v8/include/v8-internal.h
Benedikt Meurer 683cf6f43b [cleanup] Remove obsolete "one byte data hint" for strings.
In the early days of Chrome when we used WebKit there was no support for
ASCII strings on the C++ side, so we put a hint onto these two-byte
strings that said "string only contains one byte data", such that
internally in V8 when these were involved in string operations, we could
instead create the *cheaper* one byte strings.

Nowadays Blink properly supports one-byte string representations and
this additional hint only comes with overhead, since we check it in
quite a few places (i.e. on the hot path for string concatenation), plus
we end up consuming more memory due to the additional string maps.
Removing the hint also frees one bit in the InstanceType zoo for
strings.

This alone improves performance on the `bench-dom-serialize.js` test case
by around **3%**.

Tbr: mstarzinger@chromium.org
Bug: v8:6622, v8:8834, v8:8939
Cq-Include-Trybots: luci.chromium.try:linux-blink-rel
Change-Id: I0753f2859cee7b5a37b6f0da64d8ec39fcb044ff
Doc: https://bit.ly/fast-string-concatenation-in-javascript
Reviewed-on: https://chromium-review.googlesource.com/c/1498478
Commit-Queue: Benedikt Meurer <bmeurer@chromium.org>
Reviewed-by: Yang Guo <yangguo@chromium.org>
Cr-Commit-Position: refs/heads/master@{#60006}
2019-03-04 14:04:02 +00:00

385 lines
14 KiB
C++

// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef INCLUDE_V8_INTERNAL_H_
#define INCLUDE_V8_INTERNAL_H_
#include <stddef.h>
#include <stdint.h>
#include <type_traits>
#include "v8-version.h" // NOLINT(build/include)
#include "v8config.h" // NOLINT(build/include)
namespace v8 {
class Context;
class Data;
class Isolate;
namespace internal {
class Isolate;
typedef uintptr_t Address;
static const Address kNullAddress = 0;
/**
* Configuration of tagging scheme.
*/
const int kApiSystemPointerSize = sizeof(void*);
const int kApiTaggedSize = kApiSystemPointerSize;
const int kApiDoubleSize = sizeof(double);
const int kApiIntSize = sizeof(int);
const int kApiInt64Size = sizeof(int64_t);
// Tag information for HeapObject.
const int kHeapObjectTag = 1;
const int kWeakHeapObjectTag = 3;
const int kHeapObjectTagSize = 2;
const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
// Tag information for Smi.
const int kSmiTag = 0;
const int kSmiTagSize = 1;
const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
template <size_t tagged_ptr_size>
struct SmiTagging;
// Smi constants for systems where tagged pointer is a 32-bit value.
template <>
struct SmiTagging<4> {
enum { kSmiShiftSize = 0, kSmiValueSize = 31 };
V8_INLINE static int SmiToInt(const internal::Address value) {
int shift_bits = kSmiTagSize + kSmiShiftSize;
// Shift down (requires >> to be sign extending).
return static_cast<int>(static_cast<intptr_t>(value)) >> shift_bits;
}
V8_INLINE static constexpr bool IsValidSmi(intptr_t value) {
// To be representable as an tagged small integer, the two
// most-significant bits of 'value' must be either 00 or 11 due to
// sign-extension. To check this we add 01 to the two
// most-significant bits, and check if the most-significant bit is 0.
//
// CAUTION: The original code below:
// bool result = ((value + 0x40000000) & 0x80000000) == 0;
// may lead to incorrect results according to the C language spec, and
// in fact doesn't work correctly with gcc4.1.1 in some cases: The
// compiler may produce undefined results in case of signed integer
// overflow. The computation must be done w/ unsigned ints.
return static_cast<uintptr_t>(value) + 0x40000000U < 0x80000000U;
}
};
// Smi constants for systems where tagged pointer is a 64-bit value.
