v8/test/cctest/test-code-stub-assembler.cc
ishell aa4140b1cc [ic] [stubs] Don't use Code::flags in megamorphic stub cache hash computations.
This should avoid weird performance issues when changing layout of Code::flags field.

BUG=chromium:618701

Review-Url: https://codereview.chromium.org/2147433002
Cr-Commit-Position: refs/heads/master@{#37755}
2016-07-14 10:33:27 +00:00

1354 lines
44 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/utils/random-number-generator.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
#include "test/cctest/compiler/code-assembler-tester.h"
#include "test/cctest/compiler/function-tester.h"
namespace v8 {
namespace internal {
using compiler::FunctionTester;
using compiler::Node;
typedef compiler::CodeAssemblerTesterImpl<CodeStubAssembler>
CodeStubAssemblerTester;
TEST(FixedArrayAccessSmiIndex) {
Isolate* isolate(CcTest::InitIsolateOnce());
VoidDescriptor descriptor(isolate);
CodeStubAssemblerTester m(isolate, descriptor);
Handle<FixedArray> array = isolate->factory()->NewFixedArray(5);
array->set(4, Smi::FromInt(733));
m.Return(m.LoadFixedArrayElement(m.HeapConstant(array),
m.SmiTag(m.Int32Constant(4)), 0,
CodeStubAssembler::SMI_PARAMETERS));
Handle<Code> code = m.GenerateCode();
FunctionTester ft(descriptor, code);
MaybeHandle<Object> result = ft.Call();
CHECK_EQ(733, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(LoadHeapNumberValue) {
Isolate* isolate(CcTest::InitIsolateOnce());
VoidDescriptor descriptor(isolate);
CodeStubAssemblerTester m(isolate, descriptor);
Handle<HeapNumber> number = isolate->factory()->NewHeapNumber(1234);
m.Return(m.SmiTag(
m.ChangeFloat64ToUint32(m.LoadHeapNumberValue(m.HeapConstant(number)))));
Handle<Code> code = m.GenerateCode();
FunctionTester ft(descriptor, code);
MaybeHandle<Object> result = ft.Call();
CHECK_EQ(1234, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(LoadInstanceType) {
Isolate* isolate(CcTest::InitIsolateOnce());
VoidDescriptor descriptor(isolate);
CodeStubAssemblerTester m(isolate, descriptor);
Handle<HeapObject> undefined = isolate->factory()->undefined_value();
m.Return(m.SmiTag(m.LoadInstanceType(m.HeapConstant(undefined))));
Handle<Code> code = m.GenerateCode();
FunctionTester ft(descriptor, code);
MaybeHandle<Object> result = ft.Call();
CHECK_EQ(InstanceType::ODDBALL_TYPE,
Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(BitFieldDecode) {
Isolate* isolate(CcTest::InitIsolateOnce());
VoidDescriptor descriptor(isolate);
CodeStubAssemblerTester m(isolate, descriptor);
class TestBitField : public BitField<unsigned, 3, 3> {};
m.Return(m.SmiTag(m.BitFieldDecode<TestBitField>(m.Int32Constant(0x2f))));
Handle<Code> code = m.GenerateCode();
FunctionTester ft(descriptor, code);
MaybeHandle<Object> result = ft.Call();
// value = 00101111
// mask = 00111000
// result = 101
CHECK_EQ(5, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(JSFunction) {
const int kNumParams = 3; // Receiver, left, right.
Isolate* isolate(CcTest::InitIsolateOnce());
CodeStubAssemblerTester m(isolate, kNumParams);
m.Return(m.SmiFromWord32(m.Int32Add(m.SmiToWord32(m.Parameter(1)),
m.SmiToWord32(m.Parameter(2)))));
Handle<Code> code = m.GenerateCode();
FunctionTester ft(code, kNumParams);
MaybeHandle<Object> result = ft.Call(isolate->factory()->undefined_value(),
handle(Smi::FromInt(23), isolate),
handle(Smi::FromInt(34), isolate));
CHECK_EQ(57, Handle<Smi>::cast(result.ToHandleChecked())->value());
}
TEST(ComputeIntegerHash) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeStubAssemblerTester m(isolate, kNumParams);
m.Return(m.SmiFromWord32(m.ComputeIntegerHash(
m.SmiToWord32(m.Parameter(0)), m.SmiToWord32(m.Parameter(1)))));
Handle<Code> code = m.GenerateCode();
FunctionTester ft(code, kNumParams);
Handle<Smi> hash_seed = isolate->factory()->hash_seed();
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
for (int i = 0; i < 1024; i++) {
int k = rand_gen.NextInt(Smi::kMaxValue);
Handle<Smi> key(Smi::FromInt(k), isolate);
Handle<Object> result = ft.Call(key, hash_seed).ToHandleChecked();
uint32_t hash = ComputeIntegerHash(k, hash_seed->value());
Smi* expected = Smi::FromInt(hash & Smi::kMaxValue);
CHECK_EQ(expected, Smi::cast(*result));
}
}
TEST(TryToName) {
typedef CodeStubAssembler::Label Label;
typedef CodeStubAssembler::Variable Variable;
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeStubAssemblerTester m(isolate, kNumParams);
enum Result { kKeyIsIndex, kKeyIsUnique, kBailout };
{
Node* key = m.Parameter(0);
Node* expected_result = m.Parameter(1);
Node* expected_arg = m.Parameter(2);
Label passed(&m), failed(&m);
Label if_keyisindex(&m), if_keyisunique(&m), if_bailout(&m);
Variable var_index(&m, MachineRepresentation::kWord32);
m.TryToName(key, &if_keyisindex, &var_index, &if_keyisunique, &if_bailout);
m.Bind(&if_keyisindex);
m.GotoUnless(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kKeyIsIndex))),
&failed);
m.Branch(m.Word32Equal(m.SmiToWord32(expected_arg), var_index.value()),
&passed, &failed);
m.Bind(&if_keyisunique);
m.GotoUnless(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kKeyIsUnique))),
&failed);
m.Branch(m.WordEqual(expected_arg, key), &passed, &failed);
m.Bind(&if_bailout);
m.Branch(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kBailout))),
&passed, &failed);
m.Bind(&passed);
m.Return(m.BooleanConstant(true));
m.Bind(&failed);
m.Return(m.BooleanConstant(false));
}
Handle<Code> code = m.GenerateCode();
FunctionTester ft(code, kNumParams);
Handle<Object> expect_index(Smi::FromInt(kKeyIsIndex), isolate);
Handle<Object> expect_unique(Smi::FromInt(kKeyIsUnique), isolate);
Handle<Object> expect_bailout(Smi::FromInt(kBailout), isolate);
{
// TryToName(<zero smi>) => if_keyisindex: smi value.
