v8/src/hydrogen-instructions.h
mstarzinger@chromium.org 44ffa0dcd3 Allow monomorphic loads when static type is known.
This allows Crankshaft to generate monomorphic loads when the receiver
type is statically known even though the load site has polymorphic type
feedback. This applies to inlined constructor calls and literals.

R=jkummerow@chromium.org
TEST=mjsunit/compiler/property-static

Review URL: https://codereview.chromium.org/12051058

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@13500 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-01-24 17:54:30 +00:00

5549 lines
154 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_HYDROGEN_INSTRUCTIONS_H_
#define V8_HYDROGEN_INSTRUCTIONS_H_
#include "v8.h"
#include "allocation.h"
#include "code-stubs.h"
#include "data-flow.h"
#include "small-pointer-list.h"
#include "string-stream.h"
#include "v8conversions.h"
#include "v8utils.h"
#include "zone.h"
namespace v8 {
namespace internal {
// Forward declarations.
class HBasicBlock;
class HEnvironment;
class HInferRepresentation;
class HInstruction;
class HLoopInformation;
class HValue;
class LInstruction;
class LChunkBuilder;
#define HYDROGEN_ABSTRACT_INSTRUCTION_LIST(V) \
V(BinaryOperation) \
V(BitwiseBinaryOperation) \
V(ControlInstruction) \
V(Instruction) \
#define HYDROGEN_CONCRETE_INSTRUCTION_LIST(V) \
V(AbnormalExit) \
V(AccessArgumentsAt) \
V(Add) \
V(AllocateObject) \
V(ApplyArguments) \
V(ArgumentsElements) \
V(ArgumentsLength) \
V(ArgumentsObject) \
V(ArrayLiteral) \
V(Bitwise) \
V(BitNot) \
V(BlockEntry) \
V(BoundsCheck) \
V(Branch) \
V(CallConstantFunction) \
V(CallFunction) \
V(CallGlobal) \
V(CallKeyed) \
V(CallKnownGlobal) \
V(CallNamed) \
V(CallNew) \
V(CallRuntime) \
V(CallStub) \
V(Change) \
V(CheckFunction) \
V(CheckInstanceType) \
V(CheckMaps) \
V(CheckNonSmi) \
V(CheckPrototypeMaps) \
V(CheckSmi) \
V(ClampToUint8) \
V(ClassOfTestAndBranch) \
V(CompareIDAndBranch) \
V(CompareGeneric) \
V(CompareObjectEqAndBranch) \
V(CompareMap) \
V(CompareConstantEqAndBranch) \
V(Constant) \
V(Context) \
V(DeclareGlobals) \
V(DeleteProperty) \
V(Deoptimize) \
V(Div) \
V(DummyUse) \
V(ElementsKind) \
V(EnterInlined) \
V(FastLiteral) \
V(FixedArrayBaseLength) \
V(ForceRepresentation) \
V(FunctionLiteral) \
V(GetCachedArrayIndex) \
V(GlobalObject) \
V(GlobalReceiver) \
V(Goto) \
V(HasCachedArrayIndexAndBranch) \
V(HasInstanceTypeAndBranch) \
V(In) \
V(InstanceOf) \
V(InstanceOfKnownGlobal) \
V(InvokeFunction) \
V(IsConstructCallAndBranch) \
V(IsNilAndBranch) \
V(IsObjectAndBranch) \
V(IsStringAndBranch) \
V(IsSmiAndBranch) \
V(IsUndetectableAndBranch) \
V(JSArrayLength) \
V(LeaveInlined) \
V(LoadContextSlot) \
V(LoadElements) \
V(LoadExternalArrayPointer) \
V(LoadFunctionPrototype) \
V(LoadGlobalCell) \
V(LoadGlobalGeneric) \
V(LoadKeyed) \
V(LoadKeyedGeneric) \
V(LoadNamedField) \
V(LoadNamedFieldPolymorphic) \
V(LoadNamedGeneric) \
V(MapEnumLength) \
V(MathFloorOfDiv) \
V(MathMinMax) \
V(Mod) \
V(Mul) \
V(ObjectLiteral) \
V(OsrEntry) \
V(OuterContext) \
V(Parameter) \
V(Power) \
V(PushArgument) \
V(Random) \
V(RegExpLiteral) \
V(Return) \
V(Ror) \
V(Sar) \
V(SeqStringSetChar) \
V(Shl) \
V(Shr) \
V(Simulate) \
V(SoftDeoptimize) \
V(StackCheck) \
V(StoreContextSlot) \
V(StoreGlobalCell) \
V(StoreGlobalGeneric) \
V(StoreKeyed) \
V(StoreKeyedGeneric) \
V(StoreNamedField) \
V(StoreNamedGeneric) \
V(StringAdd) \
V(StringCharCodeAt) \
V(StringCharFromCode) \
V(StringCompareAndBranch) \
V(StringLength) \
V(Sub) \
V(ThisFunction) \
V(Throw) \
V(ToFastProperties) \
V(TransitionElementsKind) \
V(Typeof) \
V(TypeofIsAndBranch) \
V(UnaryMathOperation) \
V(UnknownOSRValue) \
V(UseConst) \
V(ValueOf) \
V(ForInPrepareMap) \
V(ForInCacheArray) \
V(CheckMapValue) \
V(LoadFieldByIndex) \
V(DateField) \
V(WrapReceiver)
#define GVN_TRACKED_FLAG_LIST(V) \
V(Maps) \
V(NewSpacePromotion)
#define GVN_UNTRACKED_FLAG_LIST(V) \
V(Calls) \
V(InobjectFields) \
V(BackingStoreFields) \
V(ElementsKind) \
V(ElementsPointer) \
V(ArrayElements) \
V(DoubleArrayElements) \
V(SpecializedArrayElements) \
V(GlobalVars) \
V(ArrayLengths) \
V(ContextSlots) \
V(OsrEntries)
#define DECLARE_ABSTRACT_INSTRUCTION(type) \
virtual bool Is##type() const { return true; } \
static H##type* cast(HValue* value) { \
ASSERT(value->Is##type()); \
return reinterpret_cast<H##type*>(value); \
}
#define DECLARE_CONCRETE_INSTRUCTION(type) \
virtual LInstruction* CompileToLithium(LChunkBuilder* builder); \
static H##type* cast(HValue* value) { \
ASSERT(value->Is##type()); \
return reinterpret_cast<H##type*>(value); \
} \
virtual Opcode opcode() const { return HValue::k##type; }
#ifdef DEBUG
#define ASSERT_ALLOCATION_DISABLED do { \
OptimizingCompilerThread* thread = \
ISOLATE->optimizing_compiler_thread(); \
ASSERT(thread->IsOptimizerThread() || !HEAP->IsAllocationAllowed()); \
} while (0)
#else
#define ASSERT_ALLOCATION_DISABLED do {} while (0)
#endif
class Range: public ZoneObject {
public:
Range()
: lower_(kMinInt),
upper_(kMaxInt),
next_(NULL),
can_be_minus_zero_(false) { }
Range(int32_t lower, int32_t upper)
: lower_(lower),
upper_(upper),
next_(NULL),
can_be_minus_zero_(false) { }
int32_t upper() const { return upper_; }
int32_t lower() const { return lower_; }
Range* next() const { return next_; }
Range* CopyClearLower(Zone* zone) const {
return new(zone) Range(kMinInt, upper_);
}
Range* CopyClearUpper(Zone* zone) const {
return new(zone) Range(lower_, kMaxInt);
}
Range* Copy(Zone* zone) const {
Range* result = new(zone) Range(lower_, upper_);
result->set_can_be_minus_zero(CanBeMinusZero());
return result;
}
int32_t Mask() const;
void set_can_be_minus_zero(bool b) { can_be_minus_zero_ = b; }
bool CanBeMinusZero() const { return CanBeZero() && can_be_minus_zero_; }
bool CanBeZero() const { return upper_ >= 0 && lower_ <= 0; }
bool CanBeNegative() const { return lower_ < 0; }
bool Includes(int value) const { return lower_ <= value && upper_ >= value; }
bool IsMostGeneric() const {
return lower_ == kMinInt && upper_ == kMaxInt && CanBeMinusZero();
}
bool IsInSmiRange() const {
return lower_ >= Smi::kMinValue && upper_ <= Smi::kMaxValue;
}
void KeepOrder();
#ifdef DEBUG
void Verify() const;
#endif
void StackUpon(Range* other) {
Intersect(other);
next_ = other;
}
void Intersect(Range* other);
void Union(Range* other);
void CombinedMax(Range* other);
void CombinedMin(Range* other);
void AddConstant(int32_t value);
void Sar(int32_t value);
void Shl(int32_t value);
bool AddAndCheckOverflow(Range* other);
bool SubAndCheckOverflow(Range* other);
bool MulAndCheckOverflow(Range* other);
private:
int32_t lower_;
int32_t upper_;
Range* next_;
bool can_be_minus_zero_;
};
class Representation {
public:
enum Kind {
kNone,
kInteger32,
kDouble,
kTagged,
kExternal,
kNumRepresentations
};
Representation() : kind_(kNone) { }
static Representation None() { return Representation(kNone); }
static Representation Tagged() { return Representation(kTagged); }
static Representation Integer32() { return Representation(kInteger32); }
static Representation Double() { return Representation(kDouble); }
static Representation External() { return Representation(kExternal); }
static Representation FromKind(Kind kind) { return Representation(kind); }
bool Equals(const Representation& other) {
return kind_ == other.kind_;
}
bool is_more_general_than(const Representation& other) {
ASSERT(kind_ != kExternal);
ASSERT(other.kind_ != kExternal);
return kind_ > other.kind_;
}
Kind kind() const { return static_cast<Kind>(kind_); }
bool IsNone() const { return kind_ == kNone; }
bool IsTagged() const { return kind_ == kTagged; }
bool IsInteger32() const { return kind_ == kInteger32; }
bool IsDouble() const { return kind_ == kDouble; }
bool IsExternal() const { return kind_ == kExternal; }
bool IsSpecialization() const {
return kind_ == kInteger32 || kind_ == kDouble;
}
const char* Mnemonic() const;
private:
explicit Representation(Kind k) : kind_(k) { }
// Make sure kind fits in int8.
STATIC_ASSERT(kNumRepresentations <= (1 << kBitsPerByte));
int8_t kind_;
};
class HType {
public:
HType() : type_(kUninitialized) { }
static HType Tagged() { return HType(kTagged); }
static HType TaggedPrimitive() { return HType(kTaggedPrimitive); }
static HType TaggedNumber() { return HType(kTaggedNumber); }
static HType Smi() { return HType(kSmi); }
static HType HeapNumber() { return HType(kHeapNumber); }
static HType String() { return HType(kString); }
static HType Boolean() { return HType(kBoolean); }
static HType NonPrimitive() { return HType(kNonPrimitive); }
static HType JSArray() { return HType(kJSArray); }
static HType JSObject() { return HType(kJSObject); }
static HType Uninitialized() { return HType(kUninitialized); }
// Return the weakest (least precise) common type.
HType Combine(HType other) {
return HType(static_cast<Type>(type_ & other.type_));
}
bool Equals(const HType& other) {
return type_ == other.type_;
}
bool IsSubtypeOf(const HType& other) {
return Combine(other).Equals(other);
}
bool IsTagged() {
ASSERT(type_ != kUninitialized);
return ((type_ & kTagged) == kTagged);
}
bool IsTaggedPrimitive() {
ASSERT(type_ != kUninitialized);
return ((type_ & kTaggedPrimitive) == kTaggedPrimitive);
}
bool IsTaggedNumber() {
ASSERT(type_ != kUninitialized);
return ((type_ & kTaggedNumber) == kTaggedNumber);
}
bool IsSmi() {
ASSERT(type_ != kUninitialized);
return ((type_ & kSmi) == kSmi);
}
bool IsHeapNumber() {
ASSERT(type_ != kUninitialized);
return ((type_ & kHeapNumber) == kHeapNumber);
}
bool IsString() {
ASSERT(type_ != kUninitialized);
return ((type_ & kString) == kString);
}
bool IsBoolean() {
ASSERT(type_ != kUninitialized);
return ((type_ & kBoolean) == kBoolean);
}
bool IsNonPrimitive() {
ASSERT(type_ != kUninitialized);
return ((type_ & kNonPrimitive) == kNonPrimitive);
}
bool IsJSArray() {
ASSERT(type_ != kUninitialized);
return ((type_ & kJSArray) == kJSArray);
}
bool IsJSObject() {
ASSERT(type_ != kUninitialized);
return ((type_ & kJSObject) == kJSObject);
}
bool IsUninitialized() {
return type_ == kUninitialized;
}
bool IsHeapObject() {
ASSERT(type_ != kUninitialized);
return IsHeapNumber() || IsString() || IsNonPrimitive();
}
static HType TypeFromValue(Handle<Object> value);
const char* ToString();
private:
enum Type {
kTagged = 0x1, // 0000 0000 0000 0001
kTaggedPrimitive = 0x5, // 0000 0000 0000 0101
kTaggedNumber = 0xd, // 0000 0000 0000 1101
kSmi = 0x1d, // 0000 0000 0001 1101
kHeapNumber = 0x2d, // 0000 0000 0010 1101
kString = 0x45, // 0000 0000 0100 0101
kBoolean = 0x85, // 0000 0000 1000 0101
kNonPrimitive = 0x101, // 0000 0001 0000 0001
kJSObject = 0x301, // 0000 0011 0000 0001
kJSArray = 0x701, // 0000 0111 0000 0001
kUninitialized = 0x1fff // 0001 1111 1111 1111
};
// Make sure type fits in int16.
STATIC_ASSERT(kUninitialized < (1 << (2 * kBitsPerByte)));
explicit HType(Type t) : type_(t) { }
int16_t type_;
};
class HUseListNode: public ZoneObject {
public:
HUseListNode(HValue* value, int index, HUseListNode* tail)
: tail_(tail), value_(value), index_(index) {
}
HUseListNode* tail();
HValue* value() const { return value_; }
int index() const { return index_; }
void set_tail(HUseListNode* list) { tail_ = list; }
#ifdef DEBUG
void Zap() {
tail_ = reinterpret_cast<HUseListNode*>(1);
value_ = NULL;
index_ = -1;
}
#endif
private:
HUseListNode* tail_;
HValue* value_;
int index_;
};
// We reuse use list nodes behind the scenes as uses are added and deleted.
// This class is the safe way to iterate uses while deleting them.
class HUseIterator BASE_EMBEDDED {
public:
bool Done() { return current_ == NULL; }
void Advance();
HValue* value() {
ASSERT(!Done());
return value_;
}
int index() {
ASSERT(!Done());
return index_;
}
private:
explicit HUseIterator(HUseListNode* head);
HUseListNode* current_;
HUseListNode* next_;
HValue* value_;
int index_;
friend class HValue;
};
// There must be one corresponding kDepends flag for every kChanges flag and
// the order of the kChanges flags must be exactly the same as of the kDepends
// flags. All tracked flags should appear before untracked ones.
enum GVNFlag {
// Declare global value numbering flags.
#define DECLARE_FLAG(type) kChanges##type, kDependsOn##type,
GVN_TRACKED_FLAG_LIST(DECLARE_FLAG)
GVN_UNTRACKED_FLAG_LIST(DECLARE_FLAG)
#undef DECLARE_FLAG
kAfterLastFlag,
kLastFlag = kAfterLastFlag - 1,
#define COUNT_FLAG(type) + 1
kNumberOfTrackedSideEffects = 0 GVN_TRACKED_FLAG_LIST(COUNT_FLAG)
#undef COUNT_FLAG
};
typedef EnumSet<GVNFlag> GVNFlagSet;
class HValue: public ZoneObject {
public:
static const int kNoNumber = -1;
enum Flag {
kFlexibleRepresentation,
// Participate in Global Value Numbering, i.e. elimination of
// unnecessary recomputations. If an instruction sets this flag, it must
// implement DataEquals(), which will be used to determine if other
// occurrences of the instruction are indeed the same.
kUseGVN,
// Track instructions that are dominating side effects. If an instruction
// sets this flag, it must implement SetSideEffectDominator() and should
// indicate which side effects to track by setting GVN flags.
kTrackSideEffectDominators,
kCanOverflow,
kBailoutOnMinusZero,
kCanBeDivByZero,
kDeoptimizeOnUndefined,
kIsArguments,
kTruncatingToInt32,
kIsDead,
// Instructions that are allowed to produce full range unsigned integer
// values are marked with kUint32 flag. If arithmetic shift or a load from
// EXTERNAL_UNSIGNED_INT_ELEMENTS array is not marked with this flag
// it will deoptimize if result does not fit into signed integer range.
