d44f75f5c8
This CL adds output related to the no speculation bit on the feedback vector. Messages appear on two occasions: - if a feedback vector is read from the deoptimization entry - if the no-speculation bit on a feedback vector is set The latter only happens during object materialization. Bug: v8:7127 Change-Id: I9676323d3223441472539a544d3309687dba27a3 Reviewed-on: https://chromium-review.googlesource.com/849092 Reviewed-by: Jaroslav Sevcik <jarin@chromium.org> Reviewed-by: Michael Stanton <mvstanton@chromium.org> Commit-Queue: Sigurd Schneider <sigurds@chromium.org> Cr-Commit-Position: refs/heads/master@{#50496}
3933 lines
142 KiB
C++
3933 lines
142 KiB
C++
// Copyright 2013 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/deoptimizer.h"
|
|
|
|
#include <memory>
|
|
|
|
#include "src/accessors.h"
|
|
#include "src/assembler-inl.h"
|
|
#include "src/ast/prettyprinter.h"
|
|
#include "src/callable.h"
|
|
#include "src/disasm.h"
|
|
#include "src/frames-inl.h"
|
|
#include "src/global-handles.h"
|
|
#include "src/interpreter/interpreter.h"
|
|
#include "src/macro-assembler.h"
|
|
#include "src/objects/debug-objects-inl.h"
|
|
#include "src/tracing/trace-event.h"
|
|
#include "src/v8.h"
|
|
|
|
// Has to be the last include (doesn't have include guards)
|
|
#include "src/objects/object-macros.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
DeoptimizerData::DeoptimizerData(Heap* heap) : heap_(heap), current_(nullptr) {
|
|
for (int i = 0; i <= Deoptimizer::kLastBailoutType; ++i) {
|
|
deopt_entry_code_[i] = nullptr;
|
|
}
|
|
Code** start = &deopt_entry_code_[0];
|
|
Code** end = &deopt_entry_code_[Deoptimizer::kLastBailoutType + 1];
|
|
heap_->RegisterStrongRoots(reinterpret_cast<Object**>(start),
|
|
reinterpret_cast<Object**>(end));
|
|
}
|
|
|
|
|
|
DeoptimizerData::~DeoptimizerData() {
|
|
for (int i = 0; i <= Deoptimizer::kLastBailoutType; ++i) {
|
|
deopt_entry_code_[i] = nullptr;
|
|
}
|
|
Code** start = &deopt_entry_code_[0];
|
|
heap_->UnregisterStrongRoots(reinterpret_cast<Object**>(start));
|
|
}
|
|
|
|
|
|
Code* Deoptimizer::FindDeoptimizingCode(Address addr) {
|
|
if (function_->IsHeapObject()) {
|
|
// Search all deoptimizing code in the native context of the function.
|
|
Isolate* isolate = function_->GetIsolate();
|
|
Context* native_context = function_->context()->native_context();
|
|
Object* element = native_context->DeoptimizedCodeListHead();
|
|
while (!element->IsUndefined(isolate)) {
|
|
Code* code = Code::cast(element);
|
|
CHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
|
|
if (code->contains(addr)) return code;
|
|
element = code->next_code_link();
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
// We rely on this function not causing a GC. It is called from generated code
|
|
// without having a real stack frame in place.
|
|
Deoptimizer* Deoptimizer::New(JSFunction* function,
|
|
BailoutType type,
|
|
unsigned bailout_id,
|
|
Address from,
|
|
int fp_to_sp_delta,
|
|
Isolate* isolate) {
|
|
Deoptimizer* deoptimizer = new Deoptimizer(isolate, function, type,
|
|
bailout_id, from, fp_to_sp_delta);
|
|
CHECK_NULL(isolate->deoptimizer_data()->current_);
|
|
isolate->deoptimizer_data()->current_ = deoptimizer;
|
|
return deoptimizer;
|
|
}
|
|
|
|
|
|
Deoptimizer* Deoptimizer::Grab(Isolate* isolate) {
|
|
Deoptimizer* result = isolate->deoptimizer_data()->current_;
|
|
CHECK_NOT_NULL(result);
|
|
result->DeleteFrameDescriptions();
|
|
isolate->deoptimizer_data()->current_ = nullptr;
|
|
return result;
|
|
}
|
|
|
|
DeoptimizedFrameInfo* Deoptimizer::DebuggerInspectableFrame(
|
|
JavaScriptFrame* frame,
|
|
int jsframe_index,
|
|
Isolate* isolate) {
|
|
CHECK(frame->is_optimized());
|
|
|
|
TranslatedState translated_values(frame);
|
|
translated_values.Prepare(frame->fp());
|
|
|
|
TranslatedState::iterator frame_it = translated_values.end();
|
|
int counter = jsframe_index;
|
|
for (auto it = translated_values.begin(); it != translated_values.end();
|
|
it++) {
|
|
if (it->kind() == TranslatedFrame::kInterpretedFunction ||
|
|
it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation) {
|
|
if (counter == 0) {
|
|
frame_it = it;
|
|
break;
|
|
}
|
|
counter--;
|
|
}
|
|
}
|
|
CHECK(frame_it != translated_values.end());
|
|
// We only include kJavaScriptBuiltinContinuation frames above to get the
|
|
// counting right.
|
|
CHECK_EQ(frame_it->kind(), TranslatedFrame::kInterpretedFunction);
|
|
|
|
DeoptimizedFrameInfo* info =
|
|
new DeoptimizedFrameInfo(&translated_values, frame_it, isolate);
|
|
|
|
return info;
|
|
}
|
|
|
|
void Deoptimizer::GenerateDeoptimizationEntries(MacroAssembler* masm,
|
|
int count,
|
|
BailoutType type) {
|
|
TableEntryGenerator generator(masm, type, count);
|
|
generator.Generate();
|
|
}
|
|
|
|
namespace {
|
|
class ActivationsFinder : public ThreadVisitor {
|
|
public:
|
|
explicit ActivationsFinder(std::set<Code*>* codes,
|
|
Code* topmost_optimized_code,
|
|
bool safe_to_deopt_topmost_optimized_code)
|
|
: codes_(codes) {
|
|
#ifdef DEBUG
|
|
topmost_ = topmost_optimized_code;
|
|
safe_to_deopt_ = safe_to_deopt_topmost_optimized_code;
|
|
#endif
|
|
}
|
|
|
|
// Find the frames with activations of codes marked for deoptimization, search
|
|
// for the trampoline to the deoptimizer call respective to each code, and use
|
|
// it to replace the current pc on the stack.
|
|
void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
|
|
for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) {
|
|
if (it.frame()->type() == StackFrame::OPTIMIZED) {
|
|
Code* code = it.frame()->LookupCode();
|
|
if (code->kind() == Code::OPTIMIZED_FUNCTION &&
|
|
code->marked_for_deoptimization()) {
|
|
codes_->erase(code);
|
|
// Obtain the trampoline to the deoptimizer call.
|
|
SafepointEntry safepoint = code->GetSafepointEntry(it.frame()->pc());
|
|
int trampoline_pc = safepoint.trampoline_pc();
|
|
DCHECK_IMPLIES(code == topmost_, safe_to_deopt_);
|
|
// Replace the current pc on the stack with the trampoline.
|
|
it.frame()->set_pc(code->instruction_start() + trampoline_pc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::set<Code*>* codes_;
|
|
|
|
#ifdef DEBUG
|
|
Code* topmost_;
|
|
bool safe_to_deopt_;
|
|
#endif
|
|
};
|
|
} // namespace
|
|
|
|
// Move marked code from the optimized code list to the deoptimized code list,
|
|
// and replace pc on the stack for codes marked for deoptimization.
|
|
void Deoptimizer::DeoptimizeMarkedCodeForContext(Context* context) {
|
|
DisallowHeapAllocation no_allocation;
|
|
|
|
Isolate* isolate = context->GetHeap()->isolate();
|
|
Code* topmost_optimized_code = nullptr;
|
|
bool safe_to_deopt_topmost_optimized_code = false;
|
|
#ifdef DEBUG
|
|
// Make sure all activations of optimized code can deopt at their current PC.
|
|
// The topmost optimized code has special handling because it cannot be
|
|
// deoptimized due to weak object dependency.
|
|
for (StackFrameIterator it(isolate, isolate->thread_local_top());
|
|
!it.done(); it.Advance()) {
|
|
StackFrame::Type type = it.frame()->type();
|
|
if (type == StackFrame::OPTIMIZED) {
|
|
Code* code = it.frame()->LookupCode();
|
|
JSFunction* function =
|
|
static_cast<OptimizedFrame*>(it.frame())->function();
|
|
if (FLAG_trace_deopt) {
|
|
CodeTracer::Scope scope(isolate->GetCodeTracer());
|
|
PrintF(scope.file(), "[deoptimizer found activation of function: ");
|
|
function->PrintName(scope.file());
|
|
PrintF(scope.file(),
|
|
" / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function));
|
|
}
|
|
SafepointEntry safepoint = code->GetSafepointEntry(it.frame()->pc());
|
|
int deopt_index = safepoint.deoptimization_index();
|
|
|
|
// Turbofan deopt is checked when we are patching addresses on stack.
|
|
bool safe_if_deopt_triggered =
|
|
deopt_index != Safepoint::kNoDeoptimizationIndex;
|
|
bool is_builtin_code = code->kind() == Code::BUILTIN;
|
|
DCHECK(topmost_optimized_code == nullptr || safe_if_deopt_triggered ||
|
|
is_builtin_code);
|
|
if (topmost_optimized_code == nullptr) {
|
|
topmost_optimized_code = code;
|
|
safe_to_deopt_topmost_optimized_code = safe_if_deopt_triggered;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// We will use this set to mark those Code objects that are marked for
|
|
// deoptimization and have not been found in stack frames.
|
|
std::set<Code*> codes;
|
|
|
|
// Move marked code from the optimized code list to the deoptimized code list.
|
|
// Walk over all optimized code objects in this native context.
|
|
Code* prev = nullptr;
|
|
Object* element = context->OptimizedCodeListHead();
|
|
while (!element->IsUndefined(isolate)) {
|
|
Code* code = Code::cast(element);
|
|
CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
|
|
Object* next = code->next_code_link();
|
|
|
|
if (code->marked_for_deoptimization()) {
|
|
// Make sure that this object does not point to any garbage.
|
|
isolate->heap()->InvalidateCodeEmbeddedObjects(code);
|
|
codes.insert(code);
|
|
|
|
if (prev != nullptr) {
|
|
// Skip this code in the optimized code list.
|
|
prev->set_next_code_link(next);
|
|
} else {
|
|
// There was no previous node, the next node is the new head.
|
|
context->SetOptimizedCodeListHead(next);
|
|
}
|
|
|
|
// Move the code to the _deoptimized_ code list.
|
|
code->set_next_code_link(context->DeoptimizedCodeListHead());
|
|
context->SetDeoptimizedCodeListHead(code);
|
|
} else {
|
|
// Not marked; preserve this element.
|
|
prev = code;
|
|
}
|
|
element = next;
|
|
}
|
|
|
|
ActivationsFinder visitor(&codes, topmost_optimized_code,
|
|
safe_to_deopt_topmost_optimized_code);
|
|
// Iterate over the stack of this thread.
|
|
visitor.VisitThread(isolate, isolate->thread_local_top());
|
|
// In addition to iterate over the stack of this thread, we also
|
|
// need to consider all the other threads as they may also use
|
|
// the code currently beings deoptimized.
|
|
isolate->thread_manager()->IterateArchivedThreads(&visitor);
|
|
|
|
// If there's no activation of a code in any stack then we can remove its
|
|
// deoptimization data. We do this to ensure that code objects that are
|
|
// unlinked don't transitively keep objects alive unnecessarily.
|
|
for (Code* code : codes) {
|
|
isolate->heap()->InvalidateCodeDeoptimizationData(code);
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::DeoptimizeAll(Isolate* isolate) {
|
|
RuntimeCallTimerScope runtimeTimer(isolate,
|
|
RuntimeCallCounterId::kDeoptimizeCode);
|
|
TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
|
|
TRACE_EVENT0("v8", "V8.DeoptimizeCode");
|
|
if (FLAG_trace_deopt) {
|
|
CodeTracer::Scope scope(isolate->GetCodeTracer());
|
|
PrintF(scope.file(), "[deoptimize all code in all contexts]\n");
|
|
}
|
|
DisallowHeapAllocation no_allocation;
|
|
// For all contexts, mark all code, then deoptimize.
|
|
Object* context = isolate->heap()->native_contexts_list();
|
|
while (!context->IsUndefined(isolate)) {
|
|
Context* native_context = Context::cast(context);
|
|
MarkAllCodeForContext(native_context);
|
|
DeoptimizeMarkedCodeForContext(native_context);
|
|
context = native_context->next_context_link();
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::DeoptimizeMarkedCode(Isolate* isolate) {
|
|
RuntimeCallTimerScope runtimeTimer(isolate,
|
|
RuntimeCallCounterId::kDeoptimizeCode);
|
|
TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
|
|
TRACE_EVENT0("v8", "V8.DeoptimizeCode");
|
|
if (FLAG_trace_deopt) {
|
|
CodeTracer::Scope scope(isolate->GetCodeTracer());
|
|
PrintF(scope.file(), "[deoptimize marked code in all contexts]\n");
|
|
}
|
|
DisallowHeapAllocation no_allocation;
|
|
// For all contexts, deoptimize code already marked.