Handle<Object> key(Smi::FromInt(0), isolate);
ft.CheckTrue(key, expect_index, key);
}
{
// TryToName(<positive smi>) => if_keyisindex: smi value.
Handle<Object> key(Smi::FromInt(153), isolate);
ft.CheckTrue(key, expect_index, key);
}
{
// TryToName(<negative smi>) => bailout.
Handle<Object> key(Smi::FromInt(-1), isolate);
ft.CheckTrue(key, expect_bailout);
}
{
// TryToName(<symbol>) => if_keyisunique: <symbol>.
Handle<Object> key = isolate->factory()->NewSymbol();
ft.CheckTrue(key, expect_unique, key);
}
{
// TryToName(<internalized string>) => if_keyisunique: <internalized string>
Handle<Object> key = isolate->factory()->InternalizeUtf8String("test");
ft.CheckTrue(key, expect_unique, key);
}
{
// TryToName(<internalized number string>) => if_keyisindex: number.
Handle<Object> key = isolate->factory()->InternalizeUtf8String("153");
Handle<Object> index(Smi::FromInt(153), isolate);
ft.CheckTrue(key, expect_index, index);
}
{
// TryToName(<non-internalized string>) => bailout.
Handle<Object> key = isolate->factory()->NewStringFromAsciiChecked("test");
ft.CheckTrue(key, expect_bailout);
}
}
namespace {
template <typename Dictionary>
void TestNameDictionaryLookup() {
typedef CodeStubAssembler::Label Label;
typedef CodeStubAssembler::Variable Variable;
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeStubAssemblerTester m(isolate, kNumParams);
enum Result { kFound, kNotFound };
{
Node* dictionary = m.Parameter(0);
Node* unique_name = m.Parameter(1);
Node* expected_result = m.Parameter(2);
Node* expected_arg = m.Parameter(3);
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m);
Variable var_name_index(&m, MachineRepresentation::kWord32);
m.NameDictionaryLookup<Dictionary>(dictionary, unique_name, &if_found,
&var_name_index, &if_not_found);
m.Bind(&if_found);
m.GotoUnless(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&failed);
m.Branch(m.Word32Equal(m.SmiToWord32(expected_arg), var_name_index.value()),
&passed, &failed);
m.Bind(&if_not_found);
m.Branch(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.Bind(&passed);
m.Return(m.BooleanConstant(true));
m.Bind(&failed);
m.Return(m.BooleanConstant(false));
}
Handle<Code> code = m.GenerateCode();
FunctionTester ft(code, kNumParams);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
Handle<Dictionary> dictionary = Dictionary::New(isolate, 40);
PropertyDetails fake_details = PropertyDetails::Empty();
Factory* factory = isolate->factory();
Handle<Name> keys[] = {
factory->InternalizeUtf8String("0"),
factory->InternalizeUtf8String("42"),
factory->InternalizeUtf8String("-153"),
factory->InternalizeUtf8String("0.0"),
factory->InternalizeUtf8String("4.2"),
factory->InternalizeUtf8String(""),
factory->InternalizeUtf8String("name"),
factory->NewSymbol(),
factory->NewPrivateSymbol(),
};
for (size_t i = 0; i < arraysize(keys); i++) {
Handle<Object> value = factory->NewPropertyCell();
dictionary = Dictionary::Add(dictionary, keys[i], value, fake_details);
}
for (size_t i = 0; i < arraysize(keys); i++) {
int entry = dictionary->FindEntry(keys[i]);
int name_index =
Dictionary::EntryToIndex(entry) + Dictionary::kEntryKeyIndex;
CHECK_NE(Dictionary::kNotFound, entry);
Handle<Object> expected_name_index(Smi::FromInt(name_index), isolate);
ft.CheckTrue(dictionary, keys[i], expect_found, expected_name_index);
}
Handle<Name> non_existing_keys[] = {
factory->InternalizeUtf8String("1"),
factory->InternalizeUtf8String("-42"),
factory->InternalizeUtf8String("153"),
factory->InternalizeUtf8String("-1.0"),
factory->InternalizeUtf8String("1.3"),
factory->InternalizeUtf8String("a"),
factory->InternalizeUtf8String("boom"),
factory->NewSymbol(),
factory->NewPrivateSymbol(),
};
for (size_t i = 0; i < arraysize(non_existing_keys); i++) {
int entry = dictionary->FindEntry(non_existing_keys[i]);
CHECK_EQ(Dictionary::kNotFound, entry);
ft.CheckTrue(dictionary, non_existing_keys[i], expect_not_found);
}
}
} // namespace
TEST(NameDictionaryLookup) { TestNameDictionaryLookup<NameDictionary>(); }
TEST(GlobalDictionaryLookup) { TestNameDictionaryLookup<GlobalDictionary>(); }
namespace {
template <typename Dictionary>
void TestNumberDictionaryLookup() {
typedef CodeStubAssembler::Label Label;
typedef CodeStubAssembler::Variable Variable;
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeStubAssemblerTester m(isolate, kNumParams);
enum Result { kFound, kNotFound };
{
Node* dictionary = m.Parameter(0);
Node* key = m.SmiToWord32(m.Parameter(1));
Node* expected_result = m.Parameter(2);
Node* expected_arg = m.Parameter(3);
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m);
Variable var_entry(&m, MachineRepresentation::kWord32);
m.NumberDictionaryLookup<Dictionary>(dictionary, key, &if_found, &var_entry,
&if_not_found);
m.Bind(&if_found);
m.GotoUnless(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&failed);