// HGraph::ComputeSafeUint32Operations is responsible for setting this
// flag.
kUint32,
kLastFlag = kUint32
};
STATIC_ASSERT(kLastFlag < kBitsPerInt);
static const int kChangesToDependsFlagsLeftShift = 1;
static GVNFlag ChangesFlagFromInt(int x) {
return static_cast<GVNFlag>(x * 2);
}
static GVNFlag DependsOnFlagFromInt(int x) {
return static_cast<GVNFlag>(x * 2 + 1);
}
static GVNFlagSet ConvertChangesToDependsFlags(GVNFlagSet flags) {
return GVNFlagSet(flags.ToIntegral() << kChangesToDependsFlagsLeftShift);
}
static HValue* cast(HValue* value) { return value; }
enum Opcode {
// Declare a unique enum value for each hydrogen instruction.
#define DECLARE_OPCODE(type) k##type,
HYDROGEN_CONCRETE_INSTRUCTION_LIST(DECLARE_OPCODE)
kPhi
#undef DECLARE_OPCODE
};
virtual Opcode opcode() const = 0;
// Declare a non-virtual predicates for each concrete HInstruction or HValue.
#define DECLARE_PREDICATE(type) \
bool Is##type() const { return opcode() == k##type; }
HYDROGEN_CONCRETE_INSTRUCTION_LIST(DECLARE_PREDICATE)
#undef DECLARE_PREDICATE
bool IsPhi() const { return opcode() == kPhi; }
// Declare virtual predicates for abstract HInstruction or HValue
#define DECLARE_PREDICATE(type) \
virtual bool Is##type() const { return false; }
HYDROGEN_ABSTRACT_INSTRUCTION_LIST(DECLARE_PREDICATE)
#undef DECLARE_PREDICATE
HValue() : block_(NULL),
id_(kNoNumber),
type_(HType::Tagged()),
use_list_(NULL),
range_(NULL),
flags_(0) {}
virtual ~HValue() {}
HBasicBlock* block() const { return block_; }
void SetBlock(HBasicBlock* block);
int LoopWeight() const;
int id() const { return id_; }
void set_id(int id) { id_ = id; }
HUseIterator uses() const { return HUseIterator(use_list_); }
virtual bool EmitAtUses() { return false; }
Representation representation() const { return representation_; }
void ChangeRepresentation(Representation r) {
ASSERT(CheckFlag(kFlexibleRepresentation));
RepresentationChanged(r);
representation_ = r;
if (r.IsTagged()) {
// Tagged is the bottom of the lattice, don't go any further.
ClearFlag(kFlexibleRepresentation);
}
}
virtual void AssumeRepresentation(Representation r);
virtual bool IsConvertibleToInteger() const { return true; }
HType type() const { return type_; }
void set_type(HType new_type) {
ASSERT(new_type.IsSubtypeOf(type_));
type_ = new_type;
}
// An operation needs to override this function iff:
// 1) it can produce an int32 output.
// 2) the true value of its output can potentially be minus zero.
// The implementation must set a flag so that it bails out in the case where
// it would otherwise output what should be a minus zero as an int32 zero.
// If the operation also exists in a form that takes int32 and outputs int32
// then the operation should return its input value so that we can propagate
// back. There are three operations that need to propagate back to more than
// one input. They are phi and binary div and mul. They always return NULL
// and expect the caller to take care of things.
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
return NULL;
}
bool IsDefinedAfter(HBasicBlock* other) const;
// Operands.
virtual int OperandCount() = 0;
virtual HValue* OperandAt(int index) const = 0;
void SetOperandAt(int index, HValue* value);
void DeleteAndReplaceWith(HValue* other);
void ReplaceAllUsesWith(HValue* other);
bool HasNoUses() const { return use_list_ == NULL; }
bool HasMultipleUses() const {
return use_list_ != NULL && use_list_->tail() != NULL;
}
int UseCount() const;
// Mark this HValue as dead and to be removed from other HValues' use lists.
void Kill();
int flags() const { return flags_; }
void SetFlag(Flag f) { flags_ |= (1 << f); }
void ClearFlag(Flag f) { flags_ &= ~(1 << f); }
bool CheckFlag(Flag f) const { return (flags_ & (1 << f)) != 0; }
// Returns true if the flag specified is set for all uses, false otherwise.
bool CheckUsesForFlag(Flag f);
GVNFlagSet gvn_flags() const { return gvn_flags_; }
void SetGVNFlag(GVNFlag f) { gvn_flags_.Add(f); }
void ClearGVNFlag(GVNFlag f) { gvn_flags_.Remove(f); }
bool CheckGVNFlag(GVNFlag f) const { return gvn_flags_.Contains(f); }
void SetAllSideEffects() { gvn_flags_.Add(AllSideEffectsFlagSet()); }
void ClearAllSideEffects() {
gvn_flags_.Remove(AllSideEffectsFlagSet());
}
bool HasSideEffects() const {
return gvn_flags_.ContainsAnyOf(AllSideEffectsFlagSet());
}
bool HasObservableSideEffects() const {
return gvn_flags_.ContainsAnyOf(AllObservableSideEffectsFlagSet());
}
GVNFlagSet DependsOnFlags() const {
GVNFlagSet result = gvn_flags_;
result.Intersect(AllDependsOnFlagSet());
return result;
}
GVNFlagSet SideEffectFlags() const {
GVNFlagSet result = gvn_flags_;
result.Intersect(AllSideEffectsFlagSet());
return result;
}
GVNFlagSet ChangesFlags() const {
GVNFlagSet result = gvn_flags_;
result.Intersect(AllChangesFlagSet());
return result;
}
GVNFlagSet ObservableChangesFlags() const {
GVNFlagSet result = gvn_flags_;
result.Intersect(AllChangesFlagSet());
result.Intersect(AllObservableSideEffectsFlagSet());
return result;
}
Range* range() const { return range_; }
bool HasRange() const { return range_ != NULL; }
void AddNewRange(Range* r, Zone* zone);
void RemoveLastAddedRange();
void ComputeInitialRange(Zone* zone);
// Representation helpers.
virtual Representation observed_input_representation(int index) {
return Representation::None();
}
virtual Representation RequiredInputRepresentation(int index) = 0;
virtual void InferRepresentation(HInferRepresentation* h_infer);
// This gives the instruction an opportunity to replace itself with an
// instruction that does the same in some better way. To replace an
// instruction with a new one, first add the new instruction to the graph,
// then return it. Return NULL to have the instruction deleted.
virtual HValue* Canonicalize() { return this; }
bool Equals(HValue* other);
virtual intptr_t Hashcode();
// Printing support.
virtual void PrintTo(StringStream* stream) = 0;
void PrintNameTo(StringStream* stream);
void PrintTypeTo(StringStream* stream);
void PrintRangeTo(StringStream* stream);
void PrintChangesTo(StringStream* stream);
const char* Mnemonic() const;
// Type information helpers.
bool HasMonomorphicJSObjectType();
// TODO(mstarzinger): For now instructions can override this function to
// specify statically known types, once HType can convey more information
// it should be based on the HType.
virtual Handle<Map> GetMonomorphicJSObjectMap() { return Handle<Map>(); }
// Updated the inferred type of this instruction and returns true if
// it has changed.
bool UpdateInferredType();
virtual HType CalculateInferredType();
// This function must be overridden for instructions which have the
// kTrackSideEffectDominators flag set, to track instructions that are
// dominating side effects.
virtual void SetSideEffectDominator(GVNFlag side_effect, HValue* dominator) {
UNREACHABLE();
}
bool IsDead() const {
return HasNoUses() && !HasObservableSideEffects() && IsDeletable();
}
#ifdef DEBUG
virtual void Verify() = 0;
#endif
protected:
// This function must be overridden for instructions with flag kUseGVN, to
// compare the non-Operand parts of the instruction.
virtual bool DataEquals(HValue* other) {
UNREACHABLE();
return false;
}
virtual Representation RepresentationFromInputs() {
return representation();
}
Representation RepresentationFromUses();
virtual void UpdateRepresentation(Representation new_rep,
HInferRepresentation* h_infer,
const char* reason);
void AddDependantsToWorklist(HInferRepresentation* h_infer);
virtual void RepresentationChanged(Representation to) { }
virtual Range* InferRange(Zone* zone);
virtual void DeleteFromGraph() = 0;
virtual void InternalSetOperandAt(int index, HValue* value) = 0;
void clear_block() {
ASSERT(block_ != NULL);
block_ = NULL;
}
void set_representation(Representation r) {
ASSERT(representation_.IsNone() && !r.IsNone());
representation_ = r;
}
static GVNFlagSet AllDependsOnFlagSet() {
GVNFlagSet result;
// Create changes mask.
#define ADD_FLAG(type) result.Add(kDependsOn##type);
GVN_TRACKED_FLAG_LIST(ADD_FLAG)
GVN_UNTRACKED_FLAG_LIST(ADD_FLAG)
#undef ADD_FLAG
return result;
}
static GVNFlagSet AllChangesFlagSet() {
GVNFlagSet result;
// Create changes mask.
#define ADD_FLAG(type) result.Add(kChanges##type);
GVN_TRACKED_FLAG_LIST(ADD_FLAG)
GVN_UNTRACKED_FLAG_LIST(ADD_FLAG)
#undef ADD_FLAG
return result;
}
// A flag mask to mark an instruction as having arbitrary side effects.
static GVNFlagSet AllSideEffectsFlagSet() {
GVNFlagSet result = AllChangesFlagSet();
result.Remove(kChangesOsrEntries);
return result;
}
// A flag mask of all side effects that can make observable changes in
// an executing program (i.e. are not safe to repeat, move or remove);
static GVNFlagSet AllObservableSideEffectsFlagSet() {
GVNFlagSet result = AllChangesFlagSet();
result.Remove(kChangesNewSpacePromotion);
result.Remove(kChangesElementsKind);
result.Remove(kChangesElementsPointer);
result.Remove(kChangesMaps);
return result;
}
// Remove the matching use from the use list if present. Returns the
// removed list node or NULL.
HUseListNode* RemoveUse(HValue* value, int index);
void RegisterUse(int index, HValue* new_value);
HBasicBlock* block_;
// The id of this instruction in the hydrogen graph, assigned when first
// added to the graph. Reflects creation order.
int id_;
Representation representation_;
HType type_;
HUseListNode* use_list_;
Range* range_;
int flags_;
GVNFlagSet gvn_flags_;
private:
virtual bool IsDeletable() const { return false; }
DISALLOW_COPY_AND_ASSIGN(HValue);
};
class HInstruction: public HValue {
public:
HInstruction* next() const { return next_; }
HInstruction* previous() const { return previous_; }
virtual void PrintTo(StringStream* stream);
virtual void PrintDataTo(StringStream* stream) { }
bool IsLinked() const { return block() != NULL; }
void Unlink();
void InsertBefore(HInstruction* next);
void InsertAfter(HInstruction* previous);
// The position is a write-once variable.
int position() const { return position_; }
bool has_position() const { return position_ != RelocInfo::kNoPosition; }
void set_position(int position) {
ASSERT(!has_position());
ASSERT(position != RelocInfo::kNoPosition);
position_ = position;
}
bool CanTruncateToInt32() const { return CheckFlag(kTruncatingToInt32); }
virtual LInstruction* CompileToLithium(LChunkBuilder* builder) = 0;
#ifdef DEBUG
virtual void Verify();
#endif
virtual bool IsCall() { return false; }
DECLARE_ABSTRACT_INSTRUCTION(Instruction)
protected:
HInstruction()
: next_(NULL),
previous_(NULL),
position_(RelocInfo::kNoPosition) {
SetGVNFlag(kDependsOnOsrEntries);
}
virtual void DeleteFromGraph() { Unlink(); }
private:
void InitializeAsFirst(HBasicBlock* block) {
ASSERT(!IsLinked());
SetBlock(block);
}
void PrintMnemonicTo(StringStream* stream);
HInstruction* next_;
HInstruction* previous_;
int position_;
friend class HBasicBlock;
};
template<int V>
class HTemplateInstruction : public HInstruction {
public:
int OperandCount() { return V; }
HValue* OperandAt(int i) const { return inputs_[i]; }
protected:
void InternalSetOperandAt(int i, HValue* value) { inputs_[i] = value; }
private:
EmbeddedContainer<HValue*, V> inputs_;
};
class HControlInstruction: public HInstruction {
public:
virtual HBasicBlock* SuccessorAt(int i) = 0;
virtual int SuccessorCount() = 0;
virtual void SetSuccessorAt(int i, HBasicBlock* block) = 0;
virtual void PrintDataTo(StringStream* stream);
HBasicBlock* FirstSuccessor() {
return SuccessorCount() > 0 ? SuccessorAt(0) : NULL;
}
HBasicBlock* SecondSuccessor() {
return SuccessorCount() > 1 ? SuccessorAt(1) : NULL;
}
DECLARE_ABSTRACT_INSTRUCTION(ControlInstruction)
};
class HSuccessorIterator BASE_EMBEDDED {
public:
explicit HSuccessorIterator(HControlInstruction* instr)
: instr_(instr), current_(0) { }
bool Done() { return current_ >= instr_->SuccessorCount(); }
HBasicBlock* Current() { return instr_->SuccessorAt(current_); }
void Advance() { current_++; }
private:
HControlInstruction* instr_;
int current_;
};
template<int S, int V>
class HTemplateControlInstruction: public HControlInstruction {
public:
int SuccessorCount() { return S; }
HBasicBlock* SuccessorAt(int i) { return successors_[i]; }
void SetSuccessorAt(int i, HBasicBlock* block) { successors_[i] = block; }
int OperandCount() { return V; }
HValue* OperandAt(int i) const { return inputs_[i]; }
protected:
void InternalSetOperandAt(int i, HValue* value) { inputs_[i] = value; }
private:
EmbeddedContainer<HBasicBlock*, S> successors_;
EmbeddedContainer<HValue*, V> inputs_;
};
class HBlockEntry: public HTemplateInstruction<0> {
public:
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(BlockEntry)
};
class HDummyUse: public HTemplateInstruction<1> {
public:
explicit HDummyUse(HValue* value) {
SetOperandAt(0, value);
// Pretend to be a Smi so that the HChange instructions inserted
// before any use generate as little code as possible.
set_representation(Representation::Tagged());
set_type(HType::Smi());
}
HValue* value() { return OperandAt(0); }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(DummyUse);
};
// We insert soft-deoptimize when we hit code with unknown typefeedback,
// so that we get a chance of re-optimizing with useful typefeedback.
