d5b89c28cf
R=mstarzinger@chromium.org BUG=v8:5117 Review-Url: https://codereview.chromium.org/2109613004 Cr-Commit-Position: refs/heads/master@{#37397}
3222 lines
100 KiB
C++
3222 lines
100 KiB
C++
// Copyright 2013 the V8 project authors. All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#if V8_TARGET_ARCH_ARM64
|
|
|
|
#define ARM64_DEFINE_REG_STATICS
|
|
#include "src/arm64/assembler-arm64.h"
|
|
|
|
#include "src/arm64/assembler-arm64-inl.h"
|
|
#include "src/arm64/frames-arm64.h"
|
|
#include "src/base/bits.h"
|
|
#include "src/base/cpu.h"
|
|
#include "src/register-configuration.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// CpuFeatures implementation.
|
|
|
|
void CpuFeatures::ProbeImpl(bool cross_compile) {
|
|
// AArch64 has no configuration options, no further probing is required.
|
|
supported_ = 0;
|
|
|
|
// Only use statically determined features for cross compile (snapshot).
|
|
if (cross_compile) return;
|
|
|
|
// We used to probe for coherent cache support, but on older CPUs it
|
|
// causes crashes (crbug.com/524337), and newer CPUs don't even have
|
|
// the feature any more.
|
|
}
|
|
|
|
void CpuFeatures::PrintTarget() { }
|
|
void CpuFeatures::PrintFeatures() {}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// CPURegList utilities.
|
|
|
|
CPURegister CPURegList::PopLowestIndex() {
|
|
DCHECK(IsValid());
|
|
if (IsEmpty()) {
|
|
return NoCPUReg;
|
|
}
|
|
int index = CountTrailingZeros(list_, kRegListSizeInBits);
|
|
DCHECK((1 << index) & list_);
|
|
Remove(index);
|
|
return CPURegister::Create(index, size_, type_);
|
|
}
|
|
|
|
|
|
CPURegister CPURegList::PopHighestIndex() {
|
|
DCHECK(IsValid());
|
|
if (IsEmpty()) {
|
|
return NoCPUReg;
|
|
}
|
|
int index = CountLeadingZeros(list_, kRegListSizeInBits);
|
|
index = kRegListSizeInBits - 1 - index;
|
|
DCHECK((1 << index) & list_);
|
|
Remove(index);
|
|
return CPURegister::Create(index, size_, type_);
|
|
}
|
|
|
|
|
|
void CPURegList::RemoveCalleeSaved() {
|
|
if (type() == CPURegister::kRegister) {
|
|
Remove(GetCalleeSaved(RegisterSizeInBits()));
|
|
} else if (type() == CPURegister::kFPRegister) {
|
|
Remove(GetCalleeSavedFP(RegisterSizeInBits()));
|
|
} else {
|
|
DCHECK(type() == CPURegister::kNoRegister);
|
|
DCHECK(IsEmpty());
|
|
// The list must already be empty, so do nothing.
|
|
}
|
|
}
|
|
|
|
|
|
CPURegList CPURegList::GetCalleeSaved(int size) {
|
|
return CPURegList(CPURegister::kRegister, size, 19, 29);
|
|
}
|
|
|
|
|
|
CPURegList CPURegList::GetCalleeSavedFP(int size) {
|
|
return CPURegList(CPURegister::kFPRegister, size, 8, 15);
|
|
}
|
|
|
|
|
|
CPURegList CPURegList::GetCallerSaved(int size) {
|
|
// Registers x0-x18 and lr (x30) are caller-saved.
|
|
CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18);
|
|
list.Combine(lr);
|
|
return list;
|
|
}
|
|
|
|
|
|
CPURegList CPURegList::GetCallerSavedFP(int size) {
|
|
// Registers d0-d7 and d16-d31 are caller-saved.
|
|
CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7);
|
|
list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31));
|
|
return list;
|
|
}
|
|
|
|
|
|
// This function defines the list of registers which are associated with a
|
|
// safepoint slot. Safepoint register slots are saved contiguously on the stack.
|
|
// MacroAssembler::SafepointRegisterStackIndex handles mapping from register
|
|
// code to index in the safepoint register slots. Any change here can affect
|
|
// this mapping.
|
|
CPURegList CPURegList::GetSafepointSavedRegisters() {
|
|
CPURegList list = CPURegList::GetCalleeSaved();
|
|
list.Combine(
|
|
CPURegList(CPURegister::kRegister, kXRegSizeInBits, kJSCallerSaved));
|
|
|
|
// Note that unfortunately we can't use symbolic names for registers and have
|
|
// to directly use register codes. This is because this function is used to
|
|
// initialize some static variables and we can't rely on register variables
|
|
// to be initialized due to static initialization order issues in C++.
|
|
|
|
// Drop ip0 and ip1 (i.e. x16 and x17), as they should not be expected to be
|
|
// preserved outside of the macro assembler.
|
|
list.Remove(16);
|
|
list.Remove(17);
|
|
|
|
// Add x18 to the safepoint list, as although it's not in kJSCallerSaved, it
|
|
// is a caller-saved register according to the procedure call standard.
|
|
list.Combine(18);
|
|
|
|
// Drop jssp as the stack pointer doesn't need to be included.
|
|
list.Remove(28);
|
|
|
|
// Add the link register (x30) to the safepoint list.
|
|
list.Combine(30);
|
|
|
|
return list;
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Implementation of RelocInfo
|
|
|
|
const int RelocInfo::kApplyMask = 1 << RelocInfo::INTERNAL_REFERENCE;
|
|
|
|
|
|
bool RelocInfo::IsCodedSpecially() {
|
|
// The deserializer needs to know whether a pointer is specially coded. Being
|
|
// specially coded on ARM64 means that it is a movz/movk sequence. We don't
|
|
// generate those for relocatable pointers.
|
|
return false;
|
|
}
|
|
|
|
|
|
bool RelocInfo::IsInConstantPool() {
|
|
Instruction* instr = reinterpret_cast<Instruction*>(pc_);
|
|
return instr->IsLdrLiteralX();
|
|
}
|
|
|
|
Address RelocInfo::wasm_memory_reference() {
|
|
DCHECK(IsWasmMemoryReference(rmode_));
|
|
return Memory::Address_at(Assembler::target_pointer_address_at(pc_));
|
|
}
|
|
|
|
uint32_t RelocInfo::wasm_memory_size_reference() {
|
|
DCHECK(IsWasmMemorySizeReference(rmode_));
|
|
return Memory::uint32_at(Assembler::target_pointer_address_at(pc_));
|
|
}
|
|
|
|
Address RelocInfo::wasm_global_reference() {
|
|
DCHECK(IsWasmGlobalReference(rmode_));
|
|
return Memory::Address_at(Assembler::target_pointer_address_at(pc_));
|
|
}
|
|
|
|
void RelocInfo::unchecked_update_wasm_memory_reference(
|
|
Address address, ICacheFlushMode flush_mode) {
|
|
Assembler::set_target_address_at(isolate_, pc_, host_, address, flush_mode);
|
|
}
|
|
|
|
void RelocInfo::unchecked_update_wasm_memory_size(uint32_t size,
|
|
ICacheFlushMode flush_mode) {
|
|
Memory::uint32_at(Assembler::target_pointer_address_at(pc_)) = size;
|
|
}
|
|
|
|
Register GetAllocatableRegisterThatIsNotOneOf(Register reg1, Register reg2,
|
|
Register reg3, Register reg4) {
|
|
CPURegList regs(reg1, reg2, reg3, reg4);
|
|
const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
|
|
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
|
|
int code = config->GetAllocatableDoubleCode(i);
|
|
Register candidate = Register::from_code(code);
|
|
if (regs.IncludesAliasOf(candidate)) continue;
|
|
return candidate;
|
|
}
|
|
UNREACHABLE();
|
|
return NoReg;
|
|
}
|
|
|
|
|
|
bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
|
|
const CPURegister& reg3, const CPURegister& reg4,
|
|
const CPURegister& reg5, const CPURegister& reg6,
|
|
const CPURegister& reg7, const CPURegister& reg8) {
|
|
int number_of_valid_regs = 0;
|
|
int number_of_valid_fpregs = 0;
|
|
|
|
RegList unique_regs = 0;
|
|
RegList unique_fpregs = 0;
|
|
|
|
const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8};
|
|
|
|
for (unsigned i = 0; i < arraysize(regs); i++) {
|
|
if (regs[i].IsRegister()) {
|
|
number_of_valid_regs++;
|
|
unique_regs |= regs[i].Bit();
|
|
} else if (regs[i].IsFPRegister()) {
|
|
number_of_valid_fpregs++;
|
|
unique_fpregs |= regs[i].Bit();
|
|
} else {
|
|
DCHECK(!regs[i].IsValid());
|
|
}
|
|
}
|
|
|
|
int number_of_unique_regs =
|
|
CountSetBits(unique_regs, sizeof(unique_regs) * kBitsPerByte);
|
|
int number_of_unique_fpregs =
|
|
CountSetBits(unique_fpregs, sizeof(unique_fpregs) * kBitsPerByte);
|
|
|
|
DCHECK(number_of_valid_regs >= number_of_unique_regs);
|
|
DCHECK(number_of_valid_fpregs >= number_of_unique_fpregs);
|
|
|
|
return (number_of_valid_regs != number_of_unique_regs) ||
|
|
(number_of_valid_fpregs != number_of_unique_fpregs);
|
|
}
|
|
|
|
|
|
bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2,
|
|
const CPURegister& reg3, const CPURegister& reg4,
|
|
const CPURegister& reg5, const CPURegister& reg6,
|
|
const CPURegister& reg7, const CPURegister& reg8) {
|
|
DCHECK(reg1.IsValid());
|
|
bool match = true;
|
|
match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1);
|
|
match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1);
|
|
match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1);
|
|
match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1);
|
|
match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1);
|
|
match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1);
|
|
match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1);
|
|
return match;
|
|
}
|
|
|
|
|
|
void Immediate::InitializeHandle(Handle<Object> handle) {
|
|
AllowDeferredHandleDereference using_raw_address;
|
|
|
|
// Verify all Objects referred by code are NOT in new space.
|
|
Object* obj = *handle;
|
|
if (obj->IsHeapObject()) {
|
|
value_ = reinterpret_cast<intptr_t>(handle.location());
|
|
rmode_ = RelocInfo::EMBEDDED_OBJECT;
|
|
} else {
|
|
STATIC_ASSERT(sizeof(intptr_t) == sizeof(int64_t));
|
|
value_ = reinterpret_cast<intptr_t>(obj);
|
|
rmode_ = RelocInfo::NONE64;
|
|
}
|
|
}
|
|
|
|
|
|
bool Operand::NeedsRelocation(const Assembler* assembler) const {
|
|
RelocInfo::Mode rmode = immediate_.rmode();
|
|
|
|
if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
|
|
return assembler->serializer_enabled();
|
|
}
|
|
|
|
return !RelocInfo::IsNone(rmode);
|
|
}
|
|
|
|
|
|
// Constant Pool.
|
|
void ConstPool::RecordEntry(intptr_t data,
|
|
RelocInfo::Mode mode) {
|
|
DCHECK(mode != RelocInfo::COMMENT && mode != RelocInfo::CONST_POOL &&
|
|
mode != RelocInfo::VENEER_POOL &&
|
|
mode != RelocInfo::CODE_AGE_SEQUENCE &&
|
|
mode != RelocInfo::DEOPT_POSITION && mode != RelocInfo::DEOPT_REASON &&
|
|
mode != RelocInfo::DEOPT_ID);
|
|
uint64_t raw_data = static_cast<uint64_t>(data);
|
|
int offset = assm_->pc_offset();
|
|
if (IsEmpty()) {
|
|
first_use_ = offset;
|
|
}
|
|
|
|
std::pair<uint64_t, int> entry = std::make_pair(raw_data, offset);
|
|
if (CanBeShared(mode)) {
|
|
shared_entries_.insert(entry);
|
|
if (shared_entries_.count(entry.first) == 1) {
|
|
shared_entries_count++;
|
|
}
|
|
} else {
|
|
unique_entries_.push_back(entry);
|
|
}
|
|
|
|
if (EntryCount() > Assembler::kApproxMaxPoolEntryCount) {
|
|
// Request constant pool emission after the next instruction.
|
|
assm_->SetNextConstPoolCheckIn(1);
|
|
}
|
|
}
|
|
|
|
|
|
int ConstPool::DistanceToFirstUse() {
|
|
DCHECK(first_use_ >= 0);
|
|
return assm_->pc_offset() - first_use_;
|
|
}
|
|
|
|
|
|
int ConstPool::MaxPcOffset() {
|
|
// There are no pending entries in the pool so we can never get out of
|
|
// range.
|
|
if (IsEmpty()) return kMaxInt;
|
|
|
|
// Entries are not necessarily emitted in the order they are added so in the
|
|
// worst case the first constant pool use will be accessing the last entry.
|
|
return first_use_ + kMaxLoadLiteralRange - WorstCaseSize();
|
|
}
|
|
|
|
|
|
int ConstPool::WorstCaseSize() {
|
|
if (IsEmpty()) return 0;
|
|
|
|
// Max size prologue:
|
|
// b over
|
|
// ldr xzr, #pool_size
|
|
// blr xzr
|
|
// nop
|
|
// All entries are 64-bit for now.
|
|
return 4 * kInstructionSize + EntryCount() * kPointerSize;
|
|
}
|
|
|
|
|
|
int ConstPool::SizeIfEmittedAtCurrentPc(bool require_jump) {
|
|
if (IsEmpty()) return 0;
|
|
|
|
// Prologue is:
|
|
// b over ;; if require_jump
|
|
// ldr xzr, #pool_size
|
|
// blr xzr
|
|
// nop ;; if not 64-bit aligned
|
|
int prologue_size = require_jump ? kInstructionSize : 0;
|
|
prologue_size += 2 * kInstructionSize;
|
|
prologue_size += IsAligned(assm_->pc_offset() + prologue_size, 8) ?
|
|
0 : kInstructionSize;
|
|
|
|
// All entries are 64-bit for now.
|
|
return prologue_size + EntryCount() * kPointerSize;
|
|
}
|
|
|
|
|
|
void ConstPool::Emit(bool require_jump) {
|
|
DCHECK(!assm_->is_const_pool_blocked());
|
|
// Prevent recursive pool emission and protect from veneer pools.
