSERT(op->IsArgument());
return reinterpret_cast<LArgument*>(op);
}
};
class LStackSlot: public LOperand {
public:
static LStackSlot* Create(int index) {
ASSERT(index >= 0);
if (index < kNumCachedOperands) return &cache[index];
return new LStackSlot(index);
}
static LStackSlot* cast(LOperand* op) {
ASSERT(op->IsStackSlot());
return reinterpret_cast<LStackSlot*>(op);
}
static void SetupCache();
private:
static const int kNumCachedOperands = 128;
static LStackSlot cache[];
LStackSlot() : LOperand() { }
explicit LStackSlot(int index) : LOperand(STACK_SLOT, index) { }
};
class LDoubleStackSlot: public LOperand {
public:
static LDoubleStackSlot* Create(int index) {
ASSERT(index >= 0);
if (index < kNumCachedOperands) return &cache[index];
return new LDoubleStackSlot(index);
}
static LDoubleStackSlot* cast(LOperand* op) {
ASSERT(op->IsStackSlot());
return reinterpret_cast<LDoubleStackSlot*>(op);
}
static void SetupCache();
private:
static const int kNumCachedOperands = 128;
static LDoubleStackSlot cache[];
LDoubleStackSlot() : LOperand() { }
explicit LDoubleStackSlot(int index) : LOperand(DOUBLE_STACK_SLOT, index) { }
};
class LRegister: public LOperand {
public:
static LRegister* Create(int index) {
ASSERT(index >= 0);
if (index < kNumCachedOperands) return &cache[index];
return new LRegister(index);
}
static LRegister* cast(LOperand* op) {
ASSERT(op->IsRegister());
return reinterpret_cast<LRegister*>(op);
}
static void SetupCache();
private:
static const int kNumCachedOperands = 16;
static LRegister cache[];
LRegister() : LOperand() { }
explicit LRegister(int index) : LOperand(REGISTER, index) { }
};
class LDoubleRegister: public LOperand {
public:
static LDoubleRegister* Create(int index) {
ASSERT(index >= 0);
if (index < kNumCachedOperands) return &cache[index];
return new LDoubleRegister(index);
}
static LDoubleRegister* cast(LOperand* op) {
ASSERT(op->IsDoubleRegister());
return reinterpret_cast<LDoubleRegister*>(op);
}
static void SetupCache();
private:
static const int kNumCachedOperands = 16;
static LDoubleRegister cache[];
LDoubleRegister() : LOperand() { }
explicit LDoubleRegister(int index) : LOperand(DOUBLE_REGISTER, index) { }
};
// A register-allocator view of a Lithium instruction. It contains the id of
// the output operand and a list of input operand uses.
class InstructionSummary: public ZoneObject {
public:
InstructionSummary()
: output_operand_(NULL), input_count_(0), operands_(4), is_call_(false) {}
// Output operands.
LOperand* Output() const { return output_operand_; }
void SetOutput(LOperand* output) {
ASSERT(output_operand_ == NULL);
output_operand_ = output;
}
// Input operands.
int InputCount() const { return input_count_; }
LOperand* InputAt(int i) const {
ASSERT(i < input_count_);
return operands_[i];
}
void AddInput(LOperand* input) {
operands_.InsertAt(input_count_, input);
input_count_++;
}
// Temporary operands.
int TempCount() const { return operands_.length() - input_count_; }
LOperand* TempAt(int i) const { return operands_[i + input_count_]; }
void AddTemp(LOperand* temp) { operands_.Add(temp); }
void MarkAsCall() { is_call_ = true; }
bool IsCall() const { return is_call_; }
private:
LOperand* output_operand_;
int input_count_;
ZoneList<LOperand*> operands_;
bool is_call_;
};
// Representation of the non-empty interval [start,end[.
class UseInterval: public ZoneObject {
public:
UseInterval(LifetimePosition start, LifetimePosition end)
: start_(start), end_(end), next_(NULL) {
ASSERT(start.Value() < end.Value());
}
LifetimePosition start() const { return start_; }
LifetimePosition end() const { return end_; }
UseInterval* next() const { return next_; }
// Split this interval at the given position without effecting the
// live range that owns it. The interval must contain the position.
void SplitAt(LifetimePosition pos);
// If this interval intersects with other return smallest position
// that belongs to both of them.
LifetimePosition Intersect(const UseInterval* other) const {
if (other->start().Value() < start_.Value()) return other->Intersect(this);
if (other->start().Value() < end_.Value()) return other->start();
return LifetimePosition::Invalid();
}
bool Contains(LifetimePosition point) const {
return start_.Value() <= point.Value() && point.Value() < end_.Value();
}
private:
void set_start(LifetimePosition start) { start_ = start; }
void set_next(UseInterval* next) { next_ = next; }
LifetimePosition start_;
LifetimePosition end_;
UseInterval* next_;
friend class LiveRange; // Assigns to start_.