m.Branch(m.Word32Equal(m.SmiToWord32(expected_arg), var_entry.value()),
&passed, &failed);
m.Bind(&if_not_found);
m.Branch(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.Bind(&passed);
m.Return(m.BooleanConstant(true));
m.Bind(&failed);
m.Return(m.BooleanConstant(false));
}
Handle<Code> code = m.GenerateCode();
FunctionTester ft(code, kNumParams);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
const int kKeysCount = 1000;
Handle<Dictionary> dictionary = Dictionary::New(isolate, kKeysCount);
uint32_t keys[kKeysCount];
Handle<Object> fake_value(Smi::FromInt(42), isolate);
PropertyDetails fake_details = PropertyDetails::Empty();
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
for (int i = 0; i < kKeysCount; i++) {
int random_key = rand_gen.NextInt(Smi::kMaxValue);
keys[i] = static_cast<uint32_t>(random_key);
if (dictionary->FindEntry(keys[i]) != Dictionary::kNotFound) continue;
dictionary = Dictionary::Add(dictionary, keys[i], fake_value, fake_details);
}
// Now try querying existing keys.
for (int i = 0; i < kKeysCount; i++) {
int entry = dictionary->FindEntry(keys[i]);
CHECK_NE(Dictionary::kNotFound, entry);
Handle<Object> key(Smi::FromInt(keys[i]), isolate);
Handle<Object> expected_entry(Smi::FromInt(entry), isolate);
ft.CheckTrue(dictionary, key, expect_found, expected_entry);
}
// Now try querying random keys which do not exist in the dictionary.
for (int i = 0; i < kKeysCount;) {
int random_key = rand_gen.NextInt(Smi::kMaxValue);
int entry = dictionary->FindEntry(random_key);
if (entry != Dictionary::kNotFound) continue;
i++;
Handle<Object> key(Smi::FromInt(random_key), isolate);
ft.CheckTrue(dictionary, key, expect_not_found);
}
}
} // namespace
TEST(SeededNumberDictionaryLookup) {
TestNumberDictionaryLookup<SeededNumberDictionary>();
}
TEST(UnseededNumberDictionaryLookup) {
TestNumberDictionaryLookup<UnseededNumberDictionary>();
}
namespace {
void AddProperties(Handle<JSObject> object, Handle<Name> names[],
size_t count) {
Isolate* isolate = object->GetIsolate();
for (size_t i = 0; i < count; i++) {
Handle<Object> value(Smi::FromInt(static_cast<int>(42 + i)), isolate);
JSObject::AddProperty(object, names[i], value, NONE);
}
}
Handle<AccessorPair> CreateAccessorPair(FunctionTester* ft,
const char* getter_body,
const char* setter_body) {
Handle<AccessorPair> pair = ft->isolate->factory()->NewAccessorPair();
if (getter_body) {
pair->set_getter(*ft->NewFunction(getter_body));
}
if (setter_body) {
pair->set_setter(*ft->NewFunction(setter_body));
}
return pair;
}
void AddProperties(Handle<JSObject> object, Handle<Name> names[],
size_t names_count, Handle<Object> values[],
size_t values_count, int seed = 0) {
Isolate* isolate = object->GetIsolate();
for (size_t i = 0; i < names_count; i++) {
Handle<Object> value = values[(seed + i) % values_count];
if (value->IsAccessorPair()) {
Handle<AccessorPair> pair = Handle<AccessorPair>::cast(value);
Handle<Object> getter(pair->getter(), isolate);
Handle<Object> setter(pair->setter(), isolate);
JSObject::DefineAccessor(object, names[i], getter, setter, NONE).Check();
} else {
JSObject::AddProperty(object, names[i], value, NONE);
}
}
}
} // namespace
TEST(TryHasOwnProperty) {
typedef CodeStubAssembler::Label Label;
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 4;
CodeStubAssemblerTester m(isolate, kNumParams);
enum Result { kFound, kNotFound, kBailout };
{
Node* object = m.Parameter(0);
Node* unique_name = m.Parameter(1);
Node* expected_result = m.Parameter(2);
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m), if_bailout(&m);
Node* map = m.LoadMap(object);
Node* instance_type = m.LoadMapInstanceType(map);
m.TryHasOwnProperty(object, map, instance_type, unique_name, &if_found,
&if_not_found, &if_bailout);
m.Bind(&if_found);
m.Branch(m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&passed, &failed);
m.Bind(&if_not_found);
m.Branch(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.Bind(&if_bailout);
m.Branch(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kBailout))),
&passed, &failed);
m.Bind(&passed);
m.Return(m.BooleanConstant(true));
m.Bind(&failed);
m.Return(m.BooleanConstant(false));
}
Handle<Code> code = m.GenerateCode();
FunctionTester ft(code, kNumParams);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
Handle<Object> expect_bailout(Smi::FromInt(kBailout), isolate);
Factory* factory = isolate->factory();
Handle<Name> deleted_property_name =
factory->InternalizeUtf8String("deleted");
Handle<Name> names[] = {
factory->InternalizeUtf8String("a"),
factory->InternalizeUtf8String("bb"),
factory->InternalizeUtf8String("ccc"),
factory->InternalizeUtf8String("dddd"),
factory->InternalizeUtf8String("eeeee"),
factory->InternalizeUtf8String(""),
factory->InternalizeUtf8String("name"),
factory->NewSymbol(),
factory->NewPrivateSymbol(),
};
std::vector<Handle<JSObject>> objects;
{
// Fast object, no inobject properties.