|
|
Object* context = isolate->heap()->native_contexts_list();
|
|
while (!context->IsUndefined(isolate)) {
|
|
Context* native_context = Context::cast(context);
|
|
DeoptimizeMarkedCodeForContext(native_context);
|
|
context = native_context->next_context_link();
|
|
}
|
|
}
|
|
|
|
void Deoptimizer::MarkAllCodeForContext(Context* context) {
|
|
Object* element = context->OptimizedCodeListHead();
|
|
Isolate* isolate = context->GetIsolate();
|
|
while (!element->IsUndefined(isolate)) {
|
|
Code* code = Code::cast(element);
|
|
CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
|
|
code->set_marked_for_deoptimization(true);
|
|
element = code->next_code_link();
|
|
}
|
|
}
|
|
|
|
void Deoptimizer::DeoptimizeFunction(JSFunction* function, Code* code) {
|
|
Isolate* isolate = function->GetIsolate();
|
|
RuntimeCallTimerScope runtimeTimer(isolate,
|
|
RuntimeCallCounterId::kDeoptimizeCode);
|
|
TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
|
|
TRACE_EVENT0("v8", "V8.DeoptimizeCode");
|
|
if (code == nullptr) code = function->code();
|
|
|
|
if (code->kind() == Code::OPTIMIZED_FUNCTION) {
|
|
// Mark the code for deoptimization and unlink any functions that also
|
|
// refer to that code. The code cannot be shared across native contexts,
|
|
// so we only need to search one.
|
|
code->set_marked_for_deoptimization(true);
|
|
// The code in the function's optimized code feedback vector slot might
|
|
// be different from the code on the function - evict it if necessary.
|
|
function->feedback_vector()->EvictOptimizedCodeMarkedForDeoptimization(
|
|
function->shared(), "unlinking code marked for deopt");
|
|
if (!code->deopt_already_counted()) {
|
|
function->feedback_vector()->increment_deopt_count();
|
|
code->set_deopt_already_counted(true);
|
|
}
|
|
DeoptimizeMarkedCodeForContext(function->context()->native_context());
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::ComputeOutputFrames(Deoptimizer* deoptimizer) {
|
|
deoptimizer->DoComputeOutputFrames();
|
|
}
|
|
|
|
|
|
const char* Deoptimizer::MessageFor(BailoutType type) {
|
|
switch (type) {
|
|
case EAGER: return "eager";
|
|
case SOFT: return "soft";
|
|
case LAZY: return "lazy";
|
|
}
|
|
FATAL("Unsupported deopt type");
|
|
return nullptr;
|
|
}
|
|
|
|
namespace {
|
|
|
|
CodeEventListener::DeoptKind DeoptKindOfBailoutType(
|
|
Deoptimizer::BailoutType bailout_type) {
|
|
switch (bailout_type) {
|
|
case Deoptimizer::EAGER:
|
|
return CodeEventListener::kEager;
|
|
case Deoptimizer::SOFT:
|
|
return CodeEventListener::kSoft;
|
|
case Deoptimizer::LAZY:
|
|
return CodeEventListener::kLazy;
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
Deoptimizer::Deoptimizer(Isolate* isolate, JSFunction* function,
|
|
BailoutType type, unsigned bailout_id, Address from,
|
|
int fp_to_sp_delta)
|
|
: isolate_(isolate),
|
|
function_(function),
|
|
bailout_id_(bailout_id),
|
|
bailout_type_(type),
|
|
from_(from),
|
|
fp_to_sp_delta_(fp_to_sp_delta),
|
|
deoptimizing_throw_(false),
|
|
catch_handler_data_(-1),
|
|
catch_handler_pc_offset_(-1),
|
|
input_(nullptr),
|
|
output_count_(0),
|
|
jsframe_count_(0),
|
|
output_(nullptr),
|
|
caller_frame_top_(0),
|
|
caller_fp_(0),
|
|
caller_pc_(0),
|
|
caller_constant_pool_(0),
|
|
input_frame_context_(0),
|
|
stack_fp_(0),
|
|
trace_scope_(nullptr) {
|
|
if (isolate->deoptimizer_lazy_throw()) {
|
|
isolate->set_deoptimizer_lazy_throw(false);
|
|
deoptimizing_throw_ = true;
|
|
}
|
|
|
|
DCHECK_NOT_NULL(from);
|
|
compiled_code_ = FindOptimizedCode();
|
|
DCHECK_NOT_NULL(compiled_code_);
|
|
|
|
DCHECK(function->IsJSFunction());
|
|
trace_scope_ = FLAG_trace_deopt
|
|
? new CodeTracer::Scope(isolate->GetCodeTracer())
|
|
: nullptr;
|
|
#ifdef DEBUG
|
|
DCHECK(AllowHeapAllocation::IsAllowed());
|
|
disallow_heap_allocation_ = new DisallowHeapAllocation();
|
|
#endif // DEBUG
|
|
if (compiled_code_->kind() != Code::OPTIMIZED_FUNCTION ||
|
|
!compiled_code_->deopt_already_counted()) {
|
|
// If the function is optimized, and we haven't counted that deopt yet, then
|
|
// increment the function's deopt count so that we can avoid optimising
|
|
// functions that deopt too often.
|
|
|
|
if (bailout_type_ == Deoptimizer::SOFT) {
|
|
// Soft deopts shouldn't count against the overall deoptimization count
|
|
// that can eventually lead to disabling optimization for a function.
|
|
isolate->counters()->soft_deopts_executed()->Increment();
|
|
} else if (function != nullptr) {
|
|
function->feedback_vector()->increment_deopt_count();
|
|
}
|
|
}
|
|
if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
|
|
compiled_code_->set_deopt_already_counted(true);
|
|
PROFILE(isolate_,
|
|
CodeDeoptEvent(compiled_code_, DeoptKindOfBailoutType(type), from_,
|
|
fp_to_sp_delta_));
|
|
}
|
|
unsigned size = ComputeInputFrameSize();
|
|
int parameter_count =
|
|
function->shared()->internal_formal_parameter_count() + 1;
|
|
input_ = new (size) FrameDescription(size, parameter_count);
|
|
}
|
|
|
|
Code* Deoptimizer::FindOptimizedCode() {
|
|
Code* compiled_code = FindDeoptimizingCode(from_);
|
|
return (compiled_code == nullptr)
|
|
? static_cast<Code*>(isolate_->FindCodeObject(from_))
|
|
: compiled_code;
|
|
}
|
|
|
|
|
|
void Deoptimizer::PrintFunctionName() {
|
|
if (function_->IsHeapObject() && function_->IsJSFunction()) {
|
|
function_->ShortPrint(trace_scope_->file());
|
|
} else {
|
|
PrintF(trace_scope_->file(),
|
|
"%s", Code::Kind2String(compiled_code_->kind()));
|
|
}
|
|
}
|
|
|
|
Handle<JSFunction> Deoptimizer::function() const {
|
|
return Handle<JSFunction>(function_);
|
|
}
|
|
Handle<Code> Deoptimizer::compiled_code() const {
|
|
return Handle<Code>(compiled_code_);
|
|
}
|
|
|
|
Deoptimizer::~Deoptimizer() {
|
|
DCHECK(input_ == nullptr && output_ == nullptr);
|
|
DCHECK_NULL(disallow_heap_allocation_);
|
|
delete trace_scope_;
|
|
}
|
|
|
|
|
|
void Deoptimizer::DeleteFrameDescriptions() {
|
|
delete input_;
|
|
for (int i = 0; i < output_count_; ++i) {
|
|
if (output_[i] != input_) delete output_[i];
|
|
}
|
|
delete[] output_;
|
|
input_ = nullptr;
|
|
output_ = nullptr;
|
|
#ifdef DEBUG
|
|
DCHECK(!AllowHeapAllocation::IsAllowed());
|
|
DCHECK_NOT_NULL(disallow_heap_allocation_);
|
|
delete disallow_heap_allocation_;
|
|
disallow_heap_allocation_ = nullptr;
|
|
#endif // DEBUG
|
|
}
|
|
|
|
Address Deoptimizer::GetDeoptimizationEntry(Isolate* isolate, int id,
|
|
BailoutType type) {
|
|
CHECK_GE(id, 0);
|
|
if (id >= kMaxNumberOfEntries) return nullptr;
|
|
DeoptimizerData* data = isolate->deoptimizer_data();
|
|
CHECK_LE(type, kLastBailoutType);
|
|
CHECK_NOT_NULL(data->deopt_entry_code_[type]);
|
|
Code* code = data->deopt_entry_code_[type];
|
|
return code->instruction_start() + (id * table_entry_size_);
|
|
}
|
|
|
|
|
|
int Deoptimizer::GetDeoptimizationId(Isolate* isolate,
|
|
Address addr,
|
|
BailoutType type) {
|
|
DeoptimizerData* data = isolate->deoptimizer_data();
|
|
CHECK_LE(type, kLastBailoutType);
|
|
Code* code = data->deopt_entry_code_[type];
|
|
if (code == nullptr) return kNotDeoptimizationEntry;
|
|
Address start = code->instruction_start();
|
|
if (addr < start ||
|
|
addr >= start + (kMaxNumberOfEntries * table_entry_size_)) {
|
|
return kNotDeoptimizationEntry;
|
|
}
|
|
DCHECK_EQ(0,
|
|
static_cast<int>(addr - start) % table_entry_size_);
|
|
return static_cast<int>(addr - start) / table_entry_size_;
|
|
}
|
|
|
|
|
|
int Deoptimizer::GetDeoptimizedCodeCount(Isolate* isolate) {
|
|
int length = 0;
|
|
// Count all entries in the deoptimizing code list of every context.
|
|
Object* context = isolate->heap()->native_contexts_list();
|
|
while (!context->IsUndefined(isolate)) {
|
|
Context* native_context = Context::cast(context);
|
|
Object* element = native_context->DeoptimizedCodeListHead();
|
|
while (!element->IsUndefined(isolate)) {
|
|
Code* code = Code::cast(element);
|
|
DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
|
|
if (!code->marked_for_deoptimization()) {
|
|
length++;
|
|
}
|
|
element = code->next_code_link();
|
|
}
|
|
context = Context::cast(context)->next_context_link();
|
|
}
|
|
return length;
|
|
}
|
|
|
|
namespace {
|
|
|
|
int LookupCatchHandler(TranslatedFrame* translated_frame, int* data_out) {
|
|
switch (translated_frame->kind()) {
|
|
case TranslatedFrame::kInterpretedFunction: {
|
|
int bytecode_offset = translated_frame->node_id().ToInt();
|
|
BytecodeArray* bytecode =
|
|
translated_frame->raw_shared_info()->bytecode_array();
|
|
HandlerTable* table = HandlerTable::cast(bytecode->handler_table());
|
|
return table->LookupRange(bytecode_offset, data_out, nullptr);
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
bool ShouldPadArguments(int arg_count) {
|
|
return kPadArguments && (arg_count % 2 != 0);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// We rely on this function not causing a GC. It is called from generated code
|
|
// without having a real stack frame in place.
|
|
void Deoptimizer::DoComputeOutputFrames() {
|
|
base::ElapsedTimer timer;
|
|
|
|
// Determine basic deoptimization information. The optimized frame is
|
|
// described by the input data.
|
|
DeoptimizationData* input_data =
|
|
DeoptimizationData::cast(compiled_code_->deoptimization_data());
|
|
|
|
{
|
|
// Read caller's PC, caller's FP and caller's constant pool values
|
|
// from input frame. Compute caller's frame top address.
|
|
|
|
Register fp_reg = JavaScriptFrame::fp_register();
|
|
stack_fp_ = input_->GetRegister(fp_reg.code());
|
|
|
|
caller_frame_top_ = stack_fp_ + ComputeInputFrameAboveFpFixedSize();
|
|
|
|
Address fp_address = input_->GetFramePointerAddress();
|
|
caller_fp_ = Memory::intptr_at(fp_address);
|
|
caller_pc_ =
|
|
Memory::intptr_at(fp_address + CommonFrameConstants::kCallerPCOffset);
|
|
input_frame_context_ = Memory::intptr_at(
|
|
fp_address + CommonFrameConstants::kContextOrFrameTypeOffset);
|
|
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
caller_constant_pool_ = Memory::intptr_at(
|
|
fp_address + CommonFrameConstants::kConstantPoolOffset);
|
|
}
|
|
}
|
|
|
|
if (trace_scope_ != nullptr) {
|
|
timer.Start();
|
|
PrintF(trace_scope_->file(), "[deoptimizing (DEOPT %s): begin ",
|
|
MessageFor(bailout_type_));
|
|
PrintFunctionName();
|
|
PrintF(trace_scope_->file(),
|
|
" (opt #%d) @%d, FP to SP delta: %d, caller sp: 0x%08" V8PRIxPTR
|
|
"]\n",
|
|
input_data->OptimizationId()->value(), bailout_id_, fp_to_sp_delta_,
|
|
caller_frame_top_);
|
|
if (bailout_type_ == EAGER || bailout_type_ == SOFT) {
|
|
compiled_code_->PrintDeoptLocation(
|
|
trace_scope_->file(), " ;;; deoptimize at ", from_);
|
|
}
|
|
}
|
|
|
|
BailoutId node_id = input_data->BytecodeOffset(bailout_id_);
|
|
ByteArray* translations = input_data->TranslationByteArray();
|
|
unsigned translation_index =
|
|
input_data->TranslationIndex(bailout_id_)->value();
|
|
|
|
TranslationIterator state_iterator(translations, translation_index);
|
|
translated_state_.Init(
|
|
input_->GetFramePointerAddress(), &state_iterator,
|
|
input_data->LiteralArray(), input_->GetRegisterValues(),
|
|
trace_scope_ == nullptr ? nullptr : trace_scope_->file(),
|
|
function_->IsHeapObject()
|
|
? function_->shared()->internal_formal_parameter_count()
|
|
: 0);
|
|
|
|
// Do the input frame to output frame(s) translation.
|
|
size_t count = translated_state_.frames().size();
|
|
// If we are supposed to go to the catch handler, find the catching frame
|
|
// for the catch and make sure we only deoptimize upto that frame.
|
|
if (deoptimizing_throw_) {
|
|
size_t catch_handler_frame_index = count;
|
|
for (size_t i = count; i-- > 0;) {
|
|
catch_handler_pc_offset_ = LookupCatchHandler(
|
|
&(translated_state_.frames()[i]), &catch_handler_data_);
|
|
if (catch_handler_pc_offset_ >= 0) {
|
|
catch_handler_frame_index = i;
|
|
break;
|
|
}
|
|
}
|
|
CHECK_LT(catch_handler_frame_index, count);
|
|
count = catch_handler_frame_index + 1;
|
|
}
|
|
|
|
DCHECK_NULL(output_);
|
|
output_ = new FrameDescription*[count];
|
|
for (size_t i = 0; i < count; ++i) {
|
|
output_[i] = nullptr;
|
|
}
|
|
output_count_ = static_cast<int>(count);
|
|
|
|
// Translate each output frame.
