v8/src/deoptimizer.cc
Sigurd Schneider d44f75f5c8 [deoptimizer] Report if speculation bit changed with --trace-deopt
This CL adds output related to the no speculation bit on the feedback
vector. Messages appear on two occasions:
  - if a feedback vector is read from the deoptimization entry
  - if the no-speculation bit on a feedback vector is set
The latter only happens during object materialization.

Bug: v8:7127
Change-Id: I9676323d3223441472539a544d3309687dba27a3
Reviewed-on: https://chromium-review.googlesource.com/849092
Reviewed-by: Jaroslav Sevcik <jarin@chromium.org>
Reviewed-by: Michael Stanton <mvstanton@chromium.org>
Commit-Queue: Sigurd Schneider <sigurds@chromium.org>
Cr-Commit-Position: refs/heads/master@{#50496}
2018-01-11 08:32:33 +00:00

3933 lines
142 KiB
C++

// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/deoptimizer.h"
#include <memory>
#include "src/accessors.h"
#include "src/assembler-inl.h"
#include "src/ast/prettyprinter.h"
#include "src/callable.h"
#include "src/disasm.h"
#include "src/frames-inl.h"
#include "src/global-handles.h"
#include "src/interpreter/interpreter.h"
#include "src/macro-assembler.h"
#include "src/objects/debug-objects-inl.h"
#include "src/tracing/trace-event.h"
#include "src/v8.h"
// Has to be the last include (doesn't have include guards)
#include "src/objects/object-macros.h"
namespace v8 {
namespace internal {
DeoptimizerData::DeoptimizerData(Heap* heap) : heap_(heap), current_(nullptr) {
for (int i = 0; i <= Deoptimizer::kLastBailoutType; ++i) {
deopt_entry_code_[i] = nullptr;
}
Code** start = &deopt_entry_code_[0];
Code** end = &deopt_entry_code_[Deoptimizer::kLastBailoutType + 1];
heap_->RegisterStrongRoots(reinterpret_cast<Object**>(start),
reinterpret_cast<Object**>(end));
}
DeoptimizerData::~DeoptimizerData() {
for (int i = 0; i <= Deoptimizer::kLastBailoutType; ++i) {
deopt_entry_code_[i] = nullptr;
}
Code** start = &deopt_entry_code_[0];
heap_->UnregisterStrongRoots(reinterpret_cast<Object**>(start));
}
Code* Deoptimizer::FindDeoptimizingCode(Address addr) {
if (function_->IsHeapObject()) {
// Search all deoptimizing code in the native context of the function.
Isolate* isolate = function_->GetIsolate();
Context* native_context = function_->context()->native_context();
Object* element = native_context->DeoptimizedCodeListHead();
while (!element->IsUndefined(isolate)) {
Code* code = Code::cast(element);
CHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
if (code->contains(addr)) return code;
element = code->next_code_link();
}
}
return nullptr;
}
// We rely on this function not causing a GC. It is called from generated code
// without having a real stack frame in place.
Deoptimizer* Deoptimizer::New(JSFunction* function,
BailoutType type,
unsigned bailout_id,
Address from,
int fp_to_sp_delta,
Isolate* isolate) {
Deoptimizer* deoptimizer = new Deoptimizer(isolate, function, type,
bailout_id, from, fp_to_sp_delta);
CHECK_NULL(isolate->deoptimizer_data()->current_);
isolate->deoptimizer_data()->current_ = deoptimizer;
return deoptimizer;
}
Deoptimizer* Deoptimizer::Grab(Isolate* isolate) {
Deoptimizer* result = isolate->deoptimizer_data()->current_;
CHECK_NOT_NULL(result);
result->DeleteFrameDescriptions();
isolate->deoptimizer_data()->current_ = nullptr;
return result;
}
DeoptimizedFrameInfo* Deoptimizer::DebuggerInspectableFrame(
JavaScriptFrame* frame,
int jsframe_index,
Isolate* isolate) {
CHECK(frame->is_optimized());
TranslatedState translated_values(frame);
translated_values.Prepare(frame->fp());
TranslatedState::iterator frame_it = translated_values.end();
int counter = jsframe_index;
for (auto it = translated_values.begin(); it != translated_values.end();
it++) {
if (it->kind() == TranslatedFrame::kInterpretedFunction ||
it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation) {
if (counter == 0) {
frame_it = it;
break;
}
counter--;
}
}
CHECK(frame_it != translated_values.end());
// We only include kJavaScriptBuiltinContinuation frames above to get the
// counting right.
CHECK_EQ(frame_it->kind(), TranslatedFrame::kInterpretedFunction);
DeoptimizedFrameInfo* info =
new DeoptimizedFrameInfo(&translated_values, frame_it, isolate);
return info;
}
void Deoptimizer::GenerateDeoptimizationEntries(MacroAssembler* masm,
int count,
BailoutType type) {
TableEntryGenerator generator(masm, type, count);
generator.Generate();
}
namespace {
class ActivationsFinder : public ThreadVisitor {
public:
explicit ActivationsFinder(std::set<Code*>* codes,
Code* topmost_optimized_code,
bool safe_to_deopt_topmost_optimized_code)
: codes_(codes) {
#ifdef DEBUG
topmost_ = topmost_optimized_code;
safe_to_deopt_ = safe_to_deopt_topmost_optimized_code;
#endif
}
// Find the frames with activations of codes marked for deoptimization, search
// for the trampoline to the deoptimizer call respective to each code, and use
// it to replace the current pc on the stack.
void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) {
if (it.frame()->type() == StackFrame::OPTIMIZED) {
Code* code = it.frame()->LookupCode();
if (code->kind() == Code::OPTIMIZED_FUNCTION &&
code->marked_for_deoptimization()) {
codes_->erase(code);
// Obtain the trampoline to the deoptimizer call.
SafepointEntry safepoint = code->GetSafepointEntry(it.frame()->pc());
int trampoline_pc = safepoint.trampoline_pc();
DCHECK_IMPLIES(code == topmost_, safe_to_deopt_);
// Replace the current pc on the stack with the trampoline.
it.frame()->set_pc(code->instruction_start() + trampoline_pc);
}
}
}
}
private:
std::set<Code*>* codes_;
#ifdef DEBUG
Code* topmost_;
bool safe_to_deopt_;
#endif
};
} // namespace
// Move marked code from the optimized code list to the deoptimized code list,
// and replace pc on the stack for codes marked for deoptimization.
void Deoptimizer::DeoptimizeMarkedCodeForContext(Context* context) {
DisallowHeapAllocation no_allocation;
Isolate* isolate = context->GetHeap()->isolate();
Code* topmost_optimized_code = nullptr;
bool safe_to_deopt_topmost_optimized_code = false;
#ifdef DEBUG
// Make sure all activations of optimized code can deopt at their current PC.
// The topmost optimized code has special handling because it cannot be
// deoptimized due to weak object dependency.
for (StackFrameIterator it(isolate, isolate->thread_local_top());
!it.done(); it.Advance()) {
StackFrame::Type type = it.frame()->type();
if (type == StackFrame::OPTIMIZED) {
Code* code = it.frame()->LookupCode();
JSFunction* function =
static_cast<OptimizedFrame*>(it.frame())->function();
if (FLAG_trace_deopt) {
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[deoptimizer found activation of function: ");
function->PrintName(scope.file());
PrintF(scope.file(),
" / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function));
}
SafepointEntry safepoint = code->GetSafepointEntry(it.frame()->pc());
int deopt_index = safepoint.deoptimization_index();
// Turbofan deopt is checked when we are patching addresses on stack.
bool safe_if_deopt_triggered =
deopt_index != Safepoint::kNoDeoptimizationIndex;
bool is_builtin_code = code->kind() == Code::BUILTIN;
DCHECK(topmost_optimized_code == nullptr || safe_if_deopt_triggered ||
is_builtin_code);
if (topmost_optimized_code == nullptr) {
topmost_optimized_code = code;
safe_to_deopt_topmost_optimized_code = safe_if_deopt_triggered;
}
}
}
#endif
// We will use this set to mark those Code objects that are marked for
// deoptimization and have not been found in stack frames.
std::set<Code*> codes;
// Move marked code from the optimized code list to the deoptimized code list.
// Walk over all optimized code objects in this native context.
Code* prev = nullptr;
Object* element = context->OptimizedCodeListHead();
while (!element->IsUndefined(isolate)) {
Code* code = Code::cast(element);
CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
Object* next = code->next_code_link();
if (code->marked_for_deoptimization()) {
// Make sure that this object does not point to any garbage.
isolate->heap()->InvalidateCodeEmbeddedObjects(code);
codes.insert(code);
if (prev != nullptr) {
// Skip this code in the optimized code list.
prev->set_next_code_link(next);
} else {
// There was no previous node, the next node is the new head.
context->SetOptimizedCodeListHead(next);
}
// Move the code to the _deoptimized_ code list.
code->set_next_code_link(context->DeoptimizedCodeListHead());
context->SetDeoptimizedCodeListHead(code);
} else {
// Not marked; preserve this element.
prev = code;
}
element = next;
}
ActivationsFinder visitor(&codes, topmost_optimized_code,
safe_to_deopt_topmost_optimized_code);
// Iterate over the stack of this thread.
visitor.VisitThread(isolate, isolate->thread_local_top());
// In addition to iterate over the stack of this thread, we also
// need to consider all the other threads as they may also use
// the code currently beings deoptimized.
isolate->thread_manager()->IterateArchivedThreads(&visitor);
// If there's no activation of a code in any stack then we can remove its
// deoptimization data. We do this to ensure that code objects that are
// unlinked don't transitively keep objects alive unnecessarily.
for (Code* code : codes) {
isolate->heap()->InvalidateCodeDeoptimizationData(code);
}
}
void Deoptimizer::DeoptimizeAll(Isolate* isolate) {
RuntimeCallTimerScope runtimeTimer(isolate,
RuntimeCallCounterId::kDeoptimizeCode);
TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
TRACE_EVENT0("v8", "V8.DeoptimizeCode");
if (FLAG_trace_deopt) {
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[deoptimize all code in all contexts]\n");
}
DisallowHeapAllocation no_allocation;
// For all contexts, mark all code, then deoptimize.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined(isolate)) {
Context* native_context = Context::cast(context);
MarkAllCodeForContext(native_context);
DeoptimizeMarkedCodeForContext(native_context);
context = native_context->next_context_link();
}
}
void Deoptimizer::DeoptimizeMarkedCode(Isolate* isolate) {
RuntimeCallTimerScope runtimeTimer(isolate,
RuntimeCallCounterId::kDeoptimizeCode);
TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
TRACE_EVENT0("v8", "V8.DeoptimizeCode");
if (FLAG_trace_deopt) {
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[deoptimize marked code in all contexts]\n");
}
DisallowHeapAllocation no_allocation;
// For all contexts, deoptimize code already marked.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined(isolate)) {
Context* native_context = Context::cast(context);
DeoptimizeMarkedCodeForContext(native_context);
context = native_context->next_context_link();
}
}
void Deoptimizer::MarkAllCodeForContext(Context* context) {
Object* element = context->OptimizedCodeListHead();
Isolate* isolate = context->GetIsolate();
while (!element->IsUndefined(isolate)) {
Code* code = Code::cast(element);
CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
code->set_marked_for_deoptimization(true);
element = code->next_code_link();
}
}
void Deoptimizer::DeoptimizeFunction(JSFunction* function, Code* code) {
Isolate* isolate = function->GetIsolate();
RuntimeCallTimerScope runtimeTimer(isolate,
RuntimeCallCounterId::kDeoptimizeCode);
TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
TRACE_EVENT0("v8", "V8.DeoptimizeCode");
if (code == nullptr) code = function->code();
if (code->kind() == Code::OPTIMIZED_FUNCTION) {
// Mark the code for deoptimization and unlink any functions that also
// refer to that code. The code cannot be shared across native contexts,
// so we only need to search one.
code->set_marked_for_deoptimization(true);
// The code in the function's optimized code feedback vector slot might
// be different from the code on the function - evict it if necessary.
function->feedback_vector()->EvictOptimizedCodeMarkedForDeoptimization(
function->shared(), "unlinking code marked for deopt");
if (!code->deopt_already_counted()) {
function->feedback_vector()->increment_deopt_count();
code->set_deopt_already_counted(true);
}
DeoptimizeMarkedCodeForContext(function->context()->native_context());
}
}
void Deoptimizer::ComputeOutputFrames(Deoptimizer* deoptimizer) {
deoptimizer->DoComputeOutputFrames();
}
const char* Deoptimizer::MessageFor(BailoutType type) {
switch (type) {
case EAGER: return "eager";
case SOFT: return "soft";
case LAZY: return "lazy";
}
FATAL("Unsupported deopt type");
return nullptr;
}
namespace {
CodeEventListener::DeoptKind DeoptKindOfBailoutType(
Deoptimizer::BailoutType bailout_type) {
switch (bailout_type) {
case Deoptimizer::EAGER:
return CodeEventListener::kEager;
case Deoptimizer::SOFT:
return CodeEventListener::kSoft;
case Deoptimizer::LAZY:
return CodeEventListener::kLazy;
}
UNREACHABLE();
}
} // namespace
Deoptimizer::Deoptimizer(Isolate* isolate, JSFunction* function,
BailoutType type, unsigned bailout_id, Address from,
int fp_to_sp_delta)
: isolate_(isolate),
function_(function),
bailout_id_(bailout_id),
bailout_type_(type),
from_(from),
fp_to_sp_delta_(fp_to_sp_delta),
deoptimizing_throw_(false),
catch_handler_data_(-1),
catch_handler_pc_offset_(-1),
input_(nullptr),
output_count_(0),
jsframe_count_(0),
output_(nullptr),
caller_frame_top_(0),
caller_fp_(0),
caller_pc_(0),
caller_constant_pool_(0),
input_frame_context_(0),
stack_fp_(0),
trace_scope_(nullptr) {
if (isolate->deoptimizer_lazy_throw()) {
isolate->set_deoptimizer_lazy_throw(false);
deoptimizing_throw_ = true;
}
DCHECK_NOT_NULL(from);
compiled_code_ = FindOptimizedCode();
DCHECK_NOT_NULL(compiled_code_);
DCHECK(function->IsJSFunction());
trace_scope_ = FLAG_trace_deopt
? new CodeTracer::Scope(isolate->GetCodeTracer())
: nullptr;
#ifdef DEBUG
DCHECK(AllowHeapAllocation::IsAllowed());
disallow_heap_allocation_ = new DisallowHeapAllocation();
#endif // DEBUG
if (compiled_code_->kind() != Code::OPTIMIZED_FUNCTION ||
!compiled_code_->deopt_already_counted()) {
// If the function is optimized, and we haven't counted that deopt yet, then
// increment the function's deopt count so that we can avoid optimising
// functions that deopt too often.
if (bailout_type_ == Deoptimizer::SOFT) {
// Soft deopts shouldn't count against the overall deoptimization count
// that can eventually lead to disabling optimization for a function.