int inobject_properties = 0;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names));
CHECK_EQ(JS_OBJECT_TYPE, object->map()->instance_type());
CHECK_EQ(inobject_properties, object->map()->GetInObjectProperties());
CHECK(!object->map()->is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, all inobject properties.
int inobject_properties = arraysize(names) * 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names));
CHECK_EQ(JS_OBJECT_TYPE, object->map()->instance_type());
CHECK_EQ(inobject_properties, object->map()->GetInObjectProperties());
CHECK(!object->map()->is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, half inobject properties.
int inobject_properties = arraysize(names) / 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names));
CHECK_EQ(JS_OBJECT_TYPE, object->map()->instance_type());
CHECK_EQ(inobject_properties, object->map()->GetInObjectProperties());
CHECK(!object->map()->is_dictionary_map());
objects.push_back(object);
}
{
// Dictionary mode object.
Handle<JSFunction> function = factory->NewFunction(factory->empty_string());
Handle<JSObject> object = factory->NewJSObject(function);
AddProperties(object, names, arraysize(names));
JSObject::NormalizeProperties(object, CLEAR_INOBJECT_PROPERTIES, 0, "test");
JSObject::AddProperty(object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name, SLOPPY)
.FromJust());
CHECK_EQ(JS_OBJECT_TYPE, object->map()->instance_type());
CHECK(object->map()->is_dictionary_map());
objects.push_back(object);
}
{
// Global object.
Handle<JSFunction> function = factory->NewFunction(factory->empty_string());
JSFunction::EnsureHasInitialMap(function);
function->initial_map()->set_instance_type(JS_GLOBAL_OBJECT_TYPE);
function->initial_map()->set_is_prototype_map(true);
function->initial_map()->set_dictionary_map(true);
Handle<JSObject> object = factory->NewJSGlobalObject(function);
AddProperties(object, names, arraysize(names));
JSObject::AddProperty(object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name, SLOPPY)
.FromJust());
CHECK_EQ(JS_GLOBAL_OBJECT_TYPE, object->map()->instance_type());
CHECK(object->map()->is_dictionary_map());
objects.push_back(object);
}
{
for (Handle<JSObject> object : objects) {
for (size_t name_index = 0; name_index < arraysize(names); name_index++) {
Handle<Name> name = names[name_index];
CHECK(JSReceiver::HasProperty(object, name).FromJust());
ft.CheckTrue(object, name, expect_found);
}
}
}
{
Handle<Name> non_existing_names[] = {
factory->NewSymbol(),
factory->InternalizeUtf8String("ne_a"),
factory->InternalizeUtf8String("ne_bb"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("ne_ccc"),
factory->InternalizeUtf8String("ne_dddd"),
deleted_property_name,
};
for (Handle<JSObject> object : objects) {
for (size_t key_index = 0; key_index < arraysize(non_existing_names);
key_index++) {
Handle<Name> name = non_existing_names[key_index];
CHECK(!JSReceiver::HasProperty(object, name).FromJust());
ft.CheckTrue(object, name, expect_not_found);
}
}
}
{
Handle<JSFunction> function = factory->NewFunction(factory->empty_string());
Handle<JSProxy> object = factory->NewJSProxy(function, objects[0]);
CHECK_EQ(JS_PROXY_TYPE, object->map()->instance_type());
ft.CheckTrue(object, names[0], expect_bailout);
}
{
Handle<JSObject> object = isolate->global_proxy();
CHECK_EQ(JS_GLOBAL_PROXY_TYPE, object->map()->instance_type());
ft.CheckTrue(object, names[0], expect_bailout);
}
}
TEST(TryGetOwnProperty) {
typedef CodeStubAssembler::Label Label;
typedef CodeStubAssembler::Variable Variable;
Isolate* isolate(CcTest::InitIsolateOnce());
Factory* factory = isolate->factory();
const int kNumParams = 2;
CodeStubAssemblerTester m(isolate, kNumParams);
Handle<Symbol> not_found_symbol = factory->NewSymbol();
Handle<Symbol> bailout_symbol = factory->NewSymbol();
{
Node* object = m.Parameter(0);
Node* unique_name = m.Parameter(1);
Node* context = m.Parameter(kNumParams + 2);
Variable var_value(&m, MachineRepresentation::kTagged);
Label if_found(&m), if_not_found(&m), if_bailout(&m);
Node* map = m.LoadMap(object);
Node* instance_type = m.LoadMapInstanceType(map);
m.TryGetOwnProperty(context, object, object, map, instance_type,
unique_name, &if_found, &var_value, &if_not_found,
&if_bailout);
m.Bind(&if_found);
m.Return(var_value.value());
m.Bind(&if_not_found);
m.Return(m.HeapConstant(not_found_symbol));
m.Bind(&if_bailout);
m.Return(m.HeapConstant(bailout_symbol));
}
Handle<Code> code = m.GenerateCode();
FunctionTester ft(code, kNumParams);
Handle<Name> deleted_property_name =
factory->InternalizeUtf8String("deleted");
Handle<Name> names[] = {
factory->InternalizeUtf8String("bb"),
factory->NewSymbol(),
factory->InternalizeUtf8String("a"),
factory->InternalizeUtf8String("ccc"),
