v8/test/fuzzilli/libreprl.c
Samuel Groß d46723aefd Updated libreprl from Fuzzilli and improved Fuzzilli test
The test now verifies that JavaScript programs can be executed
over the REPRL interface, that runtime exceptions can be detected,
and that the engine's state is properly reset between executions.

Change-Id: Ic8032c07e222307cbb4d332e7eaec61936a10ccd
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2396082
Reviewed-by: Clemens Backes <clemensb@chromium.org>
Reviewed-by: Michael Stanton <mvstanton@chromium.org>
Commit-Queue: Samuel Groß <saelo@google.com>
Cr-Commit-Position: refs/heads/master@{#69883}
2020-09-14 14:52:06 +00:00

481 lines
15 KiB
C

// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <errno.h>
#include <fcntl.h>
#include <poll.h>
#include <signal.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>
#include "libreprl.h"
// Well-known file descriptor numbers for reprl <-> child communication, child process side
#define REPRL_CHILD_CTRL_IN 100
#define REPRL_CHILD_CTRL_OUT 101
#define REPRL_CHILD_DATA_IN 102
#define REPRL_CHILD_DATA_OUT 103
#define MIN(x, y) ((x) < (y) ? (x) : (y))
static uint64_t current_millis()
{
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
return ts.tv_sec * 1000 + ts.tv_nsec / 1000000;
}
static char** copy_string_array(const char** orig)
{
size_t num_entries = 0;
for (const char** current = orig; *current; current++) {
num_entries += 1;
}
char** copy = calloc(num_entries + 1, sizeof(char*));
for (size_t i = 0; i < num_entries; i++) {
copy[i] = strdup(orig[i]);
}
return copy;
}
static void free_string_array(char** arr)
{
if (!arr) return;
for (char** current = arr; *current; current++) {
free(*current);
}
free(arr);
}
// A unidirectional communication channel for larger amounts of data, up to a maximum size (REPRL_MAX_DATA_SIZE).
// Implemented as a (RAM-backed) file for which the file descriptor is shared with the child process and which is mapped into our address space.
struct data_channel {
// File descriptor of the underlying file. Directly shared with the child process.
int fd;
// Memory mapping of the file, always of size REPRL_MAX_DATA_SIZE.
char* mapping;
};
struct reprl_context {
// Whether reprl_initialize has been successfully performed on this context.
int initialized;
// Read file descriptor of the control pipe. Only valid if a child process is running (i.e. pid is nonzero).
int ctrl_in;
// Write file descriptor of the control pipe. Only valid if a child process is running (i.e. pid is nonzero).
int ctrl_out;
// Data channel REPRL -> Child
struct data_channel* data_in;
// Data channel Child -> REPRL
struct data_channel* data_out;
// Optional data channel for the child's stdout and stderr.
struct data_channel* stdout;
struct data_channel* stderr;
// PID of the child process. Will be zero if no child process is currently running.
int pid;
// Arguments and environment for the child process.
char** argv;
char** envp;
// A malloc'd string containing a description of the last error that occurred.
char* last_error;
};
static int reprl_error(struct reprl_context* ctx, const char *format, ...)