// HSoftDeoptimize does not end a basic block as opposed to HDeoptimize.
class HSoftDeoptimize: public HTemplateInstruction<0> {
public:
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(SoftDeoptimize)
};
class HDeoptimize: public HControlInstruction {
public:
HDeoptimize(int environment_length, Zone* zone)
: values_(environment_length, zone) { }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
virtual int OperandCount() { return values_.length(); }
virtual HValue* OperandAt(int index) const { return values_[index]; }
virtual void PrintDataTo(StringStream* stream);
virtual int SuccessorCount() { return 0; }
virtual HBasicBlock* SuccessorAt(int i) {
UNREACHABLE();
return NULL;
}
virtual void SetSuccessorAt(int i, HBasicBlock* block) {
UNREACHABLE();
}
void AddEnvironmentValue(HValue* value, Zone* zone) {
values_.Add(NULL, zone);
SetOperandAt(values_.length() - 1, value);
}
DECLARE_CONCRETE_INSTRUCTION(Deoptimize)
enum UseEnvironment {
kNoUses,
kUseAll
};
protected:
virtual void InternalSetOperandAt(int index, HValue* value) {
values_[index] = value;
}
private:
ZoneList<HValue*> values_;
};
class HGoto: public HTemplateControlInstruction<1, 0> {
public:
explicit HGoto(HBasicBlock* target) {
SetSuccessorAt(0, target);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(Goto)
};
class HUnaryControlInstruction: public HTemplateControlInstruction<2, 1> {
public:
HUnaryControlInstruction(HValue* value,
HBasicBlock* true_target,
HBasicBlock* false_target) {
SetOperandAt(0, value);
SetSuccessorAt(0, true_target);
SetSuccessorAt(1, false_target);
}
virtual void PrintDataTo(StringStream* stream);
HValue* value() { return OperandAt(0); }
};
class HBranch: public HUnaryControlInstruction {
public:
HBranch(HValue* value,
HBasicBlock* true_target,
HBasicBlock* false_target,
ToBooleanStub::Types expected_input_types = ToBooleanStub::no_types())
: HUnaryControlInstruction(value, true_target, false_target),
expected_input_types_(expected_input_types) {
ASSERT(true_target != NULL && false_target != NULL);
}
explicit HBranch(HValue* value)
: HUnaryControlInstruction(value, NULL, NULL) { }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
virtual Representation observed_input_representation(int index);
ToBooleanStub::Types expected_input_types() const {
return expected_input_types_;
}
DECLARE_CONCRETE_INSTRUCTION(Branch)
private:
ToBooleanStub::Types expected_input_types_;
};
class HCompareMap: public HUnaryControlInstruction {
public:
HCompareMap(HValue* value,
Handle<Map> map,
HBasicBlock* true_target,
HBasicBlock* false_target)
: HUnaryControlInstruction(value, true_target, false_target),
map_(map) {
ASSERT(true_target != NULL);
ASSERT(false_target != NULL);
ASSERT(!map.is_null());
}
virtual void PrintDataTo(StringStream* stream);
Handle<Map> map() const { return map_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(CompareMap)
private:
Handle<Map> map_;
};
class HReturn: public HTemplateControlInstruction<0, 2> {
public:
HReturn(HValue* value, HValue* context) {
SetOperandAt(0, value);
SetOperandAt(1, context);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
HValue* value() { return OperandAt(0); }
HValue* context() { return OperandAt(1); }
DECLARE_CONCRETE_INSTRUCTION(Return)
};
class HAbnormalExit: public HTemplateControlInstruction<0, 0> {
public:
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(AbnormalExit)
};
class HUnaryOperation: public HTemplateInstruction<1> {
public:
explicit HUnaryOperation(HValue* value) {
SetOperandAt(0, value);
}
static HUnaryOperation* cast(HValue* value) {
return reinterpret_cast<HUnaryOperation*>(value);
}
HValue* value() const { return OperandAt(0); }
virtual void PrintDataTo(StringStream* stream);
};
class HThrow: public HTemplateInstruction<2> {
public:
HThrow(HValue* context, HValue* value) {
SetOperandAt(0, context);
SetOperandAt(1, value);
SetAllSideEffects();
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* context() { return OperandAt(0); }
HValue* value() { return OperandAt(1); }
DECLARE_CONCRETE_INSTRUCTION(Throw)
};
class HUseConst: public HUnaryOperation {
public:
explicit HUseConst(HValue* old_value) : HUnaryOperation(old_value) { }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(UseConst)
};
class HForceRepresentation: public HTemplateInstruction<1> {
public:
HForceRepresentation(HValue* value, Representation required_representation) {
SetOperandAt(0, value);
set_representation(required_representation);
}
HValue* value() { return OperandAt(0); }
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
virtual Representation RequiredInputRepresentation(int index) {
return representation(); // Same as the output representation.
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(ForceRepresentation)
};
class HChange: public HUnaryOperation {
public:
HChange(HValue* value,
Representation to,
bool is_truncating,
bool deoptimize_on_undefined)
: HUnaryOperation(value) {
ASSERT(!value->representation().IsNone() && !to.IsNone());
ASSERT(!value->representation().Equals(to));
set_representation(to);
set_type(HType::TaggedNumber());
SetFlag(kUseGVN);
if (deoptimize_on_undefined) SetFlag(kDeoptimizeOnUndefined);
if (is_truncating) SetFlag(kTruncatingToInt32);
if (to.IsTagged()) SetGVNFlag(kChangesNewSpacePromotion);
}
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
virtual HType CalculateInferredType();
virtual HValue* Canonicalize();
Representation from() const { return value()->representation(); }
Representation to() const { return representation(); }
bool deoptimize_on_undefined() const {
return CheckFlag(kDeoptimizeOnUndefined);
}
bool deoptimize_on_minus_zero() const {
return CheckFlag(kBailoutOnMinusZero);
}
virtual Representation RequiredInputRepresentation(int index) {
return from();
}
virtual Range* InferRange(Zone* zone);
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(Change)
protected:
virtual bool DataEquals(HValue* other) { return true; }
private:
virtual bool IsDeletable() const {
return !from().IsTagged() || value()->type().IsSmi();
}
};
class HClampToUint8: public HUnaryOperation {
public:
explicit HClampToUint8(HValue* value)
: HUnaryOperation(value) {
set_representation(Representation::Integer32());
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(ClampToUint8)
protected:
virtual bool DataEquals(HValue* other) { return true; }
private:
virtual bool IsDeletable() const { return true; }
};
enum RemovableSimulate {
REMOVABLE_SIMULATE,
FIXED_SIMULATE
};
class HSimulate: public HInstruction {
public:
HSimulate(BailoutId ast_id,
int pop_count,
Zone* zone,
RemovableSimulate removable)
: ast_id_(ast_id),
pop_count_(pop_count),
values_(2, zone),
assigned_indexes_(2, zone),
zone_(zone),
removable_(removable) {}
virtual ~HSimulate() {}
virtual void PrintDataTo(StringStream* stream);
bool HasAstId() const { return !ast_id_.IsNone(); }
BailoutId ast_id() const { return ast_id_; }
void set_ast_id(BailoutId id) {
ASSERT(!HasAstId());
ast_id_ = id;
}
int pop_count() const { return pop_count_; }
const ZoneList<HValue*>* values() const { return &values_; }
int GetAssignedIndexAt(int index) const {
ASSERT(HasAssignedIndexAt(index));
return assigned_indexes_[index];
}
bool HasAssignedIndexAt(int index) const {
return assigned_indexes_[index] != kNoIndex;
}
void AddAssignedValue(int index, HValue* value) {
AddValue(index, value);
}
void AddPushedValue(HValue* value) {
AddValue(kNoIndex, value);
}
virtual int OperandCount() { return values_.length(); }
virtual HValue* OperandAt(int index) const { return values_[index]; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
void MergeInto(HSimulate* other);
bool is_candidate_for_removal() { return removable_ == REMOVABLE_SIMULATE; }
DECLARE_CONCRETE_INSTRUCTION(Simulate)
#ifdef DEBUG
virtual void Verify();
#endif
protected:
virtual void InternalSetOperandAt(int index, HValue* value) {
values_[index] = value;
}
private:
static const int kNoIndex = -1;
void AddValue(int index, HValue* value) {
assigned_indexes_.Add(index, zone_);
// Resize the list of pushed values.
values_.Add(NULL, zone_);
// Set the operand through the base method in HValue to make sure that the
// use lists are correctly updated.
SetOperandAt(values_.length() - 1, value);
}
BailoutId ast_id_;
int pop_count_;
ZoneList<HValue*> values_;
ZoneList<int> assigned_indexes_;
Zone* zone_;
RemovableSimulate removable_;
};
class HStackCheck: public HTemplateInstruction<1> {
public:
enum Type {
kFunctionEntry,
kBackwardsBranch
};
HStackCheck(HValue* context, Type type) : type_(type) {
SetOperandAt(0, context);
SetGVNFlag(kChangesNewSpacePromotion);
}
HValue* context() { return OperandAt(0); }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
void Eliminate() {
// The stack check eliminator might try to eliminate the same stack
// check instruction multiple times.
if (IsLinked()) {
DeleteFromGraph();
}
}
bool is_function_entry() { return type_ == kFunctionEntry; }
bool is_backwards_branch() { return type_ == kBackwardsBranch; }
DECLARE_CONCRETE_INSTRUCTION(StackCheck)
private:
Type type_;
};
enum InliningKind {
NORMAL_RETURN, // Normal function/method call and return.
DROP_EXTRA_ON_RETURN, // Drop an extra value from the environment on return.
CONSTRUCT_CALL_RETURN, // Either use allocated receiver or return value.
GETTER_CALL_RETURN, // Returning from a getter, need to restore context.
SETTER_CALL_RETURN // Use the RHS of the assignment as the return value.
};
class HEnterInlined: public HTemplateInstruction<0> {
public:
HEnterInlined(Handle<JSFunction> closure,
int arguments_count,
FunctionLiteral* function,
InliningKind inlining_kind,
Variable* arguments_var,
ZoneList<HValue*>* arguments_values,
bool undefined_receiver)
: closure_(closure),
arguments_count_(arguments_count),
arguments_pushed_(false),
function_(function),
inlining_kind_(inlining_kind),
arguments_var_(arguments_var),
arguments_values_(arguments_values),
undefined_receiver_(undefined_receiver) {
}
virtual void PrintDataTo(StringStream* stream);
Handle<JSFunction> closure() const { return closure_; }
int arguments_count() const { return arguments_count_; }
bool arguments_pushed() const { return arguments_pushed_; }
void set_arguments_pushed() { arguments_pushed_ = true; }
FunctionLiteral* function() const { return function_; }
InliningKind inlining_kind() const { return inlining_kind_; }
bool undefined_receiver() const { return undefined_receiver_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
Variable* arguments_var() { return arguments_var_; }
ZoneList<HValue*>* arguments_values() { return arguments_values_; }
DECLARE_CONCRETE_INSTRUCTION(EnterInlined)
private:
Handle<JSFunction> closure_;
int arguments_count_;
bool arguments_pushed_;
FunctionLiteral* function_;
InliningKind inlining_kind_;
Variable* arguments_var_;
ZoneList<HValue*>* arguments_values_;
bool undefined_receiver_;
};
class HLeaveInlined: public HTemplateInstruction<0> {
public:
HLeaveInlined() { }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(LeaveInlined)
};
class HPushArgument: public HUnaryOperation {
public:
explicit HPushArgument(HValue* value) : HUnaryOperation(value) {
set_representation(Representation::Tagged());
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* argument() { return OperandAt(0); }
DECLARE_CONCRETE_INSTRUCTION(PushArgument)
};
class HThisFunction: public HTemplateInstruction<0> {
public:
HThisFunction() {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(ThisFunction)
protected:
virtual bool DataEquals(HValue* other) { return true; }
private:
virtual bool IsDeletable() const { return true; }
};
class HContext: public HTemplateInstruction<0> {
public:
HContext() {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(Context)
protected:
virtual bool DataEquals(HValue* other) { return true; }
private:
virtual bool IsDeletable() const { return true; }
};
class HOuterContext: public HUnaryOperation {
public:
explicit HOuterContext(HValue* inner) : HUnaryOperation(inner) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
DECLARE_CONCRETE_INSTRUCTION(OuterContext);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
protected:
virtual bool DataEquals(HValue* other) { return true; }
private:
virtual bool IsDeletable() const { return true; }
};
class HDeclareGlobals: public HUnaryOperation {
public:
HDeclareGlobals(HValue* context,
Handle<FixedArray> pairs,
int flags)
: HUnaryOperation(context),
pairs_(pairs),
flags_(flags) {
set_representation(Representation::Tagged());
SetAllSideEffects();
}
HValue* context() { return OperandAt(0); }
Handle<FixedArray> pairs() const { return pairs_; }
int flags() const { return flags_; }
DECLARE_CONCRETE_INSTRUCTION(DeclareGlobals)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
private:
Handle<FixedArray> pairs_;
int flags_;
};
class HGlobalObject: public HUnaryOperation {
public:
explicit HGlobalObject(HValue* context) : HUnaryOperation(context) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
DECLARE_CONCRETE_INSTRUCTION(GlobalObject)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
protected:
virtual bool DataEquals(HValue* other) { return true; }
private:
virtual bool IsDeletable() const { return true; }
};
class HGlobalReceiver: public HUnaryOperation {
public:
explicit HGlobalReceiver(HValue* global_object)
: HUnaryOperation(global_object) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
DECLARE_CONCRETE_INSTRUCTION(GlobalReceiver)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
protected:
virtual bool DataEquals(HValue* other) { return true; }
private:
virtual bool IsDeletable() const { return true; }
};
template <int V>
class HCall: public HTemplateInstruction<V> {
public:
// The argument count includes the receiver.
explicit HCall<V>(int argument_count) : argument_count_(argument_count) {
this->set_representation(Representation::Tagged());
this->SetAllSideEffects();
}
virtual HType CalculateInferredType() { return HType::Tagged(); }
virtual int argument_count() const { return argument_count_; }
virtual bool IsCall() { return true; }
private:
int argument_count_;
};
class HUnaryCall: public HCall<1> {
public:
HUnaryCall(HValue* value, int argument_count)
: HCall<1>(argument_count) {
SetOperandAt(0, value);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
HValue* value() { return OperandAt(0); }
};
class HBinaryCall: public HCall<2> {
public:
HBinaryCall(HValue* first, HValue* second, int argument_count)
: HCall<2>(argument_count) {
SetOperandAt(0, first);
SetOperandAt(1, second);
}
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* first() { return OperandAt(0); }
HValue* second() { return OperandAt(1); }
};
class HInvokeFunction: public HBinaryCall {
public:
HInvokeFunction(HValue* context, HValue* function, int argument_count)
: HBinaryCall(context, function, argument_count) {
}
HInvokeFunction(HValue* context,
HValue* function,
Handle<JSFunction> known_function,
int argument_count)
: HBinaryCall(context, function, argument_count),
known_function_(known_function) {
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* context() { return first(); }
HValue* function() { return second(); }
Handle<JSFunction> known_function() { return known_function_; }
DECLARE_CONCRETE_INSTRUCTION(InvokeFunction)
private:
Handle<JSFunction> known_function_;
};
class HCallConstantFunction: public HCall<0> {
public:
HCallConstantFunction(Handle<JSFunction> function, int argument_count)
: HCall<0>(argument_count), function_(function) { }
Handle<JSFunction> function() const { return function_; }
bool IsApplyFunction() const {
return function_->code() ==
Isolate::Current()->builtins()->builtin(Builtins::kFunctionApply);
}
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(CallConstantFunction)
private:
Handle<JSFunction> function_;
};
class HCallKeyed: public HBinaryCall {
public:
HCallKeyed(HValue* context, HValue* key, int argument_count)
: HBinaryCall(context, key, argument_count) {
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* context() { return first(); }
HValue* key() { return second(); }
DECLARE_CONCRETE_INSTRUCTION(CallKeyed)
};
class HCallNamed: public HUnaryCall {
public:
HCallNamed(HValue* context, Handle<String> name, int argument_count)
: HUnaryCall(context, argument_count), name_(name) {
}
virtual void PrintDataTo(StringStream* stream);
HValue* context() { return value(); }
Handle<String> name() const { return name_; }
DECLARE_CONCRETE_INSTRUCTION(CallNamed)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
private:
Handle<String> name_;
};
class HCallFunction: public HBinaryCall {
public:
HCallFunction(HValue* context, HValue* function, int argument_count)
: HBinaryCall(context, function, argument_count) {
}
HValue* context() { return first(); }
HValue* function() { return second(); }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(CallFunction)
};
class HCallGlobal: public HUnaryCall {
public:
HCallGlobal(HValue* context, Handle<String> name, int argument_count)
: HUnaryCall(context, argument_count), name_(name) {
}
virtual void PrintDataTo(StringStream* stream);
HValue* context() { return value(); }
Handle<String> name() const { return name_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(CallGlobal)
private:
Handle<String> name_;
};
class HCallKnownGlobal: public HCall<0> {
public:
HCallKnownGlobal(Handle<JSFunction> target, int argument_count)
: HCall<0>(argument_count), target_(target) { }
virtual void PrintDataTo(StringStream* stream);
Handle<JSFunction> target() const { return target_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(CallKnownGlobal)
private:
Handle<JSFunction> target_;
};
class HCallNew: public HBinaryCall {
public:
HCallNew(HValue* context, HValue* constructor, int argument_count)
: HBinaryCall(context, constructor, argument_count) {
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* context() { return first(); }
HValue* constructor() { return second(); }
DECLARE_CONCRETE_INSTRUCTION(CallNew)
};
class HCallRuntime: public HCall<1> {
public:
HCallRuntime(HValue* context,
Handle<String> name,
const Runtime::Function* c_function,
int argument_count)
: HCall<1>(argument_count), c_function_(c_function), name_(name) {
SetOperandAt(0, context);
}
virtual void PrintDataTo(StringStream* stream);
HValue* context() { return OperandAt(0); }
const Runtime::Function* function() const { return c_function_; }
Handle<String> name() const { return name_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(CallRuntime)
private:
const Runtime::Function* c_function_;
Handle<String> name_;
};
class HJSArrayLength: public HTemplateInstruction<2> {
public:
HJSArrayLength(HValue* value, HValue* typecheck,
HType type = HType::Tagged()) {
set_type(type);
// The length of an array is stored as a tagged value in the array
// object. It is guaranteed to be 32 bit integer, but it can be
// represented as either a smi or heap number.