};
// Representation of a use position.
class UsePosition: public ZoneObject {
public:
UsePosition(LifetimePosition pos, LOperand* operand)
: operand_(operand),
hint_(NULL),
pos_(pos),
next_(NULL),
requires_reg_(false),
register_beneficial_(true) {
if (operand_ != NULL && operand_->IsUnallocated()) {
LUnallocated* unalloc = LUnallocated::cast(operand_);
requires_reg_ = unalloc->HasRegisterPolicy();
register_beneficial_ = !unalloc->HasAnyPolicy();
}
ASSERT(pos_.IsValid());
}
LOperand* operand() const { return operand_; }
bool HasOperand() const { return operand_ != NULL; }
LOperand* hint() const { return hint_; }
void set_hint(LOperand* hint) { hint_ = hint; }
bool HasHint() const { return hint_ != NULL && !hint_->IsUnallocated(); }
bool RequiresRegister() const;
bool RegisterIsBeneficial() const;
LifetimePosition pos() const { return pos_; }
UsePosition* next() const { return next_; }
private:
void set_next(UsePosition* next) { next_ = next; }
LOperand* operand_;
LOperand* hint_;
LifetimePosition pos_;
UsePosition* next_;
bool requires_reg_;
bool register_beneficial_;
friend class LiveRange;
};
// Representation of SSA values' live ranges as a collection of (continuous)
// intervals over the instruction ordering.
class LiveRange: public ZoneObject {
public:
static const int kInvalidAssignment = 0x7fffffff;
explicit LiveRange(int id)
: id_(id),
spilled_(false),
assigned_double_(false),
assigned_register_(kInvalidAssignment),
last_interval_(NULL),
first_interval_(NULL),
first_pos_(NULL),
parent_(NULL),
next_(NULL),
current_interval_(NULL),
last_processed_use_(NULL),
spill_start_index_(kMaxInt) {
spill_operand_ = new LUnallocated(LUnallocated::IGNORE);
}
UseInterval* first_interval() const { return first_interval_; }
UsePosition* first_pos() const { return first_pos_; }
LiveRange* parent() const { return parent_; }
LiveRange* TopLevel() { return (parent_ == NULL) ? this : parent_; }
LiveRange* next() const { return next_; }
bool IsChild() const { return parent() != NULL; }
bool IsParent() const { return parent() == NULL; }
int id() const { return id_; }
bool IsFixed() const { return id_ < 0; }
bool IsEmpty() const { return first_interval() == NULL; }
LOperand* CreateAssignedOperand();
int assigned_register() const { return assigned_register_; }
int spill_start_index() const { return spill_start_index_; }
void set_assigned_register(int reg, bool double_reg) {
ASSERT(!HasRegisterAssigned() && !IsSpilled());
assigned_register_ = reg;
assigned_double_ = double_reg;
ConvertOperands();
}
void MakeSpilled() {
ASSERT(!IsSpilled());
ASSERT(TopLevel()->HasAllocatedSpillOperand());
spilled_ = true;
assigned_register_ = kInvalidAssignment;
ConvertOperands();
}
// Returns use position in this live range that follows both start
// and last processed use position.
// Modifies internal state of live range!
UsePosition* NextUsePosition(LifetimePosition start);
// Returns use position for which register is required in this live
// range and which follows both start and last processed use position
// Modifies internal state of live range!
UsePosition* NextRegisterPosition(LifetimePosition start);
// Returns use position for which register is beneficial in this live
// range and which follows both start and last processed use position
// Modifies internal state of live range!
UsePosition* NextUsePositionRegisterIsBeneficial(LifetimePosition start);
// Can this live range be spilled at this position.