{
va_list args;
va_start(args, format);
free(ctx->last_error);
vasprintf(&ctx->last_error, format, args);
return -1;
}
static struct data_channel* reprl_create_data_channel(struct reprl_context* ctx)
{
#ifdef __linux__
int fd = memfd_create("REPRL_DATA_CHANNEL", MFD_CLOEXEC);
#else
char path[] = "/tmp/reprl_data_channel_XXXXXXXX";
if (mktemp(path) < 0) {
reprl_error(ctx, "Failed to create temporary filename for data channel: %s", strerror(errno));
return NULL;
}
int fd = open(path, O_RDWR | O_CREAT| O_CLOEXEC);
unlink(path);
#endif
if (fd == -1 || ftruncate(fd, REPRL_MAX_DATA_SIZE) != 0) {
reprl_error(ctx, "Failed to create data channel file: %s", strerror(errno));
return NULL;
}
char* mapping = mmap(0, REPRL_MAX_DATA_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (mapping == MAP_FAILED) {
reprl_error(ctx, "Failed to mmap data channel file: %s", strerror(errno));
return NULL;
}
struct data_channel* channel = malloc(sizeof(struct data_channel));
channel->fd = fd;
channel->mapping = mapping;
return channel;
}
static void reprl_destroy_data_channel(struct reprl_context* ctx, struct data_channel* channel)
{
if (!channel) return;
close(channel->fd);
munmap(channel->mapping, REPRL_MAX_DATA_SIZE);
free(channel);
}
static void reprl_child_terminated(struct reprl_context* ctx)
{
if (!ctx->pid) return;
ctx->pid = 0;
close(ctx->ctrl_in);
close(ctx->ctrl_out);
}
static void reprl_terminate_child(struct reprl_context* ctx)
{
if (!ctx->pid) return;
int status;
kill(ctx->pid, SIGKILL);
waitpid(ctx->pid, &status, 0);
reprl_child_terminated(ctx);
}
static int reprl_spawn_child(struct reprl_context* ctx)
{
// This is also a good time to ensure the data channel backing files don't grow too large.
ftruncate(ctx->data_in->fd, REPRL_MAX_DATA_SIZE);
ftruncate(ctx->data_out->fd, REPRL_MAX_DATA_SIZE);
if (ctx->stdout) ftruncate(ctx->stdout->fd, REPRL_MAX_DATA_SIZE);
if (ctx->stderr) ftruncate(ctx->stderr->fd, REPRL_MAX_DATA_SIZE);
int crpipe[2] = { 0, 0 }; // control pipe child -> reprl
int cwpipe[2] = { 0, 0 }; // control pipe reprl -> child
if (pipe(crpipe) != 0) {
return reprl_error(ctx, "Could not create pipe for REPRL communication: %s", strerror(errno));
}
if (pipe(cwpipe) != 0) {
close(crpipe[0]);
close(crpipe[1]);
return reprl_error(ctx, "Could not create pipe for REPRL communication: %s", strerror(errno));
}
ctx->ctrl_in = crpipe[0];
ctx->ctrl_out = cwpipe[1];
fcntl(ctx->ctrl_in, F_SETFD, FD_CLOEXEC);
fcntl(ctx->ctrl_out, F_SETFD, FD_CLOEXEC);
int pid = fork();
if (pid == 0) {
dup2(cwpipe[0], REPRL_CHILD_CTRL_IN);
dup2(crpipe[1], REPRL_CHILD_CTRL_OUT);
close(cwpipe[0]);
close(crpipe[1]);
dup2(ctx->data_out->fd, REPRL_CHILD_DATA_IN);
dup2(ctx->data_in->fd, REPRL_CHILD_DATA_OUT);
int devnull = open("/dev/null", O_RDWR);
dup2(devnull, 0);
if (ctx->stdout) dup2(ctx->stdout->fd, 1);
else dup2(devnull, 1);
if (ctx->stderr) dup2(ctx->stderr->fd, 2);
else dup2(devnull, 2);
close(devnull);
// close all other FDs. We try to use FD_CLOEXEC everywhere, but let's be extra sure we don't leak any fds to the child.