SetOperandAt(0, value);
SetOperandAt(1, typecheck != NULL ? typecheck : value);
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnArrayLengths);
SetGVNFlag(kDependsOnMaps);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
HValue* value() { return OperandAt(0); }
HValue* typecheck() {
ASSERT(HasTypeCheck());
return OperandAt(1);
}
bool HasTypeCheck() const { return OperandAt(0) != OperandAt(1); }
DECLARE_CONCRETE_INSTRUCTION(JSArrayLength)
protected:
virtual bool DataEquals(HValue* other_raw) { return true; }
private:
virtual bool IsDeletable() const { return true; }
};
class HFixedArrayBaseLength: public HUnaryOperation {
public:
explicit HFixedArrayBaseLength(HValue* value) : HUnaryOperation(value) {
set_type(HType::Smi());
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnArrayLengths);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(FixedArrayBaseLength)
protected:
virtual bool DataEquals(HValue* other) { return true; }
private:
virtual bool IsDeletable() const { return true; }
};
class HMapEnumLength: public HUnaryOperation {
public:
explicit HMapEnumLength(HValue* value) : HUnaryOperation(value) {
set_type(HType::Smi());
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnMaps);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(MapEnumLength)
protected:
virtual bool DataEquals(HValue* other) { return true; }
private:
virtual bool IsDeletable() const { return true; }
};
class HElementsKind: public HUnaryOperation {
public:
explicit HElementsKind(HValue* value) : HUnaryOperation(value) {
set_representation(Representation::Integer32());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnElementsKind);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(ElementsKind)
protected:
virtual bool DataEquals(HValue* other) { return true; }
private:
virtual bool IsDeletable() const { return true; }
};
class HBitNot: public HUnaryOperation {
public:
explicit HBitNot(HValue* value) : HUnaryOperation(value) {
set_representation(Representation::Integer32());
SetFlag(kUseGVN);
SetFlag(kTruncatingToInt32);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Integer32();
}
virtual Representation observed_input_representation(int index) {
return Representation::Integer32();
}
virtual HType CalculateInferredType();
virtual HValue* Canonicalize();
DECLARE_CONCRETE_INSTRUCTION(BitNot)
protected:
virtual bool DataEquals(HValue* other) { return true; }
private:
virtual bool IsDeletable() const { return true; }
};
class HUnaryMathOperation: public HTemplateInstruction<2> {
public:
HUnaryMathOperation(HValue* context, HValue* value, BuiltinFunctionId op)
: op_(op) {
SetOperandAt(0, context);
SetOperandAt(1, value);
switch (op) {
case kMathFloor:
case kMathRound:
case kMathCeil:
set_representation(Representation::Integer32());
break;
case kMathAbs:
// Not setting representation here: it is None intentionally.
SetFlag(kFlexibleRepresentation);
SetGVNFlag(kChangesNewSpacePromotion);
break;
case kMathSqrt:
case kMathPowHalf:
case kMathLog:
case kMathSin:
case kMathCos:
case kMathTan:
set_representation(Representation::Double());
SetGVNFlag(kChangesNewSpacePromotion);
break;
case kMathExp:
set_representation(Representation::Double());
break;
default:
UNREACHABLE();
}
SetFlag(kUseGVN);
}
HValue* context() { return OperandAt(0); }
HValue* value() { return OperandAt(1); }
virtual void PrintDataTo(StringStream* stream);
virtual HType CalculateInferredType();
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
virtual Representation RequiredInputRepresentation(int index) {
if (index == 0) {
return Representation::Tagged();
} else {
switch (op_) {
case kMathFloor:
case kMathRound:
case kMathCeil:
case kMathSqrt:
case kMathPowHalf:
case kMathLog:
case kMathExp:
case kMathSin:
case kMathCos:
case kMathTan:
return Representation::Double();
case kMathAbs:
return representation();
default:
UNREACHABLE();
return Representation::None();
}
}
}
virtual HValue* Canonicalize();
BuiltinFunctionId op() const { return op_; }
const char* OpName() const;
DECLARE_CONCRETE_INSTRUCTION(UnaryMathOperation)
protected:
virtual bool DataEquals(HValue* other) {
HUnaryMathOperation* b = HUnaryMathOperation::cast(other);
return op_ == b->op();
}
private:
virtual bool IsDeletable() const { return true; }
BuiltinFunctionId op_;
};
class HLoadElements: public HTemplateInstruction<2> {
public:
HLoadElements(HValue* value, HValue* typecheck) {
SetOperandAt(0, value);
SetOperandAt(1, typecheck != NULL ? typecheck : value);
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnElementsPointer);
}
HValue* value() { return OperandAt(0); }
HValue* typecheck() {
ASSERT(HasTypeCheck());
return OperandAt(1);
}
bool HasTypeCheck() const { return OperandAt(0) != OperandAt(1); }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(LoadElements)
protected:
virtual bool DataEquals(HValue* other) { return true; }
private:
virtual bool IsDeletable() const { return true; }
};
class HLoadExternalArrayPointer: public HUnaryOperation {
public:
explicit HLoadExternalArrayPointer(HValue* value)
: HUnaryOperation(value) {
set_representation(Representation::External());
// The result of this instruction is idempotent as long as its inputs don't
// change. The external array of a specialized array elements object cannot
// change once set, so it's no necessary to introduce any additional
// dependencies on top of the inputs.
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(LoadExternalArrayPointer)
protected:
virtual bool DataEquals(HValue* other) { return true; }
private:
virtual bool IsDeletable() const { return true; }
};
class HCheckMaps: public HTemplateInstruction<2> {
public:
HCheckMaps(HValue* value, Handle<Map> map, Zone* zone,
HValue* typecheck = NULL) {
SetOperandAt(0, value);
// If callers don't depend on a typecheck, they can pass in NULL. In that
// case we use a copy of the |value| argument as a dummy value.
SetOperandAt(1, typecheck != NULL ? typecheck : value);
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetFlag(kTrackSideEffectDominators);
SetGVNFlag(kDependsOnMaps);
SetGVNFlag(kDependsOnElementsKind);
map_set()->Add(map, zone);
}
HCheckMaps(HValue* value, SmallMapList* maps, Zone* zone) {
SetOperandAt(0, value);
SetOperandAt(1, value);
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetFlag(kTrackSideEffectDominators);
SetGVNFlag(kDependsOnMaps);
SetGVNFlag(kDependsOnElementsKind);
for (int i = 0; i < maps->length(); i++) {
map_set()->Add(maps->at(i), zone);
}
map_set()->Sort();
}
static HCheckMaps* NewWithTransitions(HValue* object, Handle<Map> map,
Zone* zone) {
HCheckMaps* check_map = new(zone) HCheckMaps(object, map, zone);
SmallMapList* map_set = check_map->map_set();
// Since transitioned elements maps of the initial map don't fail the map
// check, the CheckMaps instruction doesn't need to depend on ElementsKinds.
check_map->ClearGVNFlag(kDependsOnElementsKind);
ElementsKind kind = map->elements_kind();
bool packed = IsFastPackedElementsKind(kind);
while (CanTransitionToMoreGeneralFastElementsKind(kind, packed)) {
kind = GetNextMoreGeneralFastElementsKind(kind, packed);
Map* transitioned_map =
map->LookupElementsTransitionMap(kind);
if (transitioned_map) {
map_set->Add(Handle<Map>(transitioned_map), zone);
}
};
map_set->Sort();
return check_map;
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void SetSideEffectDominator(GVNFlag side_effect, HValue* dominator);
virtual void PrintDataTo(StringStream* stream);
virtual HType CalculateInferredType();
HValue* value() { return OperandAt(0); }
SmallMapList* map_set() { return &map_set_; }
DECLARE_CONCRETE_INSTRUCTION(CheckMaps)
protected:
virtual bool DataEquals(HValue* other) {
HCheckMaps* b = HCheckMaps::cast(other);
// Relies on the fact that map_set has been sorted before.
if (map_set()->length() != b->map_set()->length()) return false;
for (int i = 0; i < map_set()->length(); i++) {
if (!map_set()->at(i).is_identical_to(b->map_set()->at(i))) return false;
}
return true;
}
private:
SmallMapList map_set_;
};
class HCheckFunction: public HUnaryOperation {
public:
HCheckFunction(HValue* value, Handle<JSFunction> function)
: HUnaryOperation(value), target_(function) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
target_in_new_space_ = Isolate::Current()->heap()->InNewSpace(*function);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
virtual HType CalculateInferredType();
#ifdef DEBUG
virtual void Verify();
#endif
Handle<JSFunction> target() const { return target_; }
bool target_in_new_space() const { return target_in_new_space_; }
DECLARE_CONCRETE_INSTRUCTION(CheckFunction)
protected:
virtual bool DataEquals(HValue* other) {
HCheckFunction* b = HCheckFunction::cast(other);
return target_.is_identical_to(b->target());
}
private:
Handle<JSFunction> target_;
bool target_in_new_space_;
};
class HCheckInstanceType: public HUnaryOperation {
public:
static HCheckInstanceType* NewIsSpecObject(HValue* value, Zone* zone) {
return new(zone) HCheckInstanceType(value, IS_SPEC_OBJECT);
}
static HCheckInstanceType* NewIsJSArray(HValue* value, Zone* zone) {
return new(zone) HCheckInstanceType(value, IS_JS_ARRAY);
}
static HCheckInstanceType* NewIsString(HValue* value, Zone* zone) {
return new(zone) HCheckInstanceType(value, IS_STRING);
}
static HCheckInstanceType* NewIsSymbol(HValue* value, Zone* zone) {
return new(zone) HCheckInstanceType(value, IS_SYMBOL);
}
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HValue* Canonicalize();
bool is_interval_check() const { return check_ <= LAST_INTERVAL_CHECK; }
void GetCheckInterval(InstanceType* first, InstanceType* last);
void GetCheckMaskAndTag(uint8_t* mask, uint8_t* tag);
DECLARE_CONCRETE_INSTRUCTION(CheckInstanceType)
protected:
// TODO(ager): It could be nice to allow the ommision of instance
// type checks if we have already performed an instance type check
// with a larger range.
virtual bool DataEquals(HValue* other) {
HCheckInstanceType* b = HCheckInstanceType::cast(other);
return check_ == b->check_;
}
private:
enum Check {
IS_SPEC_OBJECT,
IS_JS_ARRAY,
IS_STRING,
IS_SYMBOL,
LAST_INTERVAL_CHECK = IS_JS_ARRAY
};
const char* GetCheckName();
HCheckInstanceType(HValue* value, Check check)
: HUnaryOperation(value), check_(check) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
const Check check_;
};
class HCheckNonSmi: public HUnaryOperation {
public:
explicit HCheckNonSmi(HValue* value) : HUnaryOperation(value) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
#ifdef DEBUG
virtual void Verify();
#endif
virtual HValue* Canonicalize() {
HType value_type = value()->type();
if (!value_type.IsUninitialized() &&
(value_type.IsHeapNumber() ||
value_type.IsString() ||
value_type.IsBoolean() ||
value_type.IsNonPrimitive())) {
return NULL;
}
return this;
}
DECLARE_CONCRETE_INSTRUCTION(CheckNonSmi)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HCheckPrototypeMaps: public HTemplateInstruction<0> {
public:
HCheckPrototypeMaps(Handle<JSObject> prototype,
Handle<JSObject> holder,
Zone* zone) : prototypes_(2, zone), maps_(2, zone) {
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnMaps);
// Keep a list of all objects on the prototype chain up to the holder
// and the expected maps.
while (true) {
prototypes_.Add(prototype, zone);
maps_.Add(Handle<Map>(prototype->map()), zone);
if (prototype.is_identical_to(holder)) break;
prototype = Handle<JSObject>(JSObject::cast(prototype->GetPrototype()));
}
}
ZoneList<Handle<JSObject> >* prototypes() { return &prototypes_; }
ZoneList<Handle<Map> >* maps() { return &maps_; }
DECLARE_CONCRETE_INSTRUCTION(CheckPrototypeMaps)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
virtual void PrintDataTo(StringStream* stream);
virtual intptr_t Hashcode() {
ASSERT_ALLOCATION_DISABLED;
// Dereferencing to use the object's raw address for hashing is safe.
AllowHandleDereference allow_handle_deref;
intptr_t hash = 0;
for (int i = 0; i < prototypes_.length(); i++) {
hash = 17 * hash + reinterpret_cast<intptr_t>(*prototypes_[i]);
hash = 17 * hash + reinterpret_cast<intptr_t>(*maps_[i]);
}
return hash;
}
protected:
virtual bool DataEquals(HValue* other) {
HCheckPrototypeMaps* b = HCheckPrototypeMaps::cast(other);
#ifdef DEBUG
if (prototypes_.length() != b->prototypes()->length()) return false;
for (int i = 0; i < prototypes_.length(); i++) {
if (!prototypes_[i].is_identical_to(b->prototypes()->at(i))) return false;
if (!maps_[i].is_identical_to(b->maps()->at(i))) return false;
}
return true;
#else
return prototypes_.first().is_identical_to(b->prototypes()->first()) &&
prototypes_.last().is_identical_to(b->prototypes()->last());
#endif // DEBUG
}
private:
ZoneList<Handle<JSObject> > prototypes_;
ZoneList<Handle<Map> > maps_;
};
class HCheckSmi: public HUnaryOperation {
public:
explicit HCheckSmi(HValue* value) : HUnaryOperation(value) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
#ifdef DEBUG
virtual void Verify();
#endif
DECLARE_CONCRETE_INSTRUCTION(CheckSmi)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HPhi: public HValue {
public:
HPhi(int merged_index, Zone* zone)
: inputs_(2, zone),
merged_index_(merged_index),
phi_id_(-1),
is_live_(false),
is_convertible_to_integer_(true) {
for (int i = 0; i < Representation::kNumRepresentations; i++) {
non_phi_uses_[i] = 0;
indirect_uses_[i] = 0;
}
ASSERT(merged_index >= 0);
SetFlag(kFlexibleRepresentation);
}
virtual Representation RepresentationFromInputs();
virtual Range* InferRange(Zone* zone);
virtual void InferRepresentation(HInferRepresentation* h_infer);
Representation RepresentationObservedByAllNonPhiUses();
Representation RepresentationFromUseRequirements();
virtual Representation RequiredInputRepresentation(int index) {
return representation();
}
virtual HType CalculateInferredType();
virtual int OperandCount() { return inputs_.length(); }
virtual HValue* OperandAt(int index) const { return inputs_[index]; }
HValue* GetRedundantReplacement();
void AddInput(HValue* value);
bool HasRealUses();
bool IsReceiver() { return merged_index_ == 0; }
int merged_index() const { return merged_index_; }
virtual void PrintTo(StringStream* stream);
#ifdef DEBUG
virtual void Verify();
#endif
void InitRealUses(int id);
void AddNonPhiUsesFrom(HPhi* other);
void AddIndirectUsesTo(int* use_count);
int tagged_non_phi_uses() const {
return non_phi_uses_[Representation::kTagged];
}
int int32_non_phi_uses() const {
return non_phi_uses_[Representation::kInteger32];
}
int double_non_phi_uses() const {
return non_phi_uses_[Representation::kDouble];
}
int tagged_indirect_uses() const {
return indirect_uses_[Representation::kTagged];
}
int int32_indirect_uses() const {
return indirect_uses_[Representation::kInteger32];
}
int double_indirect_uses() const {
return indirect_uses_[Representation::kDouble];
}
int phi_id() { return phi_id_; }
bool is_live() { return is_live_; }
void set_is_live(bool b) { is_live_ = b; }
static HPhi* cast(HValue* value) {
ASSERT(value->IsPhi());
return reinterpret_cast<HPhi*>(value);
}
virtual Opcode opcode() const { return HValue::kPhi; }
virtual bool IsConvertibleToInteger() const {
return is_convertible_to_integer_;
}
void set_is_convertible_to_integer(bool b) {
is_convertible_to_integer_ = b;
}
bool AllOperandsConvertibleToInteger() {
for (int i = 0; i < OperandCount(); ++i) {
if (!OperandAt(i)->IsConvertibleToInteger()) {
if (FLAG_trace_representation) {
HValue* input = OperandAt(i);
PrintF("#%d %s: Input #%d %s at %d is NCTI\n",
id(), Mnemonic(), input->id(), input->Mnemonic(), i);
}
return false;
}
}
return true;
}
protected:
virtual void DeleteFromGraph();
virtual void InternalSetOperandAt(int index, HValue* value) {
inputs_[index] = value;
}
private:
ZoneList<HValue*> inputs_;
int merged_index_;
int non_phi_uses_[Representation::kNumRepresentations];
int indirect_uses_[Representation::kNumRepresentations];
int phi_id_;
bool is_live_;
bool is_convertible_to_integer_;
};
class HArgumentsObject: public HTemplateInstruction<0> {
public:
HArgumentsObject() {
set_representation(Representation::Tagged());
SetFlag(kIsArguments);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(ArgumentsObject)
private:
virtual bool IsDeletable() const { return true; }
};
class HConstant: public HTemplateInstruction<0> {
public:
HConstant(Handle<Object> handle, Representation r);
HConstant(int32_t value, Representation r);
HConstant(double value, Representation r);
Handle<Object> handle() {
if (handle_.is_null()) {
handle_ = FACTORY->NewNumber(double_value_, TENURED);
}
ASSERT(has_int32_value_ || !handle_->IsSmi());
return handle_;
}
bool InOldSpace() const { return !HEAP->InNewSpace(*handle_); }
bool ImmortalImmovable() const {
if (has_int32_value_) {
return false;
}
if (has_double_value_) {
if (BitCast<int64_t>(double_value_) == BitCast<int64_t>(-0.0) ||
isnan(double_value_)) {
return true;
}
return false;
}
ASSERT(!handle_.is_null());
Heap* heap = HEAP;
// We should have handled minus_zero_value and nan_value in the
// has_double_value_ clause above.