|
|
Assembler::BlockPoolsScope block_pools(assm_);
|
|
|
|
int size = SizeIfEmittedAtCurrentPc(require_jump);
|
|
Label size_check;
|
|
assm_->bind(&size_check);
|
|
|
|
assm_->RecordConstPool(size);
|
|
// Emit the constant pool. It is preceded by an optional branch if
|
|
// require_jump and a header which will:
|
|
// 1) Encode the size of the constant pool, for use by the disassembler.
|
|
// 2) Terminate the program, to try to prevent execution from accidentally
|
|
// flowing into the constant pool.
|
|
// 3) align the pool entries to 64-bit.
|
|
// The header is therefore made of up to three arm64 instructions:
|
|
// ldr xzr, #<size of the constant pool in 32-bit words>
|
|
// blr xzr
|
|
// nop
|
|
//
|
|
// If executed, the header will likely segfault and lr will point to the
|
|
// instruction following the offending blr.
|
|
// TODO(all): Make the alignment part less fragile. Currently code is
|
|
// allocated as a byte array so there are no guarantees the alignment will
|
|
// be preserved on compaction. Currently it works as allocation seems to be
|
|
// 64-bit aligned.
|
|
|
|
// Emit branch if required
|
|
Label after_pool;
|
|
if (require_jump) {
|
|
assm_->b(&after_pool);
|
|
}
|
|
|
|
// Emit the header.
|
|
assm_->RecordComment("[ Constant Pool");
|
|
EmitMarker();
|
|
EmitGuard();
|
|
assm_->Align(8);
|
|
|
|
// Emit constant pool entries.
|
|
// TODO(all): currently each relocated constant is 64 bits, consider adding
|
|
// support for 32-bit entries.
|
|
EmitEntries();
|
|
assm_->RecordComment("]");
|
|
|
|
if (after_pool.is_linked()) {
|
|
assm_->bind(&after_pool);
|
|
}
|
|
|
|
DCHECK(assm_->SizeOfCodeGeneratedSince(&size_check) ==
|
|
static_cast<unsigned>(size));
|
|
}
|
|
|
|
|
|
void ConstPool::Clear() {
|
|
shared_entries_.clear();
|
|
shared_entries_count = 0;
|
|
unique_entries_.clear();
|
|
first_use_ = -1;
|
|
}
|
|
|
|
|
|
bool ConstPool::CanBeShared(RelocInfo::Mode mode) {
|
|
// Constant pool currently does not support 32-bit entries.
|
|
DCHECK(mode != RelocInfo::NONE32);
|
|
|
|
return RelocInfo::IsNone(mode) ||
|
|
(!assm_->serializer_enabled() &&
|
|
(mode >= RelocInfo::FIRST_SHAREABLE_RELOC_MODE));
|
|
}
|
|
|
|
|
|
void ConstPool::EmitMarker() {
|
|
// A constant pool size is expressed in number of 32-bits words.
|
|
// Currently all entries are 64-bit.
|
|
// + 1 is for the crash guard.
|
|
// + 0/1 for alignment.
|
|
int word_count = EntryCount() * 2 + 1 +
|
|
(IsAligned(assm_->pc_offset(), 8) ? 0 : 1);
|
|
assm_->Emit(LDR_x_lit |
|
|
Assembler::ImmLLiteral(word_count) |
|
|
Assembler::Rt(xzr));
|
|
}
|
|
|
|
|
|
MemOperand::PairResult MemOperand::AreConsistentForPair(
|
|
const MemOperand& operandA,
|
|
const MemOperand& operandB,
|
|
int access_size_log2) {
|
|
DCHECK(access_size_log2 >= 0);
|
|
DCHECK(access_size_log2 <= 3);
|
|
// Step one: check that they share the same base, that the mode is Offset
|
|
// and that the offset is a multiple of access size.
|
|
if (!operandA.base().Is(operandB.base()) ||
|
|
(operandA.addrmode() != Offset) ||
|
|
(operandB.addrmode() != Offset) ||
|
|
((operandA.offset() & ((1 << access_size_log2) - 1)) != 0)) {
|
|
return kNotPair;
|
|
}
|
|
// Step two: check that the offsets are contiguous and that the range
|
|
// is OK for ldp/stp.
|
|
if ((operandB.offset() == operandA.offset() + (1 << access_size_log2)) &&
|
|
is_int7(operandA.offset() >> access_size_log2)) {
|
|
return kPairAB;
|
|
}
|
|
if ((operandA.offset() == operandB.offset() + (1 << access_size_log2)) &&
|
|
is_int7(operandB.offset() >> access_size_log2)) {
|
|
return kPairBA;
|
|
}
|
|
return kNotPair;
|
|
}
|
|
|
|
|
|
void ConstPool::EmitGuard() {
|
|
#ifdef DEBUG
|
|
Instruction* instr = reinterpret_cast<Instruction*>(assm_->pc());
|
|
DCHECK(instr->preceding()->IsLdrLiteralX() &&
|
|
instr->preceding()->Rt() == xzr.code());
|
|
#endif
|
|
assm_->EmitPoolGuard();
|
|
}
|
|
|
|
|
|
void ConstPool::EmitEntries() {
|
|
DCHECK(IsAligned(assm_->pc_offset(), 8));
|
|
|
|
typedef std::multimap<uint64_t, int>::const_iterator SharedEntriesIterator;
|
|
SharedEntriesIterator value_it;
|
|
// Iterate through the keys (constant pool values).
|
|
for (value_it = shared_entries_.begin();
|
|
value_it != shared_entries_.end();
|
|
value_it = shared_entries_.upper_bound(value_it->first)) {
|
|
std::pair<SharedEntriesIterator, SharedEntriesIterator> range;
|
|
uint64_t data = value_it->first;
|
|
range = shared_entries_.equal_range(data);
|
|
SharedEntriesIterator offset_it;
|
|
// Iterate through the offsets of a given key.
|
|
for (offset_it = range.first; offset_it != range.second; offset_it++) {
|
|
Instruction* instr = assm_->InstructionAt(offset_it->second);
|
|
|
|
// Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
|
|
DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
|
|
instr->SetImmPCOffsetTarget(assm_->isolate(), assm_->pc());
|
|
}
|
|
assm_->dc64(data);
|
|
}
|
|
shared_entries_.clear();
|
|
shared_entries_count = 0;
|
|
|
|
// Emit unique entries.
|
|
std::vector<std::pair<uint64_t, int> >::const_iterator unique_it;
|
|
for (unique_it = unique_entries_.begin();
|
|
unique_it != unique_entries_.end();
|
|
unique_it++) {
|
|
Instruction* instr = assm_->InstructionAt(unique_it->second);
|
|
|
|
// Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
|
|
DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
|
|
instr->SetImmPCOffsetTarget(assm_->isolate(), assm_->pc());
|
|
assm_->dc64(unique_it->first);
|
|
}
|
|
unique_entries_.clear();
|
|
first_use_ = -1;
|
|
}
|
|
|
|
|
|
// Assembler
|
|
Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
|
|
: AssemblerBase(isolate, buffer, buffer_size),
|
|
constpool_(this),
|
|
recorded_ast_id_(TypeFeedbackId::None()),
|
|
unresolved_branches_() {
|
|
const_pool_blocked_nesting_ = 0;
|
|
veneer_pool_blocked_nesting_ = 0;
|
|
Reset();
|
|
}
|
|
|
|
|
|
Assembler::~Assembler() {
|
|
DCHECK(constpool_.IsEmpty());
|
|
DCHECK(const_pool_blocked_nesting_ == 0);
|
|
DCHECK(veneer_pool_blocked_nesting_ == 0);
|
|
}
|
|
|
|
|
|
void Assembler::Reset() {
|
|
#ifdef DEBUG
|
|
DCHECK((pc_ >= buffer_) && (pc_ < buffer_ + buffer_size_));
|
|
DCHECK(const_pool_blocked_nesting_ == 0);
|
|
DCHECK(veneer_pool_blocked_nesting_ == 0);
|
|
DCHECK(unresolved_branches_.empty());
|
|
memset(buffer_, 0, pc_ - buffer_);
|
|
#endif
|
|
pc_ = buffer_;
|
|
reloc_info_writer.Reposition(reinterpret_cast<byte*>(buffer_ + buffer_size_),
|
|
reinterpret_cast<byte*>(pc_));
|
|
constpool_.Clear();
|
|
next_constant_pool_check_ = 0;
|
|
next_veneer_pool_check_ = kMaxInt;
|
|
no_const_pool_before_ = 0;
|
|
ClearRecordedAstId();
|
|
}
|
|
|
|
|
|
void Assembler::GetCode(CodeDesc* desc) {
|
|
// Emit constant pool if necessary.
|
|
CheckConstPool(true, false);
|
|
DCHECK(constpool_.IsEmpty());
|
|
|
|
// Set up code descriptor.
|
|
if (desc) {
|
|
desc->buffer = reinterpret_cast<byte*>(buffer_);
|
|
desc->buffer_size = buffer_size_;
|
|
desc->instr_size = pc_offset();
|
|
desc->reloc_size =
|
|
static_cast<int>((reinterpret_cast<byte*>(buffer_) + buffer_size_) -
|
|
reloc_info_writer.pos());
|
|
desc->origin = this;
|
|
desc->constant_pool_size = 0;
|
|
desc->unwinding_info_size = 0;
|
|
desc->unwinding_info = nullptr;
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::Align(int m) {
|
|
DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
|
|
while ((pc_offset() & (m - 1)) != 0) {
|
|
nop();
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::CheckLabelLinkChain(Label const * label) {
|
|
#ifdef DEBUG
|
|
if (label->is_linked()) {
|
|
static const int kMaxLinksToCheck = 64; // Avoid O(n2) behaviour.
|
|
int links_checked = 0;
|
|
int64_t linkoffset = label->pos();
|
|
bool end_of_chain = false;
|
|
while (!end_of_chain) {
|
|
if (++links_checked > kMaxLinksToCheck) break;
|
|
Instruction * link = InstructionAt(linkoffset);
|
|
int64_t linkpcoffset = link->ImmPCOffset();
|
|
int64_t prevlinkoffset = linkoffset + linkpcoffset;
|
|
|
|
end_of_chain = (linkoffset == prevlinkoffset);
|
|
linkoffset = linkoffset + linkpcoffset;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
void Assembler::RemoveBranchFromLabelLinkChain(Instruction* branch,
|
|
Label* label,
|
|
Instruction* label_veneer) {
|
|
DCHECK(label->is_linked());
|
|
|
|
CheckLabelLinkChain(label);
|
|
|
|
Instruction* link = InstructionAt(label->pos());
|
|
Instruction* prev_link = link;
|
|
Instruction* next_link;
|
|
bool end_of_chain = false;
|
|
|
|
while (link != branch && !end_of_chain) {
|
|
next_link = link->ImmPCOffsetTarget();
|
|
end_of_chain = (link == next_link);
|
|
prev_link = link;
|
|
link = next_link;
|
|
}
|
|
|
|
DCHECK(branch == link);
|
|
next_link = branch->ImmPCOffsetTarget();
|
|
|
|
if (branch == prev_link) {
|
|
// The branch is the first instruction in the chain.
|
|
if (branch == next_link) {
|
|
// It is also the last instruction in the chain, so it is the only branch
|
|
// currently referring to this label.
|
|
label->Unuse();
|
|
} else {
|
|
label->link_to(
|
|
static_cast<int>(reinterpret_cast<byte*>(next_link) - buffer_));
|
|
}
|
|
|
|
} else if (branch == next_link) {
|
|
// The branch is the last (but not also the first) instruction in the chain.
|
|
prev_link->SetImmPCOffsetTarget(isolate(), prev_link);
|
|
|
|
} else {
|
|
// The branch is in the middle of the chain.
|
|
if (prev_link->IsTargetInImmPCOffsetRange(next_link)) {
|
|
prev_link->SetImmPCOffsetTarget(isolate(), next_link);
|
|
} else if (label_veneer != NULL) {
|
|
// Use the veneer for all previous links in the chain.
|
|
prev_link->SetImmPCOffsetTarget(isolate(), prev_link);
|
|
|
|
end_of_chain = false;
|
|
link = next_link;
|
|
while (!end_of_chain) {
|
|
next_link = link->ImmPCOffsetTarget();
|
|
end_of_chain = (link == next_link);
|
|
link->SetImmPCOffsetTarget(isolate(), label_veneer);
|
|
link = next_link;
|
|
}
|
|
} else {
|
|
// The assert below will fire.
|
|
// Some other work could be attempted to fix up the chain, but it would be
|
|
// rather complicated. If we crash here, we may want to consider using an
|
|
// other mechanism than a chain of branches.
|
|
//
|
|
// Note that this situation currently should not happen, as we always call
|
|
// this function with a veneer to the target label.
|
|
// However this could happen with a MacroAssembler in the following state:
|
|
// [previous code]
|
|
// B(label);
|
|
// [20KB code]
|
|
// Tbz(label); // First tbz. Pointing to unconditional branch.
|
|
// [20KB code]
|
|
// Tbz(label); // Second tbz. Pointing to the first tbz.
|
|
// [more code]
|
|
// and this function is called to remove the first tbz from the label link
|
|
// chain. Since tbz has a range of +-32KB, the second tbz cannot point to
|
|
// the unconditional branch.
|
|
CHECK(prev_link->IsTargetInImmPCOffsetRange(next_link));
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
CheckLabelLinkChain(label);
|
|
}
|
|
|
|
|
|
void Assembler::bind(Label* label) {
|
|
// Bind label to the address at pc_. All instructions (most likely branches)
|
|
// that are linked to this label will be updated to point to the newly-bound
|
|
// label.
|
|
|
|
DCHECK(!label->is_near_linked());
|
|
DCHECK(!label->is_bound());
|
|
|
|
DeleteUnresolvedBranchInfoForLabel(label);
|
|
|
|
// If the label is linked, the link chain looks something like this:
|
|
//
|
|
// |--I----I-------I-------L
|
|
// |---------------------->| pc_offset
|
|
// |-------------->| linkoffset = label->pos()
|
|
// |<------| link->ImmPCOffset()
|
|
// |------>| prevlinkoffset = linkoffset + link->ImmPCOffset()
|
|
//
|
|
// On each iteration, the last link is updated and then removed from the
|
|
// chain until only one remains. At that point, the label is bound.
|
|
//
|
|
// If the label is not linked, no preparation is required before binding.
|
|
while (label->is_linked()) {
|
|
int linkoffset = label->pos();
|
|
Instruction* link = InstructionAt(linkoffset);
|
|
int prevlinkoffset = linkoffset + static_cast<int>(link->ImmPCOffset());
|
|
|
|
CheckLabelLinkChain(label);
|
|
|
|
DCHECK(linkoffset >= 0);
|
|
DCHECK(linkoffset < pc_offset());
|
|
DCHECK((linkoffset > prevlinkoffset) ||
|
|
(linkoffset - prevlinkoffset == kStartOfLabelLinkChain));
|
|
DCHECK(prevlinkoffset >= 0);
|
|
|
|
// Update the link to point to the label.
