v8/test/cctest/test-mark-compact.cc
antonm@chromium.org a7bb1d5278 Introduce one way dependencies into object grouping.
Those are necessary to properly manage relationship between objects in cases
when they don't form proper tree structure.

Review URL: http://codereview.chromium.org/6686053

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@7202 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-03-16 12:02:28 +00:00

407 lines
14 KiB
C++

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "v8.h"
#include "global-handles.h"
#include "snapshot.h"
#include "top.h"
#include "cctest.h"
using namespace v8::internal;
static v8::Persistent<v8::Context> env;
static void InitializeVM() {
if (env.IsEmpty()) env = v8::Context::New();
v8::HandleScope scope;
env->Enter();
}
TEST(MarkingStack) {
int mem_size = 20 * kPointerSize;
byte* mem = NewArray<byte>(20*kPointerSize);
Address low = reinterpret_cast<Address>(mem);
Address high = low + mem_size;
MarkingStack s;
s.Initialize(low, high);
Address address = NULL;
while (!s.is_full()) {
s.Push(HeapObject::FromAddress(address));
address += kPointerSize;
}
while (!s.is_empty()) {
Address value = s.Pop()->address();
address -= kPointerSize;
CHECK_EQ(address, value);
}
CHECK_EQ(NULL, address);
DeleteArray(mem);
}
TEST(Promotion) {
// This test requires compaction. If compaction is turned off, we
// skip the entire test.
if (FLAG_never_compact) return;
// Ensure that we get a compacting collection so that objects are promoted
// from new space.
FLAG_gc_global = true;
FLAG_always_compact = true;
Heap::ConfigureHeap(2*256*KB, 4*MB, 4*MB);
InitializeVM();
v8::HandleScope sc;
// Allocate a fixed array in the new space.
int array_size =
(Heap::MaxObjectSizeInPagedSpace() - FixedArray::kHeaderSize) /
(kPointerSize * 4);
Object* obj = Heap::AllocateFixedArray(array_size)->ToObjectChecked();
Handle<FixedArray> array(FixedArray::cast(obj));
// Array should be in the new space.
CHECK(Heap::InSpace(*array, NEW_SPACE));
// Call the m-c collector, so array becomes an old object.
Heap::CollectGarbage(OLD_POINTER_SPACE);
// Array now sits in the old space
CHECK(Heap::InSpace(*array, OLD_POINTER_SPACE));
}
TEST(NoPromotion) {
Heap::ConfigureHeap(2*256*KB, 4*MB, 4*MB);
// Test the situation that some objects in new space are promoted to
// the old space
InitializeVM();
v8::HandleScope sc;
// Do a mark compact GC to shrink the heap.
Heap::CollectGarbage(OLD_POINTER_SPACE);
// Allocate a big Fixed array in the new space.
int size = (Heap::MaxObjectSizeInPagedSpace() - FixedArray::kHeaderSize) /
kPointerSize;
Object* obj = Heap::AllocateFixedArray(size)->ToObjectChecked();
Handle<FixedArray> array(FixedArray::cast(obj));
// Array still stays in the new space.
CHECK(Heap::InSpace(*array, NEW_SPACE));
// Allocate objects in the old space until out of memory.
FixedArray* host = *array;
while (true) {
Object* obj;
{ MaybeObject* maybe_obj = Heap::AllocateFixedArray(100, TENURED);
if (!maybe_obj->ToObject(&obj)) break;
}
host->set(0, obj);
host = FixedArray::cast(obj);
}
// Call mark compact GC, and it should pass.
Heap::CollectGarbage(OLD_POINTER_SPACE);
// array should not be promoted because the old space is full.