// Dereferencing is safe to compare against singletons.
AllowHandleDereference allow_handle_deref;
ASSERT(*handle_ != heap->minus_zero_value());
ASSERT(*handle_ != heap->nan_value());
return *handle_ == heap->undefined_value() ||
*handle_ == heap->null_value() ||
*handle_ == heap->true_value() ||
*handle_ == heap->false_value() ||
*handle_ == heap->the_hole_value() ||
*handle_ == heap->empty_string();
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
virtual bool IsConvertibleToInteger() const {
return has_int32_value_;
}
virtual bool EmitAtUses() { return !representation().IsDouble(); }
virtual void PrintDataTo(StringStream* stream);
virtual HType CalculateInferredType();
bool IsInteger() { return handle()->IsSmi(); }
HConstant* CopyToRepresentation(Representation r, Zone* zone) const;
HConstant* CopyToTruncatedInt32(Zone* zone) const;
bool HasInteger32Value() const { return has_int32_value_; }
int32_t Integer32Value() const {
ASSERT(HasInteger32Value());
return int32_value_;
}
bool HasDoubleValue() const { return has_double_value_; }
double DoubleValue() const {
ASSERT(HasDoubleValue());
return double_value_;
}
bool HasNumberValue() const { return has_double_value_; }
int32_t NumberValueAsInteger32() const {
ASSERT(HasNumberValue());
// Irrespective of whether a numeric HConstant can be safely
// represented as an int32, we store the (in some cases lossy)
// representation of the number in int32_value_.
return int32_value_;
}
bool ToBoolean();
bool IsUint32() {
return HasInteger32Value() && (Integer32Value() >= 0);
}
virtual intptr_t Hashcode() {
ASSERT_ALLOCATION_DISABLED;
intptr_t hash;
if (has_int32_value_) {
hash = static_cast<intptr_t>(int32_value_);
} else if (has_double_value_) {
hash = static_cast<intptr_t>(BitCast<int64_t>(double_value_));
} else {
ASSERT(!handle_.is_null());
// Dereferencing to use the object's raw address for hashing is safe.
AllowHandleDereference allow_handle_deref;
hash = reinterpret_cast<intptr_t>(*handle_);
}
return hash;
}
#ifdef DEBUG
virtual void Verify() { }
#endif
DECLARE_CONCRETE_INSTRUCTION(Constant)
protected:
virtual Range* InferRange(Zone* zone);
virtual bool DataEquals(HValue* other) {
HConstant* other_constant = HConstant::cast(other);
if (has_int32_value_) {
return other_constant->has_int32_value_ &&
int32_value_ == other_constant->int32_value_;
} else if (has_double_value_) {
return other_constant->has_double_value_ &&
BitCast<int64_t>(double_value_) ==
BitCast<int64_t>(other_constant->double_value_);
} else {
ASSERT(!handle_.is_null());
return !other_constant->handle_.is_null() &&
handle_.is_identical_to(other_constant->handle_);
}
}
private:
virtual bool IsDeletable() const { return true; }
// If this is a numerical constant, handle_ either points to to the
// HeapObject the constant originated from or is null. If the
// constant is non-numeric, handle_ always points to a valid
// constant HeapObject.
Handle<Object> handle_;
// We store the HConstant in the most specific form safely possible.
// The two flags, has_int32_value_ and has_double_value_ tell us if
// int32_value_ and double_value_ hold valid, safe representations
// of the constant. has_int32_value_ implies has_double_value_ but
// not the converse.
bool has_int32_value_ : 1;
bool has_double_value_ : 1;
int32_t int32_value_;
double double_value_;
};
class HBinaryOperation: public HTemplateInstruction<3> {
public:
HBinaryOperation(HValue* context, HValue* left, HValue* right)
: observed_output_representation_(Representation::None()) {
ASSERT(left != NULL && right != NULL);
SetOperandAt(0, context);
SetOperandAt(1, left);
SetOperandAt(2, right);
observed_input_representation_[0] = Representation::None();
observed_input_representation_[1] = Representation::None();
}
HValue* context() { return OperandAt(0); }
HValue* left() { return OperandAt(1); }
HValue* right() { return OperandAt(2); }
// TODO(kasperl): Move these helpers to the IA-32 Lithium
// instruction sequence builder.
HValue* LeastConstantOperand() {
if (IsCommutative() && left()->IsConstant()) return right();
return left();
}
HValue* MostConstantOperand() {
if (IsCommutative() && left()->IsConstant()) return left();
return right();
}
void set_observed_input_representation(Representation left,
Representation right) {
observed_input_representation_[0] = left;
observed_input_representation_[1] = right;
}
virtual void initialize_output_representation(Representation observed) {
observed_output_representation_ = observed;
}
virtual Representation observed_input_representation(int index) {
if (index == 0) return Representation::Tagged();
return observed_input_representation_[index - 1];
}
virtual void InferRepresentation(HInferRepresentation* h_infer);
virtual Representation RepresentationFromInputs();
virtual void AssumeRepresentation(Representation r);
virtual bool IsCommutative() const { return false; }
virtual void PrintDataTo(StringStream* stream);
DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation)
private:
Representation observed_input_representation_[2];
Representation observed_output_representation_;
};
class HWrapReceiver: public HTemplateInstruction<2> {
public:
HWrapReceiver(HValue* receiver, HValue* function) {
set_representation(Representation::Tagged());
SetOperandAt(0, receiver);
SetOperandAt(1, function);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* receiver() { return OperandAt(0); }
HValue* function() { return OperandAt(1); }
virtual HValue* Canonicalize();
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(WrapReceiver)
};
class HApplyArguments: public HTemplateInstruction<4> {
public:
HApplyArguments(HValue* function,
HValue* receiver,
HValue* length,
HValue* elements) {
set_representation(Representation::Tagged());
SetOperandAt(0, function);
SetOperandAt(1, receiver);
SetOperandAt(2, length);
SetOperandAt(3, elements);
SetAllSideEffects();
}
virtual Representation RequiredInputRepresentation(int index) {
// The length is untagged, all other inputs are tagged.
return (index == 2)
? Representation::Integer32()
: Representation::Tagged();
}
HValue* function() { return OperandAt(0); }
HValue* receiver() { return OperandAt(1); }
HValue* length() { return OperandAt(2); }
HValue* elements() { return OperandAt(3); }
DECLARE_CONCRETE_INSTRUCTION(ApplyArguments)
};
class HArgumentsElements: public HTemplateInstruction<0> {
public:
explicit HArgumentsElements(bool from_inlined) : from_inlined_(from_inlined) {
// The value produced by this instruction is a pointer into the stack
// that looks as if it was a smi because of alignment.
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
DECLARE_CONCRETE_INSTRUCTION(ArgumentsElements)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
bool from_inlined() const { return from_inlined_; }
protected:
virtual bool DataEquals(HValue* other) { return true; }
private:
virtual bool IsDeletable() const { return true; }
bool from_inlined_;
};
class HArgumentsLength: public HUnaryOperation {
public:
explicit HArgumentsLength(HValue* value) : HUnaryOperation(value) {
set_representation(Representation::Integer32());
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(ArgumentsLength)
protected:
virtual bool DataEquals(HValue* other) { return true; }
private:
virtual bool IsDeletable() const { return true; }
};
class HAccessArgumentsAt: public HTemplateInstruction<3> {
public:
HAccessArgumentsAt(HValue* arguments, HValue* length, HValue* index) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetOperandAt(0, arguments);
SetOperandAt(1, length);
SetOperandAt(2, index);
}
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
// The arguments elements is considered tagged.
return index == 0
? Representation::Tagged()
: Representation::Integer32();
}
HValue* arguments() { return OperandAt(0); }
HValue* length() { return OperandAt(1); }
HValue* index() { return OperandAt(2); }
DECLARE_CONCRETE_INSTRUCTION(AccessArgumentsAt)
virtual bool DataEquals(HValue* other) { return true; }
};
enum BoundsCheckKeyMode {
DONT_ALLOW_SMI_KEY,
ALLOW_SMI_KEY
};
class HBoundsCheck: public HTemplateInstruction<2> {
public:
HBoundsCheck(HValue* index, HValue* length,
BoundsCheckKeyMode key_mode = DONT_ALLOW_SMI_KEY)
: key_mode_(key_mode) {
SetOperandAt(0, index);
SetOperandAt(1, length);
set_representation(Representation::Integer32());
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int arg_index) {
if (key_mode_ == DONT_ALLOW_SMI_KEY ||
!length()->representation().IsTagged()) {
return Representation::Integer32();
}
// If the index is tagged and isn't constant, then allow the length
// to be tagged, since it is usually already tagged from loading it out of
// the length field of a JSArray. This allows for direct comparison without
// untagging.
if (index()->representation().IsTagged() && !index()->IsConstant()) {
return Representation::Tagged();
}
// Also allow the length to be tagged if the index is constant, because
// it can be tagged to allow direct comparison.
if (index()->IsConstant() &&
index()->representation().IsInteger32() &&
arg_index == 1) {
return Representation::Tagged();
}
return Representation::Integer32();
}
virtual Representation observed_input_representation(int index) {
return Representation::Integer32();
}
virtual void PrintDataTo(StringStream* stream);
HValue* index() { return OperandAt(0); }
HValue* length() { return OperandAt(1); }
DECLARE_CONCRETE_INSTRUCTION(BoundsCheck)
protected:
virtual bool DataEquals(HValue* other) { return true; }
BoundsCheckKeyMode key_mode_;
};
class HBitwiseBinaryOperation: public HBinaryOperation {
public:
HBitwiseBinaryOperation(HValue* context, HValue* left, HValue* right)
: HBinaryOperation(context, left, right) {
SetFlag(kFlexibleRepresentation);
SetFlag(kTruncatingToInt32);
SetAllSideEffects();
}
virtual Representation RequiredInputRepresentation(int index) {
return index == 0
? Representation::Tagged()
: representation();
}
virtual void RepresentationChanged(Representation to) {
if (!to.IsTagged()) {
ASSERT(to.IsInteger32());
ClearAllSideEffects();
SetFlag(kUseGVN);
} else {
SetAllSideEffects();
ClearFlag(kUseGVN);
}
}
virtual void UpdateRepresentation(Representation new_rep,
HInferRepresentation* h_infer,
const char* reason) {
// We only generate either int32 or generic tagged bitwise operations.
if (new_rep.IsDouble()) new_rep = Representation::Integer32();
HValue::UpdateRepresentation(new_rep, h_infer, reason);
}
virtual void initialize_output_representation(Representation observed) {
if (observed.IsDouble()) observed = Representation::Integer32();
HBinaryOperation::initialize_output_representation(observed);
}
virtual HType CalculateInferredType();
DECLARE_ABSTRACT_INSTRUCTION(BitwiseBinaryOperation)
private:
virtual bool IsDeletable() const { return true; }
};
class HMathFloorOfDiv: public HBinaryOperation {
public:
HMathFloorOfDiv(HValue* context, HValue* left, HValue* right)
: HBinaryOperation(context, left, right) {
set_representation(Representation::Integer32());
SetFlag(kUseGVN);
SetFlag(kCanOverflow);
if (!right->IsConstant()) {
SetFlag(kCanBeDivByZero);
}
}
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Integer32();
}
DECLARE_CONCRETE_INSTRUCTION(MathFloorOfDiv)
protected:
virtual bool DataEquals(HValue* other) { return true; }
private:
virtual bool IsDeletable() const { return true; }
};
class HArithmeticBinaryOperation: public HBinaryOperation {
public:
HArithmeticBinaryOperation(HValue* context, HValue* left, HValue* right)
: HBinaryOperation(context, left, right) {
SetAllSideEffects();
SetFlag(kFlexibleRepresentation);
}
virtual void RepresentationChanged(Representation to) {
if (to.IsTagged()) {
SetAllSideEffects();
ClearFlag(kUseGVN);
} else {
ClearAllSideEffects();
SetFlag(kUseGVN);
}
}
virtual HType CalculateInferredType();
virtual Representation RequiredInputRepresentation(int index) {
return index == 0
? Representation::Tagged()
: representation();
}
private:
virtual bool IsDeletable() const { return true; }
};
class HCompareGeneric: public HBinaryOperation {
public:
HCompareGeneric(HValue* context,
HValue* left,
HValue* right,
Token::Value token)
: HBinaryOperation(context, left, right), token_(token) {
ASSERT(Token::IsCompareOp(token));
set_representation(Representation::Tagged());
SetAllSideEffects();
}
virtual Representation RequiredInputRepresentation(int index) {
return index == 0
? Representation::Tagged()
: representation();
}
Token::Value token() const { return token_; }
virtual void PrintDataTo(StringStream* stream);
virtual HType CalculateInferredType();
DECLARE_CONCRETE_INSTRUCTION(CompareGeneric)
private:
Token::Value token_;
};
class HCompareIDAndBranch: public HTemplateControlInstruction<2, 2> {
public:
HCompareIDAndBranch(HValue* left, HValue* right, Token::Value token)
: token_(token) {
SetFlag(kFlexibleRepresentation);
ASSERT(Token::IsCompareOp(token));
SetOperandAt(0, left);
SetOperandAt(1, right);
}
HValue* left() { return OperandAt(0); }
HValue* right() { return OperandAt(1); }
Token::Value token() const { return token_; }
void set_observed_input_representation(Representation left,
Representation right) {
observed_input_representation_[0] = left;
observed_input_representation_[1] = right;
}
virtual void InferRepresentation(HInferRepresentation* h_infer);
virtual Representation RequiredInputRepresentation(int index) {
return representation();
}
virtual Representation observed_input_representation(int index) {
return observed_input_representation_[index];
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(CompareIDAndBranch)
private:
Representation observed_input_representation_[2];
Token::Value token_;
};
class HCompareObjectEqAndBranch: public HTemplateControlInstruction<2, 2> {
public:
HCompareObjectEqAndBranch(HValue* left, HValue* right) {
SetOperandAt(0, left);
SetOperandAt(1, right);
}
HValue* left() { return OperandAt(0); }
HValue* right() { return OperandAt(1); }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(CompareObjectEqAndBranch)
};
class HCompareConstantEqAndBranch: public HUnaryControlInstruction {
public:
HCompareConstantEqAndBranch(HValue* left, int right, Token::Value op)
: HUnaryControlInstruction(left, NULL, NULL), op_(op), right_(right) {
ASSERT(op == Token::EQ_STRICT);
}
Token::Value op() const { return op_; }
HValue* left() { return value(); }
int right() const { return right_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Integer32();
}
DECLARE_CONCRETE_INSTRUCTION(CompareConstantEqAndBranch);
private:
const Token::Value op_;
const int right_;
};
class HIsNilAndBranch: public HUnaryControlInstruction {
public:
HIsNilAndBranch(HValue* value, EqualityKind kind, NilValue nil)
: HUnaryControlInstruction(value, NULL, NULL), kind_(kind), nil_(nil) { }
EqualityKind kind() const { return kind_; }
NilValue nil() const { return nil_; }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual Representation observed_input_representation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(IsNilAndBranch)
private:
EqualityKind kind_;
NilValue nil_;
};
class HIsObjectAndBranch: public HUnaryControlInstruction {
public:
explicit HIsObjectAndBranch(HValue* value)
: HUnaryControlInstruction(value, NULL, NULL) { }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(IsObjectAndBranch)
};
class HIsStringAndBranch: public HUnaryControlInstruction {
public:
explicit HIsStringAndBranch(HValue* value)
: HUnaryControlInstruction(value, NULL, NULL) { }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(IsStringAndBranch)
};
class HIsSmiAndBranch: public HUnaryControlInstruction {
public:
explicit HIsSmiAndBranch(HValue* value)
: HUnaryControlInstruction(value, NULL, NULL) { }
DECLARE_CONCRETE_INSTRUCTION(IsSmiAndBranch)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HIsUndetectableAndBranch: public HUnaryControlInstruction {
public:
explicit HIsUndetectableAndBranch(HValue* value)
: HUnaryControlInstruction(value, NULL, NULL) { }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(IsUndetectableAndBranch)
};
class HStringCompareAndBranch: public HTemplateControlInstruction<2, 3> {
public:
HStringCompareAndBranch(HValue* context,
HValue* left,
HValue* right,
Token::Value token)
: token_(token) {
ASSERT(Token::IsCompareOp(token));
SetOperandAt(0, context);
SetOperandAt(1, left);
SetOperandAt(2, right);
set_representation(Representation::Tagged());
}
HValue* context() { return OperandAt(0); }
HValue* left() { return OperandAt(1); }
HValue* right() { return OperandAt(2); }
Token::Value token() const { return token_; }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
Representation GetInputRepresentation() const {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(StringCompareAndBranch)
private:
Token::Value token_;
};
class HIsConstructCallAndBranch: public HTemplateControlInstruction<2, 0> {
public:
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(IsConstructCallAndBranch)
};
class HHasInstanceTypeAndBranch: public HUnaryControlInstruction {
public:
HHasInstanceTypeAndBranch(HValue* value, InstanceType type)
: HUnaryControlInstruction(value, NULL, NULL), from_(type), to_(type) { }
HHasInstanceTypeAndBranch(HValue* value, InstanceType from, InstanceType to)
: HUnaryControlInstruction(value, NULL, NULL), from_(from), to_(to) {
ASSERT(to == LAST_TYPE); // Others not implemented yet in backend.