template <>
struct SmiTagging<8> {
enum { kSmiShiftSize = 31, kSmiValueSize = 32 };
V8_INLINE static int SmiToInt(const internal::Address value) {
int shift_bits = kSmiTagSize + kSmiShiftSize;
// Shift down and throw away top 32 bits.
return static_cast<int>(static_cast<intptr_t>(value) >> shift_bits);
}
V8_INLINE static constexpr bool IsValidSmi(intptr_t value) {
// To be representable as a long smi, the value must be a 32-bit integer.
return (value == static_cast<int32_t>(value));
}
};
#if defined(V8_COMPRESS_POINTERS)
static_assert(
kApiSystemPointerSize == kApiInt64Size,
"Pointer compression can be enabled only for 64-bit architectures");
#endif
#if defined(V8_COMPRESS_POINTERS) || defined(V8_31BIT_SMIS_ON_64BIT_ARCH)
typedef SmiTagging<kApiIntSize> PlatformSmiTagging;
#else
typedef SmiTagging<kApiSystemPointerSize> PlatformSmiTagging;
#endif
const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
const int kSmiMinValue = (static_cast<unsigned int>(-1)) << (kSmiValueSize - 1);
const int kSmiMaxValue = -(kSmiMinValue + 1);
constexpr bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
constexpr bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
V8_INLINE static constexpr internal::Address IntToSmi(int value) {
return (static_cast<Address>(value) << (kSmiTagSize + kSmiShiftSize)) |
kSmiTag;
}
/**
* This class exports constants and functionality from within v8 that
* is necessary to implement inline functions in the v8 api. Don't
* depend on functions and constants defined here.
*/
class Internals {
public:
// These values match non-compiler-dependent values defined within
// the implementation of v8.
static const int kHeapObjectMapOffset = 0;
static const int kMapInstanceTypeOffset = 1 * kApiTaggedSize + kApiIntSize;
static const int kStringResourceOffset = 1 * kApiTaggedSize + 2 * kApiIntSize;
static const int kOddballKindOffset = 4 * kApiTaggedSize + kApiDoubleSize;
static const int kForeignAddressOffset = kApiTaggedSize;
static const int kJSObjectHeaderSize = 3 * kApiTaggedSize;
static const int kJSObjectHeaderSizeForEmbedderFields =
(kJSObjectHeaderSize + kApiSystemPointerSize - 1) &
-kApiSystemPointerSize;
static const int kFixedArrayHeaderSize = 2 * kApiTaggedSize;
static const int kEmbedderDataArrayHeaderSize = 2 * kApiTaggedSize;
static const int kEmbedderDataSlotSize =
#ifdef V8_COMPRESS_POINTERS
2 *
#endif
kApiSystemPointerSize;
static const int kNativeContextEmbedderDataOffset = 7 * kApiTaggedSize;
static const int kFullStringRepresentationMask = 0x0f;
static const int kStringEncodingMask = 0x8;
static const int kExternalTwoByteRepresentationTag = 0x02;
static const int kExternalOneByteRepresentationTag = 0x0a;
static const uint32_t kNumIsolateDataSlots = 4;
static const int kIsolateEmbedderDataOffset = 0;
static const int kExternalMemoryOffset =
kNumIsolateDataSlots * kApiTaggedSize;
static const int kExternalMemoryLimitOffset =
kExternalMemoryOffset + kApiInt64Size;
static const int kExternalMemoryAtLastMarkCompactOffset =
kExternalMemoryLimitOffset + kApiInt64Size;
static const int kIsolateRootsOffset =
kExternalMemoryAtLastMarkCompactOffset + kApiInt64Size;
static const int kUndefinedValueRootIndex = 4;
static const int kTheHoleValueRootIndex = 5;
static const int kNullValueRootIndex = 6;
static const int kTrueValueRootIndex = 7;
static const int kFalseValueRootIndex = 8;
static const int kEmptyStringRootIndex = 9;
static const int kNodeClassIdOffset = 1 * kApiTaggedSize;
static const int kNodeFlagsOffset = 1 * kApiTaggedSize + 3;
static const int kNodeStateMask = 0x7;
static const int kNodeStateIsWeakValue = 2;
static const int kNodeStateIsPendingValue = 3;
static const int kNodeStateIsNearDeathValue = 4;
static const int kNodeIsIndependentShift = 3;
static const int kNodeIsActiveShift = 4;
static const int kFirstNonstringType = 0x40;
static const int kOddballType = 0x43;
static const int kForeignType = 0x47;
static const int kJSSpecialApiObjectType = 0x410;
static const int kJSApiObjectType = 0x420;
static const int kJSObjectType = 0x421;
static const int kUndefinedOddballKind = 5;
static const int kNullOddballKind = 3;
// Constants used by PropertyCallbackInfo to check if we should throw when an
// error occurs.