CHECK(Heap::InSpace(*array, NEW_SPACE));
}
TEST(MarkCompactCollector) {
InitializeVM();
v8::HandleScope sc;
// call mark-compact when heap is empty
Heap::CollectGarbage(OLD_POINTER_SPACE);
// keep allocating garbage in new space until it fails
const int ARRAY_SIZE = 100;
Object* array;
MaybeObject* maybe_array;
do {
maybe_array = Heap::AllocateFixedArray(ARRAY_SIZE);
} while (maybe_array->ToObject(&array));
Heap::CollectGarbage(NEW_SPACE);
array = Heap::AllocateFixedArray(ARRAY_SIZE)->ToObjectChecked();
// keep allocating maps until it fails
Object* mapp;
MaybeObject* maybe_mapp;
do {
maybe_mapp = Heap::AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
} while (maybe_mapp->ToObject(&mapp));
Heap::CollectGarbage(MAP_SPACE);
mapp = Heap::AllocateMap(JS_OBJECT_TYPE,
JSObject::kHeaderSize)->ToObjectChecked();
// allocate a garbage
String* func_name =
String::cast(Heap::LookupAsciiSymbol("theFunction")->ToObjectChecked());
SharedFunctionInfo* function_share = SharedFunctionInfo::cast(
Heap::AllocateSharedFunctionInfo(func_name)->ToObjectChecked());
JSFunction* function = JSFunction::cast(
Heap::AllocateFunction(*Top::function_map(),
function_share,
Heap::undefined_value())->ToObjectChecked());
Map* initial_map =
Map::cast(Heap::AllocateMap(JS_OBJECT_TYPE,
JSObject::kHeaderSize)->ToObjectChecked());
function->set_initial_map(initial_map);
Top::context()->global()->SetProperty(func_name,
function,
NONE,
kNonStrictMode)->ToObjectChecked();
JSObject* obj =
JSObject::cast(Heap::AllocateJSObject(function)->ToObjectChecked());
Heap::CollectGarbage(OLD_POINTER_SPACE);
func_name =
String::cast(Heap::LookupAsciiSymbol("theFunction")->ToObjectChecked());
CHECK(Top::context()->global()->HasLocalProperty(func_name));
Object* func_value =
Top::context()->global()->GetProperty(func_name)->ToObjectChecked();
CHECK(func_value->IsJSFunction());
function = JSFunction::cast(func_value);
obj = JSObject::cast(Heap::AllocateJSObject(function)->ToObjectChecked());
String* obj_name =
String::cast(Heap::LookupAsciiSymbol("theObject")->ToObjectChecked());
Top::context()->global()->SetProperty(obj_name,
obj,
NONE,
kNonStrictMode)->ToObjectChecked();
String* prop_name =
String::cast(Heap::LookupAsciiSymbol("theSlot")->ToObjectChecked());
obj->SetProperty(prop_name,
Smi::FromInt(23),
NONE,
kNonStrictMode)->ToObjectChecked();
Heap::CollectGarbage(OLD_POINTER_SPACE);
obj_name =
String::cast(Heap::LookupAsciiSymbol("theObject")->ToObjectChecked());
CHECK(Top::context()->global()->HasLocalProperty(obj_name));
CHECK(Top::context()->global()->
GetProperty(obj_name)->ToObjectChecked()->IsJSObject());
obj = JSObject::cast(
Top::context()->global()->GetProperty(obj_name)->ToObjectChecked());
prop_name =
String::cast(Heap::LookupAsciiSymbol("theSlot")->ToObjectChecked());
CHECK(obj->GetProperty(prop_name)->ToObjectChecked() == Smi::FromInt(23));
}
static Handle<Map> CreateMap() {
return Factory::NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
}
TEST(MapCompact) {
FLAG_max_map_space_pages = 16;
InitializeVM();
{
v8::HandleScope sc;
// keep allocating maps while pointers are still encodable and thus
// mark compact is permitted.
Handle<JSObject> root = Factory::NewJSObjectFromMap(CreateMap());
do {
Handle<Map> map = CreateMap();
map->set_prototype(*root);
root = Factory::NewJSObjectFromMap(map);
} while (Heap::map_space()->MapPointersEncodable());
}
// Now, as we don't have any handles to just allocated maps, we should
// be able to trigger map compaction.
// To give an additional chance to fail, try to force compaction which
// should be impossible right now.
Heap::CollectAllGarbage(true);
// And now map pointers should be encodable again.
CHECK(Heap::map_space()->MapPointersEncodable());
}
static int gc_starts = 0;
static int gc_ends = 0;
static void GCPrologueCallbackFunc() {
CHECK(gc_starts == gc_ends);
gc_starts++;
}
static void GCEpilogueCallbackFunc() {
CHECK(gc_starts == gc_ends + 1);
gc_ends++;
}
TEST(GCCallback) {
InitializeVM();
Heap::SetGlobalGCPrologueCallback(&GCPrologueCallbackFunc);
Heap::SetGlobalGCEpilogueCallback(&GCEpilogueCallbackFunc);
// Scavenge does not call GC callback functions.