|
|
if (link->IsUnresolvedInternalReference()) {
|
|
// Internal references do not get patched to an instruction but directly
|
|
// to an address.
|
|
internal_reference_positions_.push_back(linkoffset);
|
|
PatchingAssembler patcher(isolate(), link, 2);
|
|
patcher.dc64(reinterpret_cast<uintptr_t>(pc_));
|
|
} else {
|
|
link->SetImmPCOffsetTarget(isolate(),
|
|
reinterpret_cast<Instruction*>(pc_));
|
|
}
|
|
|
|
// Link the label to the previous link in the chain.
|
|
if (linkoffset - prevlinkoffset == kStartOfLabelLinkChain) {
|
|
// We hit kStartOfLabelLinkChain, so the chain is fully processed.
|
|
label->Unuse();
|
|
} else {
|
|
// Update the label for the next iteration.
|
|
label->link_to(prevlinkoffset);
|
|
}
|
|
}
|
|
label->bind_to(pc_offset());
|
|
|
|
DCHECK(label->is_bound());
|
|
DCHECK(!label->is_linked());
|
|
}
|
|
|
|
|
|
int Assembler::LinkAndGetByteOffsetTo(Label* label) {
|
|
DCHECK(sizeof(*pc_) == 1);
|
|
CheckLabelLinkChain(label);
|
|
|
|
int offset;
|
|
if (label->is_bound()) {
|
|
// The label is bound, so it does not need to be updated. Referring
|
|
// instructions must link directly to the label as they will not be
|
|
// updated.
|
|
//
|
|
// In this case, label->pos() returns the offset of the label from the
|
|
// start of the buffer.
|
|
//
|
|
// Note that offset can be zero for self-referential instructions. (This
|
|
// could be useful for ADR, for example.)
|
|
offset = label->pos() - pc_offset();
|
|
DCHECK(offset <= 0);
|
|
} else {
|
|
if (label->is_linked()) {
|
|
// The label is linked, so the referring instruction should be added onto
|
|
// the end of the label's link chain.
|
|
//
|
|
// In this case, label->pos() returns the offset of the last linked
|
|
// instruction from the start of the buffer.
|
|
offset = label->pos() - pc_offset();
|
|
DCHECK(offset != kStartOfLabelLinkChain);
|
|
// Note that the offset here needs to be PC-relative only so that the
|
|
// first instruction in a buffer can link to an unbound label. Otherwise,
|
|
// the offset would be 0 for this case, and 0 is reserved for
|
|
// kStartOfLabelLinkChain.
|
|
} else {
|
|
// The label is unused, so it now becomes linked and the referring
|
|
// instruction is at the start of the new link chain.
|
|
offset = kStartOfLabelLinkChain;
|
|
}
|
|
// The instruction at pc is now the last link in the label's chain.
|
|
label->link_to(pc_offset());
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
|
|
void Assembler::DeleteUnresolvedBranchInfoForLabelTraverse(Label* label) {
|
|
DCHECK(label->is_linked());
|
|
CheckLabelLinkChain(label);
|
|
|
|
int link_offset = label->pos();
|
|
int link_pcoffset;
|
|
bool end_of_chain = false;
|
|
|
|
while (!end_of_chain) {
|
|
Instruction * link = InstructionAt(link_offset);
|
|
link_pcoffset = static_cast<int>(link->ImmPCOffset());
|
|
|
|
// ADR instructions are not handled by veneers.
|
|
if (link->IsImmBranch()) {
|
|
int max_reachable_pc =
|
|
static_cast<int>(InstructionOffset(link) +
|
|
Instruction::ImmBranchRange(link->BranchType()));
|
|
typedef std::multimap<int, FarBranchInfo>::iterator unresolved_info_it;
|
|
std::pair<unresolved_info_it, unresolved_info_it> range;
|
|
range = unresolved_branches_.equal_range(max_reachable_pc);
|
|
unresolved_info_it it;
|
|
for (it = range.first; it != range.second; ++it) {
|
|
if (it->second.pc_offset_ == link_offset) {
|
|
unresolved_branches_.erase(it);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
end_of_chain = (link_pcoffset == 0);
|
|
link_offset = link_offset + link_pcoffset;
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::DeleteUnresolvedBranchInfoForLabel(Label* label) {
|
|
if (unresolved_branches_.empty()) {
|
|
DCHECK(next_veneer_pool_check_ == kMaxInt);
|
|
return;
|
|
}
|
|
|
|
if (label->is_linked()) {
|
|
// Branches to this label will be resolved when the label is bound, normally
|
|
// just after all the associated info has been deleted.
|
|
DeleteUnresolvedBranchInfoForLabelTraverse(label);
|
|
}
|
|
if (unresolved_branches_.empty()) {
|
|
next_veneer_pool_check_ = kMaxInt;
|
|
} else {
|
|
next_veneer_pool_check_ =
|
|
unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::StartBlockConstPool() {
|
|
if (const_pool_blocked_nesting_++ == 0) {
|
|
// Prevent constant pool checks happening by setting the next check to
|
|
// the biggest possible offset.
|
|
next_constant_pool_check_ = kMaxInt;
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::EndBlockConstPool() {
|
|
if (--const_pool_blocked_nesting_ == 0) {
|
|
// Check the constant pool hasn't been blocked for too long.
|
|
DCHECK(pc_offset() < constpool_.MaxPcOffset());
|
|
// Two cases:
|
|
// * no_const_pool_before_ >= next_constant_pool_check_ and the emission is
|
|
// still blocked
|
|
// * no_const_pool_before_ < next_constant_pool_check_ and the next emit
|
|
// will trigger a check.
|
|
next_constant_pool_check_ = no_const_pool_before_;
|
|
}
|
|
}
|
|
|
|
|
|
bool Assembler::is_const_pool_blocked() const {
|
|
return (const_pool_blocked_nesting_ > 0) ||
|
|
(pc_offset() < no_const_pool_before_);
|
|
}
|
|
|
|
|
|
bool Assembler::IsConstantPoolAt(Instruction* instr) {
|
|
// The constant pool marker is made of two instructions. These instructions
|
|
// will never be emitted by the JIT, so checking for the first one is enough:
|
|
// 0: ldr xzr, #<size of pool>
|
|
bool result = instr->IsLdrLiteralX() && (instr->Rt() == kZeroRegCode);
|
|
|
|
// It is still worth asserting the marker is complete.
|
|
// 4: blr xzr
|
|
DCHECK(!result || (instr->following()->IsBranchAndLinkToRegister() &&
|
|
instr->following()->Rn() == kZeroRegCode));
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
int Assembler::ConstantPoolSizeAt(Instruction* instr) {
|
|
#ifdef USE_SIMULATOR
|
|
// Assembler::debug() embeds constants directly into the instruction stream.
|
|
// Although this is not a genuine constant pool, treat it like one to avoid
|
|
// disassembling the constants.
|
|
if ((instr->Mask(ExceptionMask) == HLT) &&
|
|
(instr->ImmException() == kImmExceptionIsDebug)) {
|
|
const char* message =
|
|
reinterpret_cast<const char*>(
|
|
instr->InstructionAtOffset(kDebugMessageOffset));
|
|
int size = static_cast<int>(kDebugMessageOffset + strlen(message) + 1);
|
|
return RoundUp(size, kInstructionSize) / kInstructionSize;
|
|
}
|
|
// Same for printf support, see MacroAssembler::CallPrintf().
|
|
if ((instr->Mask(ExceptionMask) == HLT) &&
|
|
(instr->ImmException() == kImmExceptionIsPrintf)) {
|
|
return kPrintfLength / kInstructionSize;
|
|
}
|
|
#endif
|
|
if (IsConstantPoolAt(instr)) {
|
|
return instr->ImmLLiteral();
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::EmitPoolGuard() {
|
|
// We must generate only one instruction as this is used in scopes that
|
|
// control the size of the code generated.
|
|
Emit(BLR | Rn(xzr));
|
|
}
|
|
|
|
|
|
void Assembler::StartBlockVeneerPool() {
|
|
++veneer_pool_blocked_nesting_;
|
|
}
|
|
|
|
|
|
void Assembler::EndBlockVeneerPool() {
|
|
if (--veneer_pool_blocked_nesting_ == 0) {
|
|
// Check the veneer pool hasn't been blocked for too long.
|
|
DCHECK(unresolved_branches_.empty() ||
|
|
(pc_offset() < unresolved_branches_first_limit()));
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::br(const Register& xn) {
|
|
DCHECK(xn.Is64Bits());
|
|
Emit(BR | Rn(xn));
|
|
}
|
|
|
|
|
|
void Assembler::blr(const Register& xn) {
|
|
DCHECK(xn.Is64Bits());
|
|
// The pattern 'blr xzr' is used as a guard to detect when execution falls
|
|
// through the constant pool. It should not be emitted.
|
|
DCHECK(!xn.Is(xzr));
|
|
Emit(BLR | Rn(xn));
|
|
}
|
|
|
|
|
|
void Assembler::ret(const Register& xn) {
|
|
DCHECK(xn.Is64Bits());
|
|
Emit(RET | Rn(xn));
|
|
}
|
|
|
|
|
|
void Assembler::b(int imm26) {
|
|
Emit(B | ImmUncondBranch(imm26));
|
|
}
|
|
|
|
|
|
void Assembler::b(Label* label) {
|
|
b(LinkAndGetInstructionOffsetTo(label));
|
|
}
|
|
|
|
|
|
void Assembler::b(int imm19, Condition cond) {
|
|
Emit(B_cond | ImmCondBranch(imm19) | cond);
|
|
}
|
|
|
|
|
|
void Assembler::b(Label* label, Condition cond) {
|
|
b(LinkAndGetInstructionOffsetTo(label), cond);
|
|
}
|
|
|
|
|
|
void Assembler::bl(int imm26) {
|
|
Emit(BL | ImmUncondBranch(imm26));
|
|
}
|
|
|
|
|
|
void Assembler::bl(Label* label) {
|
|
bl(LinkAndGetInstructionOffsetTo(label));
|
|
}
|
|
|
|
|
|
void Assembler::cbz(const Register& rt,
|
|
int imm19) {
|
|
Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
|
|
}
|
|
|
|
|
|
void Assembler::cbz(const Register& rt,
|
|
Label* label) {
|
|
cbz(rt, LinkAndGetInstructionOffsetTo(label));
|
|
}
|
|
|
|
|
|
void Assembler::cbnz(const Register& rt,
|
|
int imm19) {
|
|
Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
|
|
}
|
|
|
|
|
|
void Assembler::cbnz(const Register& rt,
|
|
Label* label) {
|
|
cbnz(rt, LinkAndGetInstructionOffsetTo(label));
|
|
}
|
|
|
|
|
|
void Assembler::tbz(const Register& rt,
|
|
unsigned bit_pos,
|
|
int imm14) {
|
|
DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
|
|
Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
|
|
}
|
|
|
|
|
|
void Assembler::tbz(const Register& rt,
|
|
unsigned bit_pos,
|
|
Label* label) {
|
|
tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
|
|
}
|
|
|
|
|
|
void Assembler::tbnz(const Register& rt,
|
|
unsigned bit_pos,
|
|
int imm14) {
|
|
DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
|
|
Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
|
|
}
|
|
|
|
|
|
void Assembler::tbnz(const Register& rt,
|
|
unsigned bit_pos,
|
|
Label* label) {
|
|
tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
|
|
}
|
|
|
|
|
|
void Assembler::adr(const Register& rd, int imm21) {
|
|
DCHECK(rd.Is64Bits());
|
|
Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd));
|
|
}
|
|
|
|
|
|
void Assembler::adr(const Register& rd, Label* label) {
|
|
adr(rd, LinkAndGetByteOffsetTo(label));
|
|
}
|
|
|
|
|
|
void Assembler::add(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand) {
|
|
AddSub(rd, rn, operand, LeaveFlags, ADD);
|
|
}
|
|
|
|
|
|
void Assembler::adds(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand) {
|
|
AddSub(rd, rn, operand, SetFlags, ADD);
|
|
}
|
|
|
|
|
|
void Assembler::cmn(const Register& rn,
|
|
const Operand& operand) {
|
|
Register zr = AppropriateZeroRegFor(rn);
|
|
adds(zr, rn, operand);
|
|
}
|
|
|
|
|
|
void Assembler::sub(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand) {
|
|
AddSub(rd, rn, operand, LeaveFlags, SUB);
|
|
}
|
|
|
|
|
|
void Assembler::subs(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand) {
|
|
AddSub(rd, rn, operand, SetFlags, SUB);
|
|
}
|
|
|
|
|
|
void Assembler::cmp(const Register& rn, const Operand& operand) {
|
|
Register zr = AppropriateZeroRegFor(rn);
|
|
subs(zr, rn, operand);
|
|
}
|
|
|
|
|
|
void Assembler::neg(const Register& rd, const Operand& operand) {
|
|
Register zr = AppropriateZeroRegFor(rd);
|
|
sub(rd, zr, operand);
|
|
}
|
|
|
|
|
|
void Assembler::negs(const Register& rd, const Operand& operand) {
|
|
Register zr = AppropriateZeroRegFor(rd);
|
|
subs(rd, zr, operand);
|
|
}
|
|
|
|
|
|
void Assembler::adc(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand) {
|
|
AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC);
|
|
}
|
|
|
|
|
|
void Assembler::adcs(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand) {
|
|
AddSubWithCarry(rd, rn, operand, SetFlags, ADC);
|
|
}
|
|
|
|
|
|
void Assembler::sbc(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand) {
|
|
AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC);
|
|
}
|
|
|
|
|
|
void Assembler::sbcs(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand) {
|
|
AddSubWithCarry(rd, rn, operand, SetFlags, SBC);
|
|
}
|
|
|
|
|
|
void Assembler::ngc(const Register& rd, const Operand& operand) {
|
|
Register zr = AppropriateZeroRegFor(rd);
|
|
sbc(rd, zr, operand);
|
|
}
|
|
|
|
|
|
void Assembler::ngcs(const Register& rd, const Operand& operand) {
|
|
Register zr = AppropriateZeroRegFor(rd);
|
|
sbcs(rd, zr, operand);
|
|
}
|
|
|
|
|
|
// Logical instructions.