|
|
int frame_index = 0; // output_frame_index
|
|
for (size_t i = 0; i < count; ++i, ++frame_index) {
|
|
// Read the ast node id, function, and frame height for this output frame.
|
|
TranslatedFrame* translated_frame = &(translated_state_.frames()[i]);
|
|
switch (translated_frame->kind()) {
|
|
case TranslatedFrame::kInterpretedFunction:
|
|
DoComputeInterpretedFrame(translated_frame, frame_index,
|
|
deoptimizing_throw_ && i == count - 1);
|
|
jsframe_count_++;
|
|
break;
|
|
case TranslatedFrame::kArgumentsAdaptor:
|
|
DoComputeArgumentsAdaptorFrame(translated_frame, frame_index);
|
|
break;
|
|
case TranslatedFrame::kConstructStub:
|
|
DoComputeConstructStubFrame(translated_frame, frame_index);
|
|
break;
|
|
case TranslatedFrame::kBuiltinContinuation:
|
|
DoComputeBuiltinContinuation(translated_frame, frame_index, false);
|
|
break;
|
|
case TranslatedFrame::kJavaScriptBuiltinContinuation:
|
|
DoComputeBuiltinContinuation(translated_frame, frame_index, true);
|
|
break;
|
|
case TranslatedFrame::kInvalid:
|
|
FATAL("invalid frame");
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Print some helpful diagnostic information.
|
|
if (trace_scope_ != nullptr) {
|
|
double ms = timer.Elapsed().InMillisecondsF();
|
|
int index = output_count_ - 1; // Index of the topmost frame.
|
|
PrintF(trace_scope_->file(), "[deoptimizing (%s): end ",
|
|
MessageFor(bailout_type_));
|
|
PrintFunctionName();
|
|
PrintF(trace_scope_->file(),
|
|
" @%d => node=%d, pc=0x%08" V8PRIxPTR ", caller sp=0x%08" V8PRIxPTR
|
|
", took %0.3f ms]\n",
|
|
bailout_id_, node_id.ToInt(), output_[index]->GetPc(),
|
|
caller_frame_top_, ms);
|
|
}
|
|
}
|
|
|
|
void Deoptimizer::DoComputeInterpretedFrame(TranslatedFrame* translated_frame,
|
|
int frame_index,
|
|
bool goto_catch_handler) {
|
|
SharedFunctionInfo* shared = translated_frame->raw_shared_info();
|
|
|
|
TranslatedFrame::iterator value_iterator = translated_frame->begin();
|
|
bool is_bottommost = (0 == frame_index);
|
|
bool is_topmost = (output_count_ - 1 == frame_index);
|
|
int input_index = 0;
|
|
|
|
int bytecode_offset = translated_frame->node_id().ToInt();
|
|
int height = translated_frame->height();
|
|
int register_count = height - 1; // Exclude accumulator.
|
|
int register_stack_slot_count =
|
|
InterpreterFrameConstants::RegisterStackSlotCount(register_count);
|
|
int height_in_bytes = register_stack_slot_count * kPointerSize;
|
|
|
|
// The topmost frame will contain the accumulator.
|
|
if (is_topmost) {
|
|
height_in_bytes += kPointerSize;
|
|
if (PadTopOfStackRegister()) height_in_bytes += kPointerSize;
|
|
}
|
|
|
|
TranslatedFrame::iterator function_iterator = value_iterator;
|
|
Object* function = value_iterator->GetRawValue();
|
|
value_iterator++;
|
|
input_index++;
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF(trace_scope_->file(), " translating interpreted frame ");
|
|
std::unique_ptr<char[]> name = shared->DebugName()->ToCString();
|
|
PrintF(trace_scope_->file(), "%s", name.get());
|
|
PrintF(trace_scope_->file(), " => bytecode_offset=%d, height=%d%s\n",
|
|
bytecode_offset, height_in_bytes,
|
|
goto_catch_handler ? " (throw)" : "");
|
|
}
|
|
if (goto_catch_handler) {
|
|
bytecode_offset = catch_handler_pc_offset_;
|
|
}
|
|
|
|
// The 'fixed' part of the frame consists of the incoming parameters and
|
|
// the part described by InterpreterFrameConstants. This will include
|
|
// argument padding, when needed.
|
|
unsigned fixed_frame_size = ComputeInterpretedFixedSize(shared);
|
|
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
|
|
|
|
// Allocate and store the output frame description.
|
|
int parameter_count = shared->internal_formal_parameter_count() + 1;
|
|
FrameDescription* output_frame = new (output_frame_size)
|
|
FrameDescription(output_frame_size, parameter_count);
|
|
|
|
CHECK(frame_index >= 0 && frame_index < output_count_);
|
|
CHECK_NULL(output_[frame_index]);
|
|
output_[frame_index] = output_frame;
|
|
|
|
// The top address of the frame is computed from the previous frame's top and
|
|
// this frame's size.
|
|
intptr_t top_address;
|
|
if (is_bottommost) {
|
|
top_address = caller_frame_top_ - output_frame_size;
|
|
} else {
|
|
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
|
|
}
|
|
output_frame->SetTop(top_address);
|
|
|
|
// Compute the incoming parameter translation.
|
|
unsigned output_offset = output_frame_size;
|
|
|
|
if (ShouldPadArguments(parameter_count)) {
|
|
output_offset -= kPointerSize;
|
|
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
|
|
output_offset, "padding ");
|
|
}
|
|
|
|
for (int i = 0; i < parameter_count; ++i) {
|
|
output_offset -= kPointerSize;
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
|
|
output_offset);
|
|
}
|
|
|
|
DCHECK_EQ(output_offset, output_frame->GetLastArgumentSlotOffset());
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF(trace_scope_->file(), " -------------------------\n");
|
|
}
|
|
|
|
// There are no translation commands for the caller's pc and fp, the
|
|
// context, the function and the bytecode offset. Synthesize
|
|
// their values and set them up
|
|
// explicitly.
|
|
//
|
|
// The caller's pc for the bottommost output frame is the same as in the
|
|
// input frame. For all subsequent output frames, it can be read from the
|
|
// previous one. This frame's pc can be computed from the non-optimized
|
|
// function code and AST id of the bailout.
|
|
output_offset -= kPCOnStackSize;
|
|
intptr_t value;
|
|
if (is_bottommost) {
|
|
value = caller_pc_;
|
|
} else {
|
|
value = output_[frame_index - 1]->GetPc();
|
|
}
|
|
output_frame->SetCallerPc(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's pc\n");
|
|
|
|
// The caller's frame pointer for the bottommost output frame is the same
|
|
// as in the input frame. For all subsequent output frames, it can be
|
|
// read from the previous one. Also compute and set this frame's frame
|
|
// pointer.
|
|
output_offset -= kFPOnStackSize;
|
|
if (is_bottommost) {
|
|
value = caller_fp_;
|
|
} else {
|
|
value = output_[frame_index - 1]->GetFp();
|
|
}
|
|
output_frame->SetCallerFp(output_offset, value);
|
|
intptr_t fp_value = top_address + output_offset;
|
|
output_frame->SetFp(fp_value);
|
|
if (is_topmost) {
|
|
Register fp_reg = InterpretedFrame::fp_register();
|
|
output_frame->SetRegister(fp_reg.code(), fp_value);
|
|
}
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
|
|
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
// For the bottommost output frame the constant pool pointer can be gotten
|
|
// from the input frame. For subsequent output frames, it can be read from
|
|
// the previous frame.
|
|
output_offset -= kPointerSize;
|
|
if (is_bottommost) {
|
|
value = caller_constant_pool_;
|
|
} else {
|
|
value = output_[frame_index - 1]->GetConstantPool();
|
|
}
|
|
output_frame->SetCallerConstantPool(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"caller's constant_pool\n");
|
|
}
|
|
|
|
// For the bottommost output frame the context can be gotten from the input
|
|
// frame. For all subsequent output frames it can be gotten from the function
|
|
// so long as we don't inline functions that need local contexts.
|
|
output_offset -= kPointerSize;
|
|
|
|
// When deoptimizing into a catch block, we need to take the context
|
|
// from a register that was specified in the handler table.
|
|
TranslatedFrame::iterator context_pos = value_iterator;
|
|
int context_input_index = input_index;
|
|
if (goto_catch_handler) {
|
|
// Skip to the translated value of the register specified
|
|
// in the handler table.
|
|
for (int i = 0; i < catch_handler_data_ + 1; ++i) {
|
|
context_pos++;
|
|
context_input_index++;
|
|
}
|
|
}
|
|
// Read the context from the translations.
|
|
Object* context = context_pos->GetRawValue();
|
|
value = reinterpret_cast<intptr_t>(context);
|
|
output_frame->SetContext(value);
|
|
WriteValueToOutput(context, context_input_index, frame_index, output_offset,
|
|
"context ");
|
|
if (context == isolate_->heap()->arguments_marker()) {
|
|
Address output_address =
|
|
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
|
|
output_offset;
|
|
values_to_materialize_.push_back({output_address, context_pos});
|
|
}
|
|
value_iterator++;
|
|
input_index++;
|
|
|
|
// The function was mentioned explicitly in the BEGIN_FRAME.
|
|
output_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(function);
|
|
WriteValueToOutput(function, 0, frame_index, output_offset, "function ");
|
|
if (function == isolate_->heap()->arguments_marker()) {
|
|
Address output_address =
|
|
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
|
|
output_offset;
|
|
values_to_materialize_.push_back({output_address, function_iterator});
|
|
}
|
|
|
|
// Set the bytecode array pointer.
|
|
output_offset -= kPointerSize;
|
|
Object* bytecode_array = shared->HasBreakInfo()
|
|
? shared->GetDebugInfo()->DebugBytecodeArray()
|
|
: shared->bytecode_array();
|
|
WriteValueToOutput(bytecode_array, 0, frame_index, output_offset,
|
|
"bytecode array ");
|
|
|
|
// The bytecode offset was mentioned explicitly in the BEGIN_FRAME.
|
|
output_offset -= kPointerSize;
|
|
|
|
int raw_bytecode_offset =
|
|
BytecodeArray::kHeaderSize - kHeapObjectTag + bytecode_offset;
|
|
Smi* smi_bytecode_offset = Smi::FromInt(raw_bytecode_offset);
|
|
output_[frame_index]->SetFrameSlot(
|
|
output_offset, reinterpret_cast<intptr_t>(smi_bytecode_offset));
|
|
|
|
if (trace_scope_ != nullptr) {
|
|
DebugPrintOutputSlot(reinterpret_cast<intptr_t>(smi_bytecode_offset),
|
|
frame_index, output_offset, "bytecode offset @ ");
|
|
PrintF(trace_scope_->file(), "%d\n", bytecode_offset);
|
|
PrintF(trace_scope_->file(), " (input #0)\n");
|
|
PrintF(trace_scope_->file(), " -------------------------\n");
|
|
}
|
|
|
|
// Translate the rest of the interpreter registers in the frame.
|
|
for (int i = 0; i < register_count; ++i) {
|
|
output_offset -= kPointerSize;
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
|
|
output_offset);
|
|
}
|
|
|
|
int register_slots_written = register_count;
|
|
DCHECK_LE(register_slots_written, register_stack_slot_count);
|
|
// Some architectures must pad the stack frame with extra stack slots
|
|
// to ensure the stack frame is aligned. Do this now.
|
|
while (register_slots_written < register_stack_slot_count) {
|
|
register_slots_written++;
|
|
output_offset -= kPointerSize;
|
|
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
|
|
output_offset, "padding ");
|
|
}
|
|
|
|
// Translate the accumulator register (depending on frame position).
|
|
if (is_topmost) {
|
|
if (PadTopOfStackRegister()) {
|
|
output_offset -= kPointerSize;
|
|
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
|
|
output_offset, "padding ");
|
|
}
|
|
// For topmost frame, put the accumulator on the stack. The
|
|
// {NotifyDeoptimized} builtin pops it off the topmost frame (possibly
|
|
// after materialization).
|
|
output_offset -= kPointerSize;
|
|
if (goto_catch_handler) {
|
|
// If we are lazy deopting to a catch handler, we set the accumulator to
|
|
// the exception (which lives in the result register).
|
|
intptr_t accumulator_value =
|
|
input_->GetRegister(kInterpreterAccumulatorRegister.code());
|
|
WriteValueToOutput(reinterpret_cast<Object*>(accumulator_value), 0,
|
|
frame_index, output_offset, "accumulator ");
|
|
value_iterator++;
|
|
} else {
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
|
|
output_offset, "accumulator ");
|
|
}
|
|
} else {
|
|
// For non-topmost frames, skip the accumulator translation. For those
|
|
// frames, the return value from the callee will become the accumulator.
|
|
value_iterator++;
|
|
input_index++;
|
|
}
|
|
CHECK_EQ(0u, output_offset);
|
|
|
|
// Compute this frame's PC and state. The PC will be a special builtin that
|
|
// continues the bytecode dispatch. Note that non-topmost and lazy-style
|
|
// bailout handlers also advance the bytecode offset before dispatch, hence
|
|
// simulating what normal handlers do upon completion of the operation.
|
|
Builtins* builtins = isolate_->builtins();
|
|
Code* dispatch_builtin =
|
|
(!is_topmost || (bailout_type_ == LAZY)) && !goto_catch_handler
|
|
? builtins->builtin(Builtins::kInterpreterEnterBytecodeAdvance)
|
|
: builtins->builtin(Builtins::kInterpreterEnterBytecodeDispatch);
|
|
output_frame->SetPc(reinterpret_cast<intptr_t>(dispatch_builtin->entry()));
|
|
|
|
// Update constant pool.
