v8/test/cctest/test-macro-assembler-mips.cc
balazs.kilvady d4a391bb7a MIPS: Support r6 min, max floating point instructions.
Use macro instructions for min, max ops to get the same functionality on
pre-r6 and r6 targets.

BUG=
TEST=mjsunit/math-min-max, cctest/test-macro-assembler-mips64/min_max_nan, cctest/test-macro-assembler-mips/min_max_nan, cctest/test-assembler-mips64/min_max, cctest/test-assembler-mips/min_max

Review URL: https://codereview.chromium.org/1694833002

Cr-Commit-Position: refs/heads/master@{#35073}
2016-03-25 16:51:23 +00:00

581 lines
19 KiB
C++

// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include <iostream> // NOLINT(readability/streams)
#include "src/base/utils/random-number-generator.h"
#include "src/macro-assembler.h"
#include "src/mips/macro-assembler-mips.h"
#include "src/mips/simulator-mips.h"
#include "src/v8.h"
#include "test/cctest/cctest.h"
using namespace v8::internal;
typedef void* (*F)(int x, int y, int p2, int p3, int p4);
typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4);
typedef Object* (*F3)(void* p, int p1, int p2, int p3, int p4);
#define __ masm->
static byte to_non_zero(int n) {
return static_cast<unsigned>(n) % 255 + 1;
}
static bool all_zeroes(const byte* beg, const byte* end) {
CHECK(beg);
CHECK(beg <= end);
while (beg < end) {
if (*beg++ != 0)
return false;
}
return true;
}
TEST(CopyBytes) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
const int data_size = 1 * KB;
size_t act_size;
// Allocate two blocks to copy data between.
byte* src_buffer =
static_cast<byte*>(v8::base::OS::Allocate(data_size, &act_size, 0));
CHECK(src_buffer);
CHECK(act_size >= static_cast<size_t>(data_size));
byte* dest_buffer =
static_cast<byte*>(v8::base::OS::Allocate(data_size, &act_size, 0));
CHECK(dest_buffer);
CHECK(act_size >= static_cast<size_t>(data_size));
// Storage for a0 and a1.
byte* a0_;
byte* a1_;
MacroAssembler assembler(isolate, NULL, 0,
v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
// Code to be generated: The stuff in CopyBytes followed by a store of a0 and
// a1, respectively.
__ CopyBytes(a0, a1, a2, a3);
__ li(a2, Operand(reinterpret_cast<int>(&a0_)));
__ li(a3, Operand(reinterpret_cast<int>(&a1_)));
__ sw(a0, MemOperand(a2));
__ jr(ra);
__ sw(a1, MemOperand(a3));
CodeDesc desc;
masm->GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
::F f = FUNCTION_CAST< ::F>(code->entry());
// Initialise source data with non-zero bytes.
for (int i = 0; i < data_size; i++) {
src_buffer[i] = to_non_zero(i);
}
const int fuzz = 11;
for (int size = 0; size < 600; size++) {
for (const byte* src = src_buffer; src < src_buffer + fuzz; src++) {
for (byte* dest = dest_buffer; dest < dest_buffer + fuzz; dest++) {
memset(dest_buffer, 0, data_size);
CHECK(dest + size < dest_buffer + data_size);
(void)CALL_GENERATED_CODE(isolate, f, reinterpret_cast<int>(src),
reinterpret_cast<int>(dest), size, 0, 0);
// a0 and a1 should point at the first byte after the copied data.
CHECK_EQ(src + size, a0_);
CHECK_EQ(dest + size, a1_);
// Check that we haven't written outside the target area.
CHECK(all_zeroes(dest_buffer, dest));
CHECK(all_zeroes(dest + size, dest_buffer + data_size));
// Check the target area.
CHECK_EQ(0, memcmp(src, dest, size));
}
}
}
// Check that the source data hasn't been clobbered.
for (int i = 0; i < data_size; i++) {
CHECK(src_buffer[i] == to_non_zero(i));
}
}
static void TestNaN(const char *code) {
// NaN value is different on MIPS and x86 architectures, and TEST(NaNx)
// tests checks the case where a x86 NaN value is serialized into the
// snapshot on the simulator during cross compilation.