Heap::PerformScavenge();
CHECK_EQ(0, gc_starts);
CHECK_EQ(gc_ends, gc_starts);
Heap::CollectGarbage(OLD_POINTER_SPACE);
CHECK_EQ(1, gc_starts);
CHECK_EQ(gc_ends, gc_starts);
}
static int NumberOfWeakCalls = 0;
static void WeakPointerCallback(v8::Persistent<v8::Value> handle, void* id) {
ASSERT(id == reinterpret_cast<void*>(1234));
NumberOfWeakCalls++;
handle.Dispose();
}
TEST(ObjectGroups) {
InitializeVM();
NumberOfWeakCalls = 0;
v8::HandleScope handle_scope;
Handle<Object> g1s1 =
GlobalHandles::Create(Heap::AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g1s2 =
GlobalHandles::Create(Heap::AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g1c1 =
GlobalHandles::Create(Heap::AllocateFixedArray(1)->ToObjectChecked());
GlobalHandles::MakeWeak(g1s1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
GlobalHandles::MakeWeak(g1s2.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
GlobalHandles::MakeWeak(g1c1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
Handle<Object> g2s1 =
GlobalHandles::Create(Heap::AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g2s2 =
GlobalHandles::Create(Heap::AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g2c1 =
GlobalHandles::Create(Heap::AllocateFixedArray(1)->ToObjectChecked());
GlobalHandles::MakeWeak(g2s1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
GlobalHandles::MakeWeak(g2s2.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
GlobalHandles::MakeWeak(g2c1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
Handle<Object> root = GlobalHandles::Create(*g1s1); // make a root.
// Connect group 1 and 2, make a cycle.
Handle<FixedArray>::cast(g1s2)->set(0, *g2s2);
Handle<FixedArray>::cast(g2s1)->set(0, *g1s1);
{
Object** g1_objects[] = { g1s1.location(), g1s2.location() };
Object** g1_children[] = { g1c1.location() };
Object** g2_objects[] = { g2s1.location(), g2s2.location() };
Object** g2_children[] = { g2c1.location() };
GlobalHandles::AddObjectGroup(g1_objects, 2, NULL);
GlobalHandles::AddImplicitReferences(HeapObject::cast(*g1s1),
g1_children, 1);
GlobalHandles::AddObjectGroup(g2_objects, 2, NULL);
GlobalHandles::AddImplicitReferences(HeapObject::cast(*g2s2),
g2_children, 1);
}
// Do a full GC
Heap::CollectGarbage(OLD_POINTER_SPACE);
// All object should be alive.
CHECK_EQ(0, NumberOfWeakCalls);
// Weaken the root.
GlobalHandles::MakeWeak(root.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
// But make children strong roots---all the objects (except for children)
// should be collectable now.
GlobalHandles::ClearWeakness(g1c1.location());
GlobalHandles::ClearWeakness(g2c1.location());
// Groups are deleted, rebuild groups.
{
Object** g1_objects[] = { g1s1.location(), g1s2.location() };
Object** g1_children[] = { g1c1.location() };
Object** g2_objects[] = { g2s1.location(), g2s2.location() };
Object** g2_children[] = { g2c1.location() };
GlobalHandles::AddObjectGroup(g1_objects, 2, NULL);
GlobalHandles::AddImplicitReferences(HeapObject::cast(*g1s1),
g1_children, 1);
GlobalHandles::AddObjectGroup(g2_objects, 2, NULL);
GlobalHandles::AddImplicitReferences(HeapObject::cast(*g2s2),
g2_children, 1);
}
Heap::CollectGarbage(OLD_POINTER_SPACE);
// All objects should be gone. 5 global handles in total.
CHECK_EQ(5, NumberOfWeakCalls);
// And now make children weak again and collect them.
GlobalHandles::MakeWeak(g1c1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
GlobalHandles::MakeWeak(g2c1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
Heap::CollectGarbage(OLD_POINTER_SPACE);
CHECK_EQ(7, NumberOfWeakCalls);
}