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
intptr_t constant_pool_value =
|
|
reinterpret_cast<intptr_t>(dispatch_builtin->constant_pool());
|
|
output_frame->SetConstantPool(constant_pool_value);
|
|
if (is_topmost) {
|
|
Register constant_pool_reg =
|
|
InterpretedFrame::constant_pool_pointer_register();
|
|
output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
|
|
}
|
|
}
|
|
|
|
// Clear the context register. The context might be a de-materialized object
|
|
// and will be materialized by {Runtime_NotifyDeoptimized}. For additional
|
|
// safety we use Smi(0) instead of the potential {arguments_marker} here.
|
|
if (is_topmost) {
|
|
intptr_t context_value = reinterpret_cast<intptr_t>(Smi::kZero);
|
|
Register context_reg = JavaScriptFrame::context_register();
|
|
output_frame->SetRegister(context_reg.code(), context_value);
|
|
// Set the continuation for the topmost frame.
|
|
Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
|
|
output_frame->SetContinuation(
|
|
reinterpret_cast<intptr_t>(continuation->entry()));
|
|
}
|
|
}
|
|
|
|
void Deoptimizer::DoComputeArgumentsAdaptorFrame(
|
|
TranslatedFrame* translated_frame, int frame_index) {
|
|
TranslatedFrame::iterator value_iterator = translated_frame->begin();
|
|
bool is_bottommost = (0 == frame_index);
|
|
int input_index = 0;
|
|
|
|
unsigned height = translated_frame->height();
|
|
unsigned height_in_bytes = height * kPointerSize;
|
|
int parameter_count = height;
|
|
if (ShouldPadArguments(parameter_count)) height_in_bytes += kPointerSize;
|
|
|
|
TranslatedFrame::iterator function_iterator = value_iterator;
|
|
Object* function = value_iterator->GetRawValue();
|
|
value_iterator++;
|
|
input_index++;
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF(trace_scope_->file(),
|
|
" translating arguments adaptor => height=%d\n", height_in_bytes);
|
|
}
|
|
|
|
unsigned fixed_frame_size = ArgumentsAdaptorFrameConstants::kFixedFrameSize;
|
|
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
|
|
|
|
// Allocate and store the output frame description.
|
|
FrameDescription* output_frame = new (output_frame_size)
|
|
FrameDescription(output_frame_size, parameter_count);
|
|
|
|
// Arguments adaptor can not be topmost.
|
|
CHECK(frame_index < output_count_ - 1);
|
|
CHECK_NULL(output_[frame_index]);
|
|
output_[frame_index] = output_frame;
|
|
|
|
// The top address of the frame is computed from the previous frame's top and
|
|
// this frame's size.
|
|
intptr_t top_address;
|
|
if (is_bottommost) {
|
|
top_address = caller_frame_top_ - output_frame_size;
|
|
} else {
|
|
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
|
|
}
|
|
output_frame->SetTop(top_address);
|
|
|
|
unsigned output_offset = output_frame_size;
|
|
if (ShouldPadArguments(parameter_count)) {
|
|
output_offset -= kPointerSize;
|
|
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
|
|
output_offset, "padding ");
|
|
}
|
|
|
|
// Compute the incoming parameter translation.
|
|
for (int i = 0; i < parameter_count; ++i) {
|
|
output_offset -= kPointerSize;
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
|
|
output_offset);
|
|
}
|
|
|
|
DCHECK_EQ(output_offset, output_frame->GetLastArgumentSlotOffset());
|
|
// Read caller's PC from the previous frame.
|
|
output_offset -= kPCOnStackSize;
|
|
intptr_t value;
|
|
if (is_bottommost) {
|
|
value = caller_pc_;
|
|
} else {
|
|
value = output_[frame_index - 1]->GetPc();
|
|
}
|
|
output_frame->SetCallerPc(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's pc\n");
|
|
|
|
// Read caller's FP from the previous frame, and set this frame's FP.
|
|
output_offset -= kFPOnStackSize;
|
|
if (is_bottommost) {
|
|
value = caller_fp_;
|
|
} else {
|
|
value = output_[frame_index - 1]->GetFp();
|
|
}
|
|
output_frame->SetCallerFp(output_offset, value);
|
|
intptr_t fp_value = top_address + output_offset;
|
|
output_frame->SetFp(fp_value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
|
|
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
// Read the caller's constant pool from the previous frame.
|
|
output_offset -= kPointerSize;
|
|
if (is_bottommost) {
|
|
value = caller_constant_pool_;
|
|
} else {
|
|
value = output_[frame_index - 1]->GetConstantPool();
|
|
}
|
|
output_frame->SetCallerConstantPool(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"caller's constant_pool\n");
|
|
}
|
|
|
|
// A marker value is used in place of the context.
|
|
output_offset -= kPointerSize;
|
|
intptr_t context = StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR);
|
|
output_frame->SetFrameSlot(output_offset, context);
|
|
DebugPrintOutputSlot(context, frame_index, output_offset,
|
|
"context (adaptor sentinel)\n");
|
|
|
|
// The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME.
|
|
output_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(function);
|
|
WriteValueToOutput(function, 0, frame_index, output_offset, "function ");
|
|
if (function == isolate_->heap()->arguments_marker()) {
|
|
Address output_address =
|
|
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
|
|
output_offset;
|
|
values_to_materialize_.push_back({output_address, function_iterator});
|
|
}
|
|
|
|
// Number of incoming arguments.
|
|
output_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "argc ");
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF(trace_scope_->file(), "(%d)\n", height - 1);
|
|
}
|
|
|
|
output_offset -= kPointerSize;
|
|
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
|
|
output_offset, "padding ");
|
|
|
|
DCHECK_EQ(0, output_offset);
|
|
|
|
Builtins* builtins = isolate_->builtins();
|
|
Code* adaptor_trampoline =
|
|
builtins->builtin(Builtins::kArgumentsAdaptorTrampoline);
|
|
intptr_t pc_value = reinterpret_cast<intptr_t>(
|
|
adaptor_trampoline->instruction_start() +
|
|
isolate_->heap()->arguments_adaptor_deopt_pc_offset()->value());
|
|
output_frame->SetPc(pc_value);
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
intptr_t constant_pool_value =
|
|
reinterpret_cast<intptr_t>(adaptor_trampoline->constant_pool());
|
|
output_frame->SetConstantPool(constant_pool_value);
|
|
}
|
|
}
|
|
|
|
void Deoptimizer::DoComputeConstructStubFrame(TranslatedFrame* translated_frame,
|
|
int frame_index) {
|
|
TranslatedFrame::iterator value_iterator = translated_frame->begin();
|
|
bool is_topmost = (output_count_ - 1 == frame_index);
|
|
// The construct frame could become topmost only if we inlined a constructor
|
|
// call which does a tail call (otherwise the tail callee's frame would be
|
|
// the topmost one). So it could only be the LAZY case.
|
|
CHECK(!is_topmost || bailout_type_ == LAZY);
|
|
int input_index = 0;
|
|
|
|
Builtins* builtins = isolate_->builtins();
|
|
Code* construct_stub = builtins->builtin(
|
|
FLAG_harmony_restrict_constructor_return
|
|
? Builtins::kJSConstructStubGenericRestrictedReturn
|
|
: Builtins::kJSConstructStubGenericUnrestrictedReturn);
|
|
BailoutId bailout_id = translated_frame->node_id();
|
|
unsigned height = translated_frame->height();
|
|
unsigned height_in_bytes = height * kPointerSize;
|
|
|
|
// If the construct frame appears to be topmost we should ensure that the
|
|
// value of result register is preserved during continuation execution.
|
|
// We do this here by "pushing" the result of the constructor function to the
|
|
// top of the reconstructed stack and popping it in
|
|
// {Builtins::kNotifyDeoptimized}.
|
|
if (is_topmost) {
|
|
height_in_bytes += kPointerSize;
|
|
if (PadTopOfStackRegister()) height_in_bytes += kPointerSize;
|
|
}
|
|
|
|
int parameter_count = height;
|
|
if (ShouldPadArguments(parameter_count)) height_in_bytes += kPointerSize;
|
|
|
|
JSFunction* function = JSFunction::cast(value_iterator->GetRawValue());
|
|
value_iterator++;
|
|
input_index++;
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF(trace_scope_->file(),
|
|
" translating construct stub => bailout_id=%d (%s), height=%d\n",
|
|
bailout_id.ToInt(),
|
|
bailout_id == BailoutId::ConstructStubCreate() ? "create" : "invoke",
|
|
height_in_bytes);
|
|
}
|
|
|
|
unsigned fixed_frame_size = ConstructFrameConstants::kFixedFrameSize;
|
|
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
|
|
|
|
// Allocate and store the output frame description.
|
|
FrameDescription* output_frame = new (output_frame_size)
|
|
FrameDescription(output_frame_size, parameter_count);
|
|
|
|
// Construct stub can not be topmost.
|
|
DCHECK(frame_index > 0 && frame_index < output_count_);
|
|
DCHECK_NULL(output_[frame_index]);
|
|
output_[frame_index] = output_frame;
|
|
|
|
// The top address of the frame is computed from the previous frame's top and
|
|
// this frame's size.
|
|
intptr_t top_address;
|
|
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
|
|
output_frame->SetTop(top_address);
|
|
|
|
unsigned output_offset = output_frame_size;
|
|
|
|
if (ShouldPadArguments(parameter_count)) {
|
|
output_offset -= kPointerSize;
|
|
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
|
|
output_offset, "padding ");
|
|
}
|
|
|
|
// Compute the incoming parameter translation.
|
|
for (int i = 0; i < parameter_count; ++i) {
|
|
output_offset -= kPointerSize;
|
|
// The allocated receiver of a construct stub frame is passed as the
|
|
// receiver parameter through the translation. It might be encoding
|
|
// a captured object, override the slot address for a captured object.
|
|
WriteTranslatedValueToOutput(
|
|
&value_iterator, &input_index, frame_index, output_offset, nullptr,
|
|
(i == 0) ? reinterpret_cast<Address>(top_address) : nullptr);
|
|
}
|
|
|
|
DCHECK_EQ(output_offset, output_frame->GetLastArgumentSlotOffset());
|
|
// Read caller's PC from the previous frame.
|
|
output_offset -= kPCOnStackSize;
|
|
intptr_t callers_pc = output_[frame_index - 1]->GetPc();
|
|
output_frame->SetCallerPc(output_offset, callers_pc);
|
|
DebugPrintOutputSlot(callers_pc, frame_index, output_offset, "caller's pc\n");
|
|
|
|
// Read caller's FP from the previous frame, and set this frame's FP.
|
|
output_offset -= kFPOnStackSize;
|
|
intptr_t value = output_[frame_index - 1]->GetFp();
|
|
output_frame->SetCallerFp(output_offset, value);
|
|
intptr_t fp_value = top_address + output_offset;
|
|
output_frame->SetFp(fp_value);
|
|
if (is_topmost) {
|
|
Register fp_reg = JavaScriptFrame::fp_register();
|
|
output_frame->SetRegister(fp_reg.code(), fp_value);
|
|
}
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "caller's fp\n");
|
|
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
// Read the caller's constant pool from the previous frame.
|
|
output_offset -= kPointerSize;
|
|
value = output_[frame_index - 1]->GetConstantPool();
|
|
output_frame->SetCallerConstantPool(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"caller's constant_pool\n");
|
|
}
|
|
|
|
// A marker value is used to mark the frame.
|
|
output_offset -= kPointerSize;
|
|
value = StackFrame::TypeToMarker(StackFrame::CONSTRUCT);
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"typed frame marker\n");
|
|
|
|
// The context can be gotten from the previous frame.
|
|
output_offset -= kPointerSize;
|
|
value = output_[frame_index - 1]->GetContext();
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "context\n");
|
|
|
|
// Number of incoming arguments.
|
|
output_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "argc ");
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF(trace_scope_->file(), "(%d)\n", height - 1);
|
|
}
|
|
|
|
// The constructor function was mentioned explicitly in the
|
|
// CONSTRUCT_STUB_FRAME.
|
|
output_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(function);
|
|
WriteValueToOutput(function, 0, frame_index, output_offset,
|
|
"constructor function ");
|
|
|
|
// The deopt info contains the implicit receiver or the new target at the
|
|
// position of the receiver. Copy it to the top of stack, with the hole value
|
|
// as padding to maintain alignment.
|
|
output_offset -= kPointerSize;
|
|
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
|
|
output_offset, "padding");
|
|
|
|
output_offset -= kPointerSize;
|
|
|
|
if (ShouldPadArguments(parameter_count)) {
|
|
value = output_frame->GetFrameSlot(output_frame_size - 2 * kPointerSize);
|
|
} else {
|
|
value = output_frame->GetFrameSlot(output_frame_size - kPointerSize);
|
|
}
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
|
|
if (bailout_id == BailoutId::ConstructStubCreate()) {
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "new target\n");
|
|
} else {
|
|
CHECK(bailout_id == BailoutId::ConstructStubInvoke());
|
|
DebugPrintOutputSlot(value, frame_index, output_offset,
|
|
"allocated receiver\n");
|
|
}
|
|
|
|
if (is_topmost) {
|
|
if (PadTopOfStackRegister()) {
|
|
output_offset -= kPointerSize;
|
|
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
|
|
output_offset, "padding ");
|
|
}
|
|
// Ensure the result is restored back when we return to the stub.
|
|
output_offset -= kPointerSize;
|
|
Register result_reg = kReturnRegister0;
|
|
value = input_->GetRegister(result_reg.code());
|
|
output_frame->SetFrameSlot(output_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_offset, "subcall result\n");
|
|
}
|
|
|
|
CHECK_EQ(0u, output_offset);
|
|
|
|
// Compute this frame's PC.
|
|
DCHECK(bailout_id.IsValidForConstructStub());
|
|
Address start = construct_stub->instruction_start();
|
|
int pc_offset =
|
|
bailout_id == BailoutId::ConstructStubCreate()
|
|
? isolate_->heap()->construct_stub_create_deopt_pc_offset()->value()
|
|
: isolate_->heap()->construct_stub_invoke_deopt_pc_offset()->value();
|
|
intptr_t pc_value = reinterpret_cast<intptr_t>(start + pc_offset);
|
|
output_frame->SetPc(pc_value);
|
|
|
|
// Update constant pool.