bool CanBeSpilled(LifetimePosition pos);
void SplitAt(LifetimePosition position, LiveRange* result);
bool IsDouble() const { return assigned_double_; }
bool HasRegisterAssigned() const {
return assigned_register_ != kInvalidAssignment;
}
bool IsSpilled() const { return spilled_; }
UsePosition* FirstPosWithHint() const;
LOperand* FirstHint() const {
UsePosition* pos = FirstPosWithHint();
if (pos != NULL) return pos->hint();
return NULL;
}
LifetimePosition Start() const {
ASSERT(!IsEmpty());
return first_interval()->start();
}
LifetimePosition End() const {
ASSERT(!IsEmpty());
return last_interval_->end();
}
bool HasAllocatedSpillOperand() const {
return spill_operand_ != NULL && !spill_operand_->IsUnallocated();
}
LOperand* GetSpillOperand() const { return spill_operand_; }
void SetSpillOperand(LOperand* operand) {
ASSERT(!operand->IsUnallocated());
ASSERT(spill_operand_ != NULL);
ASSERT(spill_operand_->IsUnallocated());
spill_operand_->ConvertTo(operand->kind(), operand->index());
}
void SetSpillStartIndex(int start) {
spill_start_index_ = Min(start, spill_start_index_);
}
bool ShouldBeAllocatedBefore(const LiveRange* other) const;
bool CanCover(LifetimePosition position) const;
bool Covers(LifetimePosition position);
LifetimePosition FirstIntersection(LiveRange* other);
// Add a new interval or a new use position to this live range.
void EnsureInterval(LifetimePosition start, LifetimePosition end);
void AddUseInterval(LifetimePosition start, LifetimePosition end);
UsePosition* AddUsePosition(LifetimePosition pos, LOperand* operand);
UsePosition* AddUsePosition(LifetimePosition pos);
// Shorten the most recently added interval by setting a new start.
void ShortenTo(LifetimePosition start);
#ifdef DEBUG
// True if target overlaps an existing interval.
bool HasOverlap(UseInterval* target) const;
void Verify() const;
#endif
private:
void ConvertOperands();
UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const;
void AdvanceLastProcessedMarker(UseInterval* to_start_of,
LifetimePosition but_not_past) const;
int id_;
bool spilled_;
bool assigned_double_;
int assigned_register_;
UseInterval* last_interval_;
UseInterval* first_interval_;
UsePosition* first_pos_;
LiveRange* parent_;
LiveRange* next_;
// This is used as a cache, it doesn't affect correctness.
mutable UseInterval* current_interval_;
UsePosition* last_processed_use_;
LOperand* spill_operand_;
int spill_start_index_;
};
class LAllocator BASE_EMBEDDED {
public:
explicit LAllocator(int first_virtual_register, HGraph* graph)
: chunk_(NULL),
summaries_(0),
next_summary_(NULL),
summary_stack_(2),
live_in_sets_(0),
live_ranges_(16),
fixed_live_ranges_(8),
fixed_double_live_ranges_(8),
unhandled_live_ranges_(8),
active_live_ranges_(8),
inactive_live_ranges_(8),
reusable_slots_(8),
next_virtual_register_(first_virtual_register),
mode_(NONE),
num_registers_(-1),
graph_(graph),
has_osr_entry_(false) {}
static void Setup();
static void TraceAlloc(const char* msg, ...);
// Lithium translation support.
// Record a use of an input operand in the current instruction.
void RecordUse(HValue* value, LUnallocated* operand);
// Record the definition of the output operand.
void RecordDefinition(HInstruction* instr, LUnallocated* operand);
// Record a temporary operand.
void RecordTemporary(LUnallocated* operand);
// Marks the current instruction as a call.
void MarkAsCall();
// Checks whether the value of a given virtual register is tagged.
bool HasTaggedValue(int virtual_register) const;
// Checks whether the value of a given virtual register is a double.
bool HasDoubleValue(int virtual_register) const;
// Begin a new instruction.
void BeginInstruction();
// Summarize the current instruction.
void SummarizeInstruction(int index);
// Summarize the current instruction.
void OmitInstruction();
// Control max function size.
static int max_initial_value_ids();
void Allocate(LChunk* chunk);
const ZoneList<LiveRange*>* live_ranges() const { return &live_ranges_; }
const ZoneList<LiveRange*>* fixed_live_ranges() const {
return &fixed_live_ranges_;
}
const ZoneList<LiveRange*>* fixed_double_live_ranges() const {
return &fixed_double_live_ranges_;
}
LChunk* chunk() const { return chunk_; }
HGraph* graph() const { return graph_; }
void MarkAsOsrEntry() {
// There can be only one.
ASSERT(!has_osr_entry_);
// Simply set a flag to find and process instruction later.
has_osr_entry_ = true;
}
#ifdef DEBUG
void Verify() const;
#endif
private:
enum OperationMode {
NONE,
CPU_REGISTERS,
XMM_REGISTERS
};
void MeetRegisterConstraints();
void ResolvePhis();
void BuildLiveRanges();
void AllocateGeneralRegisters();
void AllocateDoubleRegisters();
void ConnectRanges();
void ResolveControlFlow();
void PopulatePointerMaps();
void ProcessOsrEntry();
void AllocateRegisters();
bool CanEagerlyResolveControlFlow(HBasicBlock* block) const;
inline bool SafePointsAreInOrder() const;
// Liveness analysis support.
void InitializeLivenessAnalysis();
BitVector* ComputeLiveOut(HBasicBlock* block);
void AddInitialIntervals(HBasicBlock* block, BitVector* live_out);
void ProcessInstructions(HBasicBlock* block, BitVector* live);
void MeetRegisterConstraints(HBasicBlock* block);
void MeetConstraintsBetween(InstructionSummary* first,
InstructionSummary* second,
int gap_index);
void ResolvePhis(HBasicBlock* block);
// Helper methods for building intervals.