factory->InternalizeUtf8String("esajefe"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("eeeee"),
factory->InternalizeUtf8String("p1"),
factory->InternalizeUtf8String("acshw23e"),
factory->InternalizeUtf8String(""),
factory->InternalizeUtf8String("dddd"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("name"),
factory->InternalizeUtf8String("p2"),
factory->InternalizeUtf8String("p3"),
factory->InternalizeUtf8String("p4"),
factory->NewPrivateSymbol(),
};
Handle<Object> values[] = {
factory->NewFunction(factory->empty_string()),
factory->NewSymbol(),
factory->InternalizeUtf8String("a"),
CreateAccessorPair(&ft, "() => 188;", "() => 199;"),
factory->NewFunction(factory->InternalizeUtf8String("bb")),
factory->InternalizeUtf8String("ccc"),
CreateAccessorPair(&ft, "() => 88;", nullptr),
handle(Smi::FromInt(1), isolate),
factory->InternalizeUtf8String(""),
CreateAccessorPair(&ft, nullptr, "() => 99;"),
factory->NewHeapNumber(4.2),
handle(Smi::FromInt(153), isolate),
factory->NewJSObject(factory->NewFunction(factory->empty_string())),
factory->NewPrivateSymbol(),
};
STATIC_ASSERT(arraysize(values) < arraysize(names));
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
std::vector<Handle<JSObject>> objects;
{
// Fast object, no inobject properties.
int inobject_properties = 0;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
CHECK_EQ(JS_OBJECT_TYPE, object->map()->instance_type());
CHECK_EQ(inobject_properties, object->map()->GetInObjectProperties());
CHECK(!object->map()->is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, all inobject properties.
int inobject_properties = arraysize(names) * 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
CHECK_EQ(JS_OBJECT_TYPE, object->map()->instance_type());
CHECK_EQ(inobject_properties, object->map()->GetInObjectProperties());
CHECK(!object->map()->is_dictionary_map());
objects.push_back(object);
}
{
// Fast object, half inobject properties.
int inobject_properties = arraysize(names) / 2;
Handle<Map> map = Map::Create(isolate, inobject_properties);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
CHECK_EQ(JS_OBJECT_TYPE, object->map()->instance_type());
CHECK_EQ(inobject_properties, object->map()->GetInObjectProperties());
CHECK(!object->map()->is_dictionary_map());
objects.push_back(object);
}
{
// Dictionary mode object.
Handle<JSFunction> function = factory->NewFunction(factory->empty_string());
Handle<JSObject> object = factory->NewJSObject(function);
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
JSObject::NormalizeProperties(object, CLEAR_INOBJECT_PROPERTIES, 0, "test");
JSObject::AddProperty(object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name, SLOPPY)
.FromJust());
CHECK_EQ(JS_OBJECT_TYPE, object->map()->instance_type());
CHECK(object->map()->is_dictionary_map());
objects.push_back(object);
}
{
// Global object.
Handle<JSGlobalObject> object = isolate->global_object();
AddProperties(object, names, arraysize(names), values, arraysize(values),
rand_gen.NextInt());
JSObject::AddProperty(object, deleted_property_name, object, NONE);
CHECK(JSObject::DeleteProperty(object, deleted_property_name, SLOPPY)
.FromJust());
CHECK_EQ(JS_GLOBAL_OBJECT_TYPE, object->map()->instance_type());
CHECK(object->map()->is_dictionary_map());
objects.push_back(object);
}
// TODO(ishell): test proxy and interceptors when they are supported.
{
for (Handle<JSObject> object : objects) {
for (size_t name_index = 0; name_index < arraysize(names); name_index++) {
Handle<Name> name = names[name_index];
Handle<Object> expected_value =
JSReceiver::GetProperty(object, name).ToHandleChecked();
Handle<Object> value = ft.Call(object, name).ToHandleChecked();
CHECK(expected_value->SameValue(*value));
}
}
}
{
Handle<Name> non_existing_names[] = {
factory->NewSymbol(),
factory->InternalizeUtf8String("ne_a"),
factory->InternalizeUtf8String("ne_bb"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("ne_ccc"),
factory->InternalizeUtf8String("ne_dddd"),
deleted_property_name,
};
for (Handle<JSObject> object : objects) {
for (size_t key_index = 0; key_index < arraysize(non_existing_names);
key_index++) {
Handle<Name> name = non_existing_names[key_index];
Handle<Object> expected_value =
JSReceiver::GetProperty(object, name).ToHandleChecked();
CHECK(expected_value->IsUndefined(isolate));
Handle<Object> value = ft.Call(object, name).ToHandleChecked();
CHECK_EQ(*not_found_symbol, *value);
}
}
}
{
Handle<JSFunction> function = factory->NewFunction(factory->empty_string());
Handle<JSProxy> object = factory->NewJSProxy(function, objects[0]);
CHECK_EQ(JS_PROXY_TYPE, object->map()->instance_type());
Handle<Object> value = ft.Call(object, names[0]).ToHandleChecked();
// Proxies are not supported yet.