}
InstanceType from() { return from_; }
InstanceType to() { return to_; }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(HasInstanceTypeAndBranch)
private:
InstanceType from_;
InstanceType to_; // Inclusive range, not all combinations work.
};
class HHasCachedArrayIndexAndBranch: public HUnaryControlInstruction {
public:
explicit HHasCachedArrayIndexAndBranch(HValue* value)
: HUnaryControlInstruction(value, NULL, NULL) { }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(HasCachedArrayIndexAndBranch)
};
class HGetCachedArrayIndex: public HUnaryOperation {
public:
explicit HGetCachedArrayIndex(HValue* value) : HUnaryOperation(value) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(GetCachedArrayIndex)
protected:
virtual bool DataEquals(HValue* other) { return true; }
private:
virtual bool IsDeletable() const { return true; }
};
class HClassOfTestAndBranch: public HUnaryControlInstruction {
public:
HClassOfTestAndBranch(HValue* value, Handle<String> class_name)
: HUnaryControlInstruction(value, NULL, NULL),
class_name_(class_name) { }
DECLARE_CONCRETE_INSTRUCTION(ClassOfTestAndBranch)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
Handle<String> class_name() const { return class_name_; }
private:
Handle<String> class_name_;
};
class HTypeofIsAndBranch: public HUnaryControlInstruction {
public:
HTypeofIsAndBranch(HValue* value, Handle<String> type_literal)
: HUnaryControlInstruction(value, NULL, NULL),
type_literal_(type_literal) { }
Handle<String> type_literal() { return type_literal_; }
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(TypeofIsAndBranch)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
private:
Handle<String> type_literal_;
};
class HInstanceOf: public HBinaryOperation {
public:
HInstanceOf(HValue* context, HValue* left, HValue* right)
: HBinaryOperation(context, left, right) {
set_representation(Representation::Tagged());
SetAllSideEffects();
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(InstanceOf)
};
class HInstanceOfKnownGlobal: public HTemplateInstruction<2> {
public:
HInstanceOfKnownGlobal(HValue* context,
HValue* left,
Handle<JSFunction> right)
: function_(right) {
SetOperandAt(0, context);
SetOperandAt(1, left);
set_representation(Representation::Tagged());
SetAllSideEffects();
}
HValue* context() { return OperandAt(0); }
HValue* left() { return OperandAt(1); }
Handle<JSFunction> function() { return function_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
DECLARE_CONCRETE_INSTRUCTION(InstanceOfKnownGlobal)
private:
Handle<JSFunction> function_;
};
class HPower: public HTemplateInstruction<2> {
public:
HPower(HValue* left, HValue* right) {
SetOperandAt(0, left);
SetOperandAt(1, right);
set_representation(Representation::Double());
SetFlag(kUseGVN);
SetGVNFlag(kChangesNewSpacePromotion);
}
HValue* left() { return OperandAt(0); }
HValue* right() const { return OperandAt(1); }
virtual Representation RequiredInputRepresentation(int index) {
return index == 0
? Representation::Double()
: Representation::None();
}
virtual Representation observed_input_representation(int index) {
return RequiredInputRepresentation(index);
}
DECLARE_CONCRETE_INSTRUCTION(Power)
protected:
virtual bool DataEquals(HValue* other) { return true; }
private:
virtual bool IsDeletable() const {
return !right()->representation().IsTagged();
}
};
class HRandom: public HTemplateInstruction<1> {
public:
explicit HRandom(HValue* global_object) {
SetOperandAt(0, global_object);
set_representation(Representation::Double());
}
HValue* global_object() { return OperandAt(0); }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(Random)
private:
virtual bool IsDeletable() const { return true; }
};
class HAdd: public HArithmeticBinaryOperation {
public:
HAdd(HValue* context, HValue* left, HValue* right)
: HArithmeticBinaryOperation(context, left, right) {
SetFlag(kCanOverflow);
}
// Add is only commutative if two integer values are added and not if two
// tagged values are added (because it might be a String concatenation).
virtual bool IsCommutative() const {
return !representation().IsTagged();
}
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
static HInstruction* NewHAdd(Zone* zone,
HValue* context,
HValue* left,
HValue* right);
virtual HType CalculateInferredType();
virtual HValue* Canonicalize();
DECLARE_CONCRETE_INSTRUCTION(Add)
protected:
virtual bool DataEquals(HValue* other) { return true; }
virtual Range* InferRange(Zone* zone);
};
class HSub: public HArithmeticBinaryOperation {
public:
HSub(HValue* context, HValue* left, HValue* right)
: HArithmeticBinaryOperation(context, left, right) {
SetFlag(kCanOverflow);
}
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
virtual HValue* Canonicalize();
static HInstruction* NewHSub(Zone* zone,
HValue* context,
HValue* left,
HValue* right);
DECLARE_CONCRETE_INSTRUCTION(Sub)
protected:
virtual bool DataEquals(HValue* other) { return true; }
virtual Range* InferRange(Zone* zone);
};
class HMul: public HArithmeticBinaryOperation {
public:
HMul(HValue* context, HValue* left, HValue* right)
: HArithmeticBinaryOperation(context, left, right) {
SetFlag(kCanOverflow);
}
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
// Only commutative if it is certain that not two objects are multiplicated.
virtual bool IsCommutative() const {
return !representation().IsTagged();
}
static HInstruction* NewHMul(Zone* zone,
HValue* context,
HValue* left,
HValue* right);
DECLARE_CONCRETE_INSTRUCTION(Mul)
protected:
virtual bool DataEquals(HValue* other) { return true; }
virtual Range* InferRange(Zone* zone);
};
class HMod: public HArithmeticBinaryOperation {
public:
HMod(HValue* context, HValue* left, HValue* right)
: HArithmeticBinaryOperation(context, left, right) {
SetFlag(kCanBeDivByZero);
}
bool HasPowerOf2Divisor() {
if (right()->IsConstant() &&
HConstant::cast(right())->HasInteger32Value()) {
int32_t value = HConstant::cast(right())->Integer32Value();
return value != 0 && (IsPowerOf2(value) || IsPowerOf2(-value));
}
return false;
}
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
static HInstruction* NewHMod(Zone* zone,
HValue* context,
HValue* left,
HValue* right);
DECLARE_CONCRETE_INSTRUCTION(Mod)
protected:
virtual bool DataEquals(HValue* other) { return true; }
virtual Range* InferRange(Zone* zone);
};
class HDiv: public HArithmeticBinaryOperation {
public:
HDiv(HValue* context, HValue* left, HValue* right)
: HArithmeticBinaryOperation(context, left, right) {
SetFlag(kCanBeDivByZero);
SetFlag(kCanOverflow);
}
bool HasPowerOf2Divisor() {
if (right()->IsConstant() &&
HConstant::cast(right())->HasInteger32Value()) {
int32_t value = HConstant::cast(right())->Integer32Value();
return value != 0 && (IsPowerOf2(value) || IsPowerOf2(-value));
}
return false;
}
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
static HInstruction* NewHDiv(Zone* zone,
HValue* context,
HValue* left,
HValue* right);
DECLARE_CONCRETE_INSTRUCTION(Div)
protected:
virtual bool DataEquals(HValue* other) { return true; }
virtual Range* InferRange(Zone* zone);
};
class HMathMinMax: public HArithmeticBinaryOperation {
public:
enum Operation { kMathMin, kMathMax };
HMathMinMax(HValue* context, HValue* left, HValue* right, Operation op)
: HArithmeticBinaryOperation(context, left, right),
operation_(op) { }
virtual Representation RequiredInputRepresentation(int index) {
return index == 0 ? Representation::Tagged()
: representation();
}
virtual Representation observed_input_representation(int index) {
return RequiredInputRepresentation(index);
}
virtual void InferRepresentation(HInferRepresentation* h_infer);
virtual Representation RepresentationFromInputs() {
Representation left_rep = left()->representation();
Representation right_rep = right()->representation();
if ((left_rep.IsNone() || left_rep.IsInteger32()) &&
(right_rep.IsNone() || right_rep.IsInteger32())) {
return Representation::Integer32();
}
return Representation::Double();
}
virtual bool IsCommutative() const { return true; }
Operation operation() { return operation_; }
DECLARE_CONCRETE_INSTRUCTION(MathMinMax)
protected:
virtual bool DataEquals(HValue* other) {
return other->IsMathMinMax() &&
HMathMinMax::cast(other)->operation_ == operation_;
}
virtual Range* InferRange(Zone* zone);
private:
Operation operation_;
};
class HBitwise: public HBitwiseBinaryOperation {
public:
HBitwise(Token::Value op, HValue* context, HValue* left, HValue* right)
: HBitwiseBinaryOperation(context, left, right), op_(op) {
ASSERT(op == Token::BIT_AND ||
op == Token::BIT_OR ||
op == Token::BIT_XOR);
}
Token::Value op() const { return op_; }
virtual bool IsCommutative() const { return true; }
virtual HValue* Canonicalize();
static HInstruction* NewHBitwise(Zone* zone,
Token::Value op,
HValue* context,
HValue* left,
HValue* right);
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(Bitwise)
protected:
virtual bool DataEquals(HValue* other) {
return op() == HBitwise::cast(other)->op();
}
virtual Range* InferRange(Zone* zone);
private:
Token::Value op_;
};
class HShl: public HBitwiseBinaryOperation {
public:
HShl(HValue* context, HValue* left, HValue* right)
: HBitwiseBinaryOperation(context, left, right) { }
virtual Range* InferRange(Zone* zone);
static HInstruction* NewHShl(Zone* zone,
HValue* context,
HValue* left,
HValue* right);
DECLARE_CONCRETE_INSTRUCTION(Shl)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HShr: public HBitwiseBinaryOperation {
public:
HShr(HValue* context, HValue* left, HValue* right)
: HBitwiseBinaryOperation(context, left, right) { }
virtual Range* InferRange(Zone* zone);
static HInstruction* NewHShr(Zone* zone,
HValue* context,
HValue* left,
HValue* right);
DECLARE_CONCRETE_INSTRUCTION(Shr)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HSar: public HBitwiseBinaryOperation {
public:
HSar(HValue* context, HValue* left, HValue* right)
: HBitwiseBinaryOperation(context, left, right) { }
virtual Range* InferRange(Zone* zone);
static HInstruction* NewHSar(Zone* zone,
HValue* context,
HValue* left,
HValue* right);
DECLARE_CONCRETE_INSTRUCTION(Sar)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HRor: public HBitwiseBinaryOperation {
public:
HRor(HValue* context, HValue* left, HValue* right)
: HBitwiseBinaryOperation(context, left, right) {
ChangeRepresentation(Representation::Integer32());
}
static HInstruction* NewHRor(Zone* zone,
HValue* context,
HValue* left,
HValue* right);
DECLARE_CONCRETE_INSTRUCTION(Ror)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HOsrEntry: public HTemplateInstruction<0> {
public:
explicit HOsrEntry(BailoutId ast_id) : ast_id_(ast_id) {
SetGVNFlag(kChangesOsrEntries);
}
BailoutId ast_id() const { return ast_id_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(OsrEntry)
private:
BailoutId ast_id_;
};
class HParameter: public HTemplateInstruction<0> {
public:
explicit HParameter(unsigned index) : index_(index) {
set_representation(Representation::Tagged());
}
unsigned index() const { return index_; }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(Parameter)
private:
unsigned index_;
};
class HCallStub: public HUnaryCall {
public:
HCallStub(HValue* context, CodeStub::Major major_key, int argument_count)
: HUnaryCall(context, argument_count),
major_key_(major_key),
transcendental_type_(TranscendentalCache::kNumberOfCaches) {
}
CodeStub::Major major_key() { return major_key_; }
HValue* context() { return value(); }
void set_transcendental_type(TranscendentalCache::Type transcendental_type) {
transcendental_type_ = transcendental_type;
}
TranscendentalCache::Type transcendental_type() {
return transcendental_type_;
}
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(CallStub)
private:
CodeStub::Major major_key_;
TranscendentalCache::Type transcendental_type_;
};
class HUnknownOSRValue: public HTemplateInstruction<0> {
public:
HUnknownOSRValue()
: incoming_value_(NULL) {
set_representation(Representation::Tagged());
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
void set_incoming_value(HPhi* value) {
incoming_value_ = value;
}
HPhi* incoming_value() {
return incoming_value_;
}
DECLARE_CONCRETE_INSTRUCTION(UnknownOSRValue)
private:
HPhi* incoming_value_;
};
class HLoadGlobalCell: public HTemplateInstruction<0> {
public:
HLoadGlobalCell(Handle<JSGlobalPropertyCell> cell, PropertyDetails details)
: cell_(cell), details_(details) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnGlobalVars);
}
Handle<JSGlobalPropertyCell> cell() const { return cell_; }
bool RequiresHoleCheck() const;
virtual void PrintDataTo(StringStream* stream);
virtual intptr_t Hashcode() {
ASSERT_ALLOCATION_DISABLED;
// Dereferencing to use the object's raw address for hashing is safe.
