v8/test/unittests/compiler/instruction-selector-unittest.cc
jarin@chromium.org bb5b39260b Relax representation requirement in FrameStates.
This change enables non-tagged representations in FrameStates.

That allows us to run zlib with deoptimization support and have almost the same performance of the generated code (as the code with no deoptimization). Unfortunately, the frame states seem to confuse typer. As a consequence, we generate more representation changes, which in turn causes the scheduler to take a lot more time and memory (>4x). The added compiler time makes zlib with deopt be about 50% slower.

BUG=
R=titzer@chromium.org

Review URL: https://codereview.chromium.org/614713002

git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@24454 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-10-08 08:47:29 +00:00

560 lines
19 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/compiler/instruction-selector-unittest.h"
#include "src/compiler/graph-inl.h"
#include "src/flags.h"
#include "test/unittests/compiler/compiler-test-utils.h"
namespace v8 {
namespace internal {
namespace compiler {
namespace {
typedef RawMachineAssembler::Label MLabel;
} // namespace
InstructionSelectorTest::InstructionSelectorTest() : rng_(FLAG_random_seed) {}
InstructionSelectorTest::~InstructionSelectorTest() {}
InstructionSelectorTest::Stream InstructionSelectorTest::StreamBuilder::Build(
InstructionSelector::Features features,
InstructionSelectorTest::StreamBuilderMode mode) {
Schedule* schedule = Export();
if (FLAG_trace_turbo) {
OFStream out(stdout);
out << "=== Schedule before instruction selection ===" << std::endl
<< *schedule;
}
EXPECT_NE(0, graph()->NodeCount());
int initial_node_count = graph()->NodeCount();
CompilationInfo info(test_->isolate(), test_->zone());
Linkage linkage(&info, call_descriptor());
InstructionSequence sequence(&linkage, graph(), schedule);
SourcePositionTable source_position_table(graph());
InstructionSelector selector(&sequence, &source_position_table, features);
selector.SelectInstructions();
if (FLAG_trace_turbo) {
OFStream out(stdout);
out << "=== Code sequence after instruction selection ===" << std::endl
<< sequence;
}
Stream s;
// Map virtual registers.
{
const int* node_map = sequence.GetNodeMapForTesting();
for (int i = 0; i < initial_node_count; ++i) {
if (node_map[i] >= 0) {
s.virtual_registers_.insert(std::make_pair(i, node_map[i]));
}
}
}
std::set<int> virtual_registers;
for (InstructionSequence::const_iterator i = sequence.begin();
i != sequence.end(); ++i) {
Instruction* instr = *i;
if (instr->opcode() < 0) continue;
if (mode == kTargetInstructions) {
switch (instr->arch_opcode()) {
#define CASE(Name) \
case k##Name: \
break;
TARGET_ARCH_OPCODE_LIST(CASE)
#undef CASE
default:
continue;
}
}
if (mode == kAllExceptNopInstructions && instr->arch_opcode() == kArchNop) {
continue;
}
for (size_t i = 0; i < instr->OutputCount(); ++i) {
InstructionOperand* output = instr->OutputAt(i);
EXPECT_NE(InstructionOperand::IMMEDIATE, output->kind());
if (output->IsConstant()) {
s.constants_.insert(std::make_pair(
output->index(), sequence.GetConstant(output->index())));
virtual_registers.insert(output->index());
} else if (output->IsUnallocated()) {
virtual_registers.insert(
UnallocatedOperand::cast(output)->virtual_register());
}
}
for (size_t i = 0; i < instr->InputCount(); ++i) {
InstructionOperand* input = instr->InputAt(i);
EXPECT_NE(InstructionOperand::CONSTANT, input->kind());
if (input->IsImmediate()) {
s.immediates_.insert(std::make_pair(
input->index(), sequence.GetImmediate(input->index())));
} else if (input->IsUnallocated()) {
virtual_registers.insert(
UnallocatedOperand::cast(input)->virtual_register());
}
}
s.instructions_.push_back(instr);
}
for (std::set<int>::const_iterator i = virtual_registers.begin();
i != virtual_registers.end(); ++i) {
int virtual_register = *i;
if (sequence.IsDouble(virtual_register)) {
EXPECT_FALSE(sequence.IsReference(virtual_register));
s.doubles_.insert(virtual_register);
}
if (sequence.IsReference(virtual_register)) {
EXPECT_FALSE(sequence.IsDouble(virtual_register));
s.references_.insert(virtual_register);
}
}
for (int i = 0; i < sequence.GetFrameStateDescriptorCount(); i++) {
s.deoptimization_entries_.push_back(sequence.GetFrameStateDescriptor(
InstructionSequence::StateId::FromInt(i)));
}
return s;
}
int InstructionSelectorTest::Stream::ToVreg(const Node* node) const {
VirtualRegisters::const_iterator i = virtual_registers_.find(node->id());
CHECK(i != virtual_registers_.end());
return i->second;
}
// -----------------------------------------------------------------------------
// Return.