CHECK_EQ(*bailout_symbol, *value);
}
{
Handle<JSObject> object = isolate->global_proxy();
CHECK_EQ(JS_GLOBAL_PROXY_TYPE, object->map()->instance_type());
// Global proxies are not supported yet.
Handle<Object> value = ft.Call(object, names[0]).ToHandleChecked();
CHECK_EQ(*bailout_symbol, *value);
}
}
namespace {
void AddElement(Handle<JSObject> object, uint32_t index, Handle<Object> value,
PropertyAttributes attributes = NONE) {
JSObject::AddDataElement(object, index, value, attributes).ToHandleChecked();
}
} // namespace
TEST(TryLookupElement) {
typedef CodeStubAssembler::Label Label;
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeStubAssemblerTester m(isolate, kNumParams);
enum Result { kFound, kNotFound, kBailout };
{
Node* object = m.Parameter(0);
Node* index = m.SmiToWord32(m.Parameter(1));
Node* expected_result = m.Parameter(2);
Label passed(&m), failed(&m);
Label if_found(&m), if_not_found(&m), if_bailout(&m);
Node* map = m.LoadMap(object);
Node* instance_type = m.LoadMapInstanceType(map);
m.TryLookupElement(object, map, instance_type, index, &if_found,
&if_not_found, &if_bailout);
m.Bind(&if_found);
m.Branch(m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))),
&passed, &failed);
m.Bind(&if_not_found);
m.Branch(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))),
&passed, &failed);
m.Bind(&if_bailout);
m.Branch(
m.WordEqual(expected_result, m.SmiConstant(Smi::FromInt(kBailout))),
&passed, &failed);
m.Bind(&passed);
m.Return(m.BooleanConstant(true));
m.Bind(&failed);
m.Return(m.BooleanConstant(false));
}
Handle<Code> code = m.GenerateCode();
FunctionTester ft(code, kNumParams);
Factory* factory = isolate->factory();
Handle<Object> smi0(Smi::FromInt(0), isolate);
Handle<Object> smi1(Smi::FromInt(1), isolate);
Handle<Object> smi7(Smi::FromInt(7), isolate);
Handle<Object> smi13(Smi::FromInt(13), isolate);
Handle<Object> smi42(Smi::FromInt(42), isolate);
Handle<Object> expect_found(Smi::FromInt(kFound), isolate);
Handle<Object> expect_not_found(Smi::FromInt(kNotFound), isolate);
Handle<Object> expect_bailout(Smi::FromInt(kBailout), isolate);
#define CHECK_FOUND(object, index) \
CHECK(JSReceiver::HasElement(object, index).FromJust()); \
ft.CheckTrue(object, smi##index, expect_found);
#define CHECK_NOT_FOUND(object, index) \
CHECK(!JSReceiver::HasElement(object, index).FromJust()); \
ft.CheckTrue(object, smi##index, expect_not_found);
{
Handle<JSArray> object = factory->NewJSArray(0, FAST_SMI_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 1, smi0);
CHECK_EQ(FAST_SMI_ELEMENTS, object->map()->elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_NOT_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSArray> object = factory->NewJSArray(0, FAST_HOLEY_SMI_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 13, smi0);
CHECK_EQ(FAST_HOLEY_SMI_ELEMENTS, object->map()->elements_kind());
CHECK_FOUND(object, 0);
CHECK_NOT_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSArray> object = factory->NewJSArray(0, FAST_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 1, smi0);
CHECK_EQ(FAST_ELEMENTS, object->map()->elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_NOT_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSArray> object = factory->NewJSArray(0, FAST_HOLEY_ELEMENTS);
AddElement(object, 0, smi0);
AddElement(object, 13, smi0);
CHECK_EQ(FAST_HOLEY_ELEMENTS, object->map()->elements_kind());
CHECK_FOUND(object, 0);
CHECK_NOT_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSFunction> constructor = isolate->string_function();
Handle<JSObject> object = factory->NewJSObject(constructor);
Handle<String> str = factory->InternalizeUtf8String("ab");
Handle<JSValue>::cast(object)->set_value(*str);
AddElement(object, 13, smi0);
CHECK_EQ(FAST_STRING_WRAPPER_ELEMENTS, object->map()->elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
{
Handle<JSFunction> constructor = isolate->string_function();
Handle<JSObject> object = factory->NewJSObject(constructor);
Handle<String> str = factory->InternalizeUtf8String("ab");
Handle<JSValue>::cast(object)->set_value(*str);
AddElement(object, 13, smi0);
JSObject::NormalizeElements(object);
CHECK_EQ(SLOW_STRING_WRAPPER_ELEMENTS, object->map()->elements_kind());
CHECK_FOUND(object, 0);
CHECK_FOUND(object, 1);
CHECK_NOT_FOUND(object, 7);
CHECK_FOUND(object, 13);
CHECK_NOT_FOUND(object, 42);
}
// TODO(ishell): uncomment once NO_ELEMENTS kind is supported.