isolate->counters()->soft_deopts_executed()->Increment();
} else if (function != nullptr) {
function->feedback_vector()->increment_deopt_count();
}
}
if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
compiled_code_->set_deopt_already_counted(true);
PROFILE(isolate_,
CodeDeoptEvent(compiled_code_, DeoptKindOfBailoutType(type), from_,
fp_to_sp_delta_));
}
unsigned size = ComputeInputFrameSize();
int parameter_count =
function->shared()->internal_formal_parameter_count() + 1;
input_ = new (size) FrameDescription(size, parameter_count);
}
Code* Deoptimizer::FindOptimizedCode() {
Code* compiled_code = FindDeoptimizingCode(from_);
return (compiled_code == nullptr)
? static_cast<Code*>(isolate_->FindCodeObject(from_))
: compiled_code;
}
void Deoptimizer::PrintFunctionName() {
if (function_->IsHeapObject() && function_->IsJSFunction()) {
function_->ShortPrint(trace_scope_->file());
} else {
PrintF(trace_scope_->file(),
"%s", Code::Kind2String(compiled_code_->kind()));
}
}
Handle<JSFunction> Deoptimizer::function() const {
return Handle<JSFunction>(function_);
}
Handle<Code> Deoptimizer::compiled_code() const {
return Handle<Code>(compiled_code_);
}
Deoptimizer::~Deoptimizer() {
DCHECK(input_ == nullptr && output_ == nullptr);
DCHECK_NULL(disallow_heap_allocation_);
delete trace_scope_;
}
void Deoptimizer::DeleteFrameDescriptions() {
delete input_;
for (int i = 0; i < output_count_; ++i) {
if (output_[i] != input_) delete output_[i];
}
delete[] output_;
input_ = nullptr;
output_ = nullptr;
#ifdef DEBUG
DCHECK(!AllowHeapAllocation::IsAllowed());
DCHECK_NOT_NULL(disallow_heap_allocation_);
delete disallow_heap_allocation_;
disallow_heap_allocation_ = nullptr;
#endif // DEBUG
}
Address Deoptimizer::GetDeoptimizationEntry(Isolate* isolate, int id,
BailoutType type) {
CHECK_GE(id, 0);
if (id >= kMaxNumberOfEntries) return nullptr;
DeoptimizerData* data = isolate->deoptimizer_data();
CHECK_LE(type, kLastBailoutType);
CHECK_NOT_NULL(data->deopt_entry_code_[type]);
Code* code = data->deopt_entry_code_[type];
return code->instruction_start() + (id * table_entry_size_);
}
int Deoptimizer::GetDeoptimizationId(Isolate* isolate,
Address addr,
BailoutType type) {
DeoptimizerData* data = isolate->deoptimizer_data();
CHECK_LE(type, kLastBailoutType);
Code* code = data->deopt_entry_code_[type];
if (code == nullptr) return kNotDeoptimizationEntry;
Address start = code->instruction_start();
if (addr < start ||
addr >= start + (kMaxNumberOfEntries * table_entry_size_)) {
return kNotDeoptimizationEntry;
}
DCHECK_EQ(0,
static_cast<int>(addr - start) % table_entry_size_);
return static_cast<int>(addr - start) / table_entry_size_;
}
int Deoptimizer::GetDeoptimizedCodeCount(Isolate* isolate) {
int length = 0;
// Count all entries in the deoptimizing code list of every context.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined(isolate)) {
Context* native_context = Context::cast(context);
Object* element = native_context->DeoptimizedCodeListHead();
while (!element->IsUndefined(isolate)) {
Code* code = Code::cast(element);
DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
if (!code->marked_for_deoptimization()) {
length++;
}
element = code->next_code_link();
}
context = Context::cast(context)->next_context_link();
}
return length;
}
namespace {
int LookupCatchHandler(TranslatedFrame* translated_frame, int* data_out) {
switch (translated_frame->kind()) {
case TranslatedFrame::kInterpretedFunction: {
int bytecode_offset = translated_frame->node_id().ToInt();
BytecodeArray* bytecode =
translated_frame->raw_shared_info()->bytecode_array();
HandlerTable* table = HandlerTable::cast(bytecode->handler_table());
return table->LookupRange(bytecode_offset, data_out, nullptr);
}
default:
break;
}
return -1;
}
bool ShouldPadArguments(int arg_count) {
return kPadArguments && (arg_count % 2 != 0);
}
} // namespace
// We rely on this function not causing a GC. It is called from generated code
// without having a real stack frame in place.
void Deoptimizer::DoComputeOutputFrames() {
base::ElapsedTimer timer;
// Determine basic deoptimization information. The optimized frame is
// described by the input data.
DeoptimizationData* input_data =
DeoptimizationData::cast(compiled_code_->deoptimization_data());
{
// Read caller's PC, caller's FP and caller's constant pool values
// from input frame. Compute caller's frame top address.
Register fp_reg = JavaScriptFrame::fp_register();
stack_fp_ = input_->GetRegister(fp_reg.code());
caller_frame_top_ = stack_fp_ + ComputeInputFrameAboveFpFixedSize();
Address fp_address = input_->GetFramePointerAddress();
caller_fp_ = Memory::intptr_at(fp_address);
caller_pc_ =
Memory::intptr_at(fp_address + CommonFrameConstants::kCallerPCOffset);
input_frame_context_ = Memory::intptr_at(
fp_address + CommonFrameConstants::kContextOrFrameTypeOffset);
if (FLAG_enable_embedded_constant_pool) {
caller_constant_pool_ = Memory::intptr_at(
fp_address + CommonFrameConstants::kConstantPoolOffset);
}
}
if (trace_scope_ != nullptr) {
timer.Start();
PrintF(trace_scope_->file(), "[deoptimizing (DEOPT %s): begin ",
MessageFor(bailout_type_));
PrintFunctionName();
PrintF(trace_scope_->file(),
" (opt #%d) @%d, FP to SP delta: %d, caller sp: 0x%08" V8PRIxPTR
"]\n",
input_data->OptimizationId()->value(), bailout_id_, fp_to_sp_delta_,
caller_frame_top_);
if (bailout_type_ == EAGER || bailout_type_ == SOFT) {
compiled_code_->PrintDeoptLocation(
trace_scope_->file(), " ;;; deoptimize at ", from_);
}
}
BailoutId node_id = input_data->BytecodeOffset(bailout_id_);
ByteArray* translations = input_data->TranslationByteArray();
unsigned translation_index =
input_data->TranslationIndex(bailout_id_)->value();
TranslationIterator state_iterator(translations, translation_index);
translated_state_.Init(
input_->GetFramePointerAddress(), &state_iterator,
input_data->LiteralArray(), input_->GetRegisterValues(),
trace_scope_ == nullptr ? nullptr : trace_scope_->file(),
function_->IsHeapObject()
? function_->shared()->internal_formal_parameter_count()
: 0);
// Do the input frame to output frame(s) translation.
size_t count = translated_state_.frames().size();
// If we are supposed to go to the catch handler, find the catching frame
// for the catch and make sure we only deoptimize upto that frame.
if (deoptimizing_throw_) {
size_t catch_handler_frame_index = count;
for (size_t i = count; i-- > 0;) {
catch_handler_pc_offset_ = LookupCatchHandler(
&(translated_state_.frames()[i]), &catch_handler_data_);
if (catch_handler_pc_offset_ >= 0) {
catch_handler_frame_index = i;
break;
}
}
CHECK_LT(catch_handler_frame_index, count);
count = catch_handler_frame_index + 1;
}
DCHECK_NULL(output_);
output_ = new FrameDescription*[count];
for (size_t i = 0; i < count; ++i) {
output_[i] = nullptr;
}
output_count_ = static_cast<int>(count);
// Translate each output frame.
int frame_index = 0; // output_frame_index
for (size_t i = 0; i < count; ++i, ++frame_index) {
// Read the ast node id, function, and frame height for this output frame.
TranslatedFrame* translated_frame = &(translated_state_.frames()[i]);
switch (translated_frame->kind()) {
case TranslatedFrame::kInterpretedFunction:
DoComputeInterpretedFrame(translated_frame, frame_index,
deoptimizing_throw_ && i == count - 1);
jsframe_count_++;
break;
case TranslatedFrame::kArgumentsAdaptor:
DoComputeArgumentsAdaptorFrame(translated_frame, frame_index);
break;
case TranslatedFrame::kConstructStub:
DoComputeConstructStubFrame(translated_frame, frame_index);
break;
case TranslatedFrame::kBuiltinContinuation:
DoComputeBuiltinContinuation(translated_frame, frame_index, false);
break;
case TranslatedFrame::kJavaScriptBuiltinContinuation:
DoComputeBuiltinContinuation(translated_frame, frame_index, true);
break;
case TranslatedFrame::kInvalid:
FATAL("invalid frame");
break;
}
}
// Print some helpful diagnostic information.
if (trace_scope_ != nullptr) {
double ms = timer.Elapsed().InMillisecondsF();
int index = output_count_ - 1; // Index of the topmost frame.
PrintF(trace_scope_->file(), "[deoptimizing (%s): end ",
MessageFor(bailout_type_));
PrintFunctionName();
PrintF(trace_scope_->file(),
" @%d => node=%d, pc=0x%08" V8PRIxPTR ", caller sp=0x%08" V8PRIxPTR
", took %0.3f ms]\n",
bailout_id_, node_id.ToInt(), output_[index]->GetPc(),
caller_frame_top_, ms);
}
}
void Deoptimizer::DoComputeInterpretedFrame(TranslatedFrame* translated_frame,
int frame_index,
bool goto_catch_handler) {
SharedFunctionInfo* shared = translated_frame->raw_shared_info();
TranslatedFrame::iterator value_iterator = translated_frame->begin();
bool is_bottommost = (0 == frame_index);
bool is_topmost = (output_count_ - 1 == frame_index);
int input_index = 0;
int bytecode_offset = translated_frame->node_id().ToInt();
int height = translated_frame->height();
int register_count = height - 1; // Exclude accumulator.
int register_stack_slot_count =
InterpreterFrameConstants::RegisterStackSlotCount(register_count);
int height_in_bytes = register_stack_slot_count * kPointerSize;
// The topmost frame will contain the accumulator.
if (is_topmost) {
height_in_bytes += kPointerSize;
if (PadTopOfStackRegister()) height_in_bytes += kPointerSize;
}
TranslatedFrame::iterator function_iterator = value_iterator;
Object* function = value_iterator->GetRawValue();
value_iterator++;
input_index++;
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(), " translating interpreted frame ");
std::unique_ptr<char[]> name = shared->DebugName()->ToCString();
PrintF(trace_scope_->file(), "%s", name.get());
PrintF(trace_scope_->file(), " => bytecode_offset=%d, height=%d%s\n",
bytecode_offset, height_in_bytes,
goto_catch_handler ? " (throw)" : "");
}
if (goto_catch_handler) {
bytecode_offset = catch_handler_pc_offset_;
}
// The 'fixed' part of the frame consists of the incoming parameters and
// the part described by InterpreterFrameConstants. This will include
// argument padding, when needed.
unsigned fixed_frame_size = ComputeInterpretedFixedSize(shared);
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
int parameter_count = shared->internal_formal_parameter_count() + 1;
FrameDescription* output_frame = new (output_frame_size)
FrameDescription(output_frame_size, parameter_count);
CHECK(frame_index >= 0 && frame_index < output_count_);
CHECK_NULL(output_[frame_index]);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous frame's top and
// this frame's size.
intptr_t top_address;
if (is_bottommost) {
top_address = caller_frame_top_ - output_frame_size;
} else {
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
}
output_frame->SetTop(top_address);
// Compute the incoming parameter translation.
unsigned output_offset = output_frame_size;
if (ShouldPadArguments(parameter_count)) {
output_offset -= kPointerSize;
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
output_offset, "padding ");
}
for (int i = 0; i < parameter_count; ++i) {
output_offset -= kPointerSize;
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
output_offset);
}
DCHECK_EQ(output_offset, output_frame->GetLastArgumentSlotOffset());
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(), " -------------------------\n");
}
// There are no translation commands for the caller's pc and fp, the
// context, the function and the bytecode offset. Synthesize
// their values and set them up
// explicitly.
//
// The caller's pc for the bottommost output frame is the same as in the
// input frame. For all subsequent output frames, it can be read from the
// previous one. This frame's pc can be computed from the non-optimized
// function code and AST id of the bailout.
output_offset -= kPCOnStackSize;
intptr_t value;
if (is_bottommost) {
value = caller_pc_;
} else {
value = output_[frame_index - 1]->GetPc();
}
output_frame->SetCallerPc(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's pc\n");
// The caller's frame pointer for the bottommost output frame is the same
// as in the input frame. For all subsequent output frames, it can be
// read from the previous one. Also compute and set this frame's frame
// pointer.
output_offset -= kFPOnStackSize;
if (is_bottommost) {
value = caller_fp_;
} else {
value = output_[frame_index - 1]->GetFp();
}
output_frame->SetCallerFp(output_offset, value);
intptr_t fp_value = top_address + output_offset;
output_frame->SetFp(fp_value);
if (is_topmost) {
Register fp_reg = InterpretedFrame::fp_register();
output_frame->SetRegister(fp_reg.code(), fp_value);
}
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
if (FLAG_enable_embedded_constant_pool) {
// For the bottommost output frame the constant pool pointer can be gotten
// from the input frame. For subsequent output frames, it can be read from
// the previous frame.
output_offset -= kPointerSize;
if (is_bottommost) {
value = caller_constant_pool_;
} else {
value = output_[frame_index - 1]->GetConstantPool();
}
output_frame->SetCallerConstantPool(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset,
"caller's constant_pool\n");
}
// For the bottommost output frame the context can be gotten from the input
// frame. For all subsequent output frames it can be gotten from the function
// so long as we don't inline functions that need local contexts.
output_offset -= kPointerSize;
// When deoptimizing into a catch block, we need to take the context
// from a register that was specified in the handler table.
TranslatedFrame::iterator context_pos = value_iterator;
int context_input_index = input_index;
if (goto_catch_handler) {
// Skip to the translated value of the register specified
// in the handler table.
for (int i = 0; i < catch_handler_data_ + 1; ++i) {
context_pos++;
context_input_index++;
}
}
// Read the context from the translations.
Object* context = context_pos->GetRawValue();
value = reinterpret_cast<intptr_t>(context);
output_frame->SetContext(value);
WriteValueToOutput(context, context_input_index, frame_index, output_offset,
"context ");
if (context == isolate_->heap()->arguments_marker()) {
Address output_address =
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
output_offset;
values_to_materialize_.push_back({output_address, context_pos});
}
value_iterator++;
input_index++;
// The function was mentioned explicitly in the BEGIN_FRAME.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(function);
WriteValueToOutput(function, 0, frame_index, output_offset, "function ");
if (function == isolate_->heap()->arguments_marker()) {
Address output_address =
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
output_offset;
values_to_materialize_.push_back({output_address, function_iterator});
}
// Set the bytecode array pointer.
output_offset -= kPointerSize;
Object* bytecode_array = shared->HasBreakInfo()
? shared->GetDebugInfo()->DebugBytecodeArray()
: shared->bytecode_array();
WriteValueToOutput(bytecode_array, 0, frame_index, output_offset,
"bytecode array ");
// The bytecode offset was mentioned explicitly in the BEGIN_FRAME.
output_offset -= kPointerSize;
int raw_bytecode_offset =
BytecodeArray::kHeaderSize - kHeapObjectTag + bytecode_offset;
Smi* smi_bytecode_offset = Smi::FromInt(raw_bytecode_offset);
output_[frame_index]->SetFrameSlot(
output_offset, reinterpret_cast<intptr_t>(smi_bytecode_offset));
if (trace_scope_ != nullptr) {
DebugPrintOutputSlot(reinterpret_cast<intptr_t>(smi_bytecode_offset),
frame_index, output_offset, "bytecode offset @ ");
PrintF(trace_scope_->file(), "%d\n", bytecode_offset);
PrintF(trace_scope_->file(), " (input #0)\n");
PrintF(trace_scope_->file(), " -------------------------\n");
}
// Translate the rest of the interpreter registers in the frame.
for (int i = 0; i < register_count; ++i) {
output_offset -= kPointerSize;
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
output_offset);
}
int register_slots_written = register_count;
DCHECK_LE(register_slots_written, register_stack_slot_count);
// Some architectures must pad the stack frame with extra stack slots
// to ensure the stack frame is aligned. Do this now.
while (register_slots_written < register_stack_slot_count) {
register_slots_written++;
output_offset -= kPointerSize;
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
output_offset, "padding ");
}
// Translate the accumulator register (depending on frame position).
if (is_topmost) {
if (PadTopOfStackRegister()) {
output_offset -= kPointerSize;
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
output_offset, "padding ");
}
// For topmost frame, put the accumulator on the stack. The
// {NotifyDeoptimized} builtin pops it off the topmost frame (possibly
// after materialization).
output_offset -= kPointerSize;
if (goto_catch_handler) {
// If we are lazy deopting to a catch handler, we set the accumulator to
// the exception (which lives in the result register).
intptr_t accumulator_value =
input_->GetRegister(kInterpreterAccumulatorRegister.code());
WriteValueToOutput(reinterpret_cast<Object*>(accumulator_value), 0,
frame_index, output_offset, "accumulator ");
value_iterator++;
} else {
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
output_offset, "accumulator ");
}
} else {
// For non-topmost frames, skip the accumulator translation. For those
// frames, the return value from the callee will become the accumulator.
value_iterator++;
input_index++;
}
CHECK_EQ(0u, output_offset);
// Compute this frame's PC and state. The PC will be a special builtin that
// continues the bytecode dispatch. Note that non-topmost and lazy-style
// bailout handlers also advance the bytecode offset before dispatch, hence
// simulating what normal handlers do upon completion of the operation.