AllowHandleDereference allow_handle_deref;
return reinterpret_cast<intptr_t>(*cell_);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(LoadGlobalCell)
protected:
virtual bool DataEquals(HValue* other) {
HLoadGlobalCell* b = HLoadGlobalCell::cast(other);
return cell_.is_identical_to(b->cell());
}
private:
virtual bool IsDeletable() const { return !RequiresHoleCheck(); }
Handle<JSGlobalPropertyCell> cell_;
PropertyDetails details_;
};
class HLoadGlobalGeneric: public HTemplateInstruction<2> {
public:
HLoadGlobalGeneric(HValue* context,
HValue* global_object,
Handle<Object> name,
bool for_typeof)
: name_(name),
for_typeof_(for_typeof) {
SetOperandAt(0, context);
SetOperandAt(1, global_object);
set_representation(Representation::Tagged());
SetAllSideEffects();
}
HValue* context() { return OperandAt(0); }
HValue* global_object() { return OperandAt(1); }
Handle<Object> name() const { return name_; }
bool for_typeof() const { return for_typeof_; }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(LoadGlobalGeneric)
private:
Handle<Object> name_;
bool for_typeof_;
};
inline bool StoringValueNeedsWriteBarrier(HValue* value) {
return !value->type().IsBoolean()
&& !value->type().IsSmi()
&& !(value->IsConstant() && HConstant::cast(value)->ImmortalImmovable());
}
inline bool ReceiverObjectNeedsWriteBarrier(HValue* object,
HValue* new_space_dominator) {
return (!object->IsAllocateObject() && !object->IsFastLiteral()) ||
(object != new_space_dominator);
}
class HStoreGlobalCell: public HUnaryOperation {
public:
HStoreGlobalCell(HValue* value,
Handle<JSGlobalPropertyCell> cell,
PropertyDetails details)
: HUnaryOperation(value),
cell_(cell),
details_(details) {
SetGVNFlag(kChangesGlobalVars);
}
Handle<JSGlobalPropertyCell> cell() const { return cell_; }
bool RequiresHoleCheck() {
return !details_.IsDontDelete() || details_.IsReadOnly();
}
bool NeedsWriteBarrier() {
return StoringValueNeedsWriteBarrier(value());
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(StoreGlobalCell)
private:
Handle<JSGlobalPropertyCell> cell_;
PropertyDetails details_;
};
class HStoreGlobalGeneric: public HTemplateInstruction<3> {
public:
HStoreGlobalGeneric(HValue* context,
HValue* global_object,
Handle<Object> name,
HValue* value,
StrictModeFlag strict_mode_flag)
: name_(name),
strict_mode_flag_(strict_mode_flag) {
SetOperandAt(0, context);
SetOperandAt(1, global_object);
SetOperandAt(2, value);
set_representation(Representation::Tagged());
SetAllSideEffects();
}
HValue* context() { return OperandAt(0); }
HValue* global_object() { return OperandAt(1); }
Handle<Object> name() const { return name_; }
HValue* value() { return OperandAt(2); }
StrictModeFlag strict_mode_flag() { return strict_mode_flag_; }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(StoreGlobalGeneric)
private:
Handle<Object> name_;
StrictModeFlag strict_mode_flag_;
};
class HLoadContextSlot: public HUnaryOperation {
public:
enum Mode {
// Perform a normal load of the context slot without checking its value.
kNoCheck,
// Load and check the value of the context slot. Deoptimize if it's the
// hole value. This is used for checking for loading of uninitialized
// harmony bindings where we deoptimize into full-codegen generated code
// which will subsequently throw a reference error.
kCheckDeoptimize,
// Load and check the value of the context slot. Return undefined if it's
// the hole value. This is used for non-harmony const assignments
kCheckReturnUndefined
};
HLoadContextSlot(HValue* context, Variable* var)
: HUnaryOperation(context), slot_index_(var->index()) {
ASSERT(var->IsContextSlot());
switch (var->mode()) {
case LET:
case CONST_HARMONY:
mode_ = kCheckDeoptimize;
break;
case CONST:
mode_ = kCheckReturnUndefined;
break;
default:
mode_ = kNoCheck;
}
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnContextSlots);
}
int slot_index() const { return slot_index_; }
Mode mode() const { return mode_; }
bool DeoptimizesOnHole() {
return mode_ == kCheckDeoptimize;
}
bool RequiresHoleCheck() const {
return mode_ != kNoCheck;
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(LoadContextSlot)
protected:
virtual bool DataEquals(HValue* other) {
HLoadContextSlot* b = HLoadContextSlot::cast(other);
return (slot_index() == b->slot_index());
}
private:
virtual bool IsDeletable() const { return !RequiresHoleCheck(); }
int slot_index_;
Mode mode_;
};
class HStoreContextSlot: public HTemplateInstruction<2> {
public:
enum Mode {
// Perform a normal store to the context slot without checking its previous
// value.
kNoCheck,
// Check the previous value of the context slot and deoptimize if it's the
// hole value. This is used for checking for assignments to uninitialized
// harmony bindings where we deoptimize into full-codegen generated code
// which will subsequently throw a reference error.
kCheckDeoptimize,
// Check the previous value and ignore assignment if it isn't a hole value
kCheckIgnoreAssignment
};
HStoreContextSlot(HValue* context, int slot_index, Mode mode, HValue* value)
: slot_index_(slot_index), mode_(mode) {
SetOperandAt(0, context);
SetOperandAt(1, value);
SetGVNFlag(kChangesContextSlots);
}
HValue* context() { return OperandAt(0); }
HValue* value() { return OperandAt(1); }
int slot_index() const { return slot_index_; }
Mode mode() const { return mode_; }
bool NeedsWriteBarrier() {
return StoringValueNeedsWriteBarrier(value());
}
bool DeoptimizesOnHole() {
return mode_ == kCheckDeoptimize;
}
bool RequiresHoleCheck() {
return mode_ != kNoCheck;
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(StoreContextSlot)
private:
int slot_index_;
Mode mode_;
};
class HLoadNamedField: public HUnaryOperation {
public:
HLoadNamedField(HValue* object, bool is_in_object, int offset)
: HUnaryOperation(object),
is_in_object_(is_in_object),
offset_(offset) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnMaps);
if (is_in_object) {
SetGVNFlag(kDependsOnInobjectFields);
} else {
SetGVNFlag(kDependsOnBackingStoreFields);
}
}
HValue* object() { return OperandAt(0); }
bool is_in_object() const { return is_in_object_; }
int offset() const { return offset_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(LoadNamedField)
protected:
virtual bool DataEquals(HValue* other) {
HLoadNamedField* b = HLoadNamedField::cast(other);
return is_in_object_ == b->is_in_object_ && offset_ == b->offset_;
}
private:
virtual bool IsDeletable() const { return true; }
bool is_in_object_;
int offset_;
};
class HLoadNamedFieldPolymorphic: public HTemplateInstruction<2> {
public:
HLoadNamedFieldPolymorphic(HValue* context,
HValue* object,
SmallMapList* types,
Handle<String> name,
Zone* zone);
HValue* context() { return OperandAt(0); }
HValue* object() { return OperandAt(1); }
SmallMapList* types() { return &types_; }
Handle<String> name() { return name_; }
bool need_generic() { return need_generic_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(LoadNamedFieldPolymorphic)
static const int kMaxLoadPolymorphism = 4;
protected:
virtual bool DataEquals(HValue* value);
private:
SmallMapList types_;
Handle<String> name_;
bool need_generic_;
};
class HLoadNamedGeneric: public HTemplateInstruction<2> {
public:
HLoadNamedGeneric(HValue* context, HValue* object, Handle<Object> name)
: name_(name) {
SetOperandAt(0, context);
SetOperandAt(1, object);
set_representation(Representation::Tagged());
SetAllSideEffects();
}
HValue* context() { return OperandAt(0); }
HValue* object() { return OperandAt(1); }
Handle<Object> name() const { return name_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(LoadNamedGeneric)
private:
Handle<Object> name_;
};
class HLoadFunctionPrototype: public HUnaryOperation {
public:
explicit HLoadFunctionPrototype(HValue* function)
: HUnaryOperation(function) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnCalls);
}
HValue* function() { return OperandAt(0); }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(LoadFunctionPrototype)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class ArrayInstructionInterface {
public:
virtual HValue* GetKey() = 0;
virtual void SetKey(HValue* key) = 0;
virtual void SetIndexOffset(uint32_t index_offset) = 0;
virtual bool IsDehoisted() = 0;
virtual void SetDehoisted(bool is_dehoisted) = 0;
virtual ~ArrayInstructionInterface() { };
};
class HLoadKeyed
: public HTemplateInstruction<3>, public ArrayInstructionInterface {
public:
HLoadKeyed(HValue* obj,
HValue* key,
HValue* dependency,
ElementsKind elements_kind)
: bit_field_(0) {
bit_field_ = ElementsKindField::encode(elements_kind);
SetOperandAt(0, obj);
SetOperandAt(1, key);
SetOperandAt(2, dependency != NULL ? dependency : obj);
if (!is_external()) {
// I can detect the case between storing double (holey and fast) and
// smi/object by looking at elements_kind_.
ASSERT(IsFastSmiOrObjectElementsKind(elements_kind) ||
IsFastDoubleElementsKind(elements_kind));
if (IsFastSmiOrObjectElementsKind(elements_kind)) {
if (IsFastSmiElementsKind(elements_kind) &&
IsFastPackedElementsKind(elements_kind)) {
set_type(HType::Smi());
}
set_representation(Representation::Tagged());
SetGVNFlag(kDependsOnArrayElements);
} else {
set_representation(Representation::Double());
SetGVNFlag(kDependsOnDoubleArrayElements);
}
} else {
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS ||
elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
set_representation(Representation::Double());
} else {
set_representation(Representation::Integer32());
}
SetGVNFlag(kDependsOnSpecializedArrayElements);
// Native code could change the specialized array.
SetGVNFlag(kDependsOnCalls);
}
SetFlag(kUseGVN);
}
bool is_external() const {
return IsExternalArrayElementsKind(elements_kind());
}
HValue* elements() { return OperandAt(0); }
HValue* key() { return OperandAt(1); }
HValue* dependency() {
ASSERT(HasDependency());
return OperandAt(2);
}
bool HasDependency() const { return OperandAt(0) != OperandAt(2); }
uint32_t index_offset() { return IndexOffsetField::decode(bit_field_); }
void SetIndexOffset(uint32_t index_offset) {
bit_field_ = IndexOffsetField::update(bit_field_, index_offset);
}
HValue* GetKey() { return key(); }
void SetKey(HValue* key) { SetOperandAt(1, key); }
bool IsDehoisted() { return IsDehoistedField::decode(bit_field_); }
void SetDehoisted(bool is_dehoisted) {
bit_field_ = IsDehoistedField::update(bit_field_, is_dehoisted);
}
ElementsKind elements_kind() const {
return ElementsKindField::decode(bit_field_);
}
virtual Representation RequiredInputRepresentation(int index) {
// kind_fast: tagged[int32] (none)
// kind_double: tagged[int32] (none)
// kind_external: external[int32] (none)
if (index == 0) {
return is_external() ? Representation::External()
: Representation::Tagged();
}
if (index == 1) return Representation::Integer32();
return Representation::None();
}
virtual Representation observed_input_representation(int index) {
return RequiredInputRepresentation(index);
}
virtual void PrintDataTo(StringStream* stream);
bool RequiresHoleCheck() const;
virtual Range* InferRange(Zone* zone);
DECLARE_CONCRETE_INSTRUCTION(LoadKeyed)
protected:
virtual bool DataEquals(HValue* other) {
if (!other->IsLoadKeyed()) return false;
HLoadKeyed* other_load = HLoadKeyed::cast(other);
if (IsDehoisted() && index_offset() != other_load->index_offset())
return false;
return elements_kind() == other_load->elements_kind();
}
private:
virtual bool IsDeletable() const {
return !RequiresHoleCheck();
}
// Establish some checks around our packed fields
enum LoadKeyedBits {
kBitsForElementsKind = 5,
kBitsForIndexOffset = 26,
kBitsForIsDehoisted = 1,
kStartElementsKind = 0,
kStartIndexOffset = kStartElementsKind + kBitsForElementsKind,
kStartIsDehoisted = kStartIndexOffset + kBitsForIndexOffset
};
STATIC_ASSERT((kBitsForElementsKind + kBitsForIndexOffset +
kBitsForIsDehoisted) <= sizeof(uint32_t)*8);
STATIC_ASSERT(kElementsKindCount <= (1 << kBitsForElementsKind));
class ElementsKindField:
public BitField<ElementsKind, kStartElementsKind, kBitsForElementsKind>
{}; // NOLINT
class IndexOffsetField:
public BitField<uint32_t, kStartIndexOffset, kBitsForIndexOffset>
{}; // NOLINT
class IsDehoistedField:
public BitField<bool, kStartIsDehoisted, kBitsForIsDehoisted>
{}; // NOLINT
uint32_t bit_field_;
};
class HLoadKeyedGeneric: public HTemplateInstruction<3> {
public:
HLoadKeyedGeneric(HValue* context, HValue* obj, HValue* key) {
set_representation(Representation::Tagged());
SetOperandAt(0, obj);
SetOperandAt(1, key);
SetOperandAt(2, context);
SetAllSideEffects();
}
HValue* object() { return OperandAt(0); }
HValue* key() { return OperandAt(1); }
HValue* context() { return OperandAt(2); }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
// tagged[tagged]
return Representation::Tagged();
}
virtual HValue* Canonicalize();
DECLARE_CONCRETE_INSTRUCTION(LoadKeyedGeneric)
};
class HStoreNamedField: public HTemplateInstruction<2> {
public:
HStoreNamedField(HValue* obj,
Handle<String> name,
HValue* val,
bool in_object,
int offset)
: name_(name),
is_in_object_(in_object),
offset_(offset),
new_space_dominator_(NULL) {
SetOperandAt(0, obj);
SetOperandAt(1, val);
SetFlag(kTrackSideEffectDominators);
SetGVNFlag(kDependsOnNewSpacePromotion);
if (is_in_object_) {
SetGVNFlag(kChangesInobjectFields);
} else {
SetGVNFlag(kChangesBackingStoreFields);
}
}
DECLARE_CONCRETE_INSTRUCTION(StoreNamedField)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void SetSideEffectDominator(GVNFlag side_effect, HValue* dominator) {
ASSERT(side_effect == kChangesNewSpacePromotion);
new_space_dominator_ = dominator;
}
virtual void PrintDataTo(StringStream* stream);
HValue* object() { return OperandAt(0); }
HValue* value() { return OperandAt(1); }
Handle<String> name() const { return name_; }
bool is_in_object() const { return is_in_object_; }
int offset() const { return offset_; }
Handle<Map> transition() const { return transition_; }
void set_transition(Handle<Map> map) { transition_ = map; }
HValue* new_space_dominator() const { return new_space_dominator_; }
bool NeedsWriteBarrier() {
return StoringValueNeedsWriteBarrier(value()) &&
ReceiverObjectNeedsWriteBarrier(object(), new_space_dominator());
}
bool NeedsWriteBarrierForMap() {
return ReceiverObjectNeedsWriteBarrier(object(), new_space_dominator());
}
private:
Handle<String> name_;
bool is_in_object_;
int offset_;
Handle<Map> transition_;
HValue* new_space_dominator_;
};
class HStoreNamedGeneric: public HTemplateInstruction<3> {
public:
HStoreNamedGeneric(HValue* context,
HValue* object,
Handle<String> name,
HValue* value,
StrictModeFlag strict_mode_flag)
: name_(name),
strict_mode_flag_(strict_mode_flag) {
SetOperandAt(0, object);
SetOperandAt(1, value);
SetOperandAt(2, context);
SetAllSideEffects();
}
HValue* object() { return OperandAt(0); }
HValue* value() { return OperandAt(1); }
HValue* context() { return OperandAt(2); }
Handle<String> name() { return name_; }
StrictModeFlag strict_mode_flag() { return strict_mode_flag_; }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(StoreNamedGeneric)
private:
Handle<String> name_;
StrictModeFlag strict_mode_flag_;
};
class HStoreKeyed
: public HTemplateInstruction<3>, public ArrayInstructionInterface {
public:
HStoreKeyed(HValue* obj, HValue* key, HValue* val,
ElementsKind elements_kind)
: elements_kind_(elements_kind), index_offset_(0), is_dehoisted_(false) {
SetOperandAt(0, obj);
SetOperandAt(1, key);
SetOperandAt(2, val);
if (is_external()) {
SetGVNFlag(kChangesSpecializedArrayElements);
} else if (IsFastDoubleElementsKind(elements_kind)) {
SetGVNFlag(kChangesDoubleArrayElements);
SetFlag(kDeoptimizeOnUndefined);
} else {
SetGVNFlag(kChangesArrayElements);
}
// EXTERNAL_{UNSIGNED_,}{BYTE,SHORT,INT}_ELEMENTS are truncating.
if (elements_kind >= EXTERNAL_BYTE_ELEMENTS &&
elements_kind <= EXTERNAL_UNSIGNED_INT_ELEMENTS) {
SetFlag(kTruncatingToInt32);
}
}
virtual Representation RequiredInputRepresentation(int index) {
// kind_fast: tagged[int32] = tagged
// kind_double: tagged[int32] = double
// kind_external: external[int32] = (double | int32)
if (index == 0) {
return is_external() ? Representation::External()
: Representation::Tagged();
} else if (index == 1) {
return Representation::Integer32();
}
ASSERT_EQ(index, 2);
if (IsDoubleOrFloatElementsKind(elements_kind())) {
return Representation::Double();
}
return is_external() ? Representation::Integer32()
: Representation::Tagged();
}
bool is_external() const {
return IsExternalArrayElementsKind(elements_kind());
}
virtual Representation observed_input_representation(int index) {
if (index < 2) return RequiredInputRepresentation(index);
if (IsDoubleOrFloatElementsKind(elements_kind())) {
return Representation::Double();
}
if (is_external()) {
return Representation::Integer32();
}
// For fast object elements kinds, don't assume anything.
