52e07ffec5
... by disallowing checkpoint elimination across function boundaries. See the comment in checkpoint-elimination.cc and the tests for details. Bug: v8:9945 Change-Id: Ibf4ab6f0e4e709e26d3c4428a082ef45dcbeb8b0 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1906208 Auto-Submit: Georg Neis <neis@chromium.org> Reviewed-by: Benedikt Meurer <bmeurer@chromium.org> Reviewed-by: Maya Lekova <mslekova@chromium.org> Reviewed-by: Michael Starzinger <mstarzinger@chromium.org> Commit-Queue: Georg Neis <neis@chromium.org> Cr-Commit-Position: refs/heads/master@{#65027}
147 lines
4.0 KiB
JavaScript
147 lines
4.0 KiB
JavaScript
// Copyright 2018 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
// Flags: --allow-natives-syntax --opt --turbo-inlining
|
|
|
|
// Test that SpeculativeNumberEqual[SignedSmall] properly passes the
|
|
// kIdentifyZeros truncation.
|
|
(function() {
|
|
function foo(x, y) {
|
|
if (x * y === 0) return 0;
|
|
return 1;
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(foo);
|
|
assertEquals(0, foo(0, 1));
|
|
assertEquals(1, foo(1, 1));
|
|
assertEquals(1, foo(1, 2));
|
|
%OptimizeFunctionOnNextCall(foo);
|
|
assertEquals(0, foo(0, 1));
|
|
assertEquals(1, foo(1, 1));
|
|
assertEquals(1, foo(1, 2));
|
|
assertOptimized(foo);
|
|
// Even if x*y produces -0 now, it should stay optimized.
|
|
assertEquals(0, foo(-3, 0));
|
|
assertEquals(0, foo(0, -3));
|
|
assertOptimized(foo);
|
|
})();
|
|
|
|
// Test that SpeculativeNumberEqual[Number] properly passes the
|
|
// kIdentifyZeros truncation.
|
|
(function() {
|
|
// Produce a SpeculativeNumberEqual with Number feedback.
|
|
function foo(x, y) {
|
|
if (x * y === -0) return 0;
|
|
return 1;
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(foo);
|
|
assertEquals(0, foo(0, 1));
|
|
assertEquals(1, foo(1, 1));
|
|
assertEquals(1, foo(1, 2));
|
|
%OptimizeFunctionOnNextCall(foo);
|
|
assertEquals(0, foo(0, 1));
|
|
assertEquals(1, foo(1, 1));
|
|
assertEquals(1, foo(1, 2));
|
|
assertOptimized(foo);
|
|
// Even if x*y produces -0 now, it should stay optimized.
|
|
assertEquals(0, foo(-3, 0));
|
|
assertEquals(0, foo(0, -3));
|
|
assertOptimized(foo);
|
|
})();
|
|
|
|
// Test that SpeculativeNumberLessThan[SignedSmall] properly passes the
|
|
// kIdentifyZeros truncation.
|
|
(function() {
|
|
function foo(x, y) {
|
|
if (x * y < 0) return 0;
|
|
return 1;
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(foo);
|
|
assertEquals(0, foo(1, -1));
|
|
assertEquals(1, foo(1, 1));
|
|
assertEquals(1, foo(1, 2));
|
|
%OptimizeFunctionOnNextCall(foo);
|
|
assertEquals(0, foo(1, -1));
|
|
assertEquals(1, foo(1, 1));
|
|
assertEquals(1, foo(1, 2));
|
|
assertOptimized(foo);
|
|
// Even if x*y produces -0 now, it should stay optimized.
|
|
assertEquals(1, foo(-3, 0));
|
|
assertEquals(1, foo(0, -3));
|
|
assertOptimized(foo);
|
|
})();
|
|
|
|
// Test that SpeculativeNumberLessThan[Number] properly passes the
|
|
// kIdentifyZeros truncation.
|
|
(function() {
|
|
// Produce a SpeculativeNumberLessThan with Number feedback.
|
|
function foo(x, y) {
|
|
if (x * y < -0) return 0;
|
|
return 1;
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(foo);
|
|
assertEquals(0, foo(1, -1));
|
|
assertEquals(1, foo(1, 1));
|
|
assertEquals(1, foo(1, 2));
|
|
%OptimizeFunctionOnNextCall(foo);
|
|
assertEquals(0, foo(1, -1));
|
|
assertEquals(1, foo(1, 1));
|
|
assertEquals(1, foo(1, 2));
|
|
assertOptimized(foo);
|
|
// Even if x*y produces -0 now, it should stay optimized.
|
|
assertEquals(1, foo(-3, 0));
|
|
assertEquals(1, foo(0, -3));
|
|
assertOptimized(foo);
|
|
})();
|
|
|
|
// Test that SpeculativeNumberLessThanOrEqual[SignedSmall] properly passes the
|
|
// kIdentifyZeros truncation.
|
|
(function() {
|
|
function foo(x, y) {
|
|
if (x * y <= 0) return 0;
|
|
return 1;
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(foo);
|
|
assertEquals(0, foo(0, 1));
|
|
assertEquals(1, foo(1, 1));
|
|
assertEquals(1, foo(1, 2));
|
|
%OptimizeFunctionOnNextCall(foo);
|
|
assertEquals(0, foo(0, 1));
|
|
assertEquals(1, foo(1, 1));
|
|
assertEquals(1, foo(1, 2));
|
|
assertOptimized(foo);
|
|
// Even if x*y produces -0 now, it should stay optimized.
|
|
assertEquals(0, foo(-3, 0));
|
|
assertEquals(0, foo(0, -3));
|
|
assertOptimized(foo);
|
|
})();
|
|
|
|
// Test that SpeculativeNumberLessThanOrEqual[Number] properly passes the
|
|
// kIdentifyZeros truncation.
|
|
(function() {
|
|
// Produce a SpeculativeNumberLessThanOrEqual with Number feedback.
|
|
function foo(x, y) {
|
|
if (x * y <= -0) return 0;
|
|
return 1;
|
|
}
|
|
|
|
%PrepareFunctionForOptimization(foo);
|
|
assertEquals(0, foo(0, 1));
|
|
assertEquals(1, foo(1, 1));
|
|
assertEquals(1, foo(1, 2));
|
|
%OptimizeFunctionOnNextCall(foo);
|
|
assertEquals(0, foo(0, 1));
|
|
assertEquals(1, foo(1, 1));
|
|
assertEquals(1, foo(1, 2));
|
|
assertOptimized(foo);
|
|
// Even if x*y produces -0 now, it should stay optimized.
|
|
assertEquals(0, foo(-3, 0));
|
|
assertEquals(0, foo(0, -3));
|
|
assertOptimized(foo);
|
|
})();
|