Builtins* builtins = isolate_->builtins();
Code* dispatch_builtin =
(!is_topmost || (bailout_type_ == LAZY)) && !goto_catch_handler
? builtins->builtin(Builtins::kInterpreterEnterBytecodeAdvance)
: builtins->builtin(Builtins::kInterpreterEnterBytecodeDispatch);
output_frame->SetPc(reinterpret_cast<intptr_t>(dispatch_builtin->entry()));
// Update constant pool.
if (FLAG_enable_embedded_constant_pool) {
intptr_t constant_pool_value =
reinterpret_cast<intptr_t>(dispatch_builtin->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
if (is_topmost) {
Register constant_pool_reg =
InterpretedFrame::constant_pool_pointer_register();
output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
}
}
// Clear the context register. The context might be a de-materialized object
// and will be materialized by {Runtime_NotifyDeoptimized}. For additional
// safety we use Smi(0) instead of the potential {arguments_marker} here.
if (is_topmost) {
intptr_t context_value = reinterpret_cast<intptr_t>(Smi::kZero);
Register context_reg = JavaScriptFrame::context_register();
output_frame->SetRegister(context_reg.code(), context_value);
// Set the continuation for the topmost frame.
Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
output_frame->SetContinuation(
reinterpret_cast<intptr_t>(continuation->entry()));
}
}
void Deoptimizer::DoComputeArgumentsAdaptorFrame(
TranslatedFrame* translated_frame, int frame_index) {
TranslatedFrame::iterator value_iterator = translated_frame->begin();
bool is_bottommost = (0 == frame_index);
int input_index = 0;
unsigned height = translated_frame->height();
unsigned height_in_bytes = height * kPointerSize;
int parameter_count = height;
if (ShouldPadArguments(parameter_count)) height_in_bytes += kPointerSize;
TranslatedFrame::iterator function_iterator = value_iterator;
Object* function = value_iterator->GetRawValue();
value_iterator++;
input_index++;
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(),
" translating arguments adaptor => height=%d\n", height_in_bytes);
}
unsigned fixed_frame_size = ArgumentsAdaptorFrameConstants::kFixedFrameSize;
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame = new (output_frame_size)
FrameDescription(output_frame_size, parameter_count);
// Arguments adaptor can not be topmost.
CHECK(frame_index < output_count_ - 1);
CHECK_NULL(output_[frame_index]);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous frame's top and
// this frame's size.
intptr_t top_address;
if (is_bottommost) {
top_address = caller_frame_top_ - output_frame_size;
} else {
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
}
output_frame->SetTop(top_address);
unsigned output_offset = output_frame_size;
if (ShouldPadArguments(parameter_count)) {
output_offset -= kPointerSize;
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
output_offset, "padding ");
}
// Compute the incoming parameter translation.
for (int i = 0; i < parameter_count; ++i) {
output_offset -= kPointerSize;
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
output_offset);
}
DCHECK_EQ(output_offset, output_frame->GetLastArgumentSlotOffset());
// Read caller's PC from the previous frame.
output_offset -= kPCOnStackSize;
intptr_t value;
if (is_bottommost) {
value = caller_pc_;
} else {
value = output_[frame_index - 1]->GetPc();
}
output_frame->SetCallerPc(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's pc\n");
// Read caller's FP from the previous frame, and set this frame's FP.
output_offset -= kFPOnStackSize;
if (is_bottommost) {
value = caller_fp_;
} else {
value = output_[frame_index - 1]->GetFp();
}
output_frame->SetCallerFp(output_offset, value);
intptr_t fp_value = top_address + output_offset;
output_frame->SetFp(fp_value);
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
if (FLAG_enable_embedded_constant_pool) {
// Read the caller's constant pool from the previous frame.
output_offset -= kPointerSize;
if (is_bottommost) {
value = caller_constant_pool_;
} else {
value = output_[frame_index - 1]->GetConstantPool();
}
output_frame->SetCallerConstantPool(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset,
"caller's constant_pool\n");
}
// A marker value is used in place of the context.
output_offset -= kPointerSize;
intptr_t context = StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR);
output_frame->SetFrameSlot(output_offset, context);
DebugPrintOutputSlot(context, frame_index, output_offset,
"context (adaptor sentinel)\n");
// The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(function);
WriteValueToOutput(function, 0, frame_index, output_offset, "function ");
if (function == isolate_->heap()->arguments_marker()) {
Address output_address =
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
output_offset;
values_to_materialize_.push_back({output_address, function_iterator});
}
// Number of incoming arguments.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "argc ");
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(), "(%d)\n", height - 1);
}
output_offset -= kPointerSize;
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
output_offset, "padding ");
DCHECK_EQ(0, output_offset);
Builtins* builtins = isolate_->builtins();
Code* adaptor_trampoline =
builtins->builtin(Builtins::kArgumentsAdaptorTrampoline);
intptr_t pc_value = reinterpret_cast<intptr_t>(
adaptor_trampoline->instruction_start() +
isolate_->heap()->arguments_adaptor_deopt_pc_offset()->value());
output_frame->SetPc(pc_value);
if (FLAG_enable_embedded_constant_pool) {
intptr_t constant_pool_value =
reinterpret_cast<intptr_t>(adaptor_trampoline->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
}
}
void Deoptimizer::DoComputeConstructStubFrame(TranslatedFrame* translated_frame,
int frame_index) {
TranslatedFrame::iterator value_iterator = translated_frame->begin();
bool is_topmost = (output_count_ - 1 == frame_index);
// The construct frame could become topmost only if we inlined a constructor
// call which does a tail call (otherwise the tail callee's frame would be
// the topmost one). So it could only be the LAZY case.
CHECK(!is_topmost || bailout_type_ == LAZY);
int input_index = 0;
Builtins* builtins = isolate_->builtins();
Code* construct_stub = builtins->builtin(
FLAG_harmony_restrict_constructor_return
? Builtins::kJSConstructStubGenericRestrictedReturn
: Builtins::kJSConstructStubGenericUnrestrictedReturn);
BailoutId bailout_id = translated_frame->node_id();
unsigned height = translated_frame->height();
unsigned height_in_bytes = height * kPointerSize;
// If the construct frame appears to be topmost we should ensure that the
// value of result register is preserved during continuation execution.
// We do this here by "pushing" the result of the constructor function to the
// top of the reconstructed stack and popping it in
// {Builtins::kNotifyDeoptimized}.
if (is_topmost) {
height_in_bytes += kPointerSize;
if (PadTopOfStackRegister()) height_in_bytes += kPointerSize;
}
int parameter_count = height;
if (ShouldPadArguments(parameter_count)) height_in_bytes += kPointerSize;
JSFunction* function = JSFunction::cast(value_iterator->GetRawValue());
value_iterator++;
input_index++;
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(),
" translating construct stub => bailout_id=%d (%s), height=%d\n",
bailout_id.ToInt(),
bailout_id == BailoutId::ConstructStubCreate() ? "create" : "invoke",
height_in_bytes);
}
unsigned fixed_frame_size = ConstructFrameConstants::kFixedFrameSize;
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame = new (output_frame_size)
FrameDescription(output_frame_size, parameter_count);
// Construct stub can not be topmost.
DCHECK(frame_index > 0 && frame_index < output_count_);
DCHECK_NULL(output_[frame_index]);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous frame's top and
// this frame's size.
intptr_t top_address;
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
output_frame->SetTop(top_address);
unsigned output_offset = output_frame_size;
if (ShouldPadArguments(parameter_count)) {
output_offset -= kPointerSize;
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
output_offset, "padding ");
}
// Compute the incoming parameter translation.
for (int i = 0; i < parameter_count; ++i) {
output_offset -= kPointerSize;
// The allocated receiver of a construct stub frame is passed as the
// receiver parameter through the translation. It might be encoding
// a captured object, override the slot address for a captured object.
WriteTranslatedValueToOutput(
&value_iterator, &input_index, frame_index, output_offset, nullptr,
(i == 0) ? reinterpret_cast<Address>(top_address) : nullptr);
}
DCHECK_EQ(output_offset, output_frame->GetLastArgumentSlotOffset());
// Read caller's PC from the previous frame.
output_offset -= kPCOnStackSize;
intptr_t callers_pc = output_[frame_index - 1]->GetPc();
output_frame->SetCallerPc(output_offset, callers_pc);
DebugPrintOutputSlot(callers_pc, frame_index, output_offset, "caller's pc\n");
// Read caller's FP from the previous frame, and set this frame's FP.
output_offset -= kFPOnStackSize;
intptr_t value = output_[frame_index - 1]->GetFp();
output_frame->SetCallerFp(output_offset, value);
intptr_t fp_value = top_address + output_offset;
output_frame->SetFp(fp_value);
if (is_topmost) {
Register fp_reg = JavaScriptFrame::fp_register();
output_frame->SetRegister(fp_reg.code(), fp_value);
}
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
if (FLAG_enable_embedded_constant_pool) {
// Read the caller's constant pool from the previous frame.
output_offset -= kPointerSize;
value = output_[frame_index - 1]->GetConstantPool();
output_frame->SetCallerConstantPool(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset,
"caller's constant_pool\n");
}
// A marker value is used to mark the frame.
output_offset -= kPointerSize;
value = StackFrame::TypeToMarker(StackFrame::CONSTRUCT);
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset,
"typed frame marker\n");
// The context can be gotten from the previous frame.
output_offset -= kPointerSize;
value = output_[frame_index - 1]->GetContext();
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "context\n");
// Number of incoming arguments.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "argc ");
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(), "(%d)\n", height - 1);
}
// The constructor function was mentioned explicitly in the
// CONSTRUCT_STUB_FRAME.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(function);
WriteValueToOutput(function, 0, frame_index, output_offset,
"constructor function ");
// The deopt info contains the implicit receiver or the new target at the
// position of the receiver. Copy it to the top of stack, with the hole value
// as padding to maintain alignment.
output_offset -= kPointerSize;
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
output_offset, "padding");
output_offset -= kPointerSize;
if (ShouldPadArguments(parameter_count)) {
value = output_frame->GetFrameSlot(output_frame_size - 2 * kPointerSize);
} else {
value = output_frame->GetFrameSlot(output_frame_size - kPointerSize);
}
output_frame->SetFrameSlot(output_offset, value);
if (bailout_id == BailoutId::ConstructStubCreate()) {
DebugPrintOutputSlot(value, frame_index, output_offset, "new target\n");
} else {
CHECK(bailout_id == BailoutId::ConstructStubInvoke());
DebugPrintOutputSlot(value, frame_index, output_offset,
"allocated receiver\n");
}
if (is_topmost) {
if (PadTopOfStackRegister()) {
output_offset -= kPointerSize;
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
output_offset, "padding ");
}
// Ensure the result is restored back when we return to the stub.
output_offset -= kPointerSize;
Register result_reg = kReturnRegister0;
value = input_->GetRegister(result_reg.code());
output_frame->SetFrameSlot(output_offset, value);
DebugPrintOutputSlot(value, frame_index, output_offset, "subcall result\n");
}
CHECK_EQ(0u, output_offset);
// Compute this frame's PC.
DCHECK(bailout_id.IsValidForConstructStub());
Address start = construct_stub->instruction_start();
int pc_offset =
bailout_id == BailoutId::ConstructStubCreate()
? isolate_->heap()->construct_stub_create_deopt_pc_offset()->value()
: isolate_->heap()->construct_stub_invoke_deopt_pc_offset()->value();
intptr_t pc_value = reinterpret_cast<intptr_t>(start + pc_offset);
output_frame->SetPc(pc_value);
// Update constant pool.
if (FLAG_enable_embedded_constant_pool) {
intptr_t constant_pool_value =
reinterpret_cast<intptr_t>(construct_stub->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
if (is_topmost) {
Register constant_pool_reg =
JavaScriptFrame::constant_pool_pointer_register();
output_frame->SetRegister(constant_pool_reg.code(), fp_value);
}
}
// Clear the context register. The context might be a de-materialized object
// and will be materialized by {Runtime_NotifyDeoptimized}. For additional
// safety we use Smi(0) instead of the potential {arguments_marker} here.
if (is_topmost) {
intptr_t context_value = reinterpret_cast<intptr_t>(Smi::kZero);
Register context_reg = JavaScriptFrame::context_register();
output_frame->SetRegister(context_reg.code(), context_value);
}
// Set the continuation for the topmost frame.
if (is_topmost) {
Builtins* builtins = isolate_->builtins();
DCHECK_EQ(LAZY, bailout_type_);
Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
output_frame->SetContinuation(
reinterpret_cast<intptr_t>(continuation->entry()));
}
}
// BuiltinContinuationFrames capture the machine state that is expected as input
// to a builtin, including both input register values and stack parameters. When
// the frame is reactivated (i.e. the frame below it returns), a
// ContinueToBuiltin stub restores the register state from the frame and tail
// calls to the actual target builtin, making it appear that the stub had been
// directly called by the frame above it. The input values to populate the frame
// are taken from the deopt's FrameState.
//
// Frame translation happens in two modes, EAGER and LAZY. In EAGER mode, all of
// the parameters to the Builtin are explicitly specified in the TurboFan
// FrameState node. In LAZY mode, there is always one fewer parameters specified
// in the FrameState than expected by the Builtin. In that case, construction of
// BuiltinContinuationFrame adds the final missing parameter during
// deoptimization, and that parameter is always on the stack and contains the
// value returned from the callee of the call site triggering the LAZY deopt
// (e.g. rax on x64). This requires that continuation Builtins for LAZY deopts
// must have at least one stack parameter.
//
// TO
// | .... |
// +-------------------------+
// | builtin param 0 |<- FrameState input value n becomes
// +-------------------------+
// | ... |
// +-------------------------+
// | builtin param m |<- FrameState input value n+m-1, or in
// +-------------------------+ the LAZY case, return LAZY result value
// | ContinueToBuiltin entry |
// +-------------------------+
// | | saved frame (FP) |
// | +=========================+<- fpreg
// | |constant pool (if ool_cp)|
// v +-------------------------+
// |BUILTIN_CONTINUATION mark|
// +-------------------------+
// | JS Builtin code object |
// +-------------------------+
// | builtin input GPR reg0 |<- populated from deopt FrameState using
// +-------------------------+ the builtin's CallInterfaceDescriptor
// | ... | to map a FrameState's 0..n-1 inputs to
// +-------------------------+ the builtin's n input register params.
// | builtin input GPR regn |
// |-------------------------|<- spreg
//
void Deoptimizer::DoComputeBuiltinContinuation(
TranslatedFrame* translated_frame, int frame_index,
bool java_script_builtin) {
TranslatedFrame::iterator value_iterator = translated_frame->begin();
int input_index = 0;
// The output frame must have room for all of the parameters that need to be
// passed to the builtin continuation.
int height_in_words = translated_frame->height();
BailoutId bailout_id = translated_frame->node_id();
Builtins::Name builtin_name = Builtins::GetBuiltinFromBailoutId(bailout_id);
DCHECK(!Builtins::IsLazy(builtin_name));
Code* builtin = isolate()->builtins()->builtin(builtin_name);
Callable continuation_callable =
Builtins::CallableFor(isolate(), builtin_name);
CallInterfaceDescriptor continuation_descriptor =
continuation_callable.descriptor();
bool is_bottommost = (0 == frame_index);
bool is_topmost = (output_count_ - 1 == frame_index);
bool must_handle_result = !is_topmost || bailout_type_ == LAZY;
const RegisterConfiguration* config(RegisterConfiguration::Default());
int allocatable_register_count = config->num_allocatable_general_registers();
int padding_slot_count = BuiltinContinuationFrameConstants::PaddingSlotCount(
allocatable_register_count);
int register_parameter_count =
continuation_descriptor.GetRegisterParameterCount();
// Make sure to account for the context by removing it from the register
// parameter count.
int stack_param_count = height_in_words - register_parameter_count - 1;
if (must_handle_result) stack_param_count++;
unsigned output_frame_size =
kPointerSize * (stack_param_count + allocatable_register_count +
padding_slot_count) +
BuiltinContinuationFrameConstants::kFixedFrameSize;
// If the builtins frame appears to be topmost we should ensure that the
// value of result register is preserved during continuation execution.