|
|
void Assembler::and_(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand) {
|
|
Logical(rd, rn, operand, AND);
|
|
}
|
|
|
|
|
|
void Assembler::ands(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand) {
|
|
Logical(rd, rn, operand, ANDS);
|
|
}
|
|
|
|
|
|
void Assembler::tst(const Register& rn,
|
|
const Operand& operand) {
|
|
ands(AppropriateZeroRegFor(rn), rn, operand);
|
|
}
|
|
|
|
|
|
void Assembler::bic(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand) {
|
|
Logical(rd, rn, operand, BIC);
|
|
}
|
|
|
|
|
|
void Assembler::bics(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand) {
|
|
Logical(rd, rn, operand, BICS);
|
|
}
|
|
|
|
|
|
void Assembler::orr(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand) {
|
|
Logical(rd, rn, operand, ORR);
|
|
}
|
|
|
|
|
|
void Assembler::orn(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand) {
|
|
Logical(rd, rn, operand, ORN);
|
|
}
|
|
|
|
|
|
void Assembler::eor(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand) {
|
|
Logical(rd, rn, operand, EOR);
|
|
}
|
|
|
|
|
|
void Assembler::eon(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand) {
|
|
Logical(rd, rn, operand, EON);
|
|
}
|
|
|
|
|
|
void Assembler::lslv(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm) {
|
|
DCHECK(rd.SizeInBits() == rn.SizeInBits());
|
|
DCHECK(rd.SizeInBits() == rm.SizeInBits());
|
|
Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
|
|
}
|
|
|
|
|
|
void Assembler::lsrv(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm) {
|
|
DCHECK(rd.SizeInBits() == rn.SizeInBits());
|
|
DCHECK(rd.SizeInBits() == rm.SizeInBits());
|
|
Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
|
|
}
|
|
|
|
|
|
void Assembler::asrv(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm) {
|
|
DCHECK(rd.SizeInBits() == rn.SizeInBits());
|
|
DCHECK(rd.SizeInBits() == rm.SizeInBits());
|
|
Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
|
|
}
|
|
|
|
|
|
void Assembler::rorv(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm) {
|
|
DCHECK(rd.SizeInBits() == rn.SizeInBits());
|
|
DCHECK(rd.SizeInBits() == rm.SizeInBits());
|
|
Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
|
|
}
|
|
|
|
|
|
// Bitfield operations.
|
|
void Assembler::bfm(const Register& rd, const Register& rn, int immr,
|
|
int imms) {
|
|
DCHECK(rd.SizeInBits() == rn.SizeInBits());
|
|
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
|
|
Emit(SF(rd) | BFM | N |
|
|
ImmR(immr, rd.SizeInBits()) |
|
|
ImmS(imms, rn.SizeInBits()) |
|
|
Rn(rn) | Rd(rd));
|
|
}
|
|
|
|
|
|
void Assembler::sbfm(const Register& rd, const Register& rn, int immr,
|
|
int imms) {
|
|
DCHECK(rd.Is64Bits() || rn.Is32Bits());
|
|
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
|
|
Emit(SF(rd) | SBFM | N |
|
|
ImmR(immr, rd.SizeInBits()) |
|
|
ImmS(imms, rn.SizeInBits()) |
|
|
Rn(rn) | Rd(rd));
|
|
}
|
|
|
|
|
|
void Assembler::ubfm(const Register& rd, const Register& rn, int immr,
|
|
int imms) {
|
|
DCHECK(rd.SizeInBits() == rn.SizeInBits());
|
|
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
|
|
Emit(SF(rd) | UBFM | N |
|
|
ImmR(immr, rd.SizeInBits()) |
|
|
ImmS(imms, rn.SizeInBits()) |
|
|
Rn(rn) | Rd(rd));
|
|
}
|
|
|
|
|
|
void Assembler::extr(const Register& rd, const Register& rn, const Register& rm,
|
|
int lsb) {
|
|
DCHECK(rd.SizeInBits() == rn.SizeInBits());
|
|
DCHECK(rd.SizeInBits() == rm.SizeInBits());
|
|
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
|
|
Emit(SF(rd) | EXTR | N | Rm(rm) |
|
|
ImmS(lsb, rn.SizeInBits()) | Rn(rn) | Rd(rd));
|
|
}
|
|
|
|
|
|
void Assembler::csel(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
Condition cond) {
|
|
ConditionalSelect(rd, rn, rm, cond, CSEL);
|
|
}
|
|
|
|
|
|
void Assembler::csinc(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
Condition cond) {
|
|
ConditionalSelect(rd, rn, rm, cond, CSINC);
|
|
}
|
|
|
|
|
|
void Assembler::csinv(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
Condition cond) {
|
|
ConditionalSelect(rd, rn, rm, cond, CSINV);
|
|
}
|
|
|
|
|
|
void Assembler::csneg(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
Condition cond) {
|
|
ConditionalSelect(rd, rn, rm, cond, CSNEG);
|
|
}
|
|
|
|
|
|
void Assembler::cset(const Register &rd, Condition cond) {
|
|
DCHECK((cond != al) && (cond != nv));
|
|
Register zr = AppropriateZeroRegFor(rd);
|
|
csinc(rd, zr, zr, NegateCondition(cond));
|
|
}
|
|
|
|
|
|
void Assembler::csetm(const Register &rd, Condition cond) {
|
|
DCHECK((cond != al) && (cond != nv));
|
|
Register zr = AppropriateZeroRegFor(rd);
|
|
csinv(rd, zr, zr, NegateCondition(cond));
|
|
}
|
|
|
|
|
|
void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) {
|
|
DCHECK((cond != al) && (cond != nv));
|
|
csinc(rd, rn, rn, NegateCondition(cond));
|
|
}
|
|
|
|
|
|
void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) {
|
|
DCHECK((cond != al) && (cond != nv));
|
|
csinv(rd, rn, rn, NegateCondition(cond));
|
|
}
|
|
|
|
|
|
void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) {
|
|
DCHECK((cond != al) && (cond != nv));
|
|
csneg(rd, rn, rn, NegateCondition(cond));
|
|
}
|
|
|
|
|
|
void Assembler::ConditionalSelect(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
Condition cond,
|
|
ConditionalSelectOp op) {
|
|
DCHECK(rd.SizeInBits() == rn.SizeInBits());
|
|
DCHECK(rd.SizeInBits() == rm.SizeInBits());
|
|
Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
|
|
}
|
|
|
|
|
|
void Assembler::ccmn(const Register& rn,
|
|
const Operand& operand,
|
|
StatusFlags nzcv,
|
|
Condition cond) {
|
|
ConditionalCompare(rn, operand, nzcv, cond, CCMN);
|
|
}
|
|
|
|
|
|
void Assembler::ccmp(const Register& rn,
|
|
const Operand& operand,
|
|
StatusFlags nzcv,
|
|
Condition cond) {
|
|
ConditionalCompare(rn, operand, nzcv, cond, CCMP);
|
|
}
|
|
|
|
|
|
void Assembler::DataProcessing3Source(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
const Register& ra,
|
|
DataProcessing3SourceOp op) {
|
|
Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
|
|
}
|
|
|
|
|
|
void Assembler::mul(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm) {
|
|
DCHECK(AreSameSizeAndType(rd, rn, rm));
|
|
Register zr = AppropriateZeroRegFor(rn);
|
|
DataProcessing3Source(rd, rn, rm, zr, MADD);
|
|
}
|
|
|
|
|
|
void Assembler::madd(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
const Register& ra) {
|
|
DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
|
|
DataProcessing3Source(rd, rn, rm, ra, MADD);
|
|
}
|
|
|
|
|
|
void Assembler::mneg(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm) {
|
|
DCHECK(AreSameSizeAndType(rd, rn, rm));
|
|
Register zr = AppropriateZeroRegFor(rn);
|
|
DataProcessing3Source(rd, rn, rm, zr, MSUB);
|
|
}
|
|
|
|
|
|
void Assembler::msub(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
const Register& ra) {
|
|
DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
|
|
DataProcessing3Source(rd, rn, rm, ra, MSUB);
|
|
}
|
|
|
|
|
|
void Assembler::smaddl(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
const Register& ra) {
|
|
DCHECK(rd.Is64Bits() && ra.Is64Bits());
|
|
DCHECK(rn.Is32Bits() && rm.Is32Bits());
|
|
DataProcessing3Source(rd, rn, rm, ra, SMADDL_x);
|
|
}
|
|
|
|
|
|
void Assembler::smsubl(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
const Register& ra) {
|
|
DCHECK(rd.Is64Bits() && ra.Is64Bits());
|
|
DCHECK(rn.Is32Bits() && rm.Is32Bits());
|
|
DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x);
|
|
}
|
|
|
|
|
|
void Assembler::umaddl(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
const Register& ra) {
|
|
DCHECK(rd.Is64Bits() && ra.Is64Bits());
|
|
DCHECK(rn.Is32Bits() && rm.Is32Bits());
|
|
DataProcessing3Source(rd, rn, rm, ra, UMADDL_x);
|
|
}
|
|
|
|
|
|
void Assembler::umsubl(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
const Register& ra) {
|
|
DCHECK(rd.Is64Bits() && ra.Is64Bits());
|
|
DCHECK(rn.Is32Bits() && rm.Is32Bits());
|
|
DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x);
|
|
}
|
|
|
|
|
|
void Assembler::smull(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm) {
|
|
DCHECK(rd.Is64Bits());
|
|
DCHECK(rn.Is32Bits() && rm.Is32Bits());
|
|
DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x);
|
|
}
|
|
|
|
|
|
void Assembler::smulh(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm) {
|
|
DCHECK(AreSameSizeAndType(rd, rn, rm));
|
|
DataProcessing3Source(rd, rn, rm, xzr, SMULH_x);
|
|
}
|
|
|
|
|
|
void Assembler::sdiv(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm) {
|
|
DCHECK(rd.SizeInBits() == rn.SizeInBits());
|
|
DCHECK(rd.SizeInBits() == rm.SizeInBits());
|
|
Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
|
|
}
|
|
|
|
|
|
void Assembler::udiv(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm) {
|
|
DCHECK(rd.SizeInBits() == rn.SizeInBits());
|
|
DCHECK(rd.SizeInBits() == rm.SizeInBits());
|
|
Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
|
|
}
|
|
|
|
|
|
void Assembler::rbit(const Register& rd,
|
|
const Register& rn) {
|
|
DataProcessing1Source(rd, rn, RBIT);
|
|
}
|
|
|
|
|
|
void Assembler::rev16(const Register& rd,
|
|
const Register& rn) {
|
|
DataProcessing1Source(rd, rn, REV16);
|
|
}
|
|
|
|
|
|
void Assembler::rev32(const Register& rd,
|
|
const Register& rn) {
|
|
DCHECK(rd.Is64Bits());
|
|
DataProcessing1Source(rd, rn, REV);
|
|
}
|
|
|
|
|
|
void Assembler::rev(const Register& rd,
|
|
const Register& rn) {
|
|
DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
|
|
}
|
|
|
|
|
|
void Assembler::clz(const Register& rd,
|
|
const Register& rn) {
|
|
DataProcessing1Source(rd, rn, CLZ);
|
|
}
|
|
|
|
|
|
void Assembler::cls(const Register& rd,
|
|
const Register& rn) {
|
|
DataProcessing1Source(rd, rn, CLS);
|
|
}
|
|
|
|
|
|
void Assembler::ldp(const CPURegister& rt,
|
|
const CPURegister& rt2,
|
|
const MemOperand& src) {
|
|
LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
|
|
}
|
|
|
|
|
|
void Assembler::stp(const CPURegister& rt,
|
|
const CPURegister& rt2,
|
|
const MemOperand& dst) {
|
|
LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
|
|
}
|
|
|
|
|
|
void Assembler::ldpsw(const Register& rt,
|
|
const Register& rt2,
|
|
const MemOperand& src) {
|
|
DCHECK(rt.Is64Bits());
|
|
LoadStorePair(rt, rt2, src, LDPSW_x);
|
|
}
|
|
|
|
|
|
void Assembler::LoadStorePair(const CPURegister& rt,
|
|
const CPURegister& rt2,
|
|
const MemOperand& addr,
|
|
LoadStorePairOp op) {
|
|
// 'rt' and 'rt2' can only be aliased for stores.
|
|
DCHECK(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
|
|
DCHECK(AreSameSizeAndType(rt, rt2));
|
|
DCHECK(IsImmLSPair(addr.offset(), CalcLSPairDataSize(op)));
|
|
int offset = static_cast<int>(addr.offset());
|
|
|
|
Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
|
|
ImmLSPair(offset, CalcLSPairDataSize(op));
|
|
|
|
Instr addrmodeop;
|
|
if (addr.IsImmediateOffset()) {
|
|
addrmodeop = LoadStorePairOffsetFixed;
|
|
} else {
|
|
// Pre-index and post-index modes.
|
|
DCHECK(!rt.Is(addr.base()));
|
|
DCHECK(!rt2.Is(addr.base()));
|
|
DCHECK(addr.offset() != 0);
|
|
if (addr.IsPreIndex()) {
|
|
addrmodeop = LoadStorePairPreIndexFixed;
|
|
} else {
|
|
DCHECK(addr.IsPostIndex());
|
|
addrmodeop = LoadStorePairPostIndexFixed;
|
|
}
|
|
}
|
|
Emit(addrmodeop | memop);
|
|
}
|
|
|
|
|
|
// Memory instructions.
|
|
void Assembler::ldrb(const Register& rt, const MemOperand& src) {
|
|
LoadStore(rt, src, LDRB_w);
|
|
}
|
|
|
|
|
|
void Assembler::strb(const Register& rt, const MemOperand& dst) {
|
|
LoadStore(rt, dst, STRB_w);
|
|
}
|
|
|
|
|
|
void Assembler::ldrsb(const Register& rt, const MemOperand& src) {
|
|
LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w);
|
|
}
|
|
|
|
|
|
void Assembler::ldrh(const Register& rt, const MemOperand& src) {
|
|
LoadStore(rt, src, LDRH_w);
|
|
}
|
|
|
|
|
|
void Assembler::strh(const Register& rt, const MemOperand& dst) {
|
|
LoadStore(rt, dst, STRH_w);
|
|
}
|
|
|
|
|
|
void Assembler::ldrsh(const Register& rt, const MemOperand& src) {
|
|
LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w);
|
|
}
|
|
|
|
|
|
void Assembler::ldr(const CPURegister& rt, const MemOperand& src) {
|
|
LoadStore(rt, src, LoadOpFor(rt));
|
|
}
|
|
|
|
|
|
void Assembler::str(const CPURegister& rt, const MemOperand& src) {
|
|
LoadStore(rt, src, StoreOpFor(rt));
|
|
}
|
|
|
|
|
|
void Assembler::ldrsw(const Register& rt, const MemOperand& src) {
|
|
DCHECK(rt.Is64Bits());
|
|
LoadStore(rt, src, LDRSW_x);
|
|
}
|
|
|
|
|
|
void Assembler::ldr_pcrel(const CPURegister& rt, int imm19) {
|
|
// The pattern 'ldr xzr, #offset' is used to indicate the beginning of a
|
|
// constant pool. It should not be emitted.