static const int kThrowOnError = 0;
static const int kDontThrow = 1;
static const int kInferShouldThrowMode = 2;
// Soft limit for AdjustAmountofExternalAllocatedMemory. Trigger an
// incremental GC once the external memory reaches this limit.
static constexpr int kExternalAllocationSoftLimit = 64 * 1024 * 1024;
V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate);
V8_INLINE static void CheckInitialized(v8::Isolate* isolate) {
#ifdef V8_ENABLE_CHECKS
CheckInitializedImpl(isolate);
#endif
}
V8_INLINE static bool HasHeapObjectTag(const internal::Address value) {
return (value & kHeapObjectTagMask) == static_cast<Address>(kHeapObjectTag);
}
V8_INLINE static int SmiValue(const internal::Address value) {
return PlatformSmiTagging::SmiToInt(value);
}
V8_INLINE static constexpr internal::Address IntToSmi(int value) {
return internal::IntToSmi(value);
}
V8_INLINE static constexpr bool IsValidSmi(intptr_t value) {
return PlatformSmiTagging::IsValidSmi(value);
}
V8_INLINE static int GetInstanceType(const internal::Address obj) {
typedef internal::Address A;
A map = ReadTaggedPointerField(obj, kHeapObjectMapOffset);
return ReadRawField<uint16_t>(map, kMapInstanceTypeOffset);
}
V8_INLINE static int GetOddballKind(const internal::Address obj) {
return SmiValue(ReadTaggedSignedField(obj, kOddballKindOffset));
}
V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
int representation = (instance_type & kFullStringRepresentationMask);
return representation == kExternalTwoByteRepresentationTag;
}
V8_INLINE static uint8_t GetNodeFlag(internal::Address* obj, int shift) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
return *addr & static_cast<uint8_t>(1U << shift);
}
V8_INLINE static void UpdateNodeFlag(internal::Address* obj, bool value,
int shift) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
uint8_t mask = static_cast<uint8_t>(1U << shift);
*addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
}
V8_INLINE static uint8_t GetNodeState(internal::Address* obj) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
return *addr & kNodeStateMask;
}
V8_INLINE static void UpdateNodeState(internal::Address* obj, uint8_t value) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
*addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
}
V8_INLINE static void SetEmbedderData(v8::Isolate* isolate, uint32_t slot,
void* data) {
internal::Address addr = reinterpret_cast<internal::Address>(isolate) +
kIsolateEmbedderDataOffset +
slot * kApiSystemPointerSize;
*reinterpret_cast<void**>(addr) = data;
}
V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate,
uint32_t slot) {
internal::Address addr = reinterpret_cast<internal::Address>(isolate) +
kIsolateEmbedderDataOffset +
slot * kApiSystemPointerSize;
return *reinterpret_cast<void* const*>(addr);
}
V8_INLINE static internal::Address* GetRoot(v8::Isolate* isolate, int index) {
internal::Address addr = reinterpret_cast<internal::Address>(isolate) +
kIsolateRootsOffset +
index * kApiSystemPointerSize;
return reinterpret_cast<internal::Address*>(addr);
}
template <typename T>
V8_INLINE static T ReadRawField(internal::Address heap_object_ptr,
int offset) {
internal::Address addr = heap_object_ptr + offset - kHeapObjectTag;
return *reinterpret_cast<const T*>(addr);
}