// {
// Handle<Map> map = Map::Create(isolate, 0);
// map->set_elements_kind(NO_ELEMENTS);
// Handle<JSObject> object = factory->NewJSObjectFromMap(map);
// CHECK_EQ(NO_ELEMENTS, object->map()->elements_kind());
//
// CHECK_NOT_FOUND(object, 0);
// CHECK_NOT_FOUND(object, 1);
// CHECK_NOT_FOUND(object, 7);
// CHECK_NOT_FOUND(object, 13);
// CHECK_NOT_FOUND(object, 42);
// }
#undef CHECK_FOUND
#undef CHECK_NOT_FOUND
{
Handle<JSArray> handler = factory->NewJSArray(0);
Handle<JSFunction> function = factory->NewFunction(factory->empty_string());
Handle<JSProxy> object = factory->NewJSProxy(function, handler);
CHECK_EQ(JS_PROXY_TYPE, object->map()->instance_type());
ft.CheckTrue(object, smi0, expect_bailout);
}
{
Handle<JSObject> object = isolate->global_object();
CHECK_EQ(JS_GLOBAL_OBJECT_TYPE, object->map()->instance_type());
ft.CheckTrue(object, smi0, expect_bailout);
}
{
Handle<JSObject> object = isolate->global_proxy();
CHECK_EQ(JS_GLOBAL_PROXY_TYPE, object->map()->instance_type());
ft.CheckTrue(object, smi0, expect_bailout);
}
}
TEST(DeferredCodePhiHints) {
typedef compiler::Node Node;
typedef CodeStubAssembler::Label Label;
typedef CodeStubAssembler::Variable Variable;
Isolate* isolate(CcTest::InitIsolateOnce());
VoidDescriptor descriptor(isolate);
CodeStubAssemblerTester m(isolate, descriptor);
Label block1(&m, Label::kDeferred);
m.Goto(&block1);
m.Bind(&block1);
{
Variable var_object(&m, MachineRepresentation::kTagged);
Label loop(&m, &var_object);
var_object.Bind(m.IntPtrConstant(0));
m.Goto(&loop);
m.Bind(&loop);
{
Node* map = m.LoadMap(var_object.value());
var_object.Bind(map);
m.Goto(&loop);
}
}
CHECK(!m.GenerateCode().is_null());
}
TEST(TestOutOfScopeVariable) {
typedef CodeStubAssembler::Label Label;
typedef CodeStubAssembler::Variable Variable;
Isolate* isolate(CcTest::InitIsolateOnce());
VoidDescriptor descriptor(isolate);
CodeStubAssemblerTester m(isolate, descriptor);
Label block1(&m);
Label block2(&m);
Label block3(&m);
Label block4(&m);
m.Branch(m.WordEqual(m.Parameter(0), m.IntPtrConstant(0)), &block1, &block4);
m.Bind(&block4);
{
Variable var_object(&m, MachineRepresentation::kTagged);
m.Branch(m.WordEqual(m.Parameter(0), m.IntPtrConstant(0)), &block2,
&block3);
m.Bind(&block2);
var_object.Bind(m.IntPtrConstant(55));
m.Goto(&block1);
m.Bind(&block3);
var_object.Bind(m.IntPtrConstant(66));
m.Goto(&block1);
}
m.Bind(&block1);
CHECK(!m.GenerateCode().is_null());
}
namespace {
void TestStubCacheOffsetCalculation(StubCache::Table table,
Code::Kind handler_kind) {
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 2;
CodeStubAssemblerTester m(isolate, kNumParams);
{
Node* name = m.Parameter(0);
Node* map = m.Parameter(1);
Node* primary_offset = m.StubCachePrimaryOffset(name, map);
Node* result;
if (table == StubCache::kPrimary) {
result = primary_offset;
} else {
CHECK_EQ(StubCache::kSecondary, table);
result = m.StubCacheSecondaryOffset(name, primary_offset);
}
m.Return(m.SmiFromWord32(result));
}
Handle<Code> code = m.GenerateCode();
FunctionTester ft(code, kNumParams);
Factory* factory = isolate->factory();
Handle<Name> names[] = {
factory->NewSymbol(),
factory->InternalizeUtf8String("a"),
factory->InternalizeUtf8String("bb"),
factory->InternalizeUtf8String("ccc"),
factory->NewPrivateSymbol(),
factory->InternalizeUtf8String("dddd"),
factory->InternalizeUtf8String("eeeee"),
factory->InternalizeUtf8String("name"),
factory->NewSymbol(),
factory->NewPrivateSymbol(),
};
Handle<Map> maps[] = {
Handle<Map>(nullptr, isolate),
factory->cell_map(),
Map::Create(isolate, 0),
factory->meta_map(),
factory->code_map(),
Map::Create(isolate, 0),
factory->hash_table_map(),
factory->symbol_map(),
factory->string_map(),
Map::Create(isolate, 0),
factory->sloppy_arguments_elements_map(),
};
for (int name_index = 0; name_index < arraysize(names); name_index++) {
Handle<Name> name = names[name_index];
for (int map_index = 0; map_index < arraysize(maps); map_index++) {
Handle<Map> map = maps[map_index];
int expected_result;
{
int primary_offset = StubCache::PrimaryOffsetForTesting(*name, *map);
if (table == StubCache::kPrimary) {
expected_result = primary_offset;
} else {
expected_result =
StubCache::SecondaryOffsetForTesting(*name, primary_offset);
}
}
Handle<Object> result = ft.Call(name, map).ToHandleChecked();
Smi* expected = Smi::FromInt(expected_result & Smi::kMaxValue);
CHECK_EQ(expected, Smi::cast(*result));
}
}
}
} // namespace
TEST(StubCachePrimaryOffsetLoadIC) {
TestStubCacheOffsetCalculation(StubCache::kPrimary, Code::LOAD_IC);
}