// We do this here by "pushing" the result of callback function to the
// top of the reconstructed stack and popping it in
// {Builtins::kNotifyDeoptimized}.
if (is_topmost) {
output_frame_size += kPointerSize;
if (PadTopOfStackRegister()) output_frame_size += kPointerSize;
}
// Validate types of parameters. They must all be tagged except for argc for
// JS builtins.
bool has_argc = false;
for (int i = 0; i < register_parameter_count; ++i) {
MachineType type = continuation_descriptor.GetParameterType(i);
int code = continuation_descriptor.GetRegisterParameter(i).code();
// Only tagged and int32 arguments are supported, and int32 only for the
// arguments count on JavaScript builtins.
if (type == MachineType::Int32()) {
CHECK_EQ(code, kJavaScriptCallArgCountRegister.code());
has_argc = true;
} else {
// Any other argument must be a tagged value.
CHECK(IsAnyTagged(type.representation()));
}
}
CHECK_EQ(java_script_builtin, has_argc);
if (trace_scope_ != nullptr) {
PrintF(trace_scope_->file(),
" translating BuiltinContinuation to %s,"
" register param count %d,"
" stack param count %d\n",
Builtins::name(builtin_name), register_parameter_count,
stack_param_count);
}
int translated_stack_parameters =
must_handle_result ? stack_param_count - 1 : stack_param_count;
if (ShouldPadArguments(stack_param_count)) output_frame_size += kPointerSize;
FrameDescription* output_frame = new (output_frame_size)
FrameDescription(output_frame_size, stack_param_count);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous frame's top and
// this frame's size.
intptr_t top_address;
if (is_bottommost) {
top_address = caller_frame_top_ - output_frame_size;
} else {
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
}
output_frame->SetTop(top_address);
// Get the possible JSFunction for the case that this is a
// JavaScriptBuiltinContinuationFrame, which needs the JSFunction pointer
// like a normal JavaScriptFrame.
intptr_t maybe_function =
reinterpret_cast<intptr_t>(value_iterator->GetRawValue());
++input_index;
++value_iterator;
struct RegisterValue {
Object* raw_value_;
TranslatedFrame::iterator iterator_;
};
std::vector<RegisterValue> register_values;
int total_registers = config->num_general_registers();
register_values.resize(total_registers, {Smi::kZero, value_iterator});
intptr_t value;
unsigned output_frame_offset = output_frame_size;
if (ShouldPadArguments(stack_param_count)) {
output_frame_offset -= kPointerSize;
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
output_frame_offset, "padding ");
}
for (int i = 0; i < translated_stack_parameters; ++i) {
output_frame_offset -= kPointerSize;
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
output_frame_offset);
}
if (must_handle_result) {
output_frame_offset -= kPointerSize;
WriteValueToOutput(isolate()->heap()->the_hole_value(), input_index,
frame_index, output_frame_offset,
"placeholder for return result on lazy deopt ");
}
DCHECK_EQ(output_frame_offset, output_frame->GetLastArgumentSlotOffset());
for (int i = 0; i < register_parameter_count; ++i) {
Object* object = value_iterator->GetRawValue();
int code = continuation_descriptor.GetRegisterParameter(i).code();
register_values[code] = {object, value_iterator};
++input_index;
++value_iterator;
}
// The context register is always implicit in the CallInterfaceDescriptor but
// its register must be explicitly set when continuing to the builtin. Make
// sure that it's harvested from the translation and copied into the register
// set (it was automatically added at the end of the FrameState by the
// instruction selector).
Object* context = value_iterator->GetRawValue();
value = reinterpret_cast<intptr_t>(context);
register_values[kContextRegister.code()] = {context, value_iterator};
output_frame->SetContext(value);
output_frame->SetRegister(kContextRegister.code(), value);
++input_index;
++value_iterator;
// Set caller's PC (JSFunction continuation).
output_frame_offset -= kPCOnStackSize;
if (is_bottommost) {
value = caller_pc_;
} else {
value = output_[frame_index - 1]->GetPc();
}
output_frame->SetCallerPc(output_frame_offset, value);
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
"caller's pc\n");
// Read caller's FP from the previous frame, and set this frame's FP.
output_frame_offset -= kFPOnStackSize;
if (is_bottommost) {
value = caller_fp_;
} else {
value = output_[frame_index - 1]->GetFp();
}
output_frame->SetCallerFp(output_frame_offset, value);
intptr_t fp_value = top_address + output_frame_offset;
output_frame->SetFp(fp_value);
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
"caller's fp\n");
if (FLAG_enable_embedded_constant_pool) {
// Read the caller's constant pool from the previous frame.
output_frame_offset -= kPointerSize;
if (is_bottommost) {
value = caller_constant_pool_;
} else {
value = output_[frame_index - 1]->GetConstantPool();
}
output_frame->SetCallerConstantPool(output_frame_offset, value);
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
"caller's constant_pool\n");
}
// A marker value is used in place of the context.
output_frame_offset -= kPointerSize;
intptr_t marker =
java_script_builtin
? StackFrame::TypeToMarker(
StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION)
: StackFrame::TypeToMarker(StackFrame::BUILTIN_CONTINUATION);
output_frame->SetFrameSlot(output_frame_offset, marker);
DebugPrintOutputSlot(marker, frame_index, output_frame_offset,
"context (builtin continuation sentinel)\n");
output_frame_offset -= kPointerSize;
value = java_script_builtin ? maybe_function : 0;
output_frame->SetFrameSlot(output_frame_offset, value);
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
java_script_builtin ? "JSFunction\n" : "unused\n");
// The builtin to continue to
output_frame_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(builtin);
output_frame->SetFrameSlot(output_frame_offset, value);
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
"builtin address\n");
for (int i = 0; i < allocatable_register_count; ++i) {
output_frame_offset -= kPointerSize;
int code = config->GetAllocatableGeneralCode(i);
Object* object = register_values[code].raw_value_;
value = reinterpret_cast<intptr_t>(object);
output_frame->SetFrameSlot(output_frame_offset, value);
if (trace_scope_ != nullptr) {
ScopedVector<char> str(128);
if (java_script_builtin &&
code == kJavaScriptCallArgCountRegister.code()) {
SNPrintF(
str,
"tagged argument count %s (will be untagged by continuation)\n",
config->GetGeneralRegisterName(code));
} else {
SNPrintF(str, "builtin register argument %s\n",
config->GetGeneralRegisterName(code));
}
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
str.start());
}
if (object == isolate_->heap()->arguments_marker()) {
Address output_address =
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
output_frame_offset;
values_to_materialize_.push_back(
{output_address, register_values[code].iterator_});
}
}
// Some architectures must pad the stack frame with extra stack slots
// to ensure the stack frame is aligned.
for (int i = 0; i < padding_slot_count; ++i) {
output_frame_offset -= kPointerSize;
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
output_frame_offset, "padding ");
}
if (is_topmost) {
if (PadTopOfStackRegister()) {
output_frame_offset -= kPointerSize;
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
output_frame_offset, "padding ");
}
// Ensure the result is restored back when we return to the stub.
output_frame_offset -= kPointerSize;
Register result_reg = kReturnRegister0;
if (must_handle_result) {
value = input_->GetRegister(result_reg.code());
} else {
value = reinterpret_cast<intptr_t>(isolate()->heap()->undefined_value());
}
output_frame->SetFrameSlot(output_frame_offset, value);
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
"callback result\n");
}
CHECK_EQ(0u, output_frame_offset);
// Clear the context register. The context might be a de-materialized object
// and will be materialized by {Runtime_NotifyDeoptimized}. For additional
// safety we use Smi(0) instead of the potential {arguments_marker} here.
if (is_topmost) {
intptr_t context_value = reinterpret_cast<intptr_t>(Smi::kZero);
Register context_reg = JavaScriptFrame::context_register();
output_frame->SetRegister(context_reg.code(), context_value);
}
// Ensure the frame pointer register points to the callee's frame. The builtin
// will build its own frame once we continue to it.
Register fp_reg = JavaScriptFrame::fp_register();
output_frame->SetRegister(fp_reg.code(), output_[frame_index - 1]->GetFp());
Code* continue_to_builtin =
java_script_builtin
? (must_handle_result
? isolate()->builtins()->builtin(
Builtins::kContinueToJavaScriptBuiltinWithResult)
: isolate()->builtins()->builtin(
Builtins::kContinueToJavaScriptBuiltin))
: (must_handle_result
? isolate()->builtins()->builtin(
Builtins::kContinueToCodeStubBuiltinWithResult)
: isolate()->builtins()->builtin(
Builtins::kContinueToCodeStubBuiltin));
output_frame->SetPc(
reinterpret_cast<intptr_t>(continue_to_builtin->instruction_start()));
Code* continuation =
isolate()->builtins()->builtin(Builtins::kNotifyDeoptimized);
output_frame->SetContinuation(
reinterpret_cast<intptr_t>(continuation->entry()));
}
void Deoptimizer::MaterializeHeapObjects() {
translated_state_.Prepare(reinterpret_cast<Address>(stack_fp_));
for (auto& materialization : values_to_materialize_) {
Handle<Object> value = materialization.value_->GetValue();
if (trace_scope_ != nullptr) {
PrintF("Materialization [0x%08" V8PRIxPTR "] <- 0x%08" V8PRIxPTR " ; ",
reinterpret_cast<intptr_t>(materialization.output_slot_address_),
reinterpret_cast<intptr_t>(*value));
value->ShortPrint(trace_scope_->file());
PrintF(trace_scope_->file(), "\n");
}
*(reinterpret_cast<intptr_t*>(materialization.output_slot_address_)) =
reinterpret_cast<intptr_t>(*value);
}
translated_state_.VerifyMaterializedObjects();
bool feedback_updated = translated_state_.DoUpdateFeedback();
if (trace_scope_ != nullptr && feedback_updated) {
PrintF(trace_scope_->file(), "Feedback updated");
compiled_code_->PrintDeoptLocation(trace_scope_->file(),
" from deoptimization at ", from_);
}
isolate_->materialized_object_store()->Remove(
reinterpret_cast<Address>(stack_fp_));
}
void Deoptimizer::WriteTranslatedValueToOutput(
TranslatedFrame::iterator* iterator, int* input_index, int frame_index,
unsigned output_offset, const char* debug_hint_string,
Address output_address_for_materialization) {
Object* value = (*iterator)->GetRawValue();
WriteValueToOutput(value, *input_index, frame_index, output_offset,
debug_hint_string);
if (value == isolate_->heap()->arguments_marker()) {
Address output_address =
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
output_offset;
if (output_address_for_materialization == nullptr) {
output_address_for_materialization = output_address;
}
values_to_materialize_.push_back(
{output_address_for_materialization, *iterator});
}
(*iterator)++;
(*input_index)++;
}
void Deoptimizer::WriteValueToOutput(Object* value, int input_index,
int frame_index, unsigned output_offset,
const char* debug_hint_string) {
output_[frame_index]->SetFrameSlot(output_offset,
reinterpret_cast<intptr_t>(value));
if (trace_scope_ != nullptr) {
DebugPrintOutputSlot(reinterpret_cast<intptr_t>(value), frame_index,
output_offset, debug_hint_string);
value->ShortPrint(trace_scope_->file());
PrintF(trace_scope_->file(), " (input #%d)\n", input_index);
}
}
void Deoptimizer::DebugPrintOutputSlot(intptr_t value, int frame_index,
unsigned output_offset,
const char* debug_hint_string) {
if (trace_scope_ != nullptr) {
Address output_address =
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
output_offset;
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; %s",
reinterpret_cast<intptr_t>(output_address), output_offset, value,
debug_hint_string == nullptr ? "" : debug_hint_string);
}
}
unsigned Deoptimizer::ComputeInputFrameAboveFpFixedSize() const {
unsigned fixed_size = CommonFrameConstants::kFixedFrameSizeAboveFp;
if (!function_->IsSmi()) {
fixed_size += ComputeIncomingArgumentSize(function_->shared());
}
return fixed_size;
}
unsigned Deoptimizer::ComputeInputFrameSize() const {
// The fp-to-sp delta already takes the context, constant pool pointer and the
// function into account so we have to avoid double counting them.
unsigned fixed_size_above_fp = ComputeInputFrameAboveFpFixedSize();
unsigned result = fixed_size_above_fp + fp_to_sp_delta_;
if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
unsigned stack_slots = compiled_code_->stack_slots();
unsigned outgoing_size = 0;
// ComputeOutgoingArgumentSize(compiled_code_, bailout_id_);
CHECK_EQ(fixed_size_above_fp + (stack_slots * kPointerSize) -
CommonFrameConstants::kFixedFrameSizeAboveFp + outgoing_size,
result);
}
return result;
}
// static
unsigned Deoptimizer::ComputeInterpretedFixedSize(SharedFunctionInfo* shared) {
// The fixed part of the frame consists of the return address, frame
// pointer, function, context, bytecode offset and all the incoming arguments.
return ComputeIncomingArgumentSize(shared) +
InterpreterFrameConstants::kFixedFrameSize;
}
// static
unsigned Deoptimizer::ComputeIncomingArgumentSize(SharedFunctionInfo* shared) {
int parameter_slots = shared->internal_formal_parameter_count() + 1;
if (kPadArguments) parameter_slots = RoundUp(parameter_slots, 2);
return parameter_slots * kPointerSize;
}
void Deoptimizer::EnsureCodeForDeoptimizationEntry(Isolate* isolate,
BailoutType type) {
CHECK(type == EAGER || type == SOFT || type == LAZY);
DeoptimizerData* data = isolate->deoptimizer_data();
if (data->deopt_entry_code_[type] != nullptr) return;
MacroAssembler masm(isolate, nullptr, 16 * KB, CodeObjectRequired::kYes);
masm.set_emit_debug_code(false);
GenerateDeoptimizationEntries(&masm, kMaxNumberOfEntries, type);
CodeDesc desc;
masm.GetCode(isolate, &desc);
DCHECK(!RelocInfo::RequiresRelocation(isolate, desc));
// Allocate the code as immovable since the entry addresses will be used
// directly and there is no support for relocating them.
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::STUB, Handle<Object>(), Builtins::kNoBuiltinId,
MaybeHandle<HandlerTable>(), MaybeHandle<ByteArray>(),
MaybeHandle<DeoptimizationData>(), kImmovable);
CHECK(Heap::IsImmovable(*code));
CHECK_NULL(data->deopt_entry_code_[type]);
data->deopt_entry_code_[type] = *code;
}
void Deoptimizer::EnsureCodeForMaxDeoptimizationEntries(Isolate* isolate) {
EnsureCodeForDeoptimizationEntry(isolate, EAGER);
EnsureCodeForDeoptimizationEntry(isolate, LAZY);
EnsureCodeForDeoptimizationEntry(isolate, SOFT);
}
FrameDescription::FrameDescription(uint32_t frame_size, int parameter_count)
: frame_size_(frame_size),
parameter_count_(parameter_count),
top_(kZapUint32),
pc_(kZapUint32),
fp_(kZapUint32),
context_(kZapUint32),
constant_pool_(kZapUint32) {
// Zap all the registers.
for (int r = 0; r < Register::kNumRegisters; r++) {
// TODO(jbramley): It isn't safe to use kZapUint32 here. If the register
// isn't used before the next safepoint, the GC will try to scan it as a
// tagged value. kZapUint32 looks like a valid tagged pointer, but it isn't.
SetRegister(r, kZapUint32);
}
// Zap all the slots.
for (unsigned o = 0; o < frame_size; o += kPointerSize) {
SetFrameSlot(o, kZapUint32);
}
}
void TranslationBuffer::Add(int32_t value) {
// This wouldn't handle kMinInt correctly if it ever encountered it.