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
intptr_t constant_pool_value =
|
|
reinterpret_cast<intptr_t>(construct_stub->constant_pool());
|
|
output_frame->SetConstantPool(constant_pool_value);
|
|
if (is_topmost) {
|
|
Register constant_pool_reg =
|
|
JavaScriptFrame::constant_pool_pointer_register();
|
|
output_frame->SetRegister(constant_pool_reg.code(), fp_value);
|
|
}
|
|
}
|
|
|
|
// Clear the context register. The context might be a de-materialized object
|
|
// and will be materialized by {Runtime_NotifyDeoptimized}. For additional
|
|
// safety we use Smi(0) instead of the potential {arguments_marker} here.
|
|
if (is_topmost) {
|
|
intptr_t context_value = reinterpret_cast<intptr_t>(Smi::kZero);
|
|
Register context_reg = JavaScriptFrame::context_register();
|
|
output_frame->SetRegister(context_reg.code(), context_value);
|
|
}
|
|
|
|
// Set the continuation for the topmost frame.
|
|
if (is_topmost) {
|
|
Builtins* builtins = isolate_->builtins();
|
|
DCHECK_EQ(LAZY, bailout_type_);
|
|
Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
|
|
output_frame->SetContinuation(
|
|
reinterpret_cast<intptr_t>(continuation->entry()));
|
|
}
|
|
}
|
|
|
|
// BuiltinContinuationFrames capture the machine state that is expected as input
|
|
// to a builtin, including both input register values and stack parameters. When
|
|
// the frame is reactivated (i.e. the frame below it returns), a
|
|
// ContinueToBuiltin stub restores the register state from the frame and tail
|
|
// calls to the actual target builtin, making it appear that the stub had been
|
|
// directly called by the frame above it. The input values to populate the frame
|
|
// are taken from the deopt's FrameState.
|
|
//
|
|
// Frame translation happens in two modes, EAGER and LAZY. In EAGER mode, all of
|
|
// the parameters to the Builtin are explicitly specified in the TurboFan
|
|
// FrameState node. In LAZY mode, there is always one fewer parameters specified
|
|
// in the FrameState than expected by the Builtin. In that case, construction of
|
|
// BuiltinContinuationFrame adds the final missing parameter during
|
|
// deoptimization, and that parameter is always on the stack and contains the
|
|
// value returned from the callee of the call site triggering the LAZY deopt
|
|
// (e.g. rax on x64). This requires that continuation Builtins for LAZY deopts
|
|
// must have at least one stack parameter.
|
|
//
|
|
// TO
|
|
// | .... |
|
|
// +-------------------------+
|
|
// | builtin param 0 |<- FrameState input value n becomes
|
|
// +-------------------------+
|
|
// | ... |
|
|
// +-------------------------+
|
|
// | builtin param m |<- FrameState input value n+m-1, or in
|
|
// +-------------------------+ the LAZY case, return LAZY result value
|
|
// | ContinueToBuiltin entry |
|
|
// +-------------------------+
|
|
// | | saved frame (FP) |
|
|
// | +=========================+<- fpreg
|
|
// | |constant pool (if ool_cp)|
|
|
// v +-------------------------+
|
|
// |BUILTIN_CONTINUATION mark|
|
|
// +-------------------------+
|
|
// | JS Builtin code object |
|
|
// +-------------------------+
|
|
// | builtin input GPR reg0 |<- populated from deopt FrameState using
|
|
// +-------------------------+ the builtin's CallInterfaceDescriptor
|
|
// | ... | to map a FrameState's 0..n-1 inputs to
|
|
// +-------------------------+ the builtin's n input register params.
|
|
// | builtin input GPR regn |
|
|
// |-------------------------|<- spreg
|
|
//
|
|
void Deoptimizer::DoComputeBuiltinContinuation(
|
|
TranslatedFrame* translated_frame, int frame_index,
|
|
bool java_script_builtin) {
|
|
TranslatedFrame::iterator value_iterator = translated_frame->begin();
|
|
int input_index = 0;
|
|
|
|
// The output frame must have room for all of the parameters that need to be
|
|
// passed to the builtin continuation.
|
|
int height_in_words = translated_frame->height();
|
|
|
|
BailoutId bailout_id = translated_frame->node_id();
|
|
Builtins::Name builtin_name = Builtins::GetBuiltinFromBailoutId(bailout_id);
|
|
DCHECK(!Builtins::IsLazy(builtin_name));
|
|
Code* builtin = isolate()->builtins()->builtin(builtin_name);
|
|
Callable continuation_callable =
|
|
Builtins::CallableFor(isolate(), builtin_name);
|
|
CallInterfaceDescriptor continuation_descriptor =
|
|
continuation_callable.descriptor();
|
|
|
|
bool is_bottommost = (0 == frame_index);
|
|
bool is_topmost = (output_count_ - 1 == frame_index);
|
|
bool must_handle_result = !is_topmost || bailout_type_ == LAZY;
|
|
|
|
const RegisterConfiguration* config(RegisterConfiguration::Default());
|
|
int allocatable_register_count = config->num_allocatable_general_registers();
|
|
int padding_slot_count = BuiltinContinuationFrameConstants::PaddingSlotCount(
|
|
allocatable_register_count);
|
|
|
|
int register_parameter_count =
|
|
continuation_descriptor.GetRegisterParameterCount();
|
|
// Make sure to account for the context by removing it from the register
|
|
// parameter count.
|
|
int stack_param_count = height_in_words - register_parameter_count - 1;
|
|
if (must_handle_result) stack_param_count++;
|
|
unsigned output_frame_size =
|
|
kPointerSize * (stack_param_count + allocatable_register_count +
|
|
padding_slot_count) +
|
|
BuiltinContinuationFrameConstants::kFixedFrameSize;
|
|
|
|
// If the builtins frame appears to be topmost we should ensure that the
|
|
// value of result register is preserved during continuation execution.
|
|
// We do this here by "pushing" the result of callback function to the
|
|
// top of the reconstructed stack and popping it in
|
|
// {Builtins::kNotifyDeoptimized}.
|
|
if (is_topmost) {
|
|
output_frame_size += kPointerSize;
|
|
if (PadTopOfStackRegister()) output_frame_size += kPointerSize;
|
|
}
|
|
|
|
// Validate types of parameters. They must all be tagged except for argc for
|
|
// JS builtins.
|
|
bool has_argc = false;
|
|
for (int i = 0; i < register_parameter_count; ++i) {
|
|
MachineType type = continuation_descriptor.GetParameterType(i);
|
|
int code = continuation_descriptor.GetRegisterParameter(i).code();
|
|
// Only tagged and int32 arguments are supported, and int32 only for the
|
|
// arguments count on JavaScript builtins.
|
|
if (type == MachineType::Int32()) {
|
|
CHECK_EQ(code, kJavaScriptCallArgCountRegister.code());
|
|
has_argc = true;
|
|
} else {
|
|
// Any other argument must be a tagged value.
|
|
CHECK(IsAnyTagged(type.representation()));
|
|
}
|
|
}
|
|
CHECK_EQ(java_script_builtin, has_argc);
|
|
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF(trace_scope_->file(),
|
|
" translating BuiltinContinuation to %s,"
|
|
" register param count %d,"
|
|
" stack param count %d\n",
|
|
Builtins::name(builtin_name), register_parameter_count,
|
|
stack_param_count);
|
|
}
|
|
|
|
int translated_stack_parameters =
|
|
must_handle_result ? stack_param_count - 1 : stack_param_count;
|
|
|
|
if (ShouldPadArguments(stack_param_count)) output_frame_size += kPointerSize;
|
|
FrameDescription* output_frame = new (output_frame_size)
|
|
FrameDescription(output_frame_size, stack_param_count);
|
|
output_[frame_index] = output_frame;
|
|
|
|
// The top address of the frame is computed from the previous frame's top and
|
|
// this frame's size.
|
|
intptr_t top_address;
|
|
if (is_bottommost) {
|
|
top_address = caller_frame_top_ - output_frame_size;
|
|
} else {
|
|
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
|
|
}
|
|
output_frame->SetTop(top_address);
|
|
|
|
// Get the possible JSFunction for the case that this is a
|
|
// JavaScriptBuiltinContinuationFrame, which needs the JSFunction pointer
|
|
// like a normal JavaScriptFrame.
|
|
intptr_t maybe_function =
|
|
reinterpret_cast<intptr_t>(value_iterator->GetRawValue());
|
|
++input_index;
|
|
++value_iterator;
|
|
|
|
struct RegisterValue {
|
|
Object* raw_value_;
|
|
TranslatedFrame::iterator iterator_;
|
|
};
|
|
std::vector<RegisterValue> register_values;
|
|
int total_registers = config->num_general_registers();
|
|
register_values.resize(total_registers, {Smi::kZero, value_iterator});
|
|
|
|
intptr_t value;
|
|
|
|
unsigned output_frame_offset = output_frame_size;
|
|
if (ShouldPadArguments(stack_param_count)) {
|
|
output_frame_offset -= kPointerSize;
|
|
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
|
|
output_frame_offset, "padding ");
|
|
}
|
|
|
|
for (int i = 0; i < translated_stack_parameters; ++i) {
|
|
output_frame_offset -= kPointerSize;
|
|
WriteTranslatedValueToOutput(&value_iterator, &input_index, frame_index,
|
|
output_frame_offset);
|
|
}
|
|
|
|
if (must_handle_result) {
|
|
output_frame_offset -= kPointerSize;
|
|
WriteValueToOutput(isolate()->heap()->the_hole_value(), input_index,
|
|
frame_index, output_frame_offset,
|
|
"placeholder for return result on lazy deopt ");
|
|
}
|
|
|
|
DCHECK_EQ(output_frame_offset, output_frame->GetLastArgumentSlotOffset());
|
|
|
|
for (int i = 0; i < register_parameter_count; ++i) {
|
|
Object* object = value_iterator->GetRawValue();
|
|
int code = continuation_descriptor.GetRegisterParameter(i).code();
|
|
register_values[code] = {object, value_iterator};
|
|
++input_index;
|
|
++value_iterator;
|
|
}
|
|
|
|
// The context register is always implicit in the CallInterfaceDescriptor but
|
|
// its register must be explicitly set when continuing to the builtin. Make
|
|
// sure that it's harvested from the translation and copied into the register
|
|
// set (it was automatically added at the end of the FrameState by the
|
|
// instruction selector).
|
|
Object* context = value_iterator->GetRawValue();
|
|
value = reinterpret_cast<intptr_t>(context);
|
|
register_values[kContextRegister.code()] = {context, value_iterator};
|
|
output_frame->SetContext(value);
|
|
output_frame->SetRegister(kContextRegister.code(), value);
|
|
++input_index;
|
|
++value_iterator;
|
|
|
|
// Set caller's PC (JSFunction continuation).
|
|
output_frame_offset -= kPCOnStackSize;
|
|
if (is_bottommost) {
|
|
value = caller_pc_;
|
|
} else {
|
|
value = output_[frame_index - 1]->GetPc();
|
|
}
|
|
output_frame->SetCallerPc(output_frame_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
|
|
"caller's pc\n");
|
|
|
|
// Read caller's FP from the previous frame, and set this frame's FP.
|
|
output_frame_offset -= kFPOnStackSize;
|
|
if (is_bottommost) {
|
|
value = caller_fp_;
|
|
} else {
|
|
value = output_[frame_index - 1]->GetFp();
|
|
}
|
|
output_frame->SetCallerFp(output_frame_offset, value);
|
|
intptr_t fp_value = top_address + output_frame_offset;
|
|
output_frame->SetFp(fp_value);
|
|
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
|
|
"caller's fp\n");
|
|
|
|
if (FLAG_enable_embedded_constant_pool) {
|
|
// Read the caller's constant pool from the previous frame.
|
|
output_frame_offset -= kPointerSize;
|
|
if (is_bottommost) {
|
|
value = caller_constant_pool_;
|
|
} else {
|
|
value = output_[frame_index - 1]->GetConstantPool();
|
|
}
|
|
output_frame->SetCallerConstantPool(output_frame_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
|
|
"caller's constant_pool\n");
|
|
}
|
|
|
|
// A marker value is used in place of the context.
|
|
output_frame_offset -= kPointerSize;
|
|
intptr_t marker =
|
|
java_script_builtin
|
|
? StackFrame::TypeToMarker(
|
|
StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION)
|
|
: StackFrame::TypeToMarker(StackFrame::BUILTIN_CONTINUATION);
|
|
output_frame->SetFrameSlot(output_frame_offset, marker);
|
|
DebugPrintOutputSlot(marker, frame_index, output_frame_offset,
|
|
"context (builtin continuation sentinel)\n");
|
|
|
|
output_frame_offset -= kPointerSize;
|
|
value = java_script_builtin ? maybe_function : 0;
|
|
output_frame->SetFrameSlot(output_frame_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
|
|
java_script_builtin ? "JSFunction\n" : "unused\n");
|
|
|
|
// The builtin to continue to
|
|
output_frame_offset -= kPointerSize;
|
|
value = reinterpret_cast<intptr_t>(builtin);
|
|
output_frame->SetFrameSlot(output_frame_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
|
|
"builtin address\n");
|
|
|
|
for (int i = 0; i < allocatable_register_count; ++i) {
|
|
output_frame_offset -= kPointerSize;
|
|
int code = config->GetAllocatableGeneralCode(i);
|
|
Object* object = register_values[code].raw_value_;
|
|
value = reinterpret_cast<intptr_t>(object);
|
|
output_frame->SetFrameSlot(output_frame_offset, value);
|
|
if (trace_scope_ != nullptr) {
|
|
ScopedVector<char> str(128);
|
|
if (java_script_builtin &&
|
|
code == kJavaScriptCallArgCountRegister.code()) {
|
|
SNPrintF(
|
|
str,
|
|
"tagged argument count %s (will be untagged by continuation)\n",
|
|
config->GetGeneralRegisterName(code));
|
|
} else {
|
|
SNPrintF(str, "builtin register argument %s\n",
|
|
config->GetGeneralRegisterName(code));
|
|
}
|
|
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
|
|
str.start());
|
|
}
|
|
if (object == isolate_->heap()->arguments_marker()) {
|
|
Address output_address =
|
|
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
|
|
output_frame_offset;
|
|
values_to_materialize_.push_back(
|
|
{output_address, register_values[code].iterator_});
|
|
}
|
|
}
|
|
|
|
// Some architectures must pad the stack frame with extra stack slots
|
|
// to ensure the stack frame is aligned.