|
|
DCHECK(!rt.IsZero());
|
|
Emit(LoadLiteralOpFor(rt) | ImmLLiteral(imm19) | Rt(rt));
|
|
}
|
|
|
|
|
|
void Assembler::ldr(const CPURegister& rt, const Immediate& imm) {
|
|
// Currently we only support 64-bit literals.
|
|
DCHECK(rt.Is64Bits());
|
|
|
|
RecordRelocInfo(imm.rmode(), imm.value());
|
|
BlockConstPoolFor(1);
|
|
// The load will be patched when the constpool is emitted, patching code
|
|
// expect a load literal with offset 0.
|
|
ldr_pcrel(rt, 0);
|
|
}
|
|
|
|
void Assembler::ldar(const Register& rt, const Register& rn) {
|
|
DCHECK(rn.Is64Bits());
|
|
LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAR_w : LDAR_x;
|
|
Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
|
|
}
|
|
|
|
void Assembler::ldaxr(const Register& rt, const Register& rn) {
|
|
DCHECK(rn.Is64Bits());
|
|
LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? LDAXR_w : LDAXR_x;
|
|
Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
|
|
}
|
|
|
|
void Assembler::stlr(const Register& rt, const Register& rn) {
|
|
DCHECK(rn.Is64Bits());
|
|
LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLR_w : STLR_x;
|
|
Emit(op | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
|
|
}
|
|
|
|
void Assembler::stlxr(const Register& rs, const Register& rt,
|
|
const Register& rn) {
|
|
DCHECK(rs.Is32Bits());
|
|
DCHECK(rn.Is64Bits());
|
|
LoadStoreAcquireReleaseOp op = rt.Is32Bits() ? STLXR_w : STLXR_x;
|
|
Emit(op | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
|
|
}
|
|
|
|
void Assembler::ldarb(const Register& rt, const Register& rn) {
|
|
DCHECK(rt.Is32Bits());
|
|
DCHECK(rn.Is64Bits());
|
|
Emit(LDAR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
|
|
}
|
|
|
|
void Assembler::ldaxrb(const Register& rt, const Register& rn) {
|
|
DCHECK(rt.Is32Bits());
|
|
DCHECK(rn.Is64Bits());
|
|
Emit(LDAXR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
|
|
}
|
|
|
|
void Assembler::stlrb(const Register& rt, const Register& rn) {
|
|
DCHECK(rt.Is32Bits());
|
|
DCHECK(rn.Is64Bits());
|
|
Emit(STLR_b | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
|
|
}
|
|
|
|
void Assembler::stlxrb(const Register& rs, const Register& rt,
|
|
const Register& rn) {
|
|
DCHECK(rs.Is32Bits());
|
|
DCHECK(rt.Is32Bits());
|
|
DCHECK(rn.Is64Bits());
|
|
Emit(STLXR_b | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
|
|
}
|
|
|
|
void Assembler::ldarh(const Register& rt, const Register& rn) {
|
|
DCHECK(rt.Is32Bits());
|
|
DCHECK(rn.Is64Bits());
|
|
Emit(LDAR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
|
|
}
|
|
|
|
void Assembler::ldaxrh(const Register& rt, const Register& rn) {
|
|
DCHECK(rt.Is32Bits());
|
|
DCHECK(rn.Is64Bits());
|
|
Emit(LDAXR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
|
|
}
|
|
|
|
void Assembler::stlrh(const Register& rt, const Register& rn) {
|
|
DCHECK(rt.Is32Bits());
|
|
DCHECK(rn.Is64Bits());
|
|
Emit(STLR_h | Rs(x31) | Rt2(x31) | Rn(rn) | Rt(rt));
|
|
}
|
|
|
|
void Assembler::stlxrh(const Register& rs, const Register& rt,
|
|
const Register& rn) {
|
|
DCHECK(rs.Is32Bits());
|
|
DCHECK(rt.Is32Bits());
|
|
DCHECK(rn.Is64Bits());
|
|
Emit(STLXR_h | Rs(rs) | Rt2(x31) | Rn(rn) | Rt(rt));
|
|
}
|
|
|
|
void Assembler::mov(const Register& rd, const Register& rm) {
|
|
// Moves involving the stack pointer are encoded as add immediate with
|
|
// second operand of zero. Otherwise, orr with first operand zr is
|
|
// used.
|
|
if (rd.IsSP() || rm.IsSP()) {
|
|
add(rd, rm, 0);
|
|
} else {
|
|
orr(rd, AppropriateZeroRegFor(rd), rm);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::mvn(const Register& rd, const Operand& operand) {
|
|
orn(rd, AppropriateZeroRegFor(rd), operand);
|
|
}
|
|
|
|
|
|
void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
|
|
DCHECK(rt.Is64Bits());
|
|
Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
|
|
}
|
|
|
|
|
|
void Assembler::msr(SystemRegister sysreg, const Register& rt) {
|
|
DCHECK(rt.Is64Bits());
|
|
Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg));
|
|
}
|
|
|
|
|
|
void Assembler::hint(SystemHint code) {
|
|
Emit(HINT | ImmHint(code) | Rt(xzr));
|
|
}
|
|
|
|
|
|
void Assembler::dmb(BarrierDomain domain, BarrierType type) {
|
|
Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
|
|
}
|
|
|
|
|
|
void Assembler::dsb(BarrierDomain domain, BarrierType type) {
|
|
Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
|
|
}
|
|
|
|
|
|
void Assembler::isb() {
|
|
Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
|
|
}
|
|
|
|
|
|
void Assembler::fmov(FPRegister fd, double imm) {
|
|
DCHECK(fd.Is64Bits());
|
|
DCHECK(IsImmFP64(imm));
|
|
Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm));
|
|
}
|
|
|
|
|
|
void Assembler::fmov(FPRegister fd, float imm) {
|
|
DCHECK(fd.Is32Bits());
|
|
DCHECK(IsImmFP32(imm));
|
|
Emit(FMOV_s_imm | Rd(fd) | ImmFP32(imm));
|
|
}
|
|
|
|
|
|
void Assembler::fmov(Register rd, FPRegister fn) {
|
|
DCHECK(rd.SizeInBits() == fn.SizeInBits());
|
|
FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd;
|
|
Emit(op | Rd(rd) | Rn(fn));
|
|
}
|
|
|
|
|
|
void Assembler::fmov(FPRegister fd, Register rn) {
|
|
DCHECK(fd.SizeInBits() == rn.SizeInBits());
|
|
FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx;
|
|
Emit(op | Rd(fd) | Rn(rn));
|
|
}
|
|
|
|
|
|
void Assembler::fmov(FPRegister fd, FPRegister fn) {
|
|
DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
|
Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn));
|
|
}
|
|
|
|
|
|
void Assembler::fadd(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm) {
|
|
FPDataProcessing2Source(fd, fn, fm, FADD);
|
|
}
|
|
|
|
|
|
void Assembler::fsub(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm) {
|
|
FPDataProcessing2Source(fd, fn, fm, FSUB);
|
|
}
|
|
|
|
|
|
void Assembler::fmul(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm) {
|
|
FPDataProcessing2Source(fd, fn, fm, FMUL);
|
|
}
|
|
|
|
|
|
void Assembler::fmadd(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm,
|
|
const FPRegister& fa) {
|
|
FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d);
|
|
}
|
|
|
|
|
|
void Assembler::fmsub(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm,
|
|
const FPRegister& fa) {
|
|
FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d);
|
|
}
|
|
|
|
|
|
void Assembler::fnmadd(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm,
|
|
const FPRegister& fa) {
|
|
FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d);
|
|
}
|
|
|
|
|
|
void Assembler::fnmsub(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm,
|
|
const FPRegister& fa) {
|
|
FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d);
|
|
}
|
|
|
|
|
|
void Assembler::fdiv(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm) {
|
|
FPDataProcessing2Source(fd, fn, fm, FDIV);
|
|
}
|
|
|
|
|
|
void Assembler::fmax(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm) {
|
|
FPDataProcessing2Source(fd, fn, fm, FMAX);
|
|
}
|
|
|
|
|
|
void Assembler::fmaxnm(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm) {
|
|
FPDataProcessing2Source(fd, fn, fm, FMAXNM);
|
|
}
|
|
|
|
|
|
void Assembler::fmin(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm) {
|
|
FPDataProcessing2Source(fd, fn, fm, FMIN);
|
|
}
|
|
|
|
|
|
void Assembler::fminnm(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm) {
|
|
FPDataProcessing2Source(fd, fn, fm, FMINNM);
|
|
}
|
|
|
|
|
|
void Assembler::fabs(const FPRegister& fd,
|
|
const FPRegister& fn) {
|
|
DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
|
FPDataProcessing1Source(fd, fn, FABS);
|
|
}
|
|
|
|
|
|
void Assembler::fneg(const FPRegister& fd,
|
|
const FPRegister& fn) {
|
|
DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
|
FPDataProcessing1Source(fd, fn, FNEG);
|
|
}
|
|
|
|
|
|
void Assembler::fsqrt(const FPRegister& fd,
|
|
const FPRegister& fn) {
|
|
DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
|
FPDataProcessing1Source(fd, fn, FSQRT);
|
|
}
|
|
|
|
|
|
void Assembler::frinta(const FPRegister& fd,
|
|
const FPRegister& fn) {
|
|
DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
|
FPDataProcessing1Source(fd, fn, FRINTA);
|
|
}
|
|
|
|
|
|
void Assembler::frintm(const FPRegister& fd,
|
|
const FPRegister& fn) {
|
|
DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
|
FPDataProcessing1Source(fd, fn, FRINTM);
|
|
}
|
|
|
|
|
|
void Assembler::frintn(const FPRegister& fd,
|
|
const FPRegister& fn) {
|
|
DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
|
FPDataProcessing1Source(fd, fn, FRINTN);
|
|
}
|
|
|
|
|
|
void Assembler::frintp(const FPRegister& fd, const FPRegister& fn) {
|
|
DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
|
FPDataProcessing1Source(fd, fn, FRINTP);
|
|
}
|
|
|
|
|
|
void Assembler::frintz(const FPRegister& fd,
|
|
const FPRegister& fn) {
|
|
DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
|
FPDataProcessing1Source(fd, fn, FRINTZ);
|
|
}
|
|
|
|
|
|
void Assembler::fcmp(const FPRegister& fn,
|
|
const FPRegister& fm) {
|
|
DCHECK(fn.SizeInBits() == fm.SizeInBits());
|
|
Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn));
|
|
}
|
|
|
|
|
|
void Assembler::fcmp(const FPRegister& fn,
|
|
double value) {
|
|
USE(value);
|
|
// Although the fcmp instruction can strictly only take an immediate value of
|
|
// +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't
|
|
// affect the result of the comparison.
|
|
DCHECK(value == 0.0);
|
|
Emit(FPType(fn) | FCMP_zero | Rn(fn));
|
|
}
|
|
|
|
|
|
void Assembler::fccmp(const FPRegister& fn,
|
|
const FPRegister& fm,
|
|
StatusFlags nzcv,
|
|
Condition cond) {
|
|
DCHECK(fn.SizeInBits() == fm.SizeInBits());
|
|
Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv));
|
|
}
|
|
|
|
|
|
void Assembler::fcsel(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm,
|
|
Condition cond) {
|
|
DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
|
DCHECK(fd.SizeInBits() == fm.SizeInBits());
|
|
Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd));
|
|
}
|
|
|
|
|
|
void Assembler::FPConvertToInt(const Register& rd,
|
|
const FPRegister& fn,
|
|
FPIntegerConvertOp op) {
|
|
Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd));
|
|
}
|
|
|
|
|
|
void Assembler::fcvt(const FPRegister& fd,
|
|
const FPRegister& fn) {
|
|
if (fd.Is64Bits()) {
|
|
// Convert float to double.
|
|
DCHECK(fn.Is32Bits());
|
|
FPDataProcessing1Source(fd, fn, FCVT_ds);
|
|
} else {
|
|
// Convert double to float.
|
|
DCHECK(fn.Is64Bits());
|
|
FPDataProcessing1Source(fd, fn, FCVT_sd);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::fcvtau(const Register& rd, const FPRegister& fn) {
|
|
FPConvertToInt(rd, fn, FCVTAU);
|
|
}
|
|
|
|
|
|
void Assembler::fcvtas(const Register& rd, const FPRegister& fn) {
|
|
FPConvertToInt(rd, fn, FCVTAS);
|
|
}
|
|
|
|
|
|
void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) {
|
|
FPConvertToInt(rd, fn, FCVTMU);
|
|
}
|
|
|
|
|
|
void Assembler::fcvtms(const Register& rd, const FPRegister& fn) {
|
|
FPConvertToInt(rd, fn, FCVTMS);
|
|
}
|
|
|
|
|
|
void Assembler::fcvtnu(const Register& rd, const FPRegister& fn) {
|
|
FPConvertToInt(rd, fn, FCVTNU);
|
|
}
|
|
|
|
|
|
void Assembler::fcvtns(const Register& rd, const FPRegister& fn) {
|
|
FPConvertToInt(rd, fn, FCVTNS);
|
|
}
|
|
|
|
|
|
void Assembler::fcvtzu(const Register& rd, const FPRegister& fn) {
|
|
FPConvertToInt(rd, fn, FCVTZU);
|
|
}
|
|
|
|
|
|
void Assembler::fcvtzs(const Register& rd, const FPRegister& fn) {
|
|
FPConvertToInt(rd, fn, FCVTZS);
|
|
}
|
|
|
|
|
|
void Assembler::scvtf(const FPRegister& fd,
|
|
const Register& rn,
|
|
unsigned fbits) {
|
|
if (fbits == 0) {
|
|
Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd));
|
|
} else {
|
|
Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
|
|
Rd(fd));
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::ucvtf(const FPRegister& fd,
|
|
const Register& rn,
|
|
unsigned fbits) {
|
|
if (fbits == 0) {
|
|
Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd));
|
|
} else {
|
|
Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
|
|
Rd(fd));
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::dcptr(Label* label) {
|
|
RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
|
|
if (label->is_bound()) {
|
|
// The label is bound, so it does not need to be updated and the internal
|
|
// reference should be emitted.