LOperand* AllocateFixed(LUnallocated* operand, int pos, bool is_tagged);
LiveRange* LiveRangeFor(LOperand* operand);
void Define(LifetimePosition position, LOperand* operand, LOperand* hint);
void Use(LifetimePosition block_start,
LifetimePosition position,
LOperand* operand,
LOperand* hint);
void AddConstraintsGapMove(int index, LOperand* from, LOperand* to);
// Helper methods for updating the life range lists.
void AddToActive(LiveRange* range);
void AddToInactive(LiveRange* range);
void AddToUnhandledSorted(LiveRange* range);
void AddToUnhandledUnsorted(LiveRange* range);
void SortUnhandled();
bool UnhandledIsSorted();
void ActiveToHandled(LiveRange* range);
void ActiveToInactive(LiveRange* range);
void InactiveToHandled(LiveRange* range);
void InactiveToActive(LiveRange* range);
void FreeSpillSlot(LiveRange* range);
LOperand* TryReuseSpillSlot(LiveRange* range);
// Helper methods for allocating registers.
bool TryAllocateFreeReg(LiveRange* range);
void AllocateBlockedReg(LiveRange* range);
void SplitAndSpillIntersecting(LiveRange* range);
LifetimePosition FindOptimalSplitPos(LifetimePosition start,
LifetimePosition end);
LiveRange* Split(LiveRange* range,
LifetimePosition start,
LifetimePosition end);
LiveRange* Split(LiveRange* range, LifetimePosition split_pos);
void SplitAndSpill(LiveRange* range,
LifetimePosition start,
LifetimePosition end);
void SplitAndSpill(LiveRange* range, LifetimePosition at);
void Spill(LiveRange* range);
bool IsBlockBoundary(LifetimePosition pos);
void AddGapMove(int pos, LiveRange* prev, LiveRange* next);
// Helper methods for resolving control flow.
void ResolveControlFlow(LiveRange* range,
HBasicBlock* block,
HBasicBlock* pred);
// Return parallel move that should be used to connect ranges split at the
// given position.
LParallelMove* GetConnectingParallelMove(LifetimePosition pos);
// Return the block which contains give lifetime position.
HBasicBlock* GetBlock(LifetimePosition pos);
// Current active summary.
InstructionSummary* current_summary() const { return summary_stack_.last(); }
// Get summary for given instruction index.
InstructionSummary* GetSummary(int index) const { return summaries_[index]; }
// Helper methods for the fixed registers.
int RegisterCount() const;
static int FixedLiveRangeID(int index) { return -index - 1; }
static int FixedDoubleLiveRangeID(int index);
LiveRange* FixedLiveRangeFor(int index);
LiveRange* FixedDoubleLiveRangeFor(int index);
LiveRange* LiveRangeFor(int index);
HPhi* LookupPhi(LOperand* operand) const;
LGap* GetLastGap(HBasicBlock* block) const;
LChunk* chunk_;
ZoneList<InstructionSummary*> summaries_;
InstructionSummary* next_summary_;
ZoneList<InstructionSummary*> summary_stack_;
// During liveness analysis keep a mapping from block id to live_in sets
// for blocks already analyzed.
ZoneList<BitVector*> live_in_sets_;
// Liveness analysis results.
ZoneList<LiveRange*> live_ranges_;
// Lists of live ranges
ZoneList<LiveRange*> fixed_live_ranges_;
ZoneList<LiveRange*> fixed_double_live_ranges_;
ZoneList<LiveRange*> unhandled_live_ranges_;
ZoneList<LiveRange*> active_live_ranges_;
ZoneList<LiveRange*> inactive_live_ranges_;
ZoneList<LiveRange*> reusable_slots_;
// Next virtual register number to be assigned to temporaries.
int next_virtual_register_;
OperationMode mode_;
int num_registers_;
HGraph* graph_;
bool has_osr_entry_;
DISALLOW_COPY_AND_ASSIGN(LAllocator);
};
} } // namespace v8::internal
#endif // V8_LITHIUM_ALLOCATOR_H_