TEST(StubCachePrimaryOffsetStoreIC) {
TestStubCacheOffsetCalculation(StubCache::kPrimary, Code::STORE_IC);
}
TEST(StubCacheSecondaryOffsetLoadIC) {
TestStubCacheOffsetCalculation(StubCache::kSecondary, Code::LOAD_IC);
}
TEST(StubCacheSecondaryOffsetStoreIC) {
TestStubCacheOffsetCalculation(StubCache::kSecondary, Code::STORE_IC);
}
namespace {
Handle<Code> CreateCodeWithFlags(Code::Flags flags) {
Isolate* isolate(CcTest::InitIsolateOnce());
CodeStubAssemblerTester m(isolate, flags);
m.Return(m.UndefinedConstant());
return m.GenerateCodeCloseAndEscape();
}
} // namespace
TEST(TryProbeStubCache) {
typedef CodeStubAssembler::Label Label;
typedef CodeStubAssembler::Variable Variable;
Isolate* isolate(CcTest::InitIsolateOnce());
const int kNumParams = 3;
CodeStubAssemblerTester m(isolate, kNumParams);
Code::Kind ic_kind = Code::LOAD_IC;
StubCache stub_cache(isolate, ic_kind);
stub_cache.Clear();
{
Node* receiver = m.Parameter(0);
Node* name = m.Parameter(1);
Node* expected_handler = m.Parameter(2);
Label passed(&m), failed(&m);
Variable var_handler(&m, MachineRepresentation::kTagged);
Label if_handler(&m), if_miss(&m);
m.TryProbeStubCache(&stub_cache, receiver, name, &if_handler, &var_handler,
&if_miss);
m.Bind(&if_handler);
m.BranchIfWordEqual(expected_handler, var_handler.value(), &passed,
&failed);
m.Bind(&if_miss);
m.BranchIfWordEqual(expected_handler, m.IntPtrConstant(0), &passed,
&failed);
m.Bind(&passed);
m.Return(m.BooleanConstant(true));
m.Bind(&failed);
m.Return(m.BooleanConstant(false));
}
Handle<Code> code = m.GenerateCode();
FunctionTester ft(code, kNumParams);
std::vector<Handle<Name>> names;
std::vector<Handle<JSObject>> receivers;
std::vector<Handle<Code>> handlers;
base::RandomNumberGenerator rand_gen(FLAG_random_seed);
Factory* factory = isolate->factory();
// Generate some number of names.
for (int i = 0; i < StubCache::kPrimaryTableSize / 7; i++) {
Handle<Name> name;
switch (rand_gen.NextInt(3)) {
case 0: {
// Generate string.
std::stringstream ss;
ss << "s" << std::hex
<< (rand_gen.NextInt(Smi::kMaxValue) % StubCache::kPrimaryTableSize);
name = factory->InternalizeUtf8String(ss.str().c_str());
break;
}
case 1: {
// Generate number string.
std::stringstream ss;
ss << (rand_gen.NextInt(Smi::kMaxValue) % StubCache::kPrimaryTableSize);
name = factory->InternalizeUtf8String(ss.str().c_str());
break;
}
case 2: {
// Generate symbol.
name = factory->NewSymbol();
break;
}
default:
UNREACHABLE();
}
names.push_back(name);
}
// Generate some number of receiver maps and receivers.
for (int i = 0; i < StubCache::kSecondaryTableSize / 2; i++) {
Handle<Map> map = Map::Create(isolate, 0);
receivers.push_back(factory->NewJSObjectFromMap(map));
}
// Generate some number of handlers.
for (int i = 0; i < 30; i++) {
Code::Flags flags =
Code::RemoveHolderFromFlags(Code::ComputeHandlerFlags(ic_kind));
handlers.push_back(CreateCodeWithFlags(flags));
}
// Ensure that GC does happen because from now on we are going to fill our
// own stub cache instance with raw values.
DisallowHeapAllocation no_gc;
// Populate {stub_cache}.
const int N = StubCache::kPrimaryTableSize + StubCache::kSecondaryTableSize;
for (int i = 0; i < N; i++) {
int index = rand_gen.NextInt();
Handle<Name> name = names[index % names.size()];
Handle<JSObject> receiver = receivers[index % receivers.size()];
Handle<Code> handler = handlers[index % handlers.size()];
stub_cache.Set(*name, receiver->map(), *handler);
}
// Perform some queries.
bool queried_existing = false;
bool queried_non_existing = false;
for (int i = 0; i < N; i++) {
int index = rand_gen.NextInt();
Handle<Name> name = names[index % names.size()];
Handle<JSObject> receiver = receivers[index % receivers.size()];
Code* handler = stub_cache.Get(*name, receiver->map());
if (handler == nullptr) {
queried_non_existing = true;
} else {
queried_existing = true;
}
Handle<Code> expected_handler(handler, isolate);
ft.CheckTrue(receiver, name, expected_handler);
}
for (int i = 0; i < N; i++) {
int index1 = rand_gen.NextInt();
int index2 = rand_gen.NextInt();
Handle<Name> name = names[index1 % names.size()];
Handle<JSObject> receiver = receivers[index2 % receivers.size()];
Code* handler = stub_cache.Get(*name, receiver->map());
if (handler == nullptr) {
queried_non_existing = true;
} else {
queried_existing = true;
}
Handle<Code> expected_handler(handler, isolate);
ft.CheckTrue(receiver, name, expected_handler);
}
// Ensure we performed both kind of queries.
CHECK(queried_existing && queried_non_existing);
}
} // namespace internal
} // namespace v8