int tablesize = getdtablesize();
for (int i = 3; i < tablesize; i++) {
if (i == REPRL_CHILD_CTRL_IN || i == REPRL_CHILD_CTRL_OUT || i == REPRL_CHILD_DATA_IN || i == REPRL_CHILD_DATA_OUT) {
continue;
}
close(i);
}
execve(ctx->argv[0], ctx->argv, ctx->envp);
fprintf(stderr, "Failed to execute child process %s: %s\n", ctx->argv[0], strerror(errno));
fflush(stderr);
_exit(-1);
}
close(crpipe[1]);
close(cwpipe[0]);
if (pid < 0) {
close(ctx->ctrl_in);
close(ctx->ctrl_out);
return reprl_error(ctx, "Failed to fork: %s", strerror(errno));
}
ctx->pid = pid;
char helo[4] = { 0 };
if (read(ctx->ctrl_in, helo, 4) != 4) {
reprl_terminate_child(ctx);
return reprl_error(ctx, "Did not receive HELO message from child");
}
if (strncmp(helo, "HELO", 4) != 0) {
reprl_terminate_child(ctx);
return reprl_error(ctx, "Received invalid HELO message from child");
}
if (write(ctx->ctrl_out, helo, 4) != 4) {
reprl_terminate_child(ctx);
return reprl_error(ctx, "Failed to send HELO reply message to child");
}
return 0;
}
struct reprl_context* reprl_create_context()
{
struct reprl_context* ctx = malloc(sizeof(struct reprl_context));
memset(ctx, 0, sizeof(struct reprl_context));
return ctx;
}
int reprl_initialize_context(struct reprl_context* ctx, const char** argv, const char** envp, int capture_stdout, int capture_stderr)
{
if (ctx->initialized) {
return reprl_error(ctx, "Context is already initialized");
}
// We need to ignore SIGPIPE since we could end up writing to a pipe after our child process has exited.
signal(SIGPIPE, SIG_IGN);
ctx->argv = copy_string_array(argv);
ctx->envp = copy_string_array(envp);
ctx->data_in = reprl_create_data_channel(ctx);
ctx->data_out = reprl_create_data_channel(ctx);
if (capture_stdout) {
ctx->stdout = reprl_create_data_channel(ctx);
}
if (capture_stderr) {
ctx->stderr = reprl_create_data_channel(ctx);
}
if (!ctx->data_in || !ctx->data_out || (capture_stdout && !ctx->stdout) || (capture_stderr && !ctx->stderr)) {
// Proper error message will have been set by reprl_create_data_channel
return -1;
}
ctx->initialized = 1;
return 0;
}
void reprl_destroy_context(struct reprl_context* ctx)
{
reprl_terminate_child(ctx);
free_string_array(ctx->argv);
free_string_array(ctx->envp);
reprl_destroy_data_channel(ctx, ctx->data_in);
reprl_destroy_data_channel(ctx, ctx->data_out);
reprl_destroy_data_channel(ctx, ctx->stdout);
reprl_destroy_data_channel(ctx, ctx->stderr);
free(ctx->last_error);
free(ctx);
}
int reprl_execute(struct reprl_context* ctx, const char* script, uint64_t script_length, uint64_t timeout, uint64_t* execution_time, int fresh_instance)
{
if (!ctx->initialized) {
return reprl_error(ctx, "REPRL context is not initialized");
}
if (script_length > REPRL_MAX_DATA_SIZE) {
return reprl_error(ctx, "Script too large");
}
// Terminate any existing instance if requested.
if (fresh_instance && ctx->pid) {
reprl_terminate_child(ctx);
}
// Reset file position so the child can simply read(2) and write(2) to these fds.
lseek(ctx->data_out->fd, 0, SEEK_SET);
lseek(ctx->data_in->fd, 0, SEEK_SET);
if (ctx->stdout) {
lseek(ctx->stdout->fd, 0, SEEK_SET);
}
if (ctx->stderr) {
lseek(ctx->stderr->fd, 0, SEEK_SET);
}
// Spawn a new instance if necessary.
if (!ctx->pid) {
int r = reprl_spawn_child(ctx);
if (r != 0) return r;
}
// Copy the script to the data channel.
memcpy(ctx->data_out->mapping, script, script_length);
// Tell child to execute the script.
if (write(ctx->ctrl_out, "exec", 4) != 4 ||
write(ctx->ctrl_out, &script_length, 8) != 8) {
// These can fail if the child unexpectedly terminated between executions.