TARGET_TEST_F(InstructionSelectorTest, ReturnFloat32Constant) {
const float kValue = 4.2f;
StreamBuilder m(this, kMachFloat32);
m.Return(m.Float32Constant(kValue));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(InstructionOperand::CONSTANT, s[0]->OutputAt(0)->kind());
EXPECT_FLOAT_EQ(kValue, s.ToFloat32(s[0]->OutputAt(0)));
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(1U, s[1]->InputCount());
}
TARGET_TEST_F(InstructionSelectorTest, ReturnParameter) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Parameter(0));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(1U, s[1]->InputCount());
}
TARGET_TEST_F(InstructionSelectorTest, ReturnZero) {
StreamBuilder m(this, kMachInt32);
m.Return(m.Int32Constant(0));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(InstructionOperand::CONSTANT, s[0]->OutputAt(0)->kind());
EXPECT_EQ(0, s.ToInt32(s[0]->OutputAt(0)));
EXPECT_EQ(kArchRet, s[1]->arch_opcode());
EXPECT_EQ(1U, s[1]->InputCount());
}
// -----------------------------------------------------------------------------
// Conversions.
TARGET_TEST_F(InstructionSelectorTest, TruncateFloat64ToInt32WithParameter) {
StreamBuilder m(this, kMachInt32, kMachFloat64);
m.Return(m.TruncateFloat64ToInt32(m.Parameter(0)));
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
EXPECT_EQ(kArchTruncateDoubleToI, s[1]->arch_opcode());
EXPECT_EQ(1U, s[1]->InputCount());
EXPECT_EQ(1U, s[1]->OutputCount());
EXPECT_EQ(kArchRet, s[2]->arch_opcode());
}
// -----------------------------------------------------------------------------
// Parameters.
TARGET_TEST_F(InstructionSelectorTest, DoubleParameter) {
StreamBuilder m(this, kMachFloat64, kMachFloat64);
Node* param = m.Parameter(0);
m.Return(param);
Stream s = m.Build(kAllInstructions);
EXPECT_TRUE(s.IsDouble(param));
}
TARGET_TEST_F(InstructionSelectorTest, ReferenceParameter) {
StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged);
Node* param = m.Parameter(0);
m.Return(param);
Stream s = m.Build(kAllInstructions);
EXPECT_TRUE(s.IsReference(param));
}
// -----------------------------------------------------------------------------
// Finish.
TARGET_TEST_F(InstructionSelectorTest, Finish) {
StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged);
Node* param = m.Parameter(0);
Node* finish = m.NewNode(m.common()->Finish(1), param, m.graph()->start());
m.Return(finish);
Stream s = m.Build(kAllInstructions);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kArchNop, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
ASSERT_TRUE(s[0]->Output()->IsUnallocated());
EXPECT_EQ(s.ToVreg(param), s.ToVreg(s[0]->Output()));
EXPECT_EQ(kArchNop, s[1]->arch_opcode());
ASSERT_EQ(1U, s[1]->InputCount());
ASSERT_TRUE(s[1]->InputAt(0)->IsUnallocated());
EXPECT_EQ(s.ToVreg(param), s.ToVreg(s[1]->InputAt(0)));
ASSERT_EQ(1U, s[1]->OutputCount());
ASSERT_TRUE(s[1]->Output()->IsUnallocated());
EXPECT_TRUE(UnallocatedOperand::cast(s[1]->Output())->HasSameAsInputPolicy());
EXPECT_EQ(s.ToVreg(finish), s.ToVreg(s[1]->Output()));
EXPECT_TRUE(s.IsReference(finish));
}
// -----------------------------------------------------------------------------
// Phi.