DCHECK_NE(value, kMinInt);
// Encode the sign bit in the least significant bit.
bool is_negative = (value < 0);
uint32_t bits = ((is_negative ? -value : value) << 1) |
static_cast<int32_t>(is_negative);
// Encode the individual bytes using the least significant bit of
// each byte to indicate whether or not more bytes follow.
do {
uint32_t next = bits >> 7;
contents_.push_back(((bits << 1) & 0xFF) | (next != 0));
bits = next;
} while (bits != 0);
}
TranslationIterator::TranslationIterator(ByteArray* buffer, int index)
: buffer_(buffer), index_(index) {
DCHECK(index >= 0 && index < buffer->length());
}
int32_t TranslationIterator::Next() {
// Run through the bytes until we reach one with a least significant
// bit of zero (marks the end).
uint32_t bits = 0;
for (int i = 0; true; i += 7) {
DCHECK(HasNext());
uint8_t next = buffer_->get(index_++);
bits |= (next >> 1) << i;
if ((next & 1) == 0) break;
}
// The bits encode the sign in the least significant bit.
bool is_negative = (bits & 1) == 1;
int32_t result = bits >> 1;
return is_negative ? -result : result;
}
bool TranslationIterator::HasNext() const { return index_ < buffer_->length(); }
Handle<ByteArray> TranslationBuffer::CreateByteArray(Factory* factory) {
Handle<ByteArray> result = factory->NewByteArray(CurrentIndex(), TENURED);
contents_.CopyTo(result->GetDataStartAddress());
return result;
}
void Translation::BeginBuiltinContinuationFrame(BailoutId bailout_id,
int literal_id,
unsigned height) {
buffer_->Add(BUILTIN_CONTINUATION_FRAME);
buffer_->Add(bailout_id.ToInt());
buffer_->Add(literal_id);
buffer_->Add(height);
}
void Translation::BeginJavaScriptBuiltinContinuationFrame(BailoutId bailout_id,
int literal_id,
unsigned height) {
buffer_->Add(JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME);
buffer_->Add(bailout_id.ToInt());
buffer_->Add(literal_id);
buffer_->Add(height);
}
void Translation::BeginConstructStubFrame(BailoutId bailout_id, int literal_id,
unsigned height) {
buffer_->Add(CONSTRUCT_STUB_FRAME);
buffer_->Add(bailout_id.ToInt());
buffer_->Add(literal_id);
buffer_->Add(height);
}
void Translation::BeginArgumentsAdaptorFrame(int literal_id, unsigned height) {
buffer_->Add(ARGUMENTS_ADAPTOR_FRAME);
buffer_->Add(literal_id);
buffer_->Add(height);
}
void Translation::BeginInterpretedFrame(BailoutId bytecode_offset,
int literal_id, unsigned height) {
buffer_->Add(INTERPRETED_FRAME);
buffer_->Add(bytecode_offset.ToInt());
buffer_->Add(literal_id);
buffer_->Add(height);
}
void Translation::ArgumentsElements(CreateArgumentsType type) {
buffer_->Add(ARGUMENTS_ELEMENTS);
buffer_->Add(static_cast<uint8_t>(type));
}
void Translation::ArgumentsLength(CreateArgumentsType type) {
buffer_->Add(ARGUMENTS_LENGTH);
buffer_->Add(static_cast<uint8_t>(type));
}
void Translation::BeginCapturedObject(int length) {
buffer_->Add(CAPTURED_OBJECT);
buffer_->Add(length);
}
void Translation::DuplicateObject(int object_index) {
buffer_->Add(DUPLICATED_OBJECT);
buffer_->Add(object_index);
}
void Translation::StoreRegister(Register reg) {
buffer_->Add(REGISTER);
buffer_->Add(reg.code());
}
void Translation::StoreInt32Register(Register reg) {
buffer_->Add(INT32_REGISTER);
buffer_->Add(reg.code());
}
void Translation::StoreUint32Register(Register reg) {
buffer_->Add(UINT32_REGISTER);
buffer_->Add(reg.code());
}
void Translation::StoreBoolRegister(Register reg) {
buffer_->Add(BOOL_REGISTER);
buffer_->Add(reg.code());
}
void Translation::StoreFloatRegister(FloatRegister reg) {
buffer_->Add(FLOAT_REGISTER);
buffer_->Add(reg.code());
}
void Translation::StoreDoubleRegister(DoubleRegister reg) {
buffer_->Add(DOUBLE_REGISTER);
buffer_->Add(reg.code());
}
void Translation::StoreStackSlot(int index) {
buffer_->Add(STACK_SLOT);
buffer_->Add(index);
}
void Translation::StoreInt32StackSlot(int index) {
buffer_->Add(INT32_STACK_SLOT);
buffer_->Add(index);
}
void Translation::StoreUint32StackSlot(int index) {
buffer_->Add(UINT32_STACK_SLOT);
buffer_->Add(index);
}
void Translation::StoreBoolStackSlot(int index) {
buffer_->Add(BOOL_STACK_SLOT);
buffer_->Add(index);
}
void Translation::StoreFloatStackSlot(int index) {
buffer_->Add(FLOAT_STACK_SLOT);
buffer_->Add(index);
}
void Translation::StoreDoubleStackSlot(int index) {
buffer_->Add(DOUBLE_STACK_SLOT);
buffer_->Add(index);
}
void Translation::StoreLiteral(int literal_id) {
buffer_->Add(LITERAL);
buffer_->Add(literal_id);
}
void Translation::AddUpdateFeedback(int vector_literal, int slot) {
buffer_->Add(UPDATE_FEEDBACK);
buffer_->Add(vector_literal);
buffer_->Add(slot);
}
void Translation::StoreJSFrameFunction() {
StoreStackSlot((StandardFrameConstants::kCallerPCOffset -
StandardFrameConstants::kFunctionOffset) /
kPointerSize);
}
int Translation::NumberOfOperandsFor(Opcode opcode) {
switch (opcode) {
case DUPLICATED_OBJECT:
case ARGUMENTS_ELEMENTS:
case ARGUMENTS_LENGTH:
case CAPTURED_OBJECT:
case REGISTER:
case INT32_REGISTER:
case UINT32_REGISTER:
case BOOL_REGISTER:
case FLOAT_REGISTER:
case DOUBLE_REGISTER:
case STACK_SLOT:
case INT32_STACK_SLOT:
case UINT32_STACK_SLOT:
case BOOL_STACK_SLOT:
case FLOAT_STACK_SLOT:
case DOUBLE_STACK_SLOT:
case LITERAL:
return 1;
case ARGUMENTS_ADAPTOR_FRAME:
case UPDATE_FEEDBACK:
return 2;
case BEGIN:
case INTERPRETED_FRAME:
case CONSTRUCT_STUB_FRAME:
case BUILTIN_CONTINUATION_FRAME:
case JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME:
return 3;
}
FATAL("Unexpected translation type");
return -1;
}
#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
const char* Translation::StringFor(Opcode opcode) {
#define TRANSLATION_OPCODE_CASE(item) case item: return #item;
switch (opcode) {
TRANSLATION_OPCODE_LIST(TRANSLATION_OPCODE_CASE)
}
#undef TRANSLATION_OPCODE_CASE
UNREACHABLE();
}
#endif
Handle<FixedArray> MaterializedObjectStore::Get(Address fp) {
int index = StackIdToIndex(fp);
if (index == -1) {
return Handle<FixedArray>::null();
}
Handle<FixedArray> array = GetStackEntries();
CHECK_GT(array->length(), index);
return Handle<FixedArray>::cast(Handle<Object>(array->get(index), isolate()));
}
void MaterializedObjectStore::Set(Address fp,
Handle<FixedArray> materialized_objects) {
int index = StackIdToIndex(fp);
if (index == -1) {
index = static_cast<int>(frame_fps_.size());
frame_fps_.push_back(fp);
}
Handle<FixedArray> array = EnsureStackEntries(index + 1);
array->set(index, *materialized_objects);
}
bool MaterializedObjectStore::Remove(Address fp) {
auto it = std::find(frame_fps_.begin(), frame_fps_.end(), fp);
if (it == frame_fps_.end()) return false;
int index = static_cast<int>(std::distance(frame_fps_.begin(), it));
frame_fps_.erase(it);
FixedArray* array = isolate()->heap()->materialized_objects();
CHECK_LT(index, array->length());
int fps_size = static_cast<int>(frame_fps_.size());
for (int i = index; i < fps_size; i++) {
array->set(i, array->get(i + 1));
}
array->set(fps_size, isolate()->heap()->undefined_value());
return true;
}
int MaterializedObjectStore::StackIdToIndex(Address fp) {
auto it = std::find(frame_fps_.begin(), frame_fps_.end(), fp);
return it == frame_fps_.end()
? -1
: static_cast<int>(std::distance(frame_fps_.begin(), it));
}
Handle<FixedArray> MaterializedObjectStore::GetStackEntries() {
return Handle<FixedArray>(isolate()->heap()->materialized_objects());
}
Handle<FixedArray> MaterializedObjectStore::EnsureStackEntries(int length) {
Handle<FixedArray> array = GetStackEntries();
if (array->length() >= length) {
return array;
}
int new_length = length > 10 ? length : 10;
if (new_length < 2 * array->length()) {
new_length = 2 * array->length();
}
Handle<FixedArray> new_array =
isolate()->factory()->NewFixedArray(new_length, TENURED);
for (int i = 0; i < array->length(); i++) {
new_array->set(i, array->get(i));
}
for (int i = array->length(); i < length; i++) {
new_array->set(i, isolate()->heap()->undefined_value());
}
isolate()->heap()->SetRootMaterializedObjects(*new_array);
return new_array;
}
namespace {
Handle<Object> GetValueForDebugger(TranslatedFrame::iterator it,
Isolate* isolate) {
if (it->GetRawValue() == isolate->heap()->arguments_marker()) {
if (!it->IsMaterializableByDebugger()) {
return isolate->factory()->optimized_out();
}
}
return it->GetValue();
}
} // namespace
DeoptimizedFrameInfo::DeoptimizedFrameInfo(TranslatedState* state,
TranslatedState::iterator frame_it,
Isolate* isolate) {
// If the previous frame is an adaptor frame, we will take the parameters
// from there.
TranslatedState::iterator parameter_frame = frame_it;
if (parameter_frame != state->begin()) {
parameter_frame--;
}
int parameter_count;
if (parameter_frame->kind() == TranslatedFrame::kArgumentsAdaptor) {
parameter_count = parameter_frame->height() - 1; // Ignore the receiver.
} else {
parameter_frame = frame_it;
parameter_count =
frame_it->shared_info()->internal_formal_parameter_count();
}
TranslatedFrame::iterator parameter_it = parameter_frame->begin();
parameter_it++; // Skip the function.
parameter_it++; // Skip the receiver.
// Figure out whether there is a construct stub frame on top of
// the parameter frame.
has_construct_stub_ =
parameter_frame != state->begin() &&
(parameter_frame - 1)->kind() == TranslatedFrame::kConstructStub;
DCHECK_EQ(TranslatedFrame::kInterpretedFunction, frame_it->kind());
source_position_ = Deoptimizer::ComputeSourcePositionFromBytecodeArray(
*frame_it->shared_info(), frame_it->node_id());
TranslatedFrame::iterator value_it = frame_it->begin();
// Get the function. Note that this might materialize the function.
// In case the debugger mutates this value, we should deoptimize
// the function and remember the value in the materialized value store.
function_ = Handle<JSFunction>::cast(value_it->GetValue());
parameters_.resize(static_cast<size_t>(parameter_count));
for (int i = 0; i < parameter_count; i++) {
Handle<Object> parameter = GetValueForDebugger(parameter_it, isolate);
SetParameter(i, parameter);
parameter_it++;
}
// Skip the function, the receiver and the arguments.
int skip_count =
frame_it->shared_info()->internal_formal_parameter_count() + 2;
TranslatedFrame::iterator stack_it = frame_it->begin();
for (int i = 0; i < skip_count; i++) {
stack_it++;
}
// Get the context.
context_ = GetValueForDebugger(stack_it, isolate);
stack_it++;
// Get the expression stack.
int stack_height = frame_it->height();
if (frame_it->kind() == TranslatedFrame::kInterpretedFunction) {
// For interpreter frames, we should not count the accumulator.
// TODO(jarin): Clean up the indexing in translated frames.
stack_height--;
}
expression_stack_.resize(static_cast<size_t>(stack_height));
for (int i = 0; i < stack_height; i++) {
Handle<Object> expression = GetValueForDebugger(stack_it, isolate);
SetExpression(i, expression);
stack_it++;
}
// For interpreter frame, skip the accumulator.
if (frame_it->kind() == TranslatedFrame::kInterpretedFunction) {
stack_it++;
}
CHECK(stack_it == frame_it->end());
}
Deoptimizer::DeoptInfo Deoptimizer::GetDeoptInfo(Code* code, Address pc) {
CHECK(code->instruction_start() <= pc && pc <= code->instruction_end());
SourcePosition last_position = SourcePosition::Unknown();
DeoptimizeReason last_reason = DeoptimizeReason::kUnknown;
int last_deopt_id = kNoDeoptimizationId;
int mask = RelocInfo::ModeMask(RelocInfo::DEOPT_REASON) |
RelocInfo::ModeMask(RelocInfo::DEOPT_ID) |
RelocInfo::ModeMask(RelocInfo::DEOPT_SCRIPT_OFFSET) |
RelocInfo::ModeMask(RelocInfo::DEOPT_INLINING_ID);
for (RelocIterator it(code, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
if (info->pc() >= pc) break;
if (info->rmode() == RelocInfo::DEOPT_SCRIPT_OFFSET) {
int script_offset = static_cast<int>(info->data());
it.next();
DCHECK(it.rinfo()->rmode() == RelocInfo::DEOPT_INLINING_ID);
int inlining_id = static_cast<int>(it.rinfo()->data());
last_position = SourcePosition(script_offset, inlining_id);
} else if (info->rmode() == RelocInfo::DEOPT_ID) {
last_deopt_id = static_cast<int>(info->data());
} else if (info->rmode() == RelocInfo::DEOPT_REASON) {
last_reason = static_cast<DeoptimizeReason>(info->data());
}
}
return DeoptInfo(last_position, last_reason, last_deopt_id);
}
// static
int Deoptimizer::ComputeSourcePositionFromBytecodeArray(
SharedFunctionInfo* shared, BailoutId node_id) {
DCHECK(shared->HasBytecodeArray());
return AbstractCode::cast(shared->bytecode_array())
->SourcePosition(node_id.ToInt());
}
// static
TranslatedValue TranslatedValue::NewDeferredObject(TranslatedState* container,
int length,
int object_index) {
TranslatedValue slot(container, kCapturedObject);
slot.materialization_info_ = {object_index, length};
return slot;
}
// static
TranslatedValue TranslatedValue::NewDuplicateObject(TranslatedState* container,
int id) {
TranslatedValue slot(container, kDuplicatedObject);
slot.materialization_info_ = {id, -1};
return slot;
}
// static
TranslatedValue TranslatedValue::NewFloat(TranslatedState* container,
Float32 value) {
TranslatedValue slot(container, kFloat);
slot.float_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewDouble(TranslatedState* container,
Float64 value) {
TranslatedValue slot(container, kDouble);
slot.double_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewInt32(TranslatedState* container,
int32_t value) {
TranslatedValue slot(container, kInt32);
slot.int32_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewUInt32(TranslatedState* container,
uint32_t value) {
TranslatedValue slot(container, kUInt32);
slot.uint32_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewBool(TranslatedState* container,
uint32_t value) {
TranslatedValue slot(container, kBoolBit);
slot.uint32_value_ = value;
return slot;
}
// static
TranslatedValue TranslatedValue::NewTagged(TranslatedState* container,
Object* literal) {
TranslatedValue slot(container, kTagged);
slot.raw_literal_ = literal;
return slot;
}
// static
TranslatedValue TranslatedValue::NewInvalid(TranslatedState* container) {
return TranslatedValue(container, kInvalid);
}
Isolate* TranslatedValue::isolate() const { return container_->isolate(); }
Object* TranslatedValue::raw_literal() const {
DCHECK_EQ(kTagged, kind());
return raw_literal_;
}
int32_t TranslatedValue::int32_value() const {
DCHECK_EQ(kInt32, kind());
return int32_value_;
}
uint32_t TranslatedValue::uint32_value() const {
DCHECK(kind() == kUInt32 || kind() == kBoolBit);
return uint32_value_;
}
Float32 TranslatedValue::float_value() const {
DCHECK_EQ(kFloat, kind());
return float_value_;
}
Float64 TranslatedValue::double_value() const {
DCHECK_EQ(kDouble, kind());
return double_value_;
}
int TranslatedValue::object_length() const {
DCHECK_EQ(kind(), kCapturedObject);
return materialization_info_.length_;
}
int TranslatedValue::object_index() const {
DCHECK(kind() == kCapturedObject || kind() == kDuplicatedObject);
return materialization_info_.id_;
}
Object* TranslatedValue::GetRawValue() const {
// If we have a value, return it.