return Representation::None();
}
HValue* elements() { return OperandAt(0); }
HValue* key() { return OperandAt(1); }
HValue* value() { return OperandAt(2); }
bool value_is_smi() const {
return IsFastSmiElementsKind(elements_kind_);
}
ElementsKind elements_kind() const { return elements_kind_; }
uint32_t index_offset() { return index_offset_; }
void SetIndexOffset(uint32_t index_offset) { index_offset_ = index_offset; }
HValue* GetKey() { return key(); }
void SetKey(HValue* key) { SetOperandAt(1, key); }
bool IsDehoisted() { return is_dehoisted_; }
void SetDehoisted(bool is_dehoisted) { is_dehoisted_ = is_dehoisted; }
bool NeedsWriteBarrier() {
if (value_is_smi()) {
return false;
} else {
return StoringValueNeedsWriteBarrier(value());
}
}
bool NeedsCanonicalization();
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(StoreKeyed)
private:
ElementsKind elements_kind_;
uint32_t index_offset_;
bool is_dehoisted_;
};
class HStoreKeyedGeneric: public HTemplateInstruction<4> {
public:
HStoreKeyedGeneric(HValue* context,
HValue* object,
HValue* key,
HValue* value,
StrictModeFlag strict_mode_flag)
: strict_mode_flag_(strict_mode_flag) {
SetOperandAt(0, object);
SetOperandAt(1, key);
SetOperandAt(2, value);
SetOperandAt(3, context);
SetAllSideEffects();
}
HValue* object() { return OperandAt(0); }
HValue* key() { return OperandAt(1); }
HValue* value() { return OperandAt(2); }
HValue* context() { return OperandAt(3); }
StrictModeFlag strict_mode_flag() { return strict_mode_flag_; }
virtual Representation RequiredInputRepresentation(int index) {
// tagged[tagged] = tagged
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(StoreKeyedGeneric)
private:
StrictModeFlag strict_mode_flag_;
};
class HTransitionElementsKind: public HTemplateInstruction<1> {
public:
HTransitionElementsKind(HValue* object,
Handle<Map> original_map,
Handle<Map> transitioned_map)
: original_map_(original_map),
transitioned_map_(transitioned_map),
from_kind_(original_map->elements_kind()),
to_kind_(transitioned_map->elements_kind()) {
SetOperandAt(0, object);
SetFlag(kUseGVN);
SetGVNFlag(kChangesElementsKind);
if (original_map->has_fast_double_elements()) {
SetGVNFlag(kChangesElementsPointer);
SetGVNFlag(kChangesNewSpacePromotion);
}
if (transitioned_map->has_fast_double_elements()) {
SetGVNFlag(kChangesElementsPointer);
SetGVNFlag(kChangesNewSpacePromotion);
}
set_representation(Representation::Tagged());
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* object() { return OperandAt(0); }
Handle<Map> original_map() { return original_map_; }
Handle<Map> transitioned_map() { return transitioned_map_; }
ElementsKind from_kind() { return from_kind_; }
ElementsKind to_kind() { return to_kind_; }
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(TransitionElementsKind)
protected:
virtual bool DataEquals(HValue* other) {
HTransitionElementsKind* instr = HTransitionElementsKind::cast(other);
return original_map_.is_identical_to(instr->original_map()) &&
transitioned_map_.is_identical_to(instr->transitioned_map());
}
private:
Handle<Map> original_map_;
Handle<Map> transitioned_map_;
ElementsKind from_kind_;
ElementsKind to_kind_;
};
class HStringAdd: public HBinaryOperation {
public:
HStringAdd(HValue* context, HValue* left, HValue* right)
: HBinaryOperation(context, left, right) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnMaps);
SetGVNFlag(kChangesNewSpacePromotion);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType() {
return HType::String();
}
DECLARE_CONCRETE_INSTRUCTION(StringAdd)
protected:
virtual bool DataEquals(HValue* other) { return true; }
// TODO(svenpanne) Might be safe, but leave it out until we know for sure.
// private:
// virtual bool IsDeletable() const { return true; }
};
class HStringCharCodeAt: public HTemplateInstruction<3> {
public:
HStringCharCodeAt(HValue* context, HValue* string, HValue* index) {
SetOperandAt(0, context);
SetOperandAt(1, string);
SetOperandAt(2, index);
set_representation(Representation::Integer32());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnMaps);
SetGVNFlag(kChangesNewSpacePromotion);
}
virtual Representation RequiredInputRepresentation(int index) {
// The index is supposed to be Integer32.
return index == 2
? Representation::Integer32()
: Representation::Tagged();
}
HValue* context() { return OperandAt(0); }
HValue* string() { return OperandAt(1); }
HValue* index() { return OperandAt(2); }
DECLARE_CONCRETE_INSTRUCTION(StringCharCodeAt)
protected:
virtual bool DataEquals(HValue* other) { return true; }
virtual Range* InferRange(Zone* zone) {
return new(zone) Range(0, String::kMaxUtf16CodeUnit);
}
// TODO(svenpanne) Might be safe, but leave it out until we know for sure.
// private:
// virtual bool IsDeletable() const { return true; }
};
class HStringCharFromCode: public HTemplateInstruction<2> {
public:
HStringCharFromCode(HValue* context, HValue* char_code) {
SetOperandAt(0, context);
SetOperandAt(1, char_code);
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kChangesNewSpacePromotion);
}
virtual Representation RequiredInputRepresentation(int index) {
return index == 0
? Representation::Tagged()
: Representation::Integer32();
}
virtual HType CalculateInferredType();
HValue* context() { return OperandAt(0); }
HValue* value() { return OperandAt(1); }
virtual bool DataEquals(HValue* other) { return true; }
DECLARE_CONCRETE_INSTRUCTION(StringCharFromCode)
// TODO(svenpanne) Might be safe, but leave it out until we know for sure.
// private:
// virtual bool IsDeletable() const { return true; }
};
class HStringLength: public HUnaryOperation {
public:
explicit HStringLength(HValue* string) : HUnaryOperation(string) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnMaps);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType() {
STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
return HType::Smi();
}
DECLARE_CONCRETE_INSTRUCTION(StringLength)
protected:
virtual bool DataEquals(HValue* other) { return true; }
virtual Range* InferRange(Zone* zone) {
return new(zone) Range(0, String::kMaxLength);
}
private:
virtual bool IsDeletable() const { return true; }
};
class HAllocateObject: public HTemplateInstruction<1> {
public:
HAllocateObject(HValue* context, Handle<JSFunction> constructor)
: constructor_(constructor) {
SetOperandAt(0, context);
set_representation(Representation::Tagged());
SetGVNFlag(kChangesNewSpacePromotion);
}
// Maximum instance size for which allocations will be inlined.
static const int kMaxSize = 64 * kPointerSize;
HValue* context() { return OperandAt(0); }
Handle<JSFunction> constructor() { return constructor_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual Handle<Map> GetMonomorphicJSObjectMap() {
ASSERT(constructor()->has_initial_map());
return Handle<Map>(constructor()->initial_map());
}
virtual HType CalculateInferredType();
DECLARE_CONCRETE_INSTRUCTION(AllocateObject)
private:
// TODO(svenpanne) Might be safe, but leave it out until we know for sure.
// virtual bool IsDeletable() const { return true; }
Handle<JSFunction> constructor_;
};
template <int V>
class HMaterializedLiteral: public HTemplateInstruction<V> {
public:
HMaterializedLiteral<V>(int index, int depth, AllocationSiteMode mode)
: literal_index_(index), depth_(depth), allocation_site_mode_(mode) {
this->set_representation(Representation::Tagged());
}
HMaterializedLiteral<V>(int index, int depth)
: literal_index_(index), depth_(depth),
allocation_site_mode_(DONT_TRACK_ALLOCATION_SITE) {
this->set_representation(Representation::Tagged());
}
int literal_index() const { return literal_index_; }
int depth() const { return depth_; }
AllocationSiteMode allocation_site_mode() const {
return allocation_site_mode_;
}
private:
virtual bool IsDeletable() const { return true; }
int literal_index_;
int depth_;
AllocationSiteMode allocation_site_mode_;
};
class HFastLiteral: public HMaterializedLiteral<1> {
public:
HFastLiteral(HValue* context,
Handle<JSObject> boilerplate,
int total_size,
int literal_index,
int depth,
AllocationSiteMode mode)
: HMaterializedLiteral<1>(literal_index, depth, mode),
boilerplate_(boilerplate),
total_size_(total_size) {
SetOperandAt(0, context);
SetGVNFlag(kChangesNewSpacePromotion);
}
// Maximum depth and total number of elements and properties for literal
// graphs to be considered for fast deep-copying.
static const int kMaxLiteralDepth = 3;
static const int kMaxLiteralProperties = 8;
HValue* context() { return OperandAt(0); }
Handle<JSObject> boilerplate() const { return boilerplate_; }
int total_size() const { return total_size_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual Handle<Map> GetMonomorphicJSObjectMap() {
return Handle<Map>(boilerplate()->map());
}
virtual HType CalculateInferredType();
DECLARE_CONCRETE_INSTRUCTION(FastLiteral)
private:
Handle<JSObject> boilerplate_;
int total_size_;
};
class HArrayLiteral: public HMaterializedLiteral<1> {
public:
HArrayLiteral(HValue* context,
Handle<HeapObject> boilerplate_object,
int length,
int literal_index,
int depth,
AllocationSiteMode mode)
: HMaterializedLiteral<1>(literal_index, depth, mode),
length_(length),
boilerplate_object_(boilerplate_object) {
SetOperandAt(0, context);
SetGVNFlag(kChangesNewSpacePromotion);
}
HValue* context() { return OperandAt(0); }
ElementsKind boilerplate_elements_kind() const {
if (!boilerplate_object_->IsJSObject()) {
return TERMINAL_FAST_ELEMENTS_KIND;
}
return Handle<JSObject>::cast(boilerplate_object_)->GetElementsKind();
}
Handle<HeapObject> boilerplate_object() const { return boilerplate_object_; }
int length() const { return length_; }
bool IsCopyOnWrite() const;
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
DECLARE_CONCRETE_INSTRUCTION(ArrayLiteral)
private:
int length_;
Handle<HeapObject> boilerplate_object_;
};
class HObjectLiteral: public HMaterializedLiteral<1> {
public:
HObjectLiteral(HValue* context,
Handle<FixedArray> constant_properties,
bool fast_elements,
int literal_index,
int depth,
bool has_function)
: HMaterializedLiteral<1>(literal_index, depth),
constant_properties_(constant_properties),
fast_elements_(fast_elements),
has_function_(has_function) {
SetOperandAt(0, context);
SetGVNFlag(kChangesNewSpacePromotion);
}
HValue* context() { return OperandAt(0); }
Handle<FixedArray> constant_properties() const {
return constant_properties_;
}
bool fast_elements() const { return fast_elements_; }
bool has_function() const { return has_function_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
DECLARE_CONCRETE_INSTRUCTION(ObjectLiteral)
private:
Handle<FixedArray> constant_properties_;
bool fast_elements_;
bool has_function_;
};
class HRegExpLiteral: public HMaterializedLiteral<1> {
public:
HRegExpLiteral(HValue* context,
Handle<FixedArray> literals,
Handle<String> pattern,
Handle<String> flags,
int literal_index)
: HMaterializedLiteral<1>(literal_index, 0),
literals_(literals),
pattern_(pattern),
flags_(flags) {
SetOperandAt(0, context);
SetAllSideEffects();
}
HValue* context() { return OperandAt(0); }
Handle<FixedArray> literals() { return literals_; }
Handle<String> pattern() { return pattern_; }
Handle<String> flags() { return flags_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
DECLARE_CONCRETE_INSTRUCTION(RegExpLiteral)
private:
Handle<FixedArray> literals_;
Handle<String> pattern_;
Handle<String> flags_;
};
class HFunctionLiteral: public HTemplateInstruction<1> {
public:
HFunctionLiteral(HValue* context,
Handle<SharedFunctionInfo> shared,
bool pretenure)
: shared_info_(shared), pretenure_(pretenure) {
SetOperandAt(0, context);
set_representation(Representation::Tagged());
SetGVNFlag(kChangesNewSpacePromotion);
}
HValue* context() { return OperandAt(0); }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
DECLARE_CONCRETE_INSTRUCTION(FunctionLiteral)
Handle<SharedFunctionInfo> shared_info() const { return shared_info_; }
bool pretenure() const { return pretenure_; }
private:
virtual bool IsDeletable() const { return true; }
Handle<SharedFunctionInfo> shared_info_;
bool pretenure_;
};
class HTypeof: public HTemplateInstruction<2> {
public:
explicit HTypeof(HValue* context, HValue* value) {
SetOperandAt(0, context);
SetOperandAt(1, value);
set_representation(Representation::Tagged());
}
HValue* context() { return OperandAt(0); }
HValue* value() { return OperandAt(1); }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(Typeof)
private:
virtual bool IsDeletable() const { return true; }
};
class HToFastProperties: public HUnaryOperation {
public:
explicit HToFastProperties(HValue* value) : HUnaryOperation(value) {
// This instruction is not marked as having side effects, but
// changes the map of the input operand. Use it only when creating
// object literals.
ASSERT(value->IsObjectLiteral() || value->IsFastLiteral());
set_representation(Representation::Tagged());
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(ToFastProperties)
private:
virtual bool IsDeletable() const { return true; }
};
class HValueOf: public HUnaryOperation {
public:
explicit HValueOf(HValue* value) : HUnaryOperation(value) {
set_representation(Representation::Tagged());
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(ValueOf)
private:
virtual bool IsDeletable() const { return true; }
};
class HDateField: public HUnaryOperation {
public:
HDateField(HValue* date, Smi* index)
: HUnaryOperation(date), index_(index) {
set_representation(Representation::Tagged());
}
Smi* index() const { return index_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(DateField)
private:
Smi* index_;
};
class HSeqStringSetChar: public HTemplateInstruction<3> {
public:
HSeqStringSetChar(String::Encoding encoding,
HValue* string,
HValue* index,
HValue* value) : encoding_(encoding) {
SetOperandAt(0, string);
SetOperandAt(1, index);
SetOperandAt(2, value);
}
String::Encoding encoding() { return encoding_; }
HValue* string() { return OperandAt(0); }
HValue* index() { return OperandAt(1); }
HValue* value() { return OperandAt(2); }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(SeqStringSetChar)
private:
String::Encoding encoding_;
};
class HDeleteProperty: public HBinaryOperation {
public:
HDeleteProperty(HValue* context, HValue* obj, HValue* key)
: HBinaryOperation(context, obj, key) {
set_representation(Representation::Tagged());
SetAllSideEffects();
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
DECLARE_CONCRETE_INSTRUCTION(DeleteProperty)
HValue* object() { return left(); }
HValue* key() { return right(); }
};
class HIn: public HTemplateInstruction<3> {
public:
HIn(HValue* context, HValue* key, HValue* object) {
SetOperandAt(0, context);
SetOperandAt(1, key);
SetOperandAt(2, object);
set_representation(Representation::Tagged());
SetAllSideEffects();
}
HValue* context() { return OperandAt(0); }
HValue* key() { return OperandAt(1); }
HValue* object() { return OperandAt(2); }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType() {
return HType::Boolean();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(In)
};
class HCheckMapValue: public HTemplateInstruction<2> {
public:
HCheckMapValue(HValue* value,
HValue* map) {
SetOperandAt(0, value);
SetOperandAt(1, map);
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnMaps);
SetGVNFlag(kDependsOnElementsKind);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
virtual HType CalculateInferredType() {
return HType::Tagged();
}
HValue* value() { return OperandAt(0); }
HValue* map() { return OperandAt(1); }
DECLARE_CONCRETE_INSTRUCTION(CheckMapValue)
protected:
virtual bool DataEquals(HValue* other) {
return true;
}
};
class HForInPrepareMap : public HTemplateInstruction<2> {
public:
HForInPrepareMap(HValue* context,
HValue* object) {
SetOperandAt(0, context);
SetOperandAt(1, object);
set_representation(Representation::Tagged());
SetAllSideEffects();
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* context() { return OperandAt(0); }
HValue* enumerable() { return OperandAt(1); }
virtual void PrintDataTo(StringStream* stream);
virtual HType CalculateInferredType() {
return HType::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(ForInPrepareMap);
};
class HForInCacheArray : public HTemplateInstruction<2> {
public:
HForInCacheArray(HValue* enumerable,
HValue* keys,
int idx) : idx_(idx) {
SetOperandAt(0, enumerable);
SetOperandAt(1, keys);
set_representation(Representation::Tagged());
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* enumerable() { return OperandAt(0); }
HValue* map() { return OperandAt(1); }
int idx() { return idx_; }
HForInCacheArray* index_cache() {
return index_cache_;
}
void set_index_cache(HForInCacheArray* index_cache) {
index_cache_ = index_cache;
}
virtual void PrintDataTo(StringStream* stream);
virtual HType CalculateInferredType() {
return HType::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(ForInCacheArray);
private:
int idx_;
HForInCacheArray* index_cache_;
};
class HLoadFieldByIndex : public HTemplateInstruction<2> {
public:
HLoadFieldByIndex(HValue* object,
HValue* index) {
SetOperandAt(0, object);
SetOperandAt(1, index);
set_representation(Representation::Tagged());
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* object() { return OperandAt(0); }
HValue* index() { return OperandAt(1); }
virtual void PrintDataTo(StringStream* stream);
virtual HType CalculateInferredType() {
return HType::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(LoadFieldByIndex);
private:
virtual bool IsDeletable() const { return true; }
};
#undef DECLARE_INSTRUCTION
#undef DECLARE_CONCRETE_INSTRUCTION
} } // namespace v8::internal
#endif // V8_HYDROGEN_INSTRUCTIONS_H_