|
|
for (int i = 0; i < padding_slot_count; ++i) {
|
|
output_frame_offset -= kPointerSize;
|
|
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
|
|
output_frame_offset, "padding ");
|
|
}
|
|
|
|
if (is_topmost) {
|
|
if (PadTopOfStackRegister()) {
|
|
output_frame_offset -= kPointerSize;
|
|
WriteValueToOutput(isolate()->heap()->the_hole_value(), 0, frame_index,
|
|
output_frame_offset, "padding ");
|
|
}
|
|
// Ensure the result is restored back when we return to the stub.
|
|
output_frame_offset -= kPointerSize;
|
|
Register result_reg = kReturnRegister0;
|
|
if (must_handle_result) {
|
|
value = input_->GetRegister(result_reg.code());
|
|
} else {
|
|
value = reinterpret_cast<intptr_t>(isolate()->heap()->undefined_value());
|
|
}
|
|
output_frame->SetFrameSlot(output_frame_offset, value);
|
|
DebugPrintOutputSlot(value, frame_index, output_frame_offset,
|
|
"callback result\n");
|
|
}
|
|
|
|
CHECK_EQ(0u, output_frame_offset);
|
|
|
|
// Clear the context register. The context might be a de-materialized object
|
|
// and will be materialized by {Runtime_NotifyDeoptimized}. For additional
|
|
// safety we use Smi(0) instead of the potential {arguments_marker} here.
|
|
if (is_topmost) {
|
|
intptr_t context_value = reinterpret_cast<intptr_t>(Smi::kZero);
|
|
Register context_reg = JavaScriptFrame::context_register();
|
|
output_frame->SetRegister(context_reg.code(), context_value);
|
|
}
|
|
|
|
// Ensure the frame pointer register points to the callee's frame. The builtin
|
|
// will build its own frame once we continue to it.
|
|
Register fp_reg = JavaScriptFrame::fp_register();
|
|
output_frame->SetRegister(fp_reg.code(), output_[frame_index - 1]->GetFp());
|
|
|
|
Code* continue_to_builtin =
|
|
java_script_builtin
|
|
? (must_handle_result
|
|
? isolate()->builtins()->builtin(
|
|
Builtins::kContinueToJavaScriptBuiltinWithResult)
|
|
: isolate()->builtins()->builtin(
|
|
Builtins::kContinueToJavaScriptBuiltin))
|
|
: (must_handle_result
|
|
? isolate()->builtins()->builtin(
|
|
Builtins::kContinueToCodeStubBuiltinWithResult)
|
|
: isolate()->builtins()->builtin(
|
|
Builtins::kContinueToCodeStubBuiltin));
|
|
output_frame->SetPc(
|
|
reinterpret_cast<intptr_t>(continue_to_builtin->instruction_start()));
|
|
|
|
Code* continuation =
|
|
isolate()->builtins()->builtin(Builtins::kNotifyDeoptimized);
|
|
output_frame->SetContinuation(
|
|
reinterpret_cast<intptr_t>(continuation->entry()));
|
|
}
|
|
|
|
void Deoptimizer::MaterializeHeapObjects() {
|
|
translated_state_.Prepare(reinterpret_cast<Address>(stack_fp_));
|
|
|
|
for (auto& materialization : values_to_materialize_) {
|
|
Handle<Object> value = materialization.value_->GetValue();
|
|
|
|
if (trace_scope_ != nullptr) {
|
|
PrintF("Materialization [0x%08" V8PRIxPTR "] <- 0x%08" V8PRIxPTR " ; ",
|
|
reinterpret_cast<intptr_t>(materialization.output_slot_address_),
|
|
reinterpret_cast<intptr_t>(*value));
|
|
value->ShortPrint(trace_scope_->file());
|
|
PrintF(trace_scope_->file(), "\n");
|
|
}
|
|
|
|
*(reinterpret_cast<intptr_t*>(materialization.output_slot_address_)) =
|
|
reinterpret_cast<intptr_t>(*value);
|
|
}
|
|
|
|
translated_state_.VerifyMaterializedObjects();
|
|
|
|
bool feedback_updated = translated_state_.DoUpdateFeedback();
|
|
if (trace_scope_ != nullptr && feedback_updated) {
|
|
PrintF(trace_scope_->file(), "Feedback updated");
|
|
compiled_code_->PrintDeoptLocation(trace_scope_->file(),
|
|
" from deoptimization at ", from_);
|
|
}
|
|
|
|
isolate_->materialized_object_store()->Remove(
|
|
reinterpret_cast<Address>(stack_fp_));
|
|
}
|
|
|
|
|
|
void Deoptimizer::WriteTranslatedValueToOutput(
|
|
TranslatedFrame::iterator* iterator, int* input_index, int frame_index,
|
|
unsigned output_offset, const char* debug_hint_string,
|
|
Address output_address_for_materialization) {
|
|
Object* value = (*iterator)->GetRawValue();
|
|
|
|
WriteValueToOutput(value, *input_index, frame_index, output_offset,
|
|
debug_hint_string);
|
|
|
|
if (value == isolate_->heap()->arguments_marker()) {
|
|
Address output_address =
|
|
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
|
|
output_offset;
|
|
if (output_address_for_materialization == nullptr) {
|
|
output_address_for_materialization = output_address;
|
|
}
|
|
values_to_materialize_.push_back(
|
|
{output_address_for_materialization, *iterator});
|
|
}
|
|
|
|
(*iterator)++;
|
|
(*input_index)++;
|
|
}
|
|
|
|
|
|
void Deoptimizer::WriteValueToOutput(Object* value, int input_index,
|
|
int frame_index, unsigned output_offset,
|
|
const char* debug_hint_string) {
|
|
output_[frame_index]->SetFrameSlot(output_offset,
|
|
reinterpret_cast<intptr_t>(value));
|
|
|
|
if (trace_scope_ != nullptr) {
|
|
DebugPrintOutputSlot(reinterpret_cast<intptr_t>(value), frame_index,
|
|
output_offset, debug_hint_string);
|
|
value->ShortPrint(trace_scope_->file());
|
|
PrintF(trace_scope_->file(), " (input #%d)\n", input_index);
|
|
}
|
|
}
|
|
|
|
|
|
void Deoptimizer::DebugPrintOutputSlot(intptr_t value, int frame_index,
|
|
unsigned output_offset,
|
|
const char* debug_hint_string) {
|
|
if (trace_scope_ != nullptr) {
|
|
Address output_address =
|
|
reinterpret_cast<Address>(output_[frame_index]->GetTop()) +
|
|
output_offset;
|
|
PrintF(trace_scope_->file(),
|
|
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; %s",
|
|
reinterpret_cast<intptr_t>(output_address), output_offset, value,
|
|
debug_hint_string == nullptr ? "" : debug_hint_string);
|
|
}
|
|
}
|
|
|
|
unsigned Deoptimizer::ComputeInputFrameAboveFpFixedSize() const {
|
|
unsigned fixed_size = CommonFrameConstants::kFixedFrameSizeAboveFp;
|
|
if (!function_->IsSmi()) {
|
|
fixed_size += ComputeIncomingArgumentSize(function_->shared());
|
|
}
|
|
return fixed_size;
|
|
}
|
|
|
|
unsigned Deoptimizer::ComputeInputFrameSize() const {
|
|
// The fp-to-sp delta already takes the context, constant pool pointer and the
|
|
// function into account so we have to avoid double counting them.
|
|
unsigned fixed_size_above_fp = ComputeInputFrameAboveFpFixedSize();
|
|
unsigned result = fixed_size_above_fp + fp_to_sp_delta_;
|
|
if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
|
|
unsigned stack_slots = compiled_code_->stack_slots();
|
|
unsigned outgoing_size = 0;
|
|
// ComputeOutgoingArgumentSize(compiled_code_, bailout_id_);
|
|
CHECK_EQ(fixed_size_above_fp + (stack_slots * kPointerSize) -
|
|
CommonFrameConstants::kFixedFrameSizeAboveFp + outgoing_size,
|
|
result);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// static
|
|
unsigned Deoptimizer::ComputeInterpretedFixedSize(SharedFunctionInfo* shared) {
|
|
// The fixed part of the frame consists of the return address, frame
|
|
// pointer, function, context, bytecode offset and all the incoming arguments.
|
|
return ComputeIncomingArgumentSize(shared) +
|
|
InterpreterFrameConstants::kFixedFrameSize;
|
|
}
|
|
|
|
// static
|
|
unsigned Deoptimizer::ComputeIncomingArgumentSize(SharedFunctionInfo* shared) {
|
|
int parameter_slots = shared->internal_formal_parameter_count() + 1;
|
|
if (kPadArguments) parameter_slots = RoundUp(parameter_slots, 2);
|
|
return parameter_slots * kPointerSize;
|
|
}
|
|
|
|
void Deoptimizer::EnsureCodeForDeoptimizationEntry(Isolate* isolate,
|
|
BailoutType type) {
|
|
CHECK(type == EAGER || type == SOFT || type == LAZY);
|
|
DeoptimizerData* data = isolate->deoptimizer_data();
|
|
if (data->deopt_entry_code_[type] != nullptr) return;
|
|
|
|
MacroAssembler masm(isolate, nullptr, 16 * KB, CodeObjectRequired::kYes);
|
|
masm.set_emit_debug_code(false);
|
|
GenerateDeoptimizationEntries(&masm, kMaxNumberOfEntries, type);
|
|
CodeDesc desc;
|
|
masm.GetCode(isolate, &desc);
|
|
DCHECK(!RelocInfo::RequiresRelocation(isolate, desc));
|
|
|
|
// Allocate the code as immovable since the entry addresses will be used
|
|
// directly and there is no support for relocating them.
|
|
Handle<Code> code = isolate->factory()->NewCode(
|
|
desc, Code::STUB, Handle<Object>(), Builtins::kNoBuiltinId,
|
|
MaybeHandle<HandlerTable>(), MaybeHandle<ByteArray>(),
|
|
MaybeHandle<DeoptimizationData>(), kImmovable);
|
|
CHECK(Heap::IsImmovable(*code));
|
|
|
|
CHECK_NULL(data->deopt_entry_code_[type]);
|
|
data->deopt_entry_code_[type] = *code;
|
|
}
|
|
|
|
void Deoptimizer::EnsureCodeForMaxDeoptimizationEntries(Isolate* isolate) {
|
|
EnsureCodeForDeoptimizationEntry(isolate, EAGER);
|
|
EnsureCodeForDeoptimizationEntry(isolate, LAZY);
|
|
EnsureCodeForDeoptimizationEntry(isolate, SOFT);
|
|
}
|
|
|
|
FrameDescription::FrameDescription(uint32_t frame_size, int parameter_count)
|
|
: frame_size_(frame_size),
|
|
parameter_count_(parameter_count),
|
|
top_(kZapUint32),
|
|
pc_(kZapUint32),
|
|
fp_(kZapUint32),
|
|
context_(kZapUint32),
|
|
constant_pool_(kZapUint32) {
|
|
// Zap all the registers.
|
|
for (int r = 0; r < Register::kNumRegisters; r++) {
|
|
// TODO(jbramley): It isn't safe to use kZapUint32 here. If the register
|
|
// isn't used before the next safepoint, the GC will try to scan it as a
|
|
// tagged value. kZapUint32 looks like a valid tagged pointer, but it isn't.
|
|
SetRegister(r, kZapUint32);
|
|
}
|
|
|
|
// Zap all the slots.
|
|
for (unsigned o = 0; o < frame_size; o += kPointerSize) {
|
|
SetFrameSlot(o, kZapUint32);
|
|
}
|
|
}
|
|
|
|
void TranslationBuffer::Add(int32_t value) {
|
|
// This wouldn't handle kMinInt correctly if it ever encountered it.
|
|
DCHECK_NE(value, kMinInt);
|
|
// Encode the sign bit in the least significant bit.
|
|
bool is_negative = (value < 0);
|
|
uint32_t bits = ((is_negative ? -value : value) << 1) |
|
|
static_cast<int32_t>(is_negative);
|
|
// Encode the individual bytes using the least significant bit of
|
|
// each byte to indicate whether or not more bytes follow.
|
|
do {
|
|
uint32_t next = bits >> 7;
|
|
contents_.push_back(((bits << 1) & 0xFF) | (next != 0));
|
|
bits = next;
|
|
} while (bits != 0);
|
|
}
|
|
|
|
TranslationIterator::TranslationIterator(ByteArray* buffer, int index)
|
|
: buffer_(buffer), index_(index) {
|
|
DCHECK(index >= 0 && index < buffer->length());
|
|
}
|
|
|
|
int32_t TranslationIterator::Next() {
|
|
// Run through the bytes until we reach one with a least significant
|
|
// bit of zero (marks the end).
|
|
uint32_t bits = 0;
|
|
for (int i = 0; true; i += 7) {
|
|
DCHECK(HasNext());
|
|
uint8_t next = buffer_->get(index_++);
|
|
bits |= (next >> 1) << i;
|
|
if ((next & 1) == 0) break;
|
|
}
|
|
// The bits encode the sign in the least significant bit.