if (materialization_state() == kFinished) {
return *storage_;
}
// Otherwise, do a best effort to get the value without allocation.
switch (kind()) {
case kTagged:
return raw_literal();
case kInt32: {
bool is_smi = Smi::IsValid(int32_value());
if (is_smi) {
return Smi::FromInt(int32_value());
}
break;
}
case kUInt32: {
bool is_smi = (uint32_value() <= static_cast<uintptr_t>(Smi::kMaxValue));
if (is_smi) {
return Smi::FromInt(static_cast<int32_t>(uint32_value()));
}
break;
}
case kBoolBit: {
if (uint32_value() == 0) {
return isolate()->heap()->false_value();
} else {
CHECK_EQ(1U, uint32_value());
return isolate()->heap()->true_value();
}
}
default:
break;
}
// If we could not get the value without allocation, return the arguments
// marker.
return isolate()->heap()->arguments_marker();
}
void TranslatedValue::set_initialized_storage(Handle<Object> storage) {
DCHECK_EQ(kUninitialized, materialization_state());
storage_ = storage;
materialization_state_ = kFinished;
}
Handle<Object> TranslatedValue::GetValue() {
// If we already have a value, then get it.
if (materialization_state() == kFinished) return storage_;
// Otherwise we have to materialize.
switch (kind()) {
case TranslatedValue::kTagged:
case TranslatedValue::kInt32:
case TranslatedValue::kUInt32:
case TranslatedValue::kBoolBit:
case TranslatedValue::kFloat:
case TranslatedValue::kDouble: {
MaterializeSimple();
return storage_;
}
case TranslatedValue::kCapturedObject:
case TranslatedValue::kDuplicatedObject: {
// We need to materialize the object (or possibly even object graphs).
// To make the object verifier happy, we materialize in two steps.
// 1. Allocate storage for reachable objects. This makes sure that for
// each object we have allocated space on heap. The space will be
// a byte array that will be later initialized, or a fully
// initialized object if it is safe to allocate one that will
// pass the verifier.
container_->EnsureObjectAllocatedAt(this);
// 2. Initialize the objects. If we have allocated only byte arrays
// for some objects, we now overwrite the byte arrays with the
// correct object fields. Note that this phase does not allocate
// any new objects, so it does not trigger the object verifier.
return container_->InitializeObjectAt(this);
}
case TranslatedValue::kInvalid:
FATAL("unexpected case");
return Handle<Object>::null();
}
FATAL("internal error: value missing");
return Handle<Object>::null();
}
void TranslatedValue::MaterializeSimple() {
// If we already have materialized, return.
if (materialization_state() == kFinished) return;
Object* raw_value = GetRawValue();
if (raw_value != isolate()->heap()->arguments_marker()) {
// We can get the value without allocation, just return it here.
set_initialized_storage(Handle<Object>(raw_value, isolate()));
return;
}
switch (kind()) {
case kInt32:
set_initialized_storage(
Handle<Object>(isolate()->factory()->NewNumber(int32_value())));
return;
case kUInt32:
set_initialized_storage(
Handle<Object>(isolate()->factory()->NewNumber(uint32_value())));
return;
case kFloat: {
double scalar_value = float_value().get_scalar();
set_initialized_storage(
Handle<Object>(isolate()->factory()->NewNumber(scalar_value)));
return;
}
case kDouble: {
double scalar_value = double_value().get_scalar();
set_initialized_storage(
Handle<Object>(isolate()->factory()->NewNumber(scalar_value)));
return;
}
case kCapturedObject:
case kDuplicatedObject:
case kInvalid:
case kTagged:
case kBoolBit:
FATAL("internal error: unexpected materialization.");
break;
}
}
bool TranslatedValue::IsMaterializedObject() const {
switch (kind()) {
case kCapturedObject:
case kDuplicatedObject:
return true;
default:
return false;
}
}
bool TranslatedValue::IsMaterializableByDebugger() const {
// At the moment, we only allow materialization of doubles.
return (kind() == kDouble);
}
int TranslatedValue::GetChildrenCount() const {
if (kind() == kCapturedObject) {
return object_length();
} else {
return 0;
}
}
uint32_t TranslatedState::GetUInt32Slot(Address fp, int slot_offset) {
Address address = fp + slot_offset;
#if V8_TARGET_BIG_ENDIAN && V8_HOST_ARCH_64_BIT
return Memory::uint32_at(address + kIntSize);
#else
return Memory::uint32_at(address);
#endif
}
Float32 TranslatedState::GetFloatSlot(Address fp, int slot_offset) {
#if !V8_TARGET_ARCH_S390X && !V8_TARGET_ARCH_PPC64
return Float32::FromBits(GetUInt32Slot(fp, slot_offset));
#else
return Float32::FromBits(Memory::uint32_at(fp + slot_offset));
#endif
}
Float64 TranslatedState::GetDoubleSlot(Address fp, int slot_offset) {
return Float64::FromBits(Memory::uint64_at(fp + slot_offset));
}
void TranslatedValue::Handlify() {
if (kind() == kTagged) {
set_initialized_storage(Handle<Object>(raw_literal(), isolate()));
raw_literal_ = nullptr;
}
}
TranslatedFrame TranslatedFrame::InterpretedFrame(
BailoutId bytecode_offset, SharedFunctionInfo* shared_info, int height) {
TranslatedFrame frame(kInterpretedFunction, shared_info, height);
frame.node_id_ = bytecode_offset;
return frame;
}
TranslatedFrame TranslatedFrame::ArgumentsAdaptorFrame(
SharedFunctionInfo* shared_info, int height) {
return TranslatedFrame(kArgumentsAdaptor, shared_info, height);
}
TranslatedFrame TranslatedFrame::ConstructStubFrame(
BailoutId bailout_id, SharedFunctionInfo* shared_info, int height) {
TranslatedFrame frame(kConstructStub, shared_info, height);
frame.node_id_ = bailout_id;
return frame;
}
TranslatedFrame TranslatedFrame::BuiltinContinuationFrame(
BailoutId bailout_id, SharedFunctionInfo* shared_info, int height) {
TranslatedFrame frame(kBuiltinContinuation, shared_info, height);
frame.node_id_ = bailout_id;
return frame;
}
TranslatedFrame TranslatedFrame::JavaScriptBuiltinContinuationFrame(
BailoutId bailout_id, SharedFunctionInfo* shared_info, int height) {
TranslatedFrame frame(kJavaScriptBuiltinContinuation, shared_info, height);
frame.node_id_ = bailout_id;
return frame;
}
int TranslatedFrame::GetValueCount() {
switch (kind()) {
case kInterpretedFunction: {
int parameter_count =
raw_shared_info_->internal_formal_parameter_count() + 1;
// + 2 for function and context.
return height_ + parameter_count + 2;
}
case kArgumentsAdaptor:
case kConstructStub:
case kBuiltinContinuation:
case kJavaScriptBuiltinContinuation:
return 1 + height_;
case kInvalid:
UNREACHABLE();
break;
}
UNREACHABLE();
}
void TranslatedFrame::Handlify() {
if (raw_shared_info_ != nullptr) {
shared_info_ = Handle<SharedFunctionInfo>(raw_shared_info_);
raw_shared_info_ = nullptr;
}
for (auto& value : values_) {
value.Handlify();
}
}
TranslatedFrame TranslatedState::CreateNextTranslatedFrame(
TranslationIterator* iterator, FixedArray* literal_array, Address fp,
FILE* trace_file) {
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
switch (opcode) {
case Translation::INTERPRETED_FRAME: {
BailoutId bytecode_offset = BailoutId(iterator->Next());
SharedFunctionInfo* shared_info =
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
PrintF(trace_file, " reading input frame %s", name.get());
int arg_count = shared_info->internal_formal_parameter_count() + 1;
PrintF(trace_file,
" => bytecode_offset=%d, args=%d, height=%d; inputs:\n",
bytecode_offset.ToInt(), arg_count, height);
}
return TranslatedFrame::InterpretedFrame(bytecode_offset, shared_info,
height);
}
case Translation::ARGUMENTS_ADAPTOR_FRAME: {
SharedFunctionInfo* shared_info =
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
PrintF(trace_file, " reading arguments adaptor frame %s", name.get());
PrintF(trace_file, " => height=%d; inputs:\n", height);
}
return TranslatedFrame::ArgumentsAdaptorFrame(shared_info, height);
}
case Translation::CONSTRUCT_STUB_FRAME: {
BailoutId bailout_id = BailoutId(iterator->Next());
SharedFunctionInfo* shared_info =
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
PrintF(trace_file, " reading construct stub frame %s", name.get());
PrintF(trace_file, " => bailout_id=%d, height=%d; inputs:\n",
bailout_id.ToInt(), height);
}
return TranslatedFrame::ConstructStubFrame(bailout_id, shared_info,
height);
}
case Translation::BUILTIN_CONTINUATION_FRAME: {
BailoutId bailout_id = BailoutId(iterator->Next());
SharedFunctionInfo* shared_info =
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
PrintF(trace_file, " reading builtin continuation frame %s",
name.get());
PrintF(trace_file, " => bailout_id=%d, height=%d; inputs:\n",
bailout_id.ToInt(), height);
}
// Add one to the height to account for the context which was implicitly
// added to the translation during code generation.
int height_with_context = height + 1;
return TranslatedFrame::BuiltinContinuationFrame(bailout_id, shared_info,
height_with_context);
}
case Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME: {
BailoutId bailout_id = BailoutId(iterator->Next());
SharedFunctionInfo* shared_info =
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
int height = iterator->Next();
if (trace_file != nullptr) {
std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
PrintF(trace_file, " reading JavaScript builtin continuation frame %s",
name.get());
PrintF(trace_file, " => bailout_id=%d, height=%d; inputs:\n",
bailout_id.ToInt(), height);
}
// Add one to the height to account for the context which was implicitly
// added to the translation during code generation.
int height_with_context = height + 1;
return TranslatedFrame::JavaScriptBuiltinContinuationFrame(
bailout_id, shared_info, height_with_context);
}
case Translation::UPDATE_FEEDBACK:
case Translation::BEGIN:
case Translation::DUPLICATED_OBJECT:
case Translation::ARGUMENTS_ELEMENTS:
case Translation::ARGUMENTS_LENGTH:
case Translation::CAPTURED_OBJECT:
case Translation::REGISTER:
case Translation::INT32_REGISTER:
case Translation::UINT32_REGISTER:
case Translation::BOOL_REGISTER:
case Translation::FLOAT_REGISTER:
case Translation::DOUBLE_REGISTER:
case Translation::STACK_SLOT:
case Translation::INT32_STACK_SLOT:
case Translation::UINT32_STACK_SLOT:
case Translation::BOOL_STACK_SLOT:
case Translation::FLOAT_STACK_SLOT:
case Translation::DOUBLE_STACK_SLOT:
case Translation::LITERAL:
break;
}
FATAL("We should never get here - unexpected deopt info.");
return TranslatedFrame::InvalidFrame();
}
// static
void TranslatedFrame::AdvanceIterator(
std::deque<TranslatedValue>::iterator* iter) {
int values_to_skip = 1;
while (values_to_skip > 0) {
// Consume the current element.
values_to_skip--;
// Add all the children.
values_to_skip += (*iter)->GetChildrenCount();
(*iter)++;
}
}
Address TranslatedState::ComputeArgumentsPosition(Address input_frame_pointer,
CreateArgumentsType type,
int* length) {
Address parent_frame_pointer = *reinterpret_cast<Address*>(
input_frame_pointer + StandardFrameConstants::kCallerFPOffset);
intptr_t parent_frame_type = Memory::intptr_at(
parent_frame_pointer + CommonFrameConstants::kContextOrFrameTypeOffset);
Address arguments_frame;
if (parent_frame_type ==
StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)) {
if (length)
*length = Smi::cast(*reinterpret_cast<Object**>(
parent_frame_pointer +
ArgumentsAdaptorFrameConstants::kLengthOffset))
->value();
arguments_frame = parent_frame_pointer;
} else {
if (length) *length = formal_parameter_count_;
arguments_frame = input_frame_pointer;
}
if (type == CreateArgumentsType::kRestParameter) {
// If the actual number of arguments is less than the number of formal
// parameters, we have zero rest parameters.
if (length) *length = std::max(0, *length - formal_parameter_count_);
}
return arguments_frame;
}
// Creates translated values for an arguments backing store, or the backing
// store for rest parameters depending on the given {type}. The TranslatedValue
// objects for the fields are not read from the TranslationIterator, but instead
// created on-the-fly based on dynamic information in the optimized frame.
void TranslatedState::CreateArgumentsElementsTranslatedValues(
int frame_index, Address input_frame_pointer, CreateArgumentsType type,
FILE* trace_file) {
TranslatedFrame& frame = frames_[frame_index];
int length;
Address arguments_frame =
ComputeArgumentsPosition(input_frame_pointer, type, &length);
int object_index = static_cast<int>(object_positions_.size());
int value_index = static_cast<int>(frame.values_.size());
if (trace_file != nullptr) {
PrintF(trace_file, "arguments elements object #%d (type = %d, length = %d)",
object_index, static_cast<uint8_t>(type), length);
}
object_positions_.push_back({frame_index, value_index});
frame.Add(TranslatedValue::NewDeferredObject(
this, length + FixedArray::kHeaderSize / kPointerSize, object_index));
frame.Add(
TranslatedValue::NewTagged(this, isolate_->heap()->fixed_array_map()));
frame.Add(TranslatedValue::NewInt32(this, length));
int number_of_holes = 0;
if (type == CreateArgumentsType::kMappedArguments) {
// If the actual number of arguments is less than the number of formal
// parameters, we have fewer holes to fill to not overshoot the length.
number_of_holes = Min(formal_parameter_count_, length);
}
for (int i = 0; i < number_of_holes; ++i) {
frame.Add(
TranslatedValue::NewTagged(this, isolate_->heap()->the_hole_value()));
}
for (int i = length - number_of_holes - 1; i >= 0; --i) {
Address argument_slot = arguments_frame +
CommonFrameConstants::kFixedFrameSizeAboveFp +
i * kPointerSize;
frame.Add(TranslatedValue::NewTagged(
this, *reinterpret_cast<Object**>(argument_slot)));
}
}
// We can't intermix stack decoding and allocations because the deoptimization
// infrastracture is not GC safe.
// Thus we build a temporary structure in malloced space.
// The TranslatedValue objects created correspond to the static translation
// instructions from the TranslationIterator, except for
// Translation::ARGUMENTS_ELEMENTS, where the number and values of the
// FixedArray elements depend on dynamic information from the optimized frame.