typedef InstructionSelectorTestWithParam<MachineType>
InstructionSelectorPhiTest;
TARGET_TEST_P(InstructionSelectorPhiTest, Doubleness) {
const MachineType type = GetParam();
StreamBuilder m(this, type, type, type);
Node* param0 = m.Parameter(0);
Node* param1 = m.Parameter(1);
MLabel a, b, c;
m.Branch(m.Int32Constant(0), &a, &b);
m.Bind(&a);
m.Goto(&c);
m.Bind(&b);
m.Goto(&c);
m.Bind(&c);
Node* phi = m.Phi(type, param0, param1);
m.Return(phi);
Stream s = m.Build(kAllInstructions);
EXPECT_EQ(s.IsDouble(phi), s.IsDouble(param0));
EXPECT_EQ(s.IsDouble(phi), s.IsDouble(param1));
}
TARGET_TEST_P(InstructionSelectorPhiTest, Referenceness) {
const MachineType type = GetParam();
StreamBuilder m(this, type, type, type);
Node* param0 = m.Parameter(0);
Node* param1 = m.Parameter(1);
MLabel a, b, c;
m.Branch(m.Int32Constant(1), &a, &b);
m.Bind(&a);
m.Goto(&c);
m.Bind(&b);
m.Goto(&c);
m.Bind(&c);
Node* phi = m.Phi(type, param0, param1);
m.Return(phi);
Stream s = m.Build(kAllInstructions);
EXPECT_EQ(s.IsReference(phi), s.IsReference(param0));
EXPECT_EQ(s.IsReference(phi), s.IsReference(param1));
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorPhiTest,
::testing::Values(kMachFloat64, kMachInt8, kMachUint8,
kMachInt16, kMachUint16, kMachInt32,
kMachUint32, kMachInt64, kMachUint64,
kMachPtr, kMachAnyTagged));
// -----------------------------------------------------------------------------
// ValueEffect.
TARGET_TEST_F(InstructionSelectorTest, ValueEffect) {
StreamBuilder m1(this, kMachInt32, kMachPtr);
Node* p1 = m1.Parameter(0);
m1.Return(m1.Load(kMachInt32, p1, m1.Int32Constant(0)));
Stream s1 = m1.Build(kAllInstructions);
StreamBuilder m2(this, kMachInt32, kMachPtr);
Node* p2 = m2.Parameter(0);
m2.Return(m2.NewNode(m2.machine()->Load(kMachInt32), p2, m2.Int32Constant(0),
m2.NewNode(m2.common()->ValueEffect(1), p2)));
Stream s2 = m2.Build(kAllInstructions);
EXPECT_LE(3U, s1.size());
ASSERT_EQ(s1.size(), s2.size());
TRACED_FORRANGE(size_t, i, 0, s1.size() - 1) {
const Instruction* i1 = s1[i];
const Instruction* i2 = s2[i];
EXPECT_EQ(i1->arch_opcode(), i2->arch_opcode());
EXPECT_EQ(i1->InputCount(), i2->InputCount());
EXPECT_EQ(i1->OutputCount(), i2->OutputCount());
}
}
// -----------------------------------------------------------------------------
// Calls with deoptimization.
TARGET_TEST_F(InstructionSelectorTest, CallJSFunctionWithDeopt) {
StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged, kMachAnyTagged,
kMachAnyTagged);
BailoutId bailout_id(42);
Node* function_node = m.Parameter(0);
Node* receiver = m.Parameter(1);
Node* context = m.Parameter(2);
Node* parameters = m.NewNode(m.common()->StateValues(1), m.Int32Constant(1));
Node* locals = m.NewNode(m.common()->StateValues(0));
Node* stack = m.NewNode(m.common()->StateValues(0));
Node* context_dummy = m.Int32Constant(0);
Node* state_node = m.NewNode(
m.common()->FrameState(JS_FRAME, bailout_id,
OutputFrameStateCombine::Push()),
parameters, locals, stack, context_dummy, m.UndefinedConstant());
Node* call = m.CallJS0(function_node, receiver, context, state_node);
m.Return(call);
Stream s = m.Build(kAllExceptNopInstructions);
// Skip until kArchCallJSFunction.
size_t index = 0;
for (; index < s.size() && s[index]->arch_opcode() != kArchCallJSFunction;
index++) {
}
// Now we should have two instructions: call and return.
ASSERT_EQ(index + 2, s.size());
EXPECT_EQ(kArchCallJSFunction, s[index++]->arch_opcode());
EXPECT_EQ(kArchRet, s[index++]->arch_opcode());
// TODO(jarin) Check deoptimization table.