|
|
bool is_negative = (bits & 1) == 1;
|
|
int32_t result = bits >> 1;
|
|
return is_negative ? -result : result;
|
|
}
|
|
|
|
bool TranslationIterator::HasNext() const { return index_ < buffer_->length(); }
|
|
|
|
Handle<ByteArray> TranslationBuffer::CreateByteArray(Factory* factory) {
|
|
Handle<ByteArray> result = factory->NewByteArray(CurrentIndex(), TENURED);
|
|
contents_.CopyTo(result->GetDataStartAddress());
|
|
return result;
|
|
}
|
|
|
|
void Translation::BeginBuiltinContinuationFrame(BailoutId bailout_id,
|
|
int literal_id,
|
|
unsigned height) {
|
|
buffer_->Add(BUILTIN_CONTINUATION_FRAME);
|
|
buffer_->Add(bailout_id.ToInt());
|
|
buffer_->Add(literal_id);
|
|
buffer_->Add(height);
|
|
}
|
|
|
|
void Translation::BeginJavaScriptBuiltinContinuationFrame(BailoutId bailout_id,
|
|
int literal_id,
|
|
unsigned height) {
|
|
buffer_->Add(JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME);
|
|
buffer_->Add(bailout_id.ToInt());
|
|
buffer_->Add(literal_id);
|
|
buffer_->Add(height);
|
|
}
|
|
|
|
void Translation::BeginConstructStubFrame(BailoutId bailout_id, int literal_id,
|
|
unsigned height) {
|
|
buffer_->Add(CONSTRUCT_STUB_FRAME);
|
|
buffer_->Add(bailout_id.ToInt());
|
|
buffer_->Add(literal_id);
|
|
buffer_->Add(height);
|
|
}
|
|
|
|
|
|
void Translation::BeginArgumentsAdaptorFrame(int literal_id, unsigned height) {
|
|
buffer_->Add(ARGUMENTS_ADAPTOR_FRAME);
|
|
buffer_->Add(literal_id);
|
|
buffer_->Add(height);
|
|
}
|
|
|
|
void Translation::BeginInterpretedFrame(BailoutId bytecode_offset,
|
|
int literal_id, unsigned height) {
|
|
buffer_->Add(INTERPRETED_FRAME);
|
|
buffer_->Add(bytecode_offset.ToInt());
|
|
buffer_->Add(literal_id);
|
|
buffer_->Add(height);
|
|
}
|
|
|
|
void Translation::ArgumentsElements(CreateArgumentsType type) {
|
|
buffer_->Add(ARGUMENTS_ELEMENTS);
|
|
buffer_->Add(static_cast<uint8_t>(type));
|
|
}
|
|
|
|
void Translation::ArgumentsLength(CreateArgumentsType type) {
|
|
buffer_->Add(ARGUMENTS_LENGTH);
|
|
buffer_->Add(static_cast<uint8_t>(type));
|
|
}
|
|
|
|
void Translation::BeginCapturedObject(int length) {
|
|
buffer_->Add(CAPTURED_OBJECT);
|
|
buffer_->Add(length);
|
|
}
|
|
|
|
|
|
void Translation::DuplicateObject(int object_index) {
|
|
buffer_->Add(DUPLICATED_OBJECT);
|
|
buffer_->Add(object_index);
|
|
}
|
|
|
|
|
|
void Translation::StoreRegister(Register reg) {
|
|
buffer_->Add(REGISTER);
|
|
buffer_->Add(reg.code());
|
|
}
|
|
|
|
|
|
void Translation::StoreInt32Register(Register reg) {
|
|
buffer_->Add(INT32_REGISTER);
|
|
buffer_->Add(reg.code());
|
|
}
|
|
|
|
|
|
void Translation::StoreUint32Register(Register reg) {
|
|
buffer_->Add(UINT32_REGISTER);
|
|
buffer_->Add(reg.code());
|
|
}
|
|
|
|
|
|
void Translation::StoreBoolRegister(Register reg) {
|
|
buffer_->Add(BOOL_REGISTER);
|
|
buffer_->Add(reg.code());
|
|
}
|
|
|
|
void Translation::StoreFloatRegister(FloatRegister reg) {
|
|
buffer_->Add(FLOAT_REGISTER);
|
|
buffer_->Add(reg.code());
|
|
}
|
|
|
|
void Translation::StoreDoubleRegister(DoubleRegister reg) {
|
|
buffer_->Add(DOUBLE_REGISTER);
|
|
buffer_->Add(reg.code());
|
|
}
|
|
|
|
|
|
void Translation::StoreStackSlot(int index) {
|
|
buffer_->Add(STACK_SLOT);
|
|
buffer_->Add(index);
|
|
}
|
|
|
|
|
|
void Translation::StoreInt32StackSlot(int index) {
|
|
buffer_->Add(INT32_STACK_SLOT);
|
|
buffer_->Add(index);
|
|
}
|
|
|
|
|
|
void Translation::StoreUint32StackSlot(int index) {
|
|
buffer_->Add(UINT32_STACK_SLOT);
|
|
buffer_->Add(index);
|
|
}
|
|
|
|
|
|
void Translation::StoreBoolStackSlot(int index) {
|
|
buffer_->Add(BOOL_STACK_SLOT);
|
|
buffer_->Add(index);
|
|
}
|
|
|
|
void Translation::StoreFloatStackSlot(int index) {
|
|
buffer_->Add(FLOAT_STACK_SLOT);
|
|
buffer_->Add(index);
|
|
}
|
|
|
|
void Translation::StoreDoubleStackSlot(int index) {
|
|
buffer_->Add(DOUBLE_STACK_SLOT);
|
|
buffer_->Add(index);
|
|
}
|
|
|
|
|
|
void Translation::StoreLiteral(int literal_id) {
|
|
buffer_->Add(LITERAL);
|
|
buffer_->Add(literal_id);
|
|
}
|
|
|
|
void Translation::AddUpdateFeedback(int vector_literal, int slot) {
|
|
buffer_->Add(UPDATE_FEEDBACK);
|
|
buffer_->Add(vector_literal);
|
|
buffer_->Add(slot);
|
|
}
|
|
|
|
void Translation::StoreJSFrameFunction() {
|
|
StoreStackSlot((StandardFrameConstants::kCallerPCOffset -
|
|
StandardFrameConstants::kFunctionOffset) /
|
|
kPointerSize);
|
|
}
|
|
|
|
int Translation::NumberOfOperandsFor(Opcode opcode) {
|
|
switch (opcode) {
|
|
case DUPLICATED_OBJECT:
|
|
case ARGUMENTS_ELEMENTS:
|
|
case ARGUMENTS_LENGTH:
|
|
case CAPTURED_OBJECT:
|
|
case REGISTER:
|
|
case INT32_REGISTER:
|
|
case UINT32_REGISTER:
|
|
case BOOL_REGISTER:
|
|
case FLOAT_REGISTER:
|
|
case DOUBLE_REGISTER:
|
|
case STACK_SLOT:
|
|
case INT32_STACK_SLOT:
|
|
case UINT32_STACK_SLOT:
|
|
case BOOL_STACK_SLOT:
|
|
case FLOAT_STACK_SLOT:
|
|
case DOUBLE_STACK_SLOT:
|
|
case LITERAL:
|
|
return 1;
|
|
case ARGUMENTS_ADAPTOR_FRAME:
|
|
case UPDATE_FEEDBACK:
|
|
return 2;
|
|
case BEGIN:
|
|
case INTERPRETED_FRAME:
|
|
case CONSTRUCT_STUB_FRAME:
|
|
case BUILTIN_CONTINUATION_FRAME:
|
|
case JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME:
|
|
return 3;
|
|
}
|
|
FATAL("Unexpected translation type");
|
|
return -1;
|
|
}
|
|
|
|
|
|
#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
|
|
|
|
const char* Translation::StringFor(Opcode opcode) {
|
|
#define TRANSLATION_OPCODE_CASE(item) case item: return #item;
|
|
switch (opcode) {
|
|
TRANSLATION_OPCODE_LIST(TRANSLATION_OPCODE_CASE)
|
|
}
|
|
#undef TRANSLATION_OPCODE_CASE
|
|
UNREACHABLE();
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
Handle<FixedArray> MaterializedObjectStore::Get(Address fp) {
|
|
int index = StackIdToIndex(fp);
|
|
if (index == -1) {
|
|
return Handle<FixedArray>::null();
|
|
}
|
|
Handle<FixedArray> array = GetStackEntries();
|
|
CHECK_GT(array->length(), index);
|
|
return Handle<FixedArray>::cast(Handle<Object>(array->get(index), isolate()));
|
|
}
|
|
|
|
|
|
void MaterializedObjectStore::Set(Address fp,
|
|
Handle<FixedArray> materialized_objects) {
|
|
int index = StackIdToIndex(fp);
|
|
if (index == -1) {
|
|
index = static_cast<int>(frame_fps_.size());
|
|
frame_fps_.push_back(fp);
|
|
}
|
|
|
|
Handle<FixedArray> array = EnsureStackEntries(index + 1);
|
|
array->set(index, *materialized_objects);
|
|
}
|
|
|
|
|
|
bool MaterializedObjectStore::Remove(Address fp) {
|
|
auto it = std::find(frame_fps_.begin(), frame_fps_.end(), fp);
|
|
if (it == frame_fps_.end()) return false;
|
|
int index = static_cast<int>(std::distance(frame_fps_.begin(), it));
|
|
|
|
frame_fps_.erase(it);
|
|
FixedArray* array = isolate()->heap()->materialized_objects();
|
|
|
|
CHECK_LT(index, array->length());
|
|
int fps_size = static_cast<int>(frame_fps_.size());
|
|
for (int i = index; i < fps_size; i++) {
|
|
array->set(i, array->get(i + 1));
|
|
}
|
|
array->set(fps_size, isolate()->heap()->undefined_value());
|
|
return true;
|
|
}
|
|
|
|
|
|
int MaterializedObjectStore::StackIdToIndex(Address fp) {
|
|
auto it = std::find(frame_fps_.begin(), frame_fps_.end(), fp);
|
|
return it == frame_fps_.end()
|
|
? -1
|
|
: static_cast<int>(std::distance(frame_fps_.begin(), it));
|
|
}
|
|
|
|
|
|
Handle<FixedArray> MaterializedObjectStore::GetStackEntries() {
|
|
return Handle<FixedArray>(isolate()->heap()->materialized_objects());
|
|
}
|
|
|
|
|
|
Handle<FixedArray> MaterializedObjectStore::EnsureStackEntries(int length) {
|
|
Handle<FixedArray> array = GetStackEntries();
|
|
if (array->length() >= length) {
|
|
return array;
|
|
}
|
|
|
|
int new_length = length > 10 ? length : 10;
|
|
if (new_length < 2 * array->length()) {
|
|
new_length = 2 * array->length();
|
|
}
|
|
|
|
Handle<FixedArray> new_array =
|
|
isolate()->factory()->NewFixedArray(new_length, TENURED);
|
|
for (int i = 0; i < array->length(); i++) {
|
|
new_array->set(i, array->get(i));
|
|
}
|
|
for (int i = array->length(); i < length; i++) {
|
|
new_array->set(i, isolate()->heap()->undefined_value());
|
|
}
|
|
isolate()->heap()->SetRootMaterializedObjects(*new_array);
|
|
return new_array;
|
|
}
|
|
|
|
namespace {
|
|
|
|
Handle<Object> GetValueForDebugger(TranslatedFrame::iterator it,
|
|
Isolate* isolate) {
|
|
if (it->GetRawValue() == isolate->heap()->arguments_marker()) {
|
|
if (!it->IsMaterializableByDebugger()) {
|
|
return isolate->factory()->optimized_out();
|
|
}
|
|
}
|
|
return it->GetValue();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
DeoptimizedFrameInfo::DeoptimizedFrameInfo(TranslatedState* state,
|
|
TranslatedState::iterator frame_it,
|
|
Isolate* isolate) {
|
|
// If the previous frame is an adaptor frame, we will take the parameters
|
|
// from there.
|
|
TranslatedState::iterator parameter_frame = frame_it;
|
|
if (parameter_frame != state->begin()) {
|
|
parameter_frame--;
|
|
}
|
|
int parameter_count;
|
|
if (parameter_frame->kind() == TranslatedFrame::kArgumentsAdaptor) {
|
|
parameter_count = parameter_frame->height() - 1; // Ignore the receiver.
|
|
} else {
|
|
parameter_frame = frame_it;
|
|
parameter_count =
|
|
frame_it->shared_info()->internal_formal_parameter_count();
|
|
}
|
|
TranslatedFrame::iterator parameter_it = parameter_frame->begin();
|
|
parameter_it++; // Skip the function.
|
|
parameter_it++; // Skip the receiver.
|
|
|
|
// Figure out whether there is a construct stub frame on top of
|
|
// the parameter frame.
|
|
has_construct_stub_ =
|
|
parameter_frame != state->begin() &&
|
|
(parameter_frame - 1)->kind() == TranslatedFrame::kConstructStub;
|
|
|
|
DCHECK_EQ(TranslatedFrame::kInterpretedFunction, frame_it->kind());
|
|
source_position_ = Deoptimizer::ComputeSourcePositionFromBytecodeArray(
|
|
*frame_it->shared_info(), frame_it->node_id());
|
|
|
|
TranslatedFrame::iterator value_it = frame_it->begin();
|
|
// Get the function. Note that this might materialize the function.
|
|
// In case the debugger mutates this value, we should deoptimize
|
|
// the function and remember the value in the materialized value store.
|
|
function_ = Handle<JSFunction>::cast(value_it->GetValue());
|
|
|
|
parameters_.resize(static_cast<size_t>(parameter_count));
|
|
for (int i = 0; i < parameter_count; i++) {
|
|
Handle<Object> parameter = GetValueForDebugger(parameter_it, isolate);
|
|
SetParameter(i, parameter);
|
|
parameter_it++;
|
|
}
|
|
|
|
// Skip the function, the receiver and the arguments.
|
|
int skip_count =
|
|
frame_it->shared_info()->internal_formal_parameter_count() + 2;
|
|
TranslatedFrame::iterator stack_it = frame_it->begin();
|
|
for (int i = 0; i < skip_count; i++) {
|
|
stack_it++;
|
|
}
|
|
|
|
// Get the context.
|
|
context_ = GetValueForDebugger(stack_it, isolate);
|
|
stack_it++;
|
|
|
|
// Get the expression stack.
|
|
int stack_height = frame_it->height();
|
|
if (frame_it->kind() == TranslatedFrame::kInterpretedFunction) {
|
|
// For interpreter frames, we should not count the accumulator.
|
|
// TODO(jarin): Clean up the indexing in translated frames.