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Context> context = CcTest::NewContext(PRINT_EXTENSION);
v8::Context::Scope context_scope(context);
v8::Local<v8::Script> script =
v8::Script::Compile(context, v8_str(code)).ToLocalChecked();
v8::Local<v8::Object> result =
v8::Local<v8::Object>::Cast(script->Run(context).ToLocalChecked());
i::Handle<i::JSReceiver> o = v8::Utils::OpenHandle(*result);
i::Handle<i::JSArray> array1(reinterpret_cast<i::JSArray*>(*o));
i::FixedDoubleArray* a = i::FixedDoubleArray::cast(array1->elements());
double value = a->get_scalar(0);
CHECK(std::isnan(value) &&
bit_cast<uint64_t>(value) ==
bit_cast<uint64_t>(std::numeric_limits<double>::quiet_NaN()));
}
TEST(NaN0) {
TestNaN(
"var result;"
"for (var i = 0; i < 2; i++) {"
" result = new Array(Number.NaN, Number.POSITIVE_INFINITY);"
"}"
"result;");
}
TEST(NaN1) {
TestNaN(
"var result;"
"for (var i = 0; i < 2; i++) {"
" result = [NaN];"
"}"
"result;");
}
TEST(jump_tables4) {
// Similar to test-assembler-mips jump_tables1, with extra test for branch
// trampoline required before emission of the dd table (where trampolines are
// blocked), and proper transition to long-branch mode.
// Regression test for v8:4294.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
Label near_start, end, done;
__ Push(ra);
__ mov(v0, zero_reg);
__ Branch(&end);
__ bind(&near_start);
// Generate slightly less than 32K instructions, which will soon require
// trampoline for branch distance fixup.
for (int i = 0; i < 32768 - 256; ++i) {
__ addiu(v0, v0, 1);
}
__ GenerateSwitchTable(a0, kNumCases,
[&labels](size_t i) { return labels + i; });
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ li(v0, values[i]);
__ Branch(&done);
}
__ bind(&done);
__ Pop(ra);
__ jr(ra);
__ nop();
__ bind(&end);
__ Branch(&near_start);
CodeDesc desc;
masm->GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F1 f = FUNCTION_CAST<F1>(code->entry());
for (int i = 0; i < kNumCases; ++i) {
int res =
reinterpret_cast<int>(CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
::printf("f(%d) = %d\n", i, res);
CHECK_EQ(values[i], res);
}
}
TEST(jump_tables5) {
if (!IsMipsArchVariant(kMips32r6)) return;
// Similar to test-assembler-mips jump_tables1, with extra test for emitting a
// compact branch instruction before emission of the dd table.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
Label done;
__ Push(ra);
{
__ BlockTrampolinePoolFor(kNumCases + 6 + 1);
PredictableCodeSizeScope predictable(
masm, kNumCases * kPointerSize + ((6 + 1) * Assembler::kInstrSize));
__ addiupc(at, 6 + 1);
__ Lsa(at, at, a0, 2);
__ lw(at, MemOperand(at));
__ jalr(at);
__ nop(); // Branch delay slot nop.
__ bc(&done);
// A nop instruction must be generated by the forbidden slot guard
// (Assembler::dd(Label*)).
for (int i = 0; i < kNumCases; ++i) {
__ dd(&labels[i]);
}
}
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ li(v0, values[i]);
__ jr(ra);
__ nop();
}
__ bind(&done);
__ Pop(ra);
__ jr(ra);
__ nop();
CodeDesc desc;
masm->GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F1 f = FUNCTION_CAST<F1>(code->entry());
for (int i = 0; i < kNumCases; ++i) {
int32_t res = reinterpret_cast<int32_t>(
CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
::printf("f(%d) = %d\n", i, res);
CHECK_EQ(values[i], res);
}
}
static uint32_t run_lsa(uint32_t rt, uint32_t rs, int8_t sa) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
__ Lsa(v0, a0, a1, sa);
__ jr(ra);
__ nop();
CodeDesc desc;
assembler.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F1 f = FUNCTION_CAST<F1>(code->entry());
uint32_t res = reinterpret_cast<uint32_t>(
CALL_GENERATED_CODE(isolate, f, rt, rs, 0, 0, 0));
return res;
}
TEST(Lsa) {
CcTest::InitializeVM();
struct TestCaseLsa {
int32_t rt;
int32_t rs;
uint8_t sa;
uint32_t expected_res;
};
struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res
{0x4, 0x1, 1, 0x6},
{0x4, 0x1, 2, 0x8},
{0x4, 0x1, 3, 0xc},
{0x4, 0x1, 4, 0x14},
{0x4, 0x1, 5, 0x24},
{0x0, 0x1, 1, 0x2},
{0x0, 0x1, 2, 0x4},
{0x0, 0x1, 3, 0x8},
{0x0, 0x1, 4, 0x10},
{0x0, 0x1, 5, 0x20},
{0x4, 0x0, 1, 0x4},
{0x4, 0x0, 2, 0x4},
{0x4, 0x0, 3, 0x4},
{0x4, 0x0, 4, 0x4},
{0x4, 0x0, 5, 0x4},
// Shift overflow.