|
|
//
|
|
// In this case, label->pos() returns the offset of the label from the
|
|
// start of the buffer.
|
|
internal_reference_positions_.push_back(pc_offset());
|
|
dc64(reinterpret_cast<uintptr_t>(buffer_ + label->pos()));
|
|
} else {
|
|
int32_t offset;
|
|
if (label->is_linked()) {
|
|
// The label is linked, so the internal reference should be added
|
|
// onto the end of the label's link chain.
|
|
//
|
|
// In this case, label->pos() returns the offset of the last linked
|
|
// instruction from the start of the buffer.
|
|
offset = label->pos() - pc_offset();
|
|
DCHECK(offset != kStartOfLabelLinkChain);
|
|
} else {
|
|
// The label is unused, so it now becomes linked and the internal
|
|
// reference is at the start of the new link chain.
|
|
offset = kStartOfLabelLinkChain;
|
|
}
|
|
// The instruction at pc is now the last link in the label's chain.
|
|
label->link_to(pc_offset());
|
|
|
|
// Traditionally the offset to the previous instruction in the chain is
|
|
// encoded in the instruction payload (e.g. branch range) but internal
|
|
// references are not instructions so while unbound they are encoded as
|
|
// two consecutive brk instructions. The two 16-bit immediates are used
|
|
// to encode the offset.
|
|
offset >>= kInstructionSizeLog2;
|
|
DCHECK(is_int32(offset));
|
|
uint32_t high16 = unsigned_bitextract_32(31, 16, offset);
|
|
uint32_t low16 = unsigned_bitextract_32(15, 0, offset);
|
|
|
|
brk(high16);
|
|
brk(low16);
|
|
}
|
|
}
|
|
|
|
|
|
// Note:
|
|
// Below, a difference in case for the same letter indicates a
|
|
// negated bit.
|
|
// If b is 1, then B is 0.
|
|
Instr Assembler::ImmFP32(float imm) {
|
|
DCHECK(IsImmFP32(imm));
|
|
// bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
|
|
uint32_t bits = float_to_rawbits(imm);
|
|
// bit7: a000.0000
|
|
uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
|
|
// bit6: 0b00.0000
|
|
uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
|
|
// bit5_to_0: 00cd.efgh
|
|
uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
|
|
|
|
return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
|
|
}
|
|
|
|
|
|
Instr Assembler::ImmFP64(double imm) {
|
|
DCHECK(IsImmFP64(imm));
|
|
// bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
|
|
// 0000.0000.0000.0000.0000.0000.0000.0000
|
|
uint64_t bits = double_to_rawbits(imm);
|
|
// bit7: a000.0000
|
|
uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
|
|
// bit6: 0b00.0000
|
|
uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
|
|
// bit5_to_0: 00cd.efgh
|
|
uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
|
|
|
|
return static_cast<Instr>((bit7 | bit6 | bit5_to_0) << ImmFP_offset);
|
|
}
|
|
|
|
|
|
// Code generation helpers.
|
|
void Assembler::MoveWide(const Register& rd,
|
|
uint64_t imm,
|
|
int shift,
|
|
MoveWideImmediateOp mov_op) {
|
|
// Ignore the top 32 bits of an immediate if we're moving to a W register.
|
|
if (rd.Is32Bits()) {
|
|
// Check that the top 32 bits are zero (a positive 32-bit number) or top
|
|
// 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
|
|
DCHECK(((imm >> kWRegSizeInBits) == 0) ||
|
|
((imm >> (kWRegSizeInBits - 1)) == 0x1ffffffff));
|
|
imm &= kWRegMask;
|
|
}
|
|
|
|
if (shift >= 0) {
|
|
// Explicit shift specified.
|
|
DCHECK((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48));
|
|
DCHECK(rd.Is64Bits() || (shift == 0) || (shift == 16));
|
|
shift /= 16;
|
|
} else {
|
|
// Calculate a new immediate and shift combination to encode the immediate
|
|
// argument.
|
|
shift = 0;
|
|
if ((imm & ~0xffffUL) == 0) {
|
|
// Nothing to do.
|
|
} else if ((imm & ~(0xffffUL << 16)) == 0) {
|
|
imm >>= 16;
|
|
shift = 1;
|
|
} else if ((imm & ~(0xffffUL << 32)) == 0) {
|
|
DCHECK(rd.Is64Bits());
|
|
imm >>= 32;
|
|
shift = 2;
|
|
} else if ((imm & ~(0xffffUL << 48)) == 0) {
|
|
DCHECK(rd.Is64Bits());
|
|
imm >>= 48;
|
|
shift = 3;
|
|
}
|
|
}
|
|
|
|
DCHECK(is_uint16(imm));
|
|
|
|
Emit(SF(rd) | MoveWideImmediateFixed | mov_op | Rd(rd) |
|
|
ImmMoveWide(static_cast<int>(imm)) | ShiftMoveWide(shift));
|
|
}
|
|
|
|
|
|
void Assembler::AddSub(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand,
|
|
FlagsUpdate S,
|
|
AddSubOp op) {
|
|
DCHECK(rd.SizeInBits() == rn.SizeInBits());
|
|
DCHECK(!operand.NeedsRelocation(this));
|
|
if (operand.IsImmediate()) {
|
|
int64_t immediate = operand.ImmediateValue();
|
|
DCHECK(IsImmAddSub(immediate));
|
|
Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
|
|
Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
|
|
ImmAddSub(static_cast<int>(immediate)) | dest_reg | RnSP(rn));
|
|
} else if (operand.IsShiftedRegister()) {
|
|
DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
|
|
DCHECK(operand.shift() != ROR);
|
|
|
|
// For instructions of the form:
|
|
// add/sub wsp, <Wn>, <Wm> [, LSL #0-3 ]
|
|
// add/sub <Wd>, wsp, <Wm> [, LSL #0-3 ]
|
|
// add/sub wsp, wsp, <Wm> [, LSL #0-3 ]
|
|
// adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ]
|
|
// or their 64-bit register equivalents, convert the operand from shifted to
|
|
// extended register mode, and emit an add/sub extended instruction.
|
|
if (rn.IsSP() || rd.IsSP()) {
|
|
DCHECK(!(rd.IsSP() && (S == SetFlags)));
|
|
DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S,
|
|
AddSubExtendedFixed | op);
|
|
} else {
|
|
DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op);
|
|
}
|
|
} else {
|
|
DCHECK(operand.IsExtendedRegister());
|
|
DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::AddSubWithCarry(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand,
|
|
FlagsUpdate S,
|
|
AddSubWithCarryOp op) {
|
|
DCHECK(rd.SizeInBits() == rn.SizeInBits());
|
|
DCHECK(rd.SizeInBits() == operand.reg().SizeInBits());
|
|
DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
|
|
DCHECK(!operand.NeedsRelocation(this));
|
|
Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd));
|
|
}
|
|
|
|
|
|
void Assembler::hlt(int code) {
|
|
DCHECK(is_uint16(code));
|
|
Emit(HLT | ImmException(code));
|
|
}
|
|
|
|
|
|
void Assembler::brk(int code) {
|
|
DCHECK(is_uint16(code));
|
|
Emit(BRK | ImmException(code));
|
|
}
|
|
|
|
|
|
void Assembler::EmitStringData(const char* string) {
|
|
size_t len = strlen(string) + 1;
|
|
DCHECK(RoundUp(len, kInstructionSize) <= static_cast<size_t>(kGap));
|
|
EmitData(string, static_cast<int>(len));
|
|
// Pad with NULL characters until pc_ is aligned.
|
|
const char pad[] = {'\0', '\0', '\0', '\0'};
|
|
STATIC_ASSERT(sizeof(pad) == kInstructionSize);
|
|
EmitData(pad, RoundUp(pc_offset(), kInstructionSize) - pc_offset());
|
|
}
|
|
|
|
|
|
void Assembler::debug(const char* message, uint32_t code, Instr params) {
|
|
#ifdef USE_SIMULATOR
|
|
// Don't generate simulator specific code if we are building a snapshot, which
|
|
// might be run on real hardware.
|
|
if (!serializer_enabled()) {
|
|
// The arguments to the debug marker need to be contiguous in memory, so
|
|
// make sure we don't try to emit pools.
|
|
BlockPoolsScope scope(this);
|
|
|
|
Label start;
|
|
bind(&start);
|
|
|
|
// Refer to instructions-arm64.h for a description of the marker and its
|
|
// arguments.
|
|
hlt(kImmExceptionIsDebug);
|
|
DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugCodeOffset);
|
|
dc32(code);
|
|
DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugParamsOffset);
|
|
dc32(params);
|
|
DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugMessageOffset);
|
|
EmitStringData(message);
|
|
hlt(kImmExceptionIsUnreachable);
|
|
|
|
return;
|
|
}
|
|
// Fall through if Serializer is enabled.
|
|
#endif
|
|
|
|
if (params & BREAK) {
|
|
hlt(kImmExceptionIsDebug);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::Logical(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand,
|
|
LogicalOp op) {
|
|
DCHECK(rd.SizeInBits() == rn.SizeInBits());
|
|
DCHECK(!operand.NeedsRelocation(this));
|
|
if (operand.IsImmediate()) {
|
|
int64_t immediate = operand.ImmediateValue();
|
|
unsigned reg_size = rd.SizeInBits();
|
|
|
|
DCHECK(immediate != 0);
|
|
DCHECK(immediate != -1);
|
|
DCHECK(rd.Is64Bits() || is_uint32(immediate));
|
|
|
|
// If the operation is NOT, invert the operation and immediate.
|
|
if ((op & NOT) == NOT) {
|
|
op = static_cast<LogicalOp>(op & ~NOT);
|
|
immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask);
|
|
}
|
|
|
|
unsigned n, imm_s, imm_r;
|
|
if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
|
|
// Immediate can be encoded in the instruction.
|
|
LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
|
|
} else {
|
|
// This case is handled in the macro assembler.
|
|
UNREACHABLE();
|
|
}
|
|
} else {
|
|
DCHECK(operand.IsShiftedRegister());
|
|
DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
|
|
Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed);
|
|
DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::LogicalImmediate(const Register& rd,
|
|
const Register& rn,
|
|
unsigned n,
|
|
unsigned imm_s,
|
|
unsigned imm_r,
|
|
LogicalOp op) {
|
|
unsigned reg_size = rd.SizeInBits();
|
|
Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd);
|
|
Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) |
|
|
ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg |
|
|
Rn(rn));
|
|
}
|
|
|
|
|
|
void Assembler::ConditionalCompare(const Register& rn,
|
|
const Operand& operand,
|
|
StatusFlags nzcv,
|
|
Condition cond,
|
|
ConditionalCompareOp op) {
|
|
Instr ccmpop;
|
|
DCHECK(!operand.NeedsRelocation(this));
|
|
if (operand.IsImmediate()) {
|
|
int64_t immediate = operand.ImmediateValue();
|
|
DCHECK(IsImmConditionalCompare(immediate));
|
|
ccmpop = ConditionalCompareImmediateFixed | op |
|
|
ImmCondCmp(static_cast<unsigned>(immediate));
|
|
} else {
|
|
DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
|
|
ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg());
|
|
}
|
|
Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv));
|
|
}
|
|
|
|
|
|
void Assembler::DataProcessing1Source(const Register& rd,
|
|
const Register& rn,
|
|
DataProcessing1SourceOp op) {
|
|
DCHECK(rd.SizeInBits() == rn.SizeInBits());
|
|
Emit(SF(rn) | op | Rn(rn) | Rd(rd));
|
|
}
|
|
|
|
|
|
void Assembler::FPDataProcessing1Source(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
FPDataProcessing1SourceOp op) {
|
|
Emit(FPType(fn) | op | Rn(fn) | Rd(fd));
|
|
}
|
|
|
|
|
|
void Assembler::FPDataProcessing2Source(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm,
|
|
FPDataProcessing2SourceOp op) {
|
|
DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
|
DCHECK(fd.SizeInBits() == fm.SizeInBits());
|
|
Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd));
|
|
}
|
|
|
|
|
|
void Assembler::FPDataProcessing3Source(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm,
|
|
const FPRegister& fa,
|
|
FPDataProcessing3SourceOp op) {
|
|
DCHECK(AreSameSizeAndType(fd, fn, fm, fa));
|
|
Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa));
|
|
}
|
|
|
|
|
|
void Assembler::EmitShift(const Register& rd,
|
|
const Register& rn,
|
|
Shift shift,
|
|
unsigned shift_amount) {
|
|
switch (shift) {
|
|
case LSL:
|
|
lsl(rd, rn, shift_amount);
|
|
break;
|
|
case LSR:
|
|
lsr(rd, rn, shift_amount);
|
|
break;
|
|
case ASR:
|
|
asr(rd, rn, shift_amount);
|
|
break;
|
|
case ROR:
|
|
ror(rd, rn, shift_amount);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::EmitExtendShift(const Register& rd,
|
|
const Register& rn,
|
|
Extend extend,
|
|
unsigned left_shift) {
|
|
DCHECK(rd.SizeInBits() >= rn.SizeInBits());
|
|
unsigned reg_size = rd.SizeInBits();
|
|
// Use the correct size of register.
|
|
Register rn_ = Register::Create(rn.code(), rd.SizeInBits());
|
|
// Bits extracted are high_bit:0.
|
|
unsigned high_bit = (8 << (extend & 0x3)) - 1;
|
|
// Number of bits left in the result that are not introduced by the shift.
|
|
unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1);
|
|
|
|
if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) {
|
|
switch (extend) {
|
|
case UXTB:
|
|
case UXTH:
|
|
case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break;
|
|
case SXTB:
|
|
case SXTH:
|
|
case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break;
|
|
case UXTX:
|
|
case SXTX: {
|
|
DCHECK(rn.SizeInBits() == kXRegSizeInBits);
|
|
// Nothing to extend. Just shift.
|
|
lsl(rd, rn_, left_shift);
|
|
break;
|
|
}
|
|
default: UNREACHABLE();
|
|
}
|
|
} else {
|
|
// No need to extend as the extended bits would be shifted away.