// Returns the number of expected nested translations from the
// TranslationIterator.
int TranslatedState::CreateNextTranslatedValue(
int frame_index, TranslationIterator* iterator, FixedArray* literal_array,
Address fp, RegisterValues* registers, FILE* trace_file) {
disasm::NameConverter converter;
TranslatedFrame& frame = frames_[frame_index];
int value_index = static_cast<int>(frame.values_.size());
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
switch (opcode) {
case Translation::BEGIN:
case Translation::INTERPRETED_FRAME:
case Translation::ARGUMENTS_ADAPTOR_FRAME:
case Translation::CONSTRUCT_STUB_FRAME:
case Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME:
case Translation::BUILTIN_CONTINUATION_FRAME:
case Translation::UPDATE_FEEDBACK:
// Peeled off before getting here.
break;
case Translation::DUPLICATED_OBJECT: {
int object_id = iterator->Next();
if (trace_file != nullptr) {
PrintF(trace_file, "duplicated object #%d", object_id);
}
object_positions_.push_back(object_positions_[object_id]);
TranslatedValue translated_value =
TranslatedValue::NewDuplicateObject(this, object_id);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::ARGUMENTS_ELEMENTS: {
CreateArgumentsType arguments_type =
static_cast<CreateArgumentsType>(iterator->Next());
CreateArgumentsElementsTranslatedValues(frame_index, fp, arguments_type,
trace_file);
return 0;
}
case Translation::ARGUMENTS_LENGTH: {
CreateArgumentsType arguments_type =
static_cast<CreateArgumentsType>(iterator->Next());
int length;
ComputeArgumentsPosition(fp, arguments_type, &length);
if (trace_file != nullptr) {
PrintF(trace_file, "arguments length field (type = %d, length = %d)",
static_cast<uint8_t>(arguments_type), length);
}
frame.Add(TranslatedValue::NewInt32(this, length));
return 0;
}
case Translation::CAPTURED_OBJECT: {
int field_count = iterator->Next();
int object_index = static_cast<int>(object_positions_.size());
if (trace_file != nullptr) {
PrintF(trace_file, "captured object #%d (length = %d)", object_index,
field_count);
}
object_positions_.push_back({frame_index, value_index});
TranslatedValue translated_value =
TranslatedValue::NewDeferredObject(this, field_count, object_index);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "0x%08" V8PRIxPTR " ; %s ", value,
converter.NameOfCPURegister(input_reg));
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
}
TranslatedValue translated_value =
TranslatedValue::NewTagged(this, reinterpret_cast<Object*>(value));
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::INT32_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%" V8PRIdPTR " ; %s ", value,
converter.NameOfCPURegister(input_reg));
}
TranslatedValue translated_value =
TranslatedValue::NewInt32(this, static_cast<int32_t>(value));
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::UINT32_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%" V8PRIuPTR " ; %s (uint)", value,
converter.NameOfCPURegister(input_reg));
}
TranslatedValue translated_value =
TranslatedValue::NewUInt32(this, static_cast<uint32_t>(value));
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::BOOL_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
intptr_t value = registers->GetRegister(input_reg);
if (trace_file != nullptr) {
PrintF(trace_file, "%" V8PRIdPTR " ; %s (bool)", value,
converter.NameOfCPURegister(input_reg));
}
TranslatedValue translated_value =
TranslatedValue::NewBool(this, static_cast<uint32_t>(value));
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::FLOAT_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
Float32 value = registers->GetFloatRegister(input_reg);
if (trace_file != nullptr) {
PrintF(
trace_file, "%e ; %s (float)", value.get_scalar(),
RegisterConfiguration::Default()->GetFloatRegisterName(input_reg));
}
TranslatedValue translated_value = TranslatedValue::NewFloat(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::DOUBLE_REGISTER: {
int input_reg = iterator->Next();
if (registers == nullptr) {
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
Float64 value = registers->GetDoubleRegister(input_reg);
if (trace_file != nullptr) {
PrintF(
trace_file, "%e ; %s (double)", value.get_scalar(),
RegisterConfiguration::Default()->GetDoubleRegisterName(input_reg));
}
TranslatedValue translated_value =
TranslatedValue::NewDouble(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
intptr_t value = *(reinterpret_cast<intptr_t*>(fp + slot_offset));
if (trace_file != nullptr) {
PrintF(trace_file, "0x%08" V8PRIxPTR " ; [fp %c %d] ", value,
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
}
TranslatedValue translated_value =
TranslatedValue::NewTagged(this, reinterpret_cast<Object*>(value));
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::INT32_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
uint32_t value = GetUInt32Slot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%d ; (int) [fp %c %d] ",
static_cast<int32_t>(value), slot_offset < 0 ? '-' : '+',
std::abs(slot_offset));
}
TranslatedValue translated_value = TranslatedValue::NewInt32(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::UINT32_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
uint32_t value = GetUInt32Slot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%u ; (uint) [fp %c %d] ", value,
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
}
TranslatedValue translated_value =
TranslatedValue::NewUInt32(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::BOOL_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
uint32_t value = GetUInt32Slot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%u ; (bool) [fp %c %d] ", value,
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
}
TranslatedValue translated_value = TranslatedValue::NewBool(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::FLOAT_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
Float32 value = GetFloatSlot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%e ; (float) [fp %c %d] ", value.get_scalar(),
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
}
TranslatedValue translated_value = TranslatedValue::NewFloat(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::DOUBLE_STACK_SLOT: {
int slot_offset =
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
Float64 value = GetDoubleSlot(fp, slot_offset);
if (trace_file != nullptr) {
PrintF(trace_file, "%e ; (double) [fp %c %d] ", value.get_scalar(),
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
}
TranslatedValue translated_value =
TranslatedValue::NewDouble(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
case Translation::LITERAL: {
int literal_index = iterator->Next();
Object* value = literal_array->get(literal_index);
if (trace_file != nullptr) {
PrintF(trace_file, "0x%08" V8PRIxPTR " ; (literal %d) ",
reinterpret_cast<intptr_t>(value), literal_index);
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
}
TranslatedValue translated_value =
TranslatedValue::NewTagged(this, value);
frame.Add(translated_value);
return translated_value.GetChildrenCount();
}
}
FATAL("We should never get here - unexpected deopt info.");
}
TranslatedState::TranslatedState(const JavaScriptFrame* frame) {
int deopt_index = Safepoint::kNoDeoptimizationIndex;
DeoptimizationData* data =
static_cast<const OptimizedFrame*>(frame)->GetDeoptimizationData(
&deopt_index);
DCHECK(data != nullptr && deopt_index != Safepoint::kNoDeoptimizationIndex);
TranslationIterator it(data->TranslationByteArray(),
data->TranslationIndex(deopt_index)->value());
Init(frame->fp(), &it, data->LiteralArray(), nullptr /* registers */,
nullptr /* trace file */,
frame->function()->shared()->internal_formal_parameter_count());
}
void TranslatedState::Init(Address input_frame_pointer,
TranslationIterator* iterator,
FixedArray* literal_array, RegisterValues* registers,
FILE* trace_file, int formal_parameter_count) {
DCHECK(frames_.empty());
formal_parameter_count_ = formal_parameter_count;
isolate_ = literal_array->GetIsolate();
// Read out the 'header' translation.
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
CHECK(opcode == Translation::BEGIN);
int count = iterator->Next();
frames_.reserve(count);
iterator->Next(); // Drop JS frames count.
int update_feedback_count = iterator->Next();
CHECK_GE(update_feedback_count, 0);
CHECK_LE(update_feedback_count, 1);
if (update_feedback_count == 1) {
ReadUpdateFeedback(iterator, literal_array, trace_file);
}
std::stack<int> nested_counts;
// Read the frames
for (int frame_index = 0; frame_index < count; frame_index++) {
// Read the frame descriptor.
frames_.push_back(CreateNextTranslatedFrame(
iterator, literal_array, input_frame_pointer, trace_file));
TranslatedFrame& frame = frames_.back();
// Read the values.
int values_to_process = frame.GetValueCount();
while (values_to_process > 0 || !nested_counts.empty()) {
if (trace_file != nullptr) {
if (nested_counts.empty()) {
// For top level values, print the value number.
PrintF(trace_file, " %3i: ",
frame.GetValueCount() - values_to_process);
} else {
// Take care of indenting for nested values.
PrintF(trace_file, " ");
for (size_t j = 0; j < nested_counts.size(); j++) {
PrintF(trace_file, " ");
}
}
}
int nested_count =
CreateNextTranslatedValue(frame_index, iterator, literal_array,
input_frame_pointer, registers, trace_file);
if (trace_file != nullptr) {
PrintF(trace_file, "\n");
}
// Update the value count and resolve the nesting.
values_to_process--;
if (nested_count > 0) {
nested_counts.push(values_to_process);
values_to_process = nested_count;
} else {
while (values_to_process == 0 && !nested_counts.empty()) {
values_to_process = nested_counts.top();
nested_counts.pop();
}
}
}
}
CHECK(!iterator->HasNext() ||
static_cast<Translation::Opcode>(iterator->Next()) ==
Translation::BEGIN);
}
void TranslatedState::Prepare(Address stack_frame_pointer) {
for (auto& frame : frames_) frame.Handlify();
if (feedback_vector_ != nullptr) {
feedback_vector_handle_ =
Handle<FeedbackVector>(feedback_vector_, isolate());
feedback_vector_ = nullptr;
}
stack_frame_pointer_ = stack_frame_pointer;
UpdateFromPreviouslyMaterializedObjects();
}
TranslatedValue* TranslatedState::GetValueByObjectIndex(int object_index) {
CHECK_LT(static_cast<size_t>(object_index), object_positions_.size());
TranslatedState::ObjectPosition pos = object_positions_[object_index];
return &(frames_[pos.frame_index_].values_[pos.value_index_]);
}
Handle<Object> TranslatedState::InitializeObjectAt(TranslatedValue* slot) {
slot = ResolveCapturedObject(slot);
DisallowHeapAllocation no_allocation;
if (slot->materialization_state() != TranslatedValue::kFinished) {
std::stack<int> worklist;
worklist.push(slot->object_index());
slot->mark_finished();
while (!worklist.empty()) {
int index = worklist.top();
worklist.pop();
InitializeCapturedObjectAt(index, &worklist, no_allocation);
}
}
return slot->GetStorage();
}
void TranslatedState::InitializeCapturedObjectAt(
int object_index, std::stack<int>* worklist,
const DisallowHeapAllocation& no_allocation) {
CHECK_LT(static_cast<size_t>(object_index), object_positions_.size());
TranslatedState::ObjectPosition pos = object_positions_[object_index];
int value_index = pos.value_index_;
TranslatedFrame* frame = &(frames_[pos.frame_index_]);
TranslatedValue* slot = &(frame->values_[value_index]);
value_index++;
CHECK_EQ(TranslatedValue::kFinished, slot->materialization_state());
CHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
// Ensure all fields are initialized.
int children_init_index = value_index;
for (int i = 0; i < slot->GetChildrenCount(); i++) {
// If the field is an object that has not been initialized yet, queue it
// for initialization (and mark it as such).
TranslatedValue* child_slot = frame->ValueAt(children_init_index);
if (child_slot->kind() == TranslatedValue::kCapturedObject ||
child_slot->kind() == TranslatedValue::kDuplicatedObject) {
child_slot = ResolveCapturedObject(child_slot);
if (child_slot->materialization_state() != TranslatedValue::kFinished) {
DCHECK_EQ(TranslatedValue::kAllocated,
child_slot->materialization_state());
worklist->push(child_slot->object_index());
child_slot->mark_finished();
}
}
SkipSlots(1, frame, &children_init_index);
}
// Read the map.
// The map should never be materialized, so let us check we already have
// an existing object here.
CHECK_EQ(frame->values_[value_index].kind(), TranslatedValue::kTagged);
Handle<Map> map = Handle<Map>::cast(frame->values_[value_index].GetValue());
CHECK(map->IsMap());
value_index++;
// Handle the special cases.
switch (map->instance_type()) {
case MUTABLE_HEAP_NUMBER_TYPE:
case FIXED_DOUBLE_ARRAY_TYPE:
return;
case FIXED_ARRAY_TYPE:
case HASH_TABLE_TYPE:
case PROPERTY_ARRAY_TYPE:
case CONTEXT_EXTENSION_TYPE:
InitializeObjectWithTaggedFieldsAt(frame, &value_index, slot, map,
no_allocation);
break;
default:
CHECK(map->IsJSObjectMap());
InitializeJSObjectAt(frame, &value_index, slot, map, no_allocation);
break;
}
CHECK_EQ(value_index, children_init_index);
}
void TranslatedState::EnsureObjectAllocatedAt(TranslatedValue* slot) {
slot = ResolveCapturedObject(slot);
if (slot->materialization_state() == TranslatedValue::kUninitialized) {
std::stack<int> worklist;
worklist.push(slot->object_index());
slot->mark_allocated();
while (!worklist.empty()) {
int index = worklist.top();
worklist.pop();
EnsureCapturedObjectAllocatedAt(index, &worklist);
}
}
}
void TranslatedState::MaterializeFixedDoubleArray(TranslatedFrame* frame,
int* value_index,
TranslatedValue* slot,
Handle<Map> map) {
int length = Smi::cast(frame->values_[*value_index].GetRawValue())->value();
(*value_index)++;
Handle<FixedDoubleArray> array = Handle<FixedDoubleArray>::cast(
isolate()->factory()->NewFixedDoubleArray(length));
CHECK_GT(length, 0);
for (int i = 0; i < length; i++) {
CHECK_NE(TranslatedValue::kCapturedObject,
frame->values_[*value_index].kind());
Handle<Object> value = frame->values_[*value_index].GetValue();
if (value->IsNumber()) {
array->set(i, value->Number());
} else {
CHECK(value.is_identical_to(isolate()->factory()->the_hole_value()));
array->set_the_hole(isolate(), i);
}
(*value_index)++;
}
slot->set_storage(array);
}
void TranslatedState::MaterializeMutableHeapNumber(TranslatedFrame* frame,
int* value_index,
TranslatedValue* slot) {
CHECK_NE(TranslatedValue::kCapturedObject,
frame->values_[*value_index].kind());
Handle<Object> value = frame->values_[*value_index].GetValue();
Handle<HeapNumber> box;
CHECK(value->IsNumber());
box = isolate()->factory()->NewHeapNumber(value->Number(), MUTABLE);
(*value_index)++;
slot->set_storage(box);
}
namespace {
enum DoubleStorageKind : uint8_t {
kStoreTagged,
kStoreUnboxedDouble,
kStoreMutableHeapNumber,
};
} // namespace
void TranslatedState::SkipSlots(int slots_to_skip, TranslatedFrame* frame,
int* value_index) {
while (slots_to_skip > 0) {
TranslatedValue* slot = &(frame->values_[*value_index]);
(*value_index)++;
slots_to_skip--;
if (slot->kind() == TranslatedValue::kCapturedObject) {
slots_to_skip += slot->GetChildrenCount();
}
}
}
void TranslatedState::EnsureCapturedObjectAllocatedAt(
int object_index, std::stack<int>* worklist) {
CHECK_LT(static_cast<size_t>(object_index), object_positions_.size());
TranslatedState::ObjectPosition pos = object_positions_[object_index];
int value_index = pos.value_index_;
TranslatedFrame* frame = &(frames_[pos.frame_index_]);
TranslatedValue* slot = &(frame->values_[value_index]);
value_index++;
CHECK_EQ(TranslatedValue::kAllocated, slot->materialization_state());
CHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
// Read the map.
// The map should never be materialized, so let us check we already have
// an existing object here.
CHECK_EQ(frame->values_[value_index].kind(), TranslatedValue::kTagged);
Handle<Map> map = Handle<Map>::cast(frame->values_[value_index].GetValue());
CHECK(map->IsMap());
value_index++;
// Handle the special cases.
switch (map->instance_type()) {
case FIXED_DOUBLE_ARRAY_TYPE:
// Materialize (i.e. allocate&initialize) the array and return since
// there is no need to process the children.
return MaterializeFixedDoubleArray(frame, &value_index, slot, map);
case MUTABLE_HEAP_NUMBER_TYPE:
// Materialize (i.e. allocate&initialize) the heap number and return.