V8_INLINE static internal::Address ReadTaggedPointerField(
internal::Address heap_object_ptr, int offset) {
#ifdef V8_COMPRESS_POINTERS
int32_t value = ReadRawField<int32_t>(heap_object_ptr, offset);
internal::Address root = GetRootFromOnHeapAddress(heap_object_ptr);
return root + static_cast<internal::Address>(static_cast<intptr_t>(value));
#else
return ReadRawField<internal::Address>(heap_object_ptr, offset);
#endif
}
V8_INLINE static internal::Address ReadTaggedSignedField(
internal::Address heap_object_ptr, int offset) {
#ifdef V8_COMPRESS_POINTERS
int32_t value = ReadRawField<int32_t>(heap_object_ptr, offset);
return static_cast<internal::Address>(static_cast<intptr_t>(value));
#else
return ReadRawField<internal::Address>(heap_object_ptr, offset);
#endif
}
V8_INLINE static internal::Address ReadTaggedAnyField(
internal::Address heap_object_ptr, int offset) {
#ifdef V8_COMPRESS_POINTERS
int32_t value = ReadRawField<int32_t>(heap_object_ptr, offset);
internal::Address root_mask = static_cast<internal::Address>(
-static_cast<intptr_t>(value & kSmiTagMask));
internal::Address root_or_zero =
root_mask & GetRootFromOnHeapAddress(heap_object_ptr);
return root_or_zero +
static_cast<internal::Address>(static_cast<intptr_t>(value));
#else
return ReadRawField<internal::Address>(heap_object_ptr, offset);
#endif
}
#ifdef V8_COMPRESS_POINTERS
static constexpr size_t kPtrComprHeapReservationSize = size_t{1} << 32;
static constexpr size_t kPtrComprIsolateRootBias =
kPtrComprHeapReservationSize / 2;
static constexpr size_t kPtrComprIsolateRootAlignment = size_t{1} << 32;
V8_INLINE static internal::Address GetRootFromOnHeapAddress(
internal::Address addr) {
return (addr + kPtrComprIsolateRootBias) &
-static_cast<intptr_t>(kPtrComprIsolateRootAlignment);
}
#else
template <typename T>
V8_INLINE static T ReadEmbedderData(const v8::Context* context, int index) {
typedef internal::Address A;
typedef internal::Internals I;
A ctx = *reinterpret_cast<const A*>(context);
A embedder_data =
I::ReadTaggedPointerField(ctx, I::kNativeContextEmbedderDataOffset);
int value_offset =
I::kEmbedderDataArrayHeaderSize + (I::kEmbedderDataSlotSize * index);
return I::ReadRawField<T>(embedder_data, value_offset);
}
#endif // V8_COMPRESS_POINTERS
};
// Only perform cast check for types derived from v8::Data since
// other types do not implement the Cast method.
template <bool PerformCheck>
struct CastCheck {
template <class T>
static void Perform(T* data);
};
template <>
template <class T>
void CastCheck<true>::Perform(T* data) {
T::Cast(data);
}
template <>
template <class T>
void CastCheck<false>::Perform(T* data) {}
template <class T>
V8_INLINE void PerformCastCheck(T* data) {
CastCheck<std::is_base_of<Data, T>::value>::Perform(data);
}
// {obj} must be the raw tagged pointer representation of a HeapObject
// that's guaranteed to never be in ReadOnlySpace.
V8_EXPORT internal::Isolate* IsolateFromNeverReadOnlySpaceObject(Address obj);
// Returns if we need to throw when an error occurs. This infers the language
// mode based on the current context and the closure. This returns true if the
// language mode is strict.
V8_EXPORT bool ShouldThrowOnError(v8::internal::Isolate* isolate);
} // namespace internal
} // namespace v8
#endif // INCLUDE_V8_INTERNAL_H_