}
TARGET_TEST_F(InstructionSelectorTest, CallFunctionStubWithDeopt) {
StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged, kMachAnyTagged,
kMachAnyTagged);
BailoutId bailout_id_before(42);
// Some arguments for the call node.
Node* function_node = m.Parameter(0);
Node* receiver = m.Parameter(1);
Node* context = m.Int32Constant(1); // Context is ignored.
// Build frame state for the state before the call.
Node* parameters = m.NewNode(m.common()->StateValues(1), m.Int32Constant(43));
Node* locals = m.NewNode(m.common()->StateValues(1), m.Float64Constant(0.5));
Node* stack = m.NewNode(m.common()->StateValues(1), m.UndefinedConstant());
Node* context_sentinel = m.Int32Constant(0);
Node* frame_state_before = m.NewNode(
m.common()->FrameState(JS_FRAME, bailout_id_before,
OutputFrameStateCombine::Push()),
parameters, locals, stack, context_sentinel, m.UndefinedConstant());
// Build the call.
Node* call = m.CallFunctionStub0(function_node, receiver, context,
frame_state_before, CALL_AS_METHOD);
m.Return(call);
Stream s = m.Build(kAllExceptNopInstructions);
// Skip until kArchCallJSFunction.
size_t index = 0;
for (; index < s.size() && s[index]->arch_opcode() != kArchCallCodeObject;
index++) {
}
// Now we should have two instructions: call, return.
ASSERT_EQ(index + 2, s.size());
// Check the call instruction
const Instruction* call_instr = s[index++];
EXPECT_EQ(kArchCallCodeObject, call_instr->arch_opcode());
size_t num_operands =
1 + // Code object.
1 +
4 + // Frame state deopt id + one input for each value in frame state.
1 + // Function.
1; // Context.
ASSERT_EQ(num_operands, call_instr->InputCount());
// Code object.
EXPECT_TRUE(call_instr->InputAt(0)->IsImmediate());
// Deoptimization id.
int32_t deopt_id_before = s.ToInt32(call_instr->InputAt(1));
FrameStateDescriptor* desc_before =
s.GetFrameStateDescriptor(deopt_id_before);
EXPECT_EQ(bailout_id_before, desc_before->bailout_id());
EXPECT_EQ(OutputFrameStateCombine::kPushOutput,
desc_before->state_combine().kind());
EXPECT_EQ(1u, desc_before->parameters_count());
EXPECT_EQ(1u, desc_before->locals_count());
EXPECT_EQ(1u, desc_before->stack_count());
EXPECT_EQ(43, s.ToInt32(call_instr->InputAt(2)));
EXPECT_EQ(0, s.ToInt32(call_instr->InputAt(3))); // This should be a context.
// We inserted 0 here.
EXPECT_EQ(0.5, s.ToFloat64(call_instr->InputAt(4)));
EXPECT_TRUE(s.ToHeapObject(call_instr->InputAt(5))->IsUndefined());
EXPECT_EQ(kMachInt32, desc_before->GetType(0));
EXPECT_EQ(kMachAnyTagged, desc_before->GetType(1)); // context is always
// tagged/any.
EXPECT_EQ(kMachFloat64, desc_before->GetType(2));
EXPECT_EQ(kMachAnyTagged, desc_before->GetType(3));
// Function.
EXPECT_EQ(s.ToVreg(function_node), s.ToVreg(call_instr->InputAt(6)));
// Context.
EXPECT_EQ(s.ToVreg(context), s.ToVreg(call_instr->InputAt(7)));
EXPECT_EQ(kArchRet, s[index++]->arch_opcode());
EXPECT_EQ(index, s.size());
}
TARGET_TEST_F(InstructionSelectorTest,
CallFunctionStubDeoptRecursiveFrameState) {
StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged, kMachAnyTagged,
kMachAnyTagged);
BailoutId bailout_id_before(42);
BailoutId bailout_id_parent(62);
// Some arguments for the call node.
Node* function_node = m.Parameter(0);
Node* receiver = m.Parameter(1);
Node* context = m.Int32Constant(66);
// Build frame state for the state before the call.