// There is no need to process the children.
return MaterializeMutableHeapNumber(frame, &value_index, slot);
case FIXED_ARRAY_TYPE:
case HASH_TABLE_TYPE: {
// Check we have the right size.
int array_length =
Smi::cast(frame->values_[value_index].GetRawValue())->value();
int instance_size = FixedArray::SizeFor(array_length);
CHECK_EQ(instance_size, slot->GetChildrenCount() * kPointerSize);
// Canonicalize empty fixed array.
if (*map == isolate()->heap()->empty_fixed_array()->map() &&
array_length == 0) {
slot->set_storage(isolate()->factory()->empty_fixed_array());
} else {
slot->set_storage(AllocateStorageFor(slot));
}
// Make sure all the remaining children (after the map) are allocated.
return EnsureChildrenAllocated(slot->GetChildrenCount() - 1, frame,
&value_index, worklist);
}
case PROPERTY_ARRAY_TYPE: {
// Check we have the right size.
int length_or_hash =
Smi::cast(frame->values_[value_index].GetRawValue())->value();
int array_length = PropertyArray::LengthField::decode(length_or_hash);
int instance_size = PropertyArray::SizeFor(array_length);
CHECK_EQ(instance_size, slot->GetChildrenCount() * kPointerSize);
slot->set_storage(AllocateStorageFor(slot));
// Make sure all the remaining children (after the map) are allocated.
return EnsureChildrenAllocated(slot->GetChildrenCount() - 1, frame,
&value_index, worklist);
}
case CONTEXT_EXTENSION_TYPE: {
CHECK_EQ(map->instance_size(), slot->GetChildrenCount() * kPointerSize);
slot->set_storage(AllocateStorageFor(slot));
// Make sure all the remaining children (after the map) are allocated.
return EnsureChildrenAllocated(slot->GetChildrenCount() - 1, frame,
&value_index, worklist);
}
default:
CHECK(map->IsJSObjectMap());
EnsureJSObjectAllocated(slot, map);
TranslatedValue* properties_slot = &(frame->values_[value_index]);
value_index++;
if (properties_slot->kind() == TranslatedValue::kCapturedObject) {
// If we are materializing the property array, make sure we put
// the mutable heap numbers at the right places.
EnsurePropertiesAllocatedAndMarked(properties_slot, map);
EnsureChildrenAllocated(properties_slot->GetChildrenCount(), frame,
&value_index, worklist);
}
// Make sure all the remaining children (after the map and properties) are
// allocated.
return EnsureChildrenAllocated(slot->GetChildrenCount() - 2, frame,
&value_index, worklist);
}
UNREACHABLE();
}
void TranslatedState::EnsureChildrenAllocated(int count, TranslatedFrame* frame,
int* value_index,
std::stack<int>* worklist) {
// Ensure all children are allocated.
for (int i = 0; i < count; i++) {
// If the field is an object that has not been allocated yet, queue it
// for initialization (and mark it as such).
TranslatedValue* child_slot = frame->ValueAt(*value_index);
if (child_slot->kind() == TranslatedValue::kCapturedObject ||
child_slot->kind() == TranslatedValue::kDuplicatedObject) {
child_slot = ResolveCapturedObject(child_slot);
if (child_slot->materialization_state() ==
TranslatedValue::kUninitialized) {
worklist->push(child_slot->object_index());
child_slot->mark_allocated();
}
} else {
// Make sure the simple values (heap numbers, etc.) are properly
// initialized.
child_slot->MaterializeSimple();
}
SkipSlots(1, frame, value_index);
}
}
void TranslatedState::EnsurePropertiesAllocatedAndMarked(
TranslatedValue* properties_slot, Handle<Map> map) {
CHECK_EQ(TranslatedValue::kUninitialized,
properties_slot->materialization_state());
Handle<ByteArray> object_storage = AllocateStorageFor(properties_slot);
properties_slot->mark_allocated();
properties_slot->set_storage(object_storage);
// Set markers for the double properties.
Handle<DescriptorArray> descriptors(map->instance_descriptors());
int field_count = map->NumberOfOwnDescriptors();
for (int i = 0; i < field_count; i++) {
FieldIndex index = FieldIndex::ForDescriptor(*map, i);
if (descriptors->GetDetails(i).representation().IsDouble() &&
!index.is_inobject()) {
CHECK(!map->IsUnboxedDoubleField(index));
int outobject_index = index.outobject_array_index();
int array_index = outobject_index * kPointerSize;
object_storage->set(array_index, kStoreMutableHeapNumber);
}
}
}
Handle<ByteArray> TranslatedState::AllocateStorageFor(TranslatedValue* slot) {
int allocate_size =
ByteArray::LengthFor(slot->GetChildrenCount() * kPointerSize);
// It is important to allocate all the objects tenured so that the marker
// does not visit them.
Handle<ByteArray> object_storage =
isolate()->factory()->NewByteArray(allocate_size, TENURED);
for (int i = 0; i < object_storage->length(); i++) {
object_storage->set(i, kStoreTagged);
}
return object_storage;
}
void TranslatedState::EnsureJSObjectAllocated(TranslatedValue* slot,
Handle<Map> map) {
CHECK_EQ(map->instance_size(), slot->GetChildrenCount() * kPointerSize);
Handle<ByteArray> object_storage = AllocateStorageFor(slot);
// Now we handle the interesting (JSObject) case.
Handle<DescriptorArray> descriptors(map->instance_descriptors());
int field_count = map->NumberOfOwnDescriptors();
// Set markers for the double properties.
for (int i = 0; i < field_count; i++) {
FieldIndex index = FieldIndex::ForDescriptor(*map, i);
if (descriptors->GetDetails(i).representation().IsDouble() &&
index.is_inobject()) {
CHECK_GE(index.index(), FixedArray::kHeaderSize / kPointerSize);
int array_index = index.index() * kPointerSize - FixedArray::kHeaderSize;
uint8_t marker = map->IsUnboxedDoubleField(index)
? kStoreUnboxedDouble
: kStoreMutableHeapNumber;
object_storage->set(array_index, marker);
}
}
slot->set_storage(object_storage);
}
Handle<Object> TranslatedState::GetValueAndAdvance(TranslatedFrame* frame,
int* value_index) {
TranslatedValue* slot = frame->ValueAt(*value_index);
SkipSlots(1, frame, value_index);
if (slot->kind() == TranslatedValue::kDuplicatedObject) {
slot = ResolveCapturedObject(slot);
}
CHECK_NE(TranslatedValue::kUninitialized, slot->materialization_state());
return slot->GetStorage();
}
void TranslatedState::InitializeJSObjectAt(
TranslatedFrame* frame, int* value_index, TranslatedValue* slot,
Handle<Map> map, const DisallowHeapAllocation& no_allocation) {
Handle<HeapObject> object_storage = Handle<HeapObject>::cast(slot->storage_);
DCHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
// The object should have at least a map and some payload.
CHECK_GE(slot->GetChildrenCount(), 2);
// Notify the concurrent marker about the layout change.
isolate()->heap()->NotifyObjectLayoutChange(
*object_storage, slot->GetChildrenCount() * kPointerSize, no_allocation);
// Fill the property array field.
{
Handle<Object> properties = GetValueAndAdvance(frame, value_index);
WRITE_FIELD(*object_storage, JSObject::kPropertiesOrHashOffset,
*properties);
WRITE_BARRIER(isolate()->heap(), *object_storage,
JSObject::kPropertiesOrHashOffset, *properties);
}
// For all the other fields we first look at the fixed array and check the
// marker to see if we store an unboxed double.
DCHECK_EQ(kPointerSize, JSObject::kPropertiesOrHashOffset);
for (int i = 2; i < slot->GetChildrenCount(); i++) {
// Initialize and extract the value from its slot.
Handle<Object> field_value = GetValueAndAdvance(frame, value_index);
// Read out the marker and ensure the field is consistent with
// what the markers in the storage say (note that all heap numbers
// should be fully initialized by now).
int offset = i * kPointerSize;
uint8_t marker = READ_UINT8_FIELD(*object_storage, offset);
if (marker == kStoreUnboxedDouble) {
double double_field_value;
if (field_value->IsSmi()) {
double_field_value = Smi::cast(*field_value)->value();
} else {
CHECK(field_value->IsHeapNumber());
double_field_value = HeapNumber::cast(*field_value)->value();
}
WRITE_DOUBLE_FIELD(*object_storage, offset, double_field_value);
} else if (marker == kStoreMutableHeapNumber) {
CHECK(field_value->IsMutableHeapNumber());
WRITE_FIELD(*object_storage, offset, *field_value);
WRITE_BARRIER(isolate()->heap(), *object_storage, offset, *field_value);
} else {
CHECK_EQ(kStoreTagged, marker);
WRITE_FIELD(*object_storage, offset, *field_value);
WRITE_BARRIER(isolate()->heap(), *object_storage, offset, *field_value);
}
}
object_storage->synchronized_set_map(*map);
}
void TranslatedState::InitializeObjectWithTaggedFieldsAt(
TranslatedFrame* frame, int* value_index, TranslatedValue* slot,
Handle<Map> map, const DisallowHeapAllocation& no_allocation) {
Handle<HeapObject> object_storage = Handle<HeapObject>::cast(slot->storage_);
// Skip the writes if we already have the canonical empty fixed array.
if (*object_storage == isolate()->heap()->empty_fixed_array()) {
CHECK_EQ(2, slot->GetChildrenCount());
Handle<Object> length_value = GetValueAndAdvance(frame, value_index);
CHECK_EQ(*length_value, Smi::FromInt(0));
return;
}
// Notify the concurrent marker about the layout change.
isolate()->heap()->NotifyObjectLayoutChange(
*object_storage, slot->GetChildrenCount() * kPointerSize, no_allocation);
// Write the fields to the object.
for (int i = 1; i < slot->GetChildrenCount(); i++) {
Handle<Object> field_value = GetValueAndAdvance(frame, value_index);
int offset = i * kPointerSize;
uint8_t marker = READ_UINT8_FIELD(*object_storage, offset);
if (i > 1 && marker == kStoreMutableHeapNumber) {
CHECK(field_value->IsMutableHeapNumber());
} else {
CHECK(marker == kStoreTagged || i == 1);
CHECK(!field_value->IsMutableHeapNumber());
}
WRITE_FIELD(*object_storage, offset, *field_value);
WRITE_BARRIER(isolate()->heap(), *object_storage, offset, *field_value);
}
object_storage->synchronized_set_map(*map);
}
TranslatedValue* TranslatedState::ResolveCapturedObject(TranslatedValue* slot) {
while (slot->kind() == TranslatedValue::kDuplicatedObject) {
slot = GetValueByObjectIndex(slot->object_index());
}
CHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
return slot;
}
TranslatedFrame* TranslatedState::GetFrameFromJSFrameIndex(int jsframe_index) {
for (size_t i = 0; i < frames_.size(); i++) {
if (frames_[i].kind() == TranslatedFrame::kInterpretedFunction ||
frames_[i].kind() == TranslatedFrame::kJavaScriptBuiltinContinuation) {
if (jsframe_index > 0) {
jsframe_index--;
} else {
return &(frames_[i]);
}
}
}
return nullptr;
}
TranslatedFrame* TranslatedState::GetArgumentsInfoFromJSFrameIndex(
int jsframe_index, int* args_count) {
for (size_t i = 0; i < frames_.size(); i++) {
if (frames_[i].kind() == TranslatedFrame::kInterpretedFunction ||
frames_[i].kind() == TranslatedFrame::kJavaScriptBuiltinContinuation) {
if (jsframe_index > 0) {
jsframe_index--;
} else {
// We have the JS function frame, now check if it has arguments
// adaptor.
if (i > 0 &&
frames_[i - 1].kind() == TranslatedFrame::kArgumentsAdaptor) {
*args_count = frames_[i - 1].height();
return &(frames_[i - 1]);
}
*args_count =
frames_[i].shared_info()->internal_formal_parameter_count() + 1;
return &(frames_[i]);
}
}
}
return nullptr;
}
void TranslatedState::StoreMaterializedValuesAndDeopt(JavaScriptFrame* frame) {
MaterializedObjectStore* materialized_store =
isolate_->materialized_object_store();
Handle<FixedArray> previously_materialized_objects =
materialized_store->Get(stack_frame_pointer_);
Handle<Object> marker = isolate_->factory()->arguments_marker();
int length = static_cast<int>(object_positions_.size());
bool new_store = false;
if (previously_materialized_objects.is_null()) {
previously_materialized_objects =
isolate_->factory()->NewFixedArray(length, TENURED);
for (int i = 0; i < length; i++) {
previously_materialized_objects->set(i, *marker);
}
new_store = true;
}
CHECK_EQ(length, previously_materialized_objects->length());
bool value_changed = false;
for (int i = 0; i < length; i++) {
TranslatedState::ObjectPosition pos = object_positions_[i];
TranslatedValue* value_info =
&(frames_[pos.frame_index_].values_[pos.value_index_]);
CHECK(value_info->IsMaterializedObject());
// Skip duplicate objects (i.e., those that point to some
// other object id).
if (value_info->object_index() != i) continue;
Handle<Object> value(value_info->GetRawValue(), isolate_);
if (!value.is_identical_to(marker)) {
if (previously_materialized_objects->get(i) == *marker) {
previously_materialized_objects->set(i, *value);
value_changed = true;
} else {
CHECK(previously_materialized_objects->get(i) == *value);
}
}
}
if (new_store && value_changed) {
materialized_store->Set(stack_frame_pointer_,
previously_materialized_objects);
CHECK_EQ(frames_[0].kind(), TranslatedFrame::kInterpretedFunction);
CHECK_EQ(frame->function(), frames_[0].front().GetRawValue());
Deoptimizer::DeoptimizeFunction(frame->function(), frame->LookupCode());
}
}
void TranslatedState::UpdateFromPreviouslyMaterializedObjects() {
MaterializedObjectStore* materialized_store =
isolate_->materialized_object_store();
Handle<FixedArray> previously_materialized_objects =
materialized_store->Get(stack_frame_pointer_);
// If we have no previously materialized objects, there is nothing to do.
if (previously_materialized_objects.is_null()) return;
Handle<Object> marker = isolate_->factory()->arguments_marker();
int length = static_cast<int>(object_positions_.size());
CHECK_EQ(length, previously_materialized_objects->length());
for (int i = 0; i < length; i++) {
// For a previously materialized objects, inject their value into the
// translated values.
if (previously_materialized_objects->get(i) != *marker) {
TranslatedState::ObjectPosition pos = object_positions_[i];
TranslatedValue* value_info =
&(frames_[pos.frame_index_].values_[pos.value_index_]);
CHECK(value_info->IsMaterializedObject());
if (value_info->kind() == TranslatedValue::kCapturedObject) {
value_info->set_initialized_storage(
Handle<Object>(previously_materialized_objects->get(i), isolate_));
}
}
}
}
void TranslatedState::VerifyMaterializedObjects() {
#if VERIFY_HEAP
int length = static_cast<int>(object_positions_.size());
for (int i = 0; i < length; i++) {
TranslatedValue* slot = GetValueByObjectIndex(i);
if (slot->kind() == TranslatedValue::kCapturedObject) {
CHECK_EQ(slot, GetValueByObjectIndex(slot->object_index()));
if (slot->materialization_state() == TranslatedValue::kFinished) {
slot->GetStorage()->ObjectVerify();
} else {
CHECK_EQ(slot->materialization_state(),
TranslatedValue::kUninitialized);
}
}
}
#endif
}
bool TranslatedState::DoUpdateFeedback() {
if (!feedback_vector_handle_.is_null()) {
CHECK(!feedback_slot_.IsInvalid());
isolate()->CountUsage(v8::Isolate::kDeoptimizerDisableSpeculation);
CallICNexus nexus(feedback_vector_handle_, feedback_slot_);
nexus.SetSpeculationMode(SpeculationMode::kDisallowSpeculation);
return true;
}
return false;
}
void TranslatedState::ReadUpdateFeedback(TranslationIterator* iterator,
FixedArray* literal_array,
FILE* trace_file) {
CHECK_EQ(Translation::UPDATE_FEEDBACK, iterator->Next());
feedback_vector_ = FeedbackVector::cast(literal_array->get(iterator->Next()));
feedback_slot_ = FeedbackSlot(iterator->Next());
if (trace_file != nullptr) {
PrintF(trace_file, " reading FeedbackVector (slot %d)\n",
feedback_slot_.ToInt());
}
}
} // namespace internal
} // namespace v8
// Undefine the heap manipulation macros.
#include "src/objects/object-macros-undef.h"