// Check for that here to be able to provide a better error message.
int status;
if (waitpid(ctx->pid, &status, WNOHANG) == ctx->pid) {
reprl_child_terminated(ctx);
if (WIFEXITED(status)) {
return reprl_error(ctx, "Child unexpectedly exited with status %i between executions", WEXITSTATUS(status));
} else {
return reprl_error(ctx, "Child unexpectedly terminated with signal %i between executions", WTERMSIG(status));
}
}
return reprl_error(ctx, "Failed to send command to child process: %s", strerror(errno));
}
// Wait for child to finish execution (or crash).
uint64_t start_time = current_millis();
struct pollfd fds = {.fd = ctx->ctrl_in, .events = POLLIN, .revents = 0};
int res = poll(&fds, 1, (int)timeout);
*execution_time = current_millis() - start_time;
if (res == 0) {
// Execution timed out. Kill child and return a timeout status.
reprl_terminate_child(ctx);
return 1 << 16;
} else if (res != 1) {
// An error occurred.
// We expect all signal handlers to be installed with SA_RESTART, so receiving EINTR here is unexpected and thus also an error.
return reprl_error(ctx, "Failed to poll: %s", strerror(errno));
}
// Poll succeeded, so there must be something to read now (either the status or EOF).
int status;
ssize_t rv = read(ctx->ctrl_in, &status, 4);
if (rv < 0) {
return reprl_error(ctx, "Failed to read from control pipe: %s", strerror(errno));
} else if (rv != 4) {
// Most likely, the child process crashed and closed the write end of the control pipe.
// Unfortunately, there probably is nothing that guarantees that waitpid() will immediately succeed now,
// and we also don't want to block here. So just retry waitpid() a few times...
int success = 0;
do {
success = waitpid(ctx->pid, &status, WNOHANG) == ctx->pid;
if (!success) usleep(10);
} while (!success && current_millis() - start_time < timeout);
if (!success) {
// Wait failed, so something weird must have happened. Maybe somehow the control pipe was closed without the child exiting?
// Probably the best we can do is kill the child and return an error.
reprl_terminate_child(ctx);
return reprl_error(ctx, "Child in weird state after execution");
}
// Cleanup any state related to this child process.
reprl_child_terminated(ctx);
if (WIFEXITED(status)) {
status = WEXITSTATUS(status) << 8;
} else if (WIFSIGNALED(status)) {
status = WTERMSIG(status);
} else {
// This shouldn't happen, since we don't specify WUNTRACED for waitpid...
return reprl_error(ctx, "Waitpid returned unexpected child state %i", status);
}
}
// The status must be a positive number, see the status encoding format below.
// We also don't allow the child process to indicate a timeout. If we wanted,
// we could treat it as an error if the upper bits are set.
status &= 0xffff;
return status;
}
/// The 32bit REPRL exit status as returned by reprl_execute has the following format:
/// [ 00000000 | did_timeout | exit_code | terminating_signal ]
/// Only one of did_timeout, exit_code, or terminating_signal may be set at one time.
int RIFSIGNALED(int status)
{
return (status & 0xff) != 0;
}
int RIFEXITED(int status)
{
return !RIFSIGNALED(status) && !RIFTIMEDOUT(status);
}
int RIFTIMEDOUT(int status)
{
return (status & 0xff0000) != 0;
}
int RTERMSIG(int status)
{
return status & 0xff;
}
int REXITSTATUS(int status)
{
return (status >> 8) & 0xff;
}
static const char* fetch_data_channel_content(struct data_channel* channel)
{
if (!channel) return "";
size_t pos = lseek(channel->fd, 0, SEEK_CUR);
pos = MIN(pos, REPRL_MAX_DATA_SIZE - 1);
channel->mapping[pos] = 0;
return channel->mapping;
}
const char* reprl_fetch_fuzzout(struct reprl_context* ctx)
{
return fetch_data_channel_content(ctx->data_in);
}
const char* reprl_fetch_stdout(struct reprl_context* ctx)
{
return fetch_data_channel_content(ctx->stdout);
}
const char* reprl_fetch_stderr(struct reprl_context* ctx)
{
return fetch_data_channel_content(ctx->stderr);
}
const char* reprl_get_last_error(struct reprl_context* ctx)
{
return ctx->last_error;
}