|
|
lsl(rd, rn_, left_shift);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::DataProcShiftedRegister(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand,
|
|
FlagsUpdate S,
|
|
Instr op) {
|
|
DCHECK(operand.IsShiftedRegister());
|
|
DCHECK(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount())));
|
|
DCHECK(!operand.NeedsRelocation(this));
|
|
Emit(SF(rd) | op | Flags(S) |
|
|
ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) |
|
|
Rm(operand.reg()) | Rn(rn) | Rd(rd));
|
|
}
|
|
|
|
|
|
void Assembler::DataProcExtendedRegister(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand,
|
|
FlagsUpdate S,
|
|
Instr op) {
|
|
DCHECK(!operand.NeedsRelocation(this));
|
|
Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
|
|
Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) |
|
|
ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) |
|
|
dest_reg | RnSP(rn));
|
|
}
|
|
|
|
|
|
bool Assembler::IsImmAddSub(int64_t immediate) {
|
|
return is_uint12(immediate) ||
|
|
(is_uint12(immediate >> 12) && ((immediate & 0xfff) == 0));
|
|
}
|
|
|
|
void Assembler::LoadStore(const CPURegister& rt,
|
|
const MemOperand& addr,
|
|
LoadStoreOp op) {
|
|
Instr memop = op | Rt(rt) | RnSP(addr.base());
|
|
|
|
if (addr.IsImmediateOffset()) {
|
|
LSDataSize size = CalcLSDataSize(op);
|
|
if (IsImmLSScaled(addr.offset(), size)) {
|
|
int offset = static_cast<int>(addr.offset());
|
|
// Use the scaled addressing mode.
|
|
Emit(LoadStoreUnsignedOffsetFixed | memop |
|
|
ImmLSUnsigned(offset >> size));
|
|
} else if (IsImmLSUnscaled(addr.offset())) {
|
|
int offset = static_cast<int>(addr.offset());
|
|
// Use the unscaled addressing mode.
|
|
Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset));
|
|
} else {
|
|
// This case is handled in the macro assembler.
|
|
UNREACHABLE();
|
|
}
|
|
} else if (addr.IsRegisterOffset()) {
|
|
Extend ext = addr.extend();
|
|
Shift shift = addr.shift();
|
|
unsigned shift_amount = addr.shift_amount();
|
|
|
|
// LSL is encoded in the option field as UXTX.
|
|
if (shift == LSL) {
|
|
ext = UXTX;
|
|
}
|
|
|
|
// Shifts are encoded in one bit, indicating a left shift by the memory
|
|
// access size.
|
|
DCHECK((shift_amount == 0) ||
|
|
(shift_amount == static_cast<unsigned>(CalcLSDataSize(op))));
|
|
Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) |
|
|
ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0));
|
|
} else {
|
|
// Pre-index and post-index modes.
|
|
DCHECK(!rt.Is(addr.base()));
|
|
if (IsImmLSUnscaled(addr.offset())) {
|
|
int offset = static_cast<int>(addr.offset());
|
|
if (addr.IsPreIndex()) {
|
|
Emit(LoadStorePreIndexFixed | memop | ImmLS(offset));
|
|
} else {
|
|
DCHECK(addr.IsPostIndex());
|
|
Emit(LoadStorePostIndexFixed | memop | ImmLS(offset));
|
|
}
|
|
} else {
|
|
// This case is handled in the macro assembler.
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool Assembler::IsImmLSUnscaled(int64_t offset) {
|
|
return is_int9(offset);
|
|
}
|
|
|
|
|
|
bool Assembler::IsImmLSScaled(int64_t offset, LSDataSize size) {
|
|
bool offset_is_size_multiple = (((offset >> size) << size) == offset);
|
|
return offset_is_size_multiple && is_uint12(offset >> size);
|
|
}
|
|
|
|
|
|
bool Assembler::IsImmLSPair(int64_t offset, LSDataSize size) {
|
|
bool offset_is_size_multiple = (((offset >> size) << size) == offset);
|
|
return offset_is_size_multiple && is_int7(offset >> size);
|
|
}
|
|
|
|
|
|
bool Assembler::IsImmLLiteral(int64_t offset) {
|
|
int inst_size = static_cast<int>(kInstructionSizeLog2);
|
|
bool offset_is_inst_multiple =
|
|
(((offset >> inst_size) << inst_size) == offset);
|
|
return offset_is_inst_multiple && is_intn(offset, ImmLLiteral_width);
|
|
}
|
|
|
|
|
|
// Test if a given value can be encoded in the immediate field of a logical
|
|
// instruction.
|
|
// If it can be encoded, the function returns true, and values pointed to by n,
|
|
// imm_s and imm_r are updated with immediates encoded in the format required
|
|
// by the corresponding fields in the logical instruction.
|
|
// If it can not be encoded, the function returns false, and the values pointed
|
|
// to by n, imm_s and imm_r are undefined.
|
|
bool Assembler::IsImmLogical(uint64_t value,
|
|
unsigned width,
|
|
unsigned* n,
|
|
unsigned* imm_s,
|
|
unsigned* imm_r) {
|
|
DCHECK((n != NULL) && (imm_s != NULL) && (imm_r != NULL));
|
|
DCHECK((width == kWRegSizeInBits) || (width == kXRegSizeInBits));
|
|
|
|
bool negate = false;
|
|
|
|
// Logical immediates are encoded using parameters n, imm_s and imm_r using
|
|
// the following table:
|
|
//
|
|
// N imms immr size S R
|
|
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
|
|
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
|
|
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
|
|
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
|
|
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
|
|
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
|
|
// (s bits must not be all set)
|
|
//
|
|
// A pattern is constructed of size bits, where the least significant S+1 bits
|
|
// are set. The pattern is rotated right by R, and repeated across a 32 or
|
|
// 64-bit value, depending on destination register width.
|
|
//
|
|
// Put another way: the basic format of a logical immediate is a single
|
|
// contiguous stretch of 1 bits, repeated across the whole word at intervals
|
|
// given by a power of 2. To identify them quickly, we first locate the
|
|
// lowest stretch of 1 bits, then the next 1 bit above that; that combination
|
|
// is different for every logical immediate, so it gives us all the
|
|
// information we need to identify the only logical immediate that our input
|
|
// could be, and then we simply check if that's the value we actually have.
|
|
//
|
|
// (The rotation parameter does give the possibility of the stretch of 1 bits
|
|
// going 'round the end' of the word. To deal with that, we observe that in
|
|
// any situation where that happens the bitwise NOT of the value is also a
|
|
// valid logical immediate. So we simply invert the input whenever its low bit
|
|
// is set, and then we know that the rotated case can't arise.)
|
|
|
|
if (value & 1) {
|
|
// If the low bit is 1, negate the value, and set a flag to remember that we
|
|
// did (so that we can adjust the return values appropriately).
|
|
negate = true;
|
|
value = ~value;
|
|
}
|
|
|
|
if (width == kWRegSizeInBits) {
|
|
// To handle 32-bit logical immediates, the very easiest thing is to repeat
|
|
// the input value twice to make a 64-bit word. The correct encoding of that
|
|
// as a logical immediate will also be the correct encoding of the 32-bit
|
|
// value.
|
|
|
|
// The most-significant 32 bits may not be zero (ie. negate is true) so
|
|
// shift the value left before duplicating it.
|
|
value <<= kWRegSizeInBits;
|
|
value |= value >> kWRegSizeInBits;
|
|
}
|
|
|
|
// The basic analysis idea: imagine our input word looks like this.
|
|
//
|
|
// 0011111000111110001111100011111000111110001111100011111000111110
|
|
// c b a
|
|
// |<--d-->|
|
|
//
|
|
// We find the lowest set bit (as an actual power-of-2 value, not its index)
|
|
// and call it a. Then we add a to our original number, which wipes out the
|
|
// bottommost stretch of set bits and replaces it with a 1 carried into the
|
|
// next zero bit. Then we look for the new lowest set bit, which is in
|
|
// position b, and subtract it, so now our number is just like the original
|
|
// but with the lowest stretch of set bits completely gone. Now we find the
|
|
// lowest set bit again, which is position c in the diagram above. Then we'll
|
|
// measure the distance d between bit positions a and c (using CLZ), and that
|
|
// tells us that the only valid logical immediate that could possibly be equal
|
|
// to this number is the one in which a stretch of bits running from a to just
|
|
// below b is replicated every d bits.
|
|
uint64_t a = LargestPowerOf2Divisor(value);
|
|
uint64_t value_plus_a = value + a;
|
|
uint64_t b = LargestPowerOf2Divisor(value_plus_a);
|
|
uint64_t value_plus_a_minus_b = value_plus_a - b;
|
|
uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b);
|
|
|
|
int d, clz_a, out_n;
|
|
uint64_t mask;
|
|
|
|
if (c != 0) {
|
|
// The general case, in which there is more than one stretch of set bits.
|
|
// Compute the repeat distance d, and set up a bitmask covering the basic
|
|
// unit of repetition (i.e. a word with the bottom d bits set). Also, in all
|
|
// of these cases the N bit of the output will be zero.
|
|
clz_a = CountLeadingZeros(a, kXRegSizeInBits);
|
|
int clz_c = CountLeadingZeros(c, kXRegSizeInBits);
|
|
d = clz_a - clz_c;
|
|
mask = ((V8_UINT64_C(1) << d) - 1);
|
|
out_n = 0;
|
|
} else {
|
|
// Handle degenerate cases.
|
|
//
|
|
// If any of those 'find lowest set bit' operations didn't find a set bit at
|
|
// all, then the word will have been zero thereafter, so in particular the
|
|
// last lowest_set_bit operation will have returned zero. So we can test for
|
|
// all the special case conditions in one go by seeing if c is zero.
|
|
if (a == 0) {
|
|
// The input was zero (or all 1 bits, which will come to here too after we
|
|
// inverted it at the start of the function), for which we just return
|
|
// false.
|
|
return false;
|
|
} else {
|
|
// Otherwise, if c was zero but a was not, then there's just one stretch
|
|
// of set bits in our word, meaning that we have the trivial case of
|
|
// d == 64 and only one 'repetition'. Set up all the same variables as in
|
|
// the general case above, and set the N bit in the output.
|
|
clz_a = CountLeadingZeros(a, kXRegSizeInBits);
|
|
d = 64;
|
|
mask = ~V8_UINT64_C(0);
|
|
out_n = 1;
|
|
}
|
|
}
|
|
|
|
// If the repeat period d is not a power of two, it can't be encoded.
|
|
if (!IS_POWER_OF_TWO(d)) {
|
|
return false;
|
|
}
|
|
|
|
if (((b - a) & ~mask) != 0) {
|
|
// If the bit stretch (b - a) does not fit within the mask derived from the
|
|
// repeat period, then fail.
|
|
return false;
|
|
}
|
|
|
|
// The only possible option is b - a repeated every d bits. Now we're going to
|
|
// actually construct the valid logical immediate derived from that
|
|
// specification, and see if it equals our original input.
|
|
//
|
|
// To repeat a value every d bits, we multiply it by a number of the form
|
|
// (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
|
|
// be derived using a table lookup on CLZ(d).
|
|
static const uint64_t multipliers[] = {
|
|
0x0000000000000001UL,
|
|
0x0000000100000001UL,
|
|
0x0001000100010001UL,
|
|
0x0101010101010101UL,
|
|
0x1111111111111111UL,
|
|
0x5555555555555555UL,
|
|
};
|
|
int multiplier_idx = CountLeadingZeros(d, kXRegSizeInBits) - 57;
|
|
// Ensure that the index to the multipliers array is within bounds.
|
|
DCHECK((multiplier_idx >= 0) &&
|
|
(static_cast<size_t>(multiplier_idx) < arraysize(multipliers)));
|
|
uint64_t multiplier = multipliers[multiplier_idx];
|
|
uint64_t candidate = (b - a) * multiplier;
|
|
|
|
if (value != candidate) {
|
|
// The candidate pattern doesn't match our input value, so fail.
|
|
return false;
|
|
}
|
|
|
|
// We have a match! This is a valid logical immediate, so now we have to
|
|
// construct the bits and pieces of the instruction encoding that generates
|
|
// it.
|
|
|
|
// Count the set bits in our basic stretch. The special case of clz(0) == -1
|
|
// makes the answer come out right for stretches that reach the very top of
|
|
// the word (e.g. numbers like 0xffffc00000000000).
|
|
int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits);
|
|
int s = clz_a - clz_b;
|
|
|
|
// Decide how many bits to rotate right by, to put the low bit of that basic
|
|
// stretch in position a.
|
|
int r;
|
|
if (negate) {
|
|
// If we inverted the input right at the start of this function, here's
|
|
// where we compensate: the number of set bits becomes the number of clear
|
|
// bits, and the rotation count is based on position b rather than position
|
|
// a (since b is the location of the 'lowest' 1 bit after inversion).
|
|
s = d - s;
|
|
r = (clz_b + 1) & (d - 1);
|
|
} else {
|
|
r = (clz_a + 1) & (d - 1);
|
|
}
|
|
|
|
// Now we're done, except for having to encode the S output in such a way that
|
|
// it gives both the number of set bits and the length of the repeated
|
|
// segment. The s field is encoded like this:
|
|
//
|
|
// imms size S
|
|
// ssssss 64 UInt(ssssss)
|
|
// 0sssss 32 UInt(sssss)
|
|
// 10ssss 16 UInt(ssss)
|
|
// 110sss 8 UInt(sss)
|
|
// 1110ss 4 UInt(ss)
|
|
// 11110s 2 UInt(s)
|
|
//
|
|
// So we 'or' (-d << 1) with our computed s to form imms.
|
|
*n = out_n;
|
|
*imm_s = ((-d << 1) | (s - 1)) & 0x3f;
|
|
*imm_r = r;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Assembler::IsImmConditionalCompare(int64_t immediate) {
|
|
return is_uint5(immediate);
|
|
}
|
|
|
|
|
|
bool Assembler::IsImmFP32(float imm) {
|
|
// Valid values will have the form:
|
|
// aBbb.bbbc.defg.h000.0000.0000.0000.0000
|
|
uint32_t bits = float_to_rawbits(imm);
|
|
// bits[19..0] are cleared.
|
|
if ((bits & 0x7ffff) != 0) {
|
|
return false;
|
|
}
|
|
|
|
// bits[29..25] are all set or all cleared.
|
|
uint32_t b_pattern = (bits >> 16) & 0x3e00;
|
|
if (b_pattern != 0 && b_pattern != 0x3e00) {
|
|
return false;
|
|
}
|
|
|
|
// bit[30] and bit[29] are opposite.
|
|
if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Assembler::IsImmFP64(double imm) {
|
|
// Valid values will have the form:
|
|
// aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
|
|
// 0000.0000.0000.0000.0000.0000.0000.0000
|
|
uint64_t bits = double_to_rawbits(imm);
|
|
// bits[47..0] are cleared.
|
|
if ((bits & 0xffffffffffffL) != 0) {
|
|
return false;
|
|
}
|
|
|
|
// bits[61..54] are all set or all cleared.