{0x4, INT32_MAX, 1, 0x2},
{0x4, INT32_MAX >> 1, 2, 0x0},
{0x4, INT32_MAX >> 2, 3, 0xfffffffc},
{0x4, INT32_MAX >> 3, 4, 0xfffffff4},
{0x4, INT32_MAX >> 4, 5, 0xffffffe4},
// Signed addition overflow.
{INT32_MAX - 1, 0x1, 1, 0x80000000},
{INT32_MAX - 3, 0x1, 2, 0x80000000},
{INT32_MAX - 7, 0x1, 3, 0x80000000},
{INT32_MAX - 15, 0x1, 4, 0x80000000},
{INT32_MAX - 31, 0x1, 5, 0x80000000},
// Addition overflow.
{-2, 0x1, 1, 0x0},
{-4, 0x1, 2, 0x0},
{-8, 0x1, 3, 0x0},
{-16, 0x1, 4, 0x0},
{-32, 0x1, 5, 0x0}};
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint32_t res = run_lsa(tc[i].rt, tc[i].rs, tc[i].sa);
PrintF("0x%x =? 0x%x == lsa(v0, %x, %x, %hhu)\n", tc[i].expected_res, res,
tc[i].rt, tc[i].rs, tc[i].sa);
CHECK_EQ(tc[i].expected_res, res);
}
}
static const std::vector<uint32_t> uint32_test_values() {
static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00ffff00,
0x7fffffff, 0x80000000, 0x80000001,
0x80ffff00, 0x8fffffff, 0xffffffff};
return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<int32_t> int32_test_values() {
static const int32_t kValues[] = {
static_cast<int32_t>(0x00000000), static_cast<int32_t>(0x00000001),
static_cast<int32_t>(0x00ffff00), static_cast<int32_t>(0x7fffffff),
static_cast<int32_t>(0x80000000), static_cast<int32_t>(0x80000001),
static_cast<int32_t>(0x80ffff00), static_cast<int32_t>(0x8fffffff),
static_cast<int32_t>(0xffffffff)};
return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
// Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... }
#define FOR_INPUTS(ctype, itype, var) \
std::vector<ctype> var##_vec = itype##_test_values(); \
for (std::vector<ctype>::iterator var = var##_vec.begin(); \
var != var##_vec.end(); ++var)
#define FOR_UINT32_INPUTS(var) FOR_INPUTS(uint32_t, uint32, var)
#define FOR_INT32_INPUTS(var) FOR_INPUTS(int32_t, int32, var)
template <typename RET_TYPE, typename IN_TYPE, typename Func>
RET_TYPE run_Cvt(IN_TYPE x, Func GenerateConvertInstructionFunc) {
typedef RET_TYPE (*F_CVT)(IN_TYPE x0, int x1, int x2, int x3, int x4);
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assm;
__ mtc1(a0, f4);
GenerateConvertInstructionFunc(masm);
__ mfc1(v0, f2);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F_CVT f = FUNCTION_CAST<F_CVT>(code->entry());
return reinterpret_cast<RET_TYPE>(
CALL_GENERATED_CODE(isolate, f, x, 0, 0, 0, 0));
}
TEST(cvt_s_w_Trunc_uw_s) {
CcTest::InitializeVM();
FOR_UINT32_INPUTS(i) {
uint32_t input = *i;
CHECK_EQ(static_cast<float>(input),
run_Cvt<uint32_t>(input, [](MacroAssembler* masm) {
__ cvt_s_w(f0, f4);
__ Trunc_uw_s(f2, f0, f1);
}));
}
}
TEST(cvt_d_w_Trunc_w_d) {
CcTest::InitializeVM();
FOR_INT32_INPUTS(i) {
int32_t input = *i;
CHECK_EQ(static_cast<double>(input),
run_Cvt<int32_t>(input, [](MacroAssembler* masm) {
__ cvt_d_w(f0, f4);
__ Trunc_w_d(f2, f0);
}));
}
}
TEST(min_max_nan) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, nullptr, 0,
v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct TestFloat {
double a;
double b;
double c;
double d;
float e;
float f;
float g;
float h;
};
TestFloat test;
const double dnan = std::numeric_limits<double>::quiet_NaN();
const double dinf = std::numeric_limits<double>::infinity();
const double dminf = -std::numeric_limits<double>::infinity();