Node* parameters = m.NewNode(m.common()->StateValues(1), m.Int32Constant(63));
Node* locals = m.NewNode(m.common()->StateValues(1), m.Int32Constant(64));
Node* stack = m.NewNode(m.common()->StateValues(1), m.Int32Constant(65));
Node* frame_state_parent =
m.NewNode(m.common()->FrameState(JS_FRAME, bailout_id_parent,
OutputFrameStateCombine::Ignore()),
parameters, locals, stack, context, m.UndefinedConstant());
Node* context2 = m.Int32Constant(46);
Node* parameters2 =
m.NewNode(m.common()->StateValues(1), m.Int32Constant(43));
Node* locals2 =
m.NewNode(m.common()->StateValues(1), m.Float64Constant(0.25));
Node* stack2 = m.NewNode(m.common()->StateValues(2), m.Int32Constant(44),
m.Int32Constant(45));
Node* frame_state_before =
m.NewNode(m.common()->FrameState(JS_FRAME, bailout_id_before,
OutputFrameStateCombine::Push()),
parameters2, locals2, stack2, context2, frame_state_parent);
// Build the call.
Node* call = m.CallFunctionStub0(function_node, receiver, context2,
frame_state_before, CALL_AS_METHOD);
m.Return(call);
Stream s = m.Build(kAllExceptNopInstructions);
// Skip until kArchCallJSFunction.
size_t index = 0;
for (; index < s.size() && s[index]->arch_opcode() != kArchCallCodeObject;
index++) {
}
// Now we should have three instructions: call, return.
EXPECT_EQ(index + 2, s.size());
// Check the call instruction
const Instruction* call_instr = s[index++];
EXPECT_EQ(kArchCallCodeObject, call_instr->arch_opcode());
size_t num_operands =
1 + // Code object.
1 + // Frame state deopt id
5 + // One input for each value in frame state + context.
4 + // One input for each value in the parent frame state + context.
1 + // Function.
1; // Context.
EXPECT_EQ(num_operands, call_instr->InputCount());
// Code object.
EXPECT_TRUE(call_instr->InputAt(0)->IsImmediate());
// Deoptimization id.
int32_t deopt_id_before = s.ToInt32(call_instr->InputAt(1));
FrameStateDescriptor* desc_before =
s.GetFrameStateDescriptor(deopt_id_before);
FrameStateDescriptor* desc_before_outer = desc_before->outer_state();
EXPECT_EQ(bailout_id_before, desc_before->bailout_id());
EXPECT_EQ(1u, desc_before_outer->parameters_count());
EXPECT_EQ(1u, desc_before_outer->locals_count());
EXPECT_EQ(1u, desc_before_outer->stack_count());
// Values from parent environment.
EXPECT_EQ(63, s.ToInt32(call_instr->InputAt(2)));
EXPECT_EQ(kMachInt32, desc_before_outer->GetType(0));
// Context:
EXPECT_EQ(66, s.ToInt32(call_instr->InputAt(3)));
EXPECT_EQ(kMachAnyTagged, desc_before_outer->GetType(1));
EXPECT_EQ(64, s.ToInt32(call_instr->InputAt(4)));
EXPECT_EQ(kMachInt32, desc_before_outer->GetType(2));
EXPECT_EQ(65, s.ToInt32(call_instr->InputAt(5)));
EXPECT_EQ(kMachInt32, desc_before_outer->GetType(3));
// Values from the nested frame.
EXPECT_EQ(1u, desc_before->parameters_count());
EXPECT_EQ(1u, desc_before->locals_count());
EXPECT_EQ(2u, desc_before->stack_count());
EXPECT_EQ(43, s.ToInt32(call_instr->InputAt(6)));
EXPECT_EQ(kMachInt32, desc_before->GetType(0));
EXPECT_EQ(46, s.ToInt32(call_instr->InputAt(7)));
EXPECT_EQ(kMachAnyTagged, desc_before->GetType(1));
EXPECT_EQ(0.25, s.ToFloat64(call_instr->InputAt(8)));
EXPECT_EQ(kMachFloat64, desc_before->GetType(2));
EXPECT_EQ(44, s.ToInt32(call_instr->InputAt(9)));
EXPECT_EQ(kMachInt32, desc_before->GetType(3));
EXPECT_EQ(45, s.ToInt32(call_instr->InputAt(10)));
EXPECT_EQ(kMachInt32, desc_before->GetType(4));
// Function.
EXPECT_EQ(s.ToVreg(function_node), s.ToVreg(call_instr->InputAt(11)));
// Context.
EXPECT_EQ(s.ToVreg(context2), s.ToVreg(call_instr->InputAt(12)));
// Continuation.
EXPECT_EQ(kArchRet, s[index++]->arch_opcode());
EXPECT_EQ(index, s.size());
}
} // namespace compiler
} // namespace internal
} // namespace v8