|
|
uint32_t b_pattern = (bits >> 48) & 0x3fc0;
|
|
if (b_pattern != 0 && b_pattern != 0x3fc0) {
|
|
return false;
|
|
}
|
|
|
|
// bit[62] and bit[61] are opposite.
|
|
if (((bits ^ (bits << 1)) & 0x4000000000000000L) == 0) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void Assembler::GrowBuffer() {
|
|
if (!own_buffer_) FATAL("external code buffer is too small");
|
|
|
|
// Compute new buffer size.
|
|
CodeDesc desc; // the new buffer
|
|
if (buffer_size_ < 1 * MB) {
|
|
desc.buffer_size = 2 * buffer_size_;
|
|
} else {
|
|
desc.buffer_size = buffer_size_ + 1 * MB;
|
|
}
|
|
CHECK_GT(desc.buffer_size, 0); // No overflow.
|
|
|
|
byte* buffer = reinterpret_cast<byte*>(buffer_);
|
|
|
|
// Set up new buffer.
|
|
desc.buffer = NewArray<byte>(desc.buffer_size);
|
|
desc.origin = this;
|
|
|
|
desc.instr_size = pc_offset();
|
|
desc.reloc_size =
|
|
static_cast<int>((buffer + buffer_size_) - reloc_info_writer.pos());
|
|
|
|
// Copy the data.
|
|
intptr_t pc_delta = desc.buffer - buffer;
|
|
intptr_t rc_delta = (desc.buffer + desc.buffer_size) -
|
|
(buffer + buffer_size_);
|
|
memmove(desc.buffer, buffer, desc.instr_size);
|
|
memmove(reloc_info_writer.pos() + rc_delta,
|
|
reloc_info_writer.pos(), desc.reloc_size);
|
|
|
|
// Switch buffers.
|
|
DeleteArray(buffer_);
|
|
buffer_ = desc.buffer;
|
|
buffer_size_ = desc.buffer_size;
|
|
pc_ = reinterpret_cast<byte*>(pc_) + pc_delta;
|
|
reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
|
|
reloc_info_writer.last_pc() + pc_delta);
|
|
|
|
// None of our relocation types are pc relative pointing outside the code
|
|
// buffer nor pc absolute pointing inside the code buffer, so there is no need
|
|
// to relocate any emitted relocation entries.
|
|
|
|
// Relocate internal references.
|
|
for (auto pos : internal_reference_positions_) {
|
|
intptr_t* p = reinterpret_cast<intptr_t*>(buffer_ + pos);
|
|
*p += pc_delta;
|
|
}
|
|
|
|
// Pending relocation entries are also relative, no need to relocate.
|
|
}
|
|
|
|
|
|
void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
|
|
// We do not try to reuse pool constants.
|
|
RelocInfo rinfo(isolate(), reinterpret_cast<byte*>(pc_), rmode, data, NULL);
|
|
if (((rmode >= RelocInfo::COMMENT) &&
|
|
(rmode <= RelocInfo::DEBUG_BREAK_SLOT_AT_TAIL_CALL)) ||
|
|
(rmode == RelocInfo::INTERNAL_REFERENCE) ||
|
|
(rmode == RelocInfo::CONST_POOL) || (rmode == RelocInfo::VENEER_POOL) ||
|
|
(rmode == RelocInfo::DEOPT_POSITION) ||
|
|
(rmode == RelocInfo::DEOPT_REASON) || (rmode == RelocInfo::DEOPT_ID) ||
|
|
(rmode == RelocInfo::GENERATOR_CONTINUATION)) {
|
|
// Adjust code for new modes.
|
|
DCHECK(RelocInfo::IsDebugBreakSlot(rmode) || RelocInfo::IsComment(rmode) ||
|
|
RelocInfo::IsDeoptReason(rmode) || RelocInfo::IsDeoptId(rmode) ||
|
|
RelocInfo::IsDeoptPosition(rmode) ||
|
|
RelocInfo::IsInternalReference(rmode) ||
|
|
RelocInfo::IsConstPool(rmode) || RelocInfo::IsVeneerPool(rmode) ||
|
|
RelocInfo::IsGeneratorContinuation(rmode));
|
|
// These modes do not need an entry in the constant pool.
|
|
} else {
|
|
constpool_.RecordEntry(data, rmode);
|
|
// Make sure the constant pool is not emitted in place of the next
|
|
// instruction for which we just recorded relocation info.
|
|
BlockConstPoolFor(1);
|
|
}
|
|
|
|
if (!RelocInfo::IsNone(rmode)) {
|
|
// Don't record external references unless the heap will be serialized.
|
|
if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
|
|
!serializer_enabled() && !emit_debug_code()) {
|
|
return;
|
|
}
|
|
DCHECK(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
|
|
if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
|
|
RelocInfo reloc_info_with_ast_id(isolate(), reinterpret_cast<byte*>(pc_),
|
|
rmode, RecordedAstId().ToInt(), NULL);
|
|
ClearRecordedAstId();
|
|
reloc_info_writer.Write(&reloc_info_with_ast_id);
|
|
} else {
|
|
reloc_info_writer.Write(&rinfo);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::BlockConstPoolFor(int instructions) {
|
|
int pc_limit = pc_offset() + instructions * kInstructionSize;
|
|
if (no_const_pool_before_ < pc_limit) {
|
|
no_const_pool_before_ = pc_limit;
|
|
// Make sure the pool won't be blocked for too long.
|
|
DCHECK(pc_limit < constpool_.MaxPcOffset());
|
|
}
|
|
|
|
if (next_constant_pool_check_ < no_const_pool_before_) {
|
|
next_constant_pool_check_ = no_const_pool_before_;
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
|
|
// Some short sequence of instruction mustn't be broken up by constant pool
|
|
// emission, such sequences are protected by calls to BlockConstPoolFor and
|
|
// BlockConstPoolScope.
|
|
if (is_const_pool_blocked()) {
|
|
// Something is wrong if emission is forced and blocked at the same time.
|
|
DCHECK(!force_emit);
|
|
return;
|
|
}
|
|
|
|
// There is nothing to do if there are no pending constant pool entries.
|
|
if (constpool_.IsEmpty()) {
|
|
// Calculate the offset of the next check.
|
|
SetNextConstPoolCheckIn(kCheckConstPoolInterval);
|
|
return;
|
|
}
|
|
|
|
// We emit a constant pool when:
|
|
// * requested to do so by parameter force_emit (e.g. after each function).
|
|
// * the distance to the first instruction accessing the constant pool is
|
|
// kApproxMaxDistToConstPool or more.
|
|
// * the number of entries in the pool is kApproxMaxPoolEntryCount or more.
|
|
int dist = constpool_.DistanceToFirstUse();
|
|
int count = constpool_.EntryCount();
|
|
if (!force_emit &&
|
|
(dist < kApproxMaxDistToConstPool) &&
|
|
(count < kApproxMaxPoolEntryCount)) {
|
|
return;
|
|
}
|
|
|
|
|
|
// Emit veneers for branches that would go out of range during emission of the
|
|
// constant pool.
|
|
int worst_case_size = constpool_.WorstCaseSize();
|
|
CheckVeneerPool(false, require_jump,
|
|
kVeneerDistanceMargin + worst_case_size);
|
|
|
|
// Check that the code buffer is large enough before emitting the constant
|
|
// pool (this includes the gap to the relocation information).
|
|
int needed_space = worst_case_size + kGap + 1 * kInstructionSize;
|
|
while (buffer_space() <= needed_space) {
|
|
GrowBuffer();
|
|
}
|
|
|
|
Label size_check;
|
|
bind(&size_check);
|
|
constpool_.Emit(require_jump);
|
|
DCHECK(SizeOfCodeGeneratedSince(&size_check) <=
|
|
static_cast<unsigned>(worst_case_size));
|
|
|
|
// Since a constant pool was just emitted, move the check offset forward by
|
|
// the standard interval.
|
|
SetNextConstPoolCheckIn(kCheckConstPoolInterval);
|
|
}
|
|
|
|
|
|
bool Assembler::ShouldEmitVeneer(int max_reachable_pc, int margin) {
|
|
// Account for the branch around the veneers and the guard.
|
|
int protection_offset = 2 * kInstructionSize;
|
|
return pc_offset() > max_reachable_pc - margin - protection_offset -
|
|
static_cast<int>(unresolved_branches_.size() * kMaxVeneerCodeSize);
|
|
}
|
|
|
|
|
|
void Assembler::RecordVeneerPool(int location_offset, int size) {
|
|
RelocInfo rinfo(isolate(), buffer_ + location_offset, RelocInfo::VENEER_POOL,
|
|
static_cast<intptr_t>(size), NULL);
|
|
reloc_info_writer.Write(&rinfo);
|
|
}
|
|
|
|
|
|
void Assembler::EmitVeneers(bool force_emit, bool need_protection, int margin) {
|
|
BlockPoolsScope scope(this);
|
|
RecordComment("[ Veneers");
|
|
|
|
// The exact size of the veneer pool must be recorded (see the comment at the
|
|
// declaration site of RecordConstPool()), but computing the number of
|
|
// veneers that will be generated is not obvious. So instead we remember the
|
|
// current position and will record the size after the pool has been
|
|
// generated.
|
|
Label size_check;
|
|
bind(&size_check);
|
|
int veneer_pool_relocinfo_loc = pc_offset();
|
|
|
|
Label end;
|
|
if (need_protection) {
|
|
b(&end);
|
|
}
|
|
|
|
EmitVeneersGuard();
|
|
|
|
Label veneer_size_check;
|
|
|
|
std::multimap<int, FarBranchInfo>::iterator it, it_to_delete;
|
|
|
|
it = unresolved_branches_.begin();
|
|
while (it != unresolved_branches_.end()) {
|
|
if (force_emit || ShouldEmitVeneer(it->first, margin)) {
|
|
Instruction* branch = InstructionAt(it->second.pc_offset_);
|
|
Label* label = it->second.label_;
|
|
|
|
#ifdef DEBUG
|
|
bind(&veneer_size_check);
|
|
#endif
|
|
// Patch the branch to point to the current position, and emit a branch
|
|
// to the label.
|
|
Instruction* veneer = reinterpret_cast<Instruction*>(pc_);
|
|
RemoveBranchFromLabelLinkChain(branch, label, veneer);
|
|
branch->SetImmPCOffsetTarget(isolate(), veneer);
|
|
b(label);
|
|
#ifdef DEBUG
|
|
DCHECK(SizeOfCodeGeneratedSince(&veneer_size_check) <=
|
|
static_cast<uint64_t>(kMaxVeneerCodeSize));
|
|
veneer_size_check.Unuse();
|
|
#endif
|
|
|
|
it_to_delete = it++;
|
|
unresolved_branches_.erase(it_to_delete);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
|
|
// Record the veneer pool size.
|
|
int pool_size = static_cast<int>(SizeOfCodeGeneratedSince(&size_check));
|
|
RecordVeneerPool(veneer_pool_relocinfo_loc, pool_size);
|
|
|
|
if (unresolved_branches_.empty()) {
|
|
next_veneer_pool_check_ = kMaxInt;
|
|
} else {
|
|
next_veneer_pool_check_ =
|
|
unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
|
|
}
|
|
|
|
bind(&end);
|
|
|
|
RecordComment("]");
|
|
}
|
|
|
|
|
|
void Assembler::CheckVeneerPool(bool force_emit, bool require_jump,
|
|
int margin) {
|
|
// There is nothing to do if there are no pending veneer pool entries.
|
|
if (unresolved_branches_.empty()) {
|
|
DCHECK(next_veneer_pool_check_ == kMaxInt);
|
|
return;
|
|
}
|
|
|
|
DCHECK(pc_offset() < unresolved_branches_first_limit());
|
|
|
|
// Some short sequence of instruction mustn't be broken up by veneer pool
|
|
// emission, such sequences are protected by calls to BlockVeneerPoolFor and
|
|
// BlockVeneerPoolScope.
|
|
if (is_veneer_pool_blocked()) {
|
|
DCHECK(!force_emit);
|
|
return;
|
|
}
|
|
|
|
if (!require_jump) {
|
|
// Prefer emitting veneers protected by an existing instruction.
|
|
margin *= kVeneerNoProtectionFactor;
|
|
}
|
|
if (force_emit || ShouldEmitVeneers(margin)) {
|
|
EmitVeneers(force_emit, require_jump, margin);
|
|
} else {
|
|
next_veneer_pool_check_ =
|
|
unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
|
|
}
|
|
}
|
|
|
|
|
|
int Assembler::buffer_space() const {
|
|
return static_cast<int>(reloc_info_writer.pos() -
|
|
reinterpret_cast<byte*>(pc_));
|
|
}
|
|
|
|
|
|
void Assembler::RecordConstPool(int size) {
|
|
// We only need this for debugger support, to correctly compute offsets in the
|
|
// code.
|
|
RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
|
|
}
|
|
|
|
|
|
void PatchingAssembler::PatchAdrFar(int64_t target_offset) {
|
|
// The code at the current instruction should be:
|
|
// adr rd, 0
|
|
// nop (adr_far)
|
|
// nop (adr_far)
|
|
// movz scratch, 0
|
|
|
|
// Verify the expected code.
|
|
Instruction* expected_adr = InstructionAt(0);
|
|
CHECK(expected_adr->IsAdr() && (expected_adr->ImmPCRel() == 0));
|
|
int rd_code = expected_adr->Rd();
|
|
for (int i = 0; i < kAdrFarPatchableNNops; ++i) {
|
|
CHECK(InstructionAt((i + 1) * kInstructionSize)->IsNop(ADR_FAR_NOP));
|
|
}
|
|
Instruction* expected_movz =
|
|
InstructionAt((kAdrFarPatchableNInstrs - 1) * kInstructionSize);
|
|
CHECK(expected_movz->IsMovz() &&
|
|
(expected_movz->ImmMoveWide() == 0) &&
|
|
(expected_movz->ShiftMoveWide() == 0));
|
|
int scratch_code = expected_movz->Rd();
|
|
|
|
// Patch to load the correct address.
|
|
Register rd = Register::XRegFromCode(rd_code);
|
|
Register scratch = Register::XRegFromCode(scratch_code);
|
|
// Addresses are only 48 bits.
|
|
adr(rd, target_offset & 0xFFFF);
|
|
movz(scratch, (target_offset >> 16) & 0xFFFF, 16);
|
|
movk(scratch, (target_offset >> 32) & 0xFFFF, 32);
|
|
DCHECK((target_offset >> 48) == 0);
|
|
add(rd, rd, scratch);
|
|
}
|
|
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
#endif // V8_TARGET_ARCH_ARM64
|