const float fnan = std::numeric_limits<float>::quiet_NaN();
const float finf = std::numeric_limits<float>::infinity();
const float fminf = std::numeric_limits<float>::infinity();
const int kTableLength = 13;
double inputsa[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0, dinf, dminf,
dinf, dnan, 3.0, dinf, dnan, dnan};
double inputsb[kTableLength] = {3.0, 2.0, 0.0, -0.0, dinf, 42.0, dinf,
dminf, 3.0, dnan, dnan, dinf, dnan};
double outputsdmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0,
42.0, dminf, dminf, dnan, dnan,
dnan, dnan, dnan};
double outputsdmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, dinf, dinf, dinf,
dinf, dnan, dnan, dnan, dnan, dnan};
float inputse[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0, finf, fminf,
finf, fnan, 3.0, finf, fnan, fnan};
float inputsf[kTableLength] = {3.0, 2.0, 0.0, -0.0, finf, 42.0, finf,
fminf, 3.0, fnan, fnan, finf, fnan};
float outputsfmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0, 42.0, fminf,
fminf, fnan, fnan, fnan, fnan, fnan};
float outputsfmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, finf, finf, finf,
finf, fnan, fnan, fnan, fnan, fnan};
auto handle_dnan = [masm](FPURegister dst, Label* nan, Label* back) {
__ bind(nan);
__ LoadRoot(at, Heap::kNanValueRootIndex);
__ ldc1(dst, FieldMemOperand(at, HeapNumber::kValueOffset));
__ Branch(back);
};
auto handle_snan = [masm, fnan](FPURegister dst, Label* nan, Label* back) {
__ bind(nan);
__ Move(dst, fnan);
__ Branch(back);
};
Label handle_mind_nan, handle_maxd_nan, handle_mins_nan, handle_maxs_nan;
Label back_mind_nan, back_maxd_nan, back_mins_nan, back_maxs_nan;
__ push(s6);
__ InitializeRootRegister();
__ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
__ ldc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
__ lwc1(f2, MemOperand(a0, offsetof(TestFloat, e)));
__ lwc1(f6, MemOperand(a0, offsetof(TestFloat, f)));
__ MinNaNCheck_d(f10, f4, f8, &handle_mind_nan);
__ bind(&back_mind_nan);
__ MaxNaNCheck_d(f12, f4, f8, &handle_maxd_nan);
__ bind(&back_maxd_nan);
__ MinNaNCheck_s(f14, f2, f6, &handle_mins_nan);
__ bind(&back_mins_nan);
__ MaxNaNCheck_s(f16, f2, f6, &handle_maxs_nan);
__ bind(&back_maxs_nan);
__ sdc1(f10, MemOperand(a0, offsetof(TestFloat, c)));
__ sdc1(f12, MemOperand(a0, offsetof(TestFloat, d)));
__ swc1(f14, MemOperand(a0, offsetof(TestFloat, g)));
__ swc1(f16, MemOperand(a0, offsetof(TestFloat, h)));
__ pop(s6);
__ jr(ra);
__ nop();
handle_dnan(f10, &handle_mind_nan, &back_mind_nan);
handle_dnan(f12, &handle_maxd_nan, &back_maxd_nan);
handle_snan(f14, &handle_mins_nan, &back_mins_nan);
handle_snan(f16, &handle_maxs_nan, &back_maxs_nan);
CodeDesc desc;
masm->GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
::F3 f = FUNCTION_CAST<::F3>(code->entry());
for (int i = 0; i < kTableLength; i++) {
test.a = inputsa[i];
test.b = inputsb[i];
test.e = inputse[i];
test.f = inputsf[i];
CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0);
CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c)));
CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d)));
CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g)));
CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h)));
}
}
#undef __