|
|
stack_height--;
|
|
}
|
|
expression_stack_.resize(static_cast<size_t>(stack_height));
|
|
for (int i = 0; i < stack_height; i++) {
|
|
Handle<Object> expression = GetValueForDebugger(stack_it, isolate);
|
|
SetExpression(i, expression);
|
|
stack_it++;
|
|
}
|
|
|
|
// For interpreter frame, skip the accumulator.
|
|
if (frame_it->kind() == TranslatedFrame::kInterpretedFunction) {
|
|
stack_it++;
|
|
}
|
|
CHECK(stack_it == frame_it->end());
|
|
}
|
|
|
|
|
|
Deoptimizer::DeoptInfo Deoptimizer::GetDeoptInfo(Code* code, Address pc) {
|
|
CHECK(code->instruction_start() <= pc && pc <= code->instruction_end());
|
|
SourcePosition last_position = SourcePosition::Unknown();
|
|
DeoptimizeReason last_reason = DeoptimizeReason::kUnknown;
|
|
int last_deopt_id = kNoDeoptimizationId;
|
|
int mask = RelocInfo::ModeMask(RelocInfo::DEOPT_REASON) |
|
|
RelocInfo::ModeMask(RelocInfo::DEOPT_ID) |
|
|
RelocInfo::ModeMask(RelocInfo::DEOPT_SCRIPT_OFFSET) |
|
|
RelocInfo::ModeMask(RelocInfo::DEOPT_INLINING_ID);
|
|
for (RelocIterator it(code, mask); !it.done(); it.next()) {
|
|
RelocInfo* info = it.rinfo();
|
|
if (info->pc() >= pc) break;
|
|
if (info->rmode() == RelocInfo::DEOPT_SCRIPT_OFFSET) {
|
|
int script_offset = static_cast<int>(info->data());
|
|
it.next();
|
|
DCHECK(it.rinfo()->rmode() == RelocInfo::DEOPT_INLINING_ID);
|
|
int inlining_id = static_cast<int>(it.rinfo()->data());
|
|
last_position = SourcePosition(script_offset, inlining_id);
|
|
} else if (info->rmode() == RelocInfo::DEOPT_ID) {
|
|
last_deopt_id = static_cast<int>(info->data());
|
|
} else if (info->rmode() == RelocInfo::DEOPT_REASON) {
|
|
last_reason = static_cast<DeoptimizeReason>(info->data());
|
|
}
|
|
}
|
|
return DeoptInfo(last_position, last_reason, last_deopt_id);
|
|
}
|
|
|
|
|
|
// static
|
|
int Deoptimizer::ComputeSourcePositionFromBytecodeArray(
|
|
SharedFunctionInfo* shared, BailoutId node_id) {
|
|
DCHECK(shared->HasBytecodeArray());
|
|
return AbstractCode::cast(shared->bytecode_array())
|
|
->SourcePosition(node_id.ToInt());
|
|
}
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewDeferredObject(TranslatedState* container,
|
|
int length,
|
|
int object_index) {
|
|
TranslatedValue slot(container, kCapturedObject);
|
|
slot.materialization_info_ = {object_index, length};
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewDuplicateObject(TranslatedState* container,
|
|
int id) {
|
|
TranslatedValue slot(container, kDuplicatedObject);
|
|
slot.materialization_info_ = {id, -1};
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewFloat(TranslatedState* container,
|
|
Float32 value) {
|
|
TranslatedValue slot(container, kFloat);
|
|
slot.float_value_ = value;
|
|
return slot;
|
|
}
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewDouble(TranslatedState* container,
|
|
Float64 value) {
|
|
TranslatedValue slot(container, kDouble);
|
|
slot.double_value_ = value;
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewInt32(TranslatedState* container,
|
|
int32_t value) {
|
|
TranslatedValue slot(container, kInt32);
|
|
slot.int32_value_ = value;
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewUInt32(TranslatedState* container,
|
|
uint32_t value) {
|
|
TranslatedValue slot(container, kUInt32);
|
|
slot.uint32_value_ = value;
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewBool(TranslatedState* container,
|
|
uint32_t value) {
|
|
TranslatedValue slot(container, kBoolBit);
|
|
slot.uint32_value_ = value;
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewTagged(TranslatedState* container,
|
|
Object* literal) {
|
|
TranslatedValue slot(container, kTagged);
|
|
slot.raw_literal_ = literal;
|
|
return slot;
|
|
}
|
|
|
|
|
|
// static
|
|
TranslatedValue TranslatedValue::NewInvalid(TranslatedState* container) {
|
|
return TranslatedValue(container, kInvalid);
|
|
}
|
|
|
|
|
|
Isolate* TranslatedValue::isolate() const { return container_->isolate(); }
|
|
|
|
|
|
Object* TranslatedValue::raw_literal() const {
|
|
DCHECK_EQ(kTagged, kind());
|
|
return raw_literal_;
|
|
}
|
|
|
|
|
|
int32_t TranslatedValue::int32_value() const {
|
|
DCHECK_EQ(kInt32, kind());
|
|
return int32_value_;
|
|
}
|
|
|
|
|
|
uint32_t TranslatedValue::uint32_value() const {
|
|
DCHECK(kind() == kUInt32 || kind() == kBoolBit);
|
|
return uint32_value_;
|
|
}
|
|
|
|
Float32 TranslatedValue::float_value() const {
|
|
DCHECK_EQ(kFloat, kind());
|
|
return float_value_;
|
|
}
|
|
|
|
Float64 TranslatedValue::double_value() const {
|
|
DCHECK_EQ(kDouble, kind());
|
|
return double_value_;
|
|
}
|
|
|
|
|
|
int TranslatedValue::object_length() const {
|
|
DCHECK_EQ(kind(), kCapturedObject);
|
|
return materialization_info_.length_;
|
|
}
|
|
|
|
|
|
int TranslatedValue::object_index() const {
|
|
DCHECK(kind() == kCapturedObject || kind() == kDuplicatedObject);
|
|
return materialization_info_.id_;
|
|
}
|
|
|
|
|
|
Object* TranslatedValue::GetRawValue() const {
|
|
// If we have a value, return it.
|
|
if (materialization_state() == kFinished) {
|
|
return *storage_;
|
|
}
|
|
|
|
// Otherwise, do a best effort to get the value without allocation.
|
|
switch (kind()) {
|
|
case kTagged:
|
|
return raw_literal();
|
|
|
|
case kInt32: {
|
|
bool is_smi = Smi::IsValid(int32_value());
|
|
if (is_smi) {
|
|
return Smi::FromInt(int32_value());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case kUInt32: {
|
|
bool is_smi = (uint32_value() <= static_cast<uintptr_t>(Smi::kMaxValue));
|
|
if (is_smi) {
|
|
return Smi::FromInt(static_cast<int32_t>(uint32_value()));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case kBoolBit: {
|
|
if (uint32_value() == 0) {
|
|
return isolate()->heap()->false_value();
|
|
} else {
|
|
CHECK_EQ(1U, uint32_value());
|
|
return isolate()->heap()->true_value();
|
|
}
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// If we could not get the value without allocation, return the arguments
|
|
// marker.
|
|
return isolate()->heap()->arguments_marker();
|
|
}
|
|
|
|
void TranslatedValue::set_initialized_storage(Handle<Object> storage) {
|
|
DCHECK_EQ(kUninitialized, materialization_state());
|
|
storage_ = storage;
|
|
materialization_state_ = kFinished;
|
|
}
|
|
|
|
Handle<Object> TranslatedValue::GetValue() {
|
|
// If we already have a value, then get it.
|
|
if (materialization_state() == kFinished) return storage_;
|
|
|
|
// Otherwise we have to materialize.
|
|
switch (kind()) {
|
|
case TranslatedValue::kTagged:
|
|
case TranslatedValue::kInt32:
|
|
case TranslatedValue::kUInt32:
|
|
case TranslatedValue::kBoolBit:
|
|
case TranslatedValue::kFloat:
|
|
case TranslatedValue::kDouble: {
|
|
MaterializeSimple();
|
|
return storage_;
|
|
}
|
|
|
|
case TranslatedValue::kCapturedObject:
|
|
case TranslatedValue::kDuplicatedObject: {
|
|
// We need to materialize the object (or possibly even object graphs).
|
|
// To make the object verifier happy, we materialize in two steps.
|
|
|
|
// 1. Allocate storage for reachable objects. This makes sure that for
|
|
// each object we have allocated space on heap. The space will be
|
|
// a byte array that will be later initialized, or a fully
|
|
// initialized object if it is safe to allocate one that will
|
|
// pass the verifier.
|
|
container_->EnsureObjectAllocatedAt(this);
|
|
|
|
// 2. Initialize the objects. If we have allocated only byte arrays
|
|
// for some objects, we now overwrite the byte arrays with the
|
|
// correct object fields. Note that this phase does not allocate
|
|
// any new objects, so it does not trigger the object verifier.
|
|
return container_->InitializeObjectAt(this);
|
|
}
|
|
|
|
case TranslatedValue::kInvalid:
|
|
FATAL("unexpected case");
|
|
return Handle<Object>::null();
|
|
}
|
|
|
|
FATAL("internal error: value missing");
|
|
return Handle<Object>::null();
|
|
}
|
|
|
|
void TranslatedValue::MaterializeSimple() {
|
|
// If we already have materialized, return.
|
|
if (materialization_state() == kFinished) return;
|
|
|
|
Object* raw_value = GetRawValue();
|
|
if (raw_value != isolate()->heap()->arguments_marker()) {
|
|
// We can get the value without allocation, just return it here.
|
|
set_initialized_storage(Handle<Object>(raw_value, isolate()));
|
|
return;
|
|
}
|
|
|
|
switch (kind()) {
|
|
case kInt32:
|
|
set_initialized_storage(
|
|
Handle<Object>(isolate()->factory()->NewNumber(int32_value())));
|
|
return;
|
|
|
|
case kUInt32:
|
|
set_initialized_storage(
|
|
Handle<Object>(isolate()->factory()->NewNumber(uint32_value())));
|
|
return;
|
|
|
|
case kFloat: {
|
|
double scalar_value = float_value().get_scalar();
|
|
set_initialized_storage(
|
|
Handle<Object>(isolate()->factory()->NewNumber(scalar_value)));
|
|
return;
|
|
}
|
|
|
|
case kDouble: {
|
|
double scalar_value = double_value().get_scalar();
|
|
set_initialized_storage(
|
|
Handle<Object>(isolate()->factory()->NewNumber(scalar_value)));
|
|
return;
|
|
}
|
|
|
|
case kCapturedObject:
|
|
case kDuplicatedObject:
|
|
case kInvalid:
|
|
case kTagged:
|
|
case kBoolBit:
|
|
FATAL("internal error: unexpected materialization.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
bool TranslatedValue::IsMaterializedObject() const {
|
|
switch (kind()) {
|
|
case kCapturedObject:
|
|
case kDuplicatedObject:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool TranslatedValue::IsMaterializableByDebugger() const {
|
|
// At the moment, we only allow materialization of doubles.
|
|
return (kind() == kDouble);
|
|
}
|
|
|
|
int TranslatedValue::GetChildrenCount() const {
|
|
if (kind() == kCapturedObject) {
|
|
return object_length();
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
uint32_t TranslatedState::GetUInt32Slot(Address fp, int slot_offset) {
|
|
Address address = fp + slot_offset;
|
|
#if V8_TARGET_BIG_ENDIAN && V8_HOST_ARCH_64_BIT
|
|
return Memory::uint32_at(address + kIntSize);
|
|
#else
|
|
return Memory::uint32_at(address);
|
|
#endif
|
|
}
|
|
|
|
Float32 TranslatedState::GetFloatSlot(Address fp, int slot_offset) {
|
|
#if !V8_TARGET_ARCH_S390X && !V8_TARGET_ARCH_PPC64
|
|
return Float32::FromBits(GetUInt32Slot(fp, slot_offset));
|
|
#else
|
|
return Float32::FromBits(Memory::uint32_at(fp + slot_offset));
|
|
#endif
|
|
}
|
|
|
|
Float64 TranslatedState::GetDoubleSlot(Address fp, int slot_offset) {
|
|
return Float64::FromBits(Memory::uint64_at(fp + slot_offset));
|
|
}
|
|
|
|
void TranslatedValue::Handlify() {
|
|
if (kind() == kTagged) {
|
|
set_initialized_storage(Handle<Object>(raw_literal(), isolate()));
|
|
raw_literal_ = nullptr;
|
|
}
|
|
}
|
|
|
|
|
|
TranslatedFrame TranslatedFrame::InterpretedFrame(
|
|
BailoutId bytecode_offset, SharedFunctionInfo* shared_info, int height) {
|
|
TranslatedFrame frame(kInterpretedFunction, shared_info, height);
|
|
frame.node_id_ = bytecode_offset;
|
|
return frame;
|
|
}
|
|
|
|
|
|
TranslatedFrame TranslatedFrame::ArgumentsAdaptorFrame(
|
|
SharedFunctionInfo* shared_info, int height) {
|
|
return TranslatedFrame(kArgumentsAdaptor, shared_info, height);
|
|
}
|
|
|
|
TranslatedFrame TranslatedFrame::ConstructStubFrame(
|
|
BailoutId bailout_id, SharedFunctionInfo* shared_info, int height) {
|
|
TranslatedFrame frame(kConstructStub, shared_info, height);
|
|
frame.node_id_ = bailout_id;
|
|
return frame;
|
|
}
|
|
|
|
TranslatedFrame TranslatedFrame::BuiltinContinuationFrame(
|
|
BailoutId bailout_id, SharedFunctionInfo* shared_info, int height) {
|
|
TranslatedFrame frame(kBuiltinContinuation, shared_info, height);
|
|
frame.node_id_ = bailout_id;
|
|
return frame;
|
|
}
|
|
|
|
TranslatedFrame TranslatedFrame::JavaScriptBuiltinContinuationFrame(
|
|
BailoutId bailout_id, SharedFunctionInfo* shared_info, int height) {
|
|
TranslatedFrame frame(kJavaScriptBuiltinContinuation, shared_info, height);
|
|
frame.node_id_ = bailout_id;
|
|
return frame;
|
|
}
|
|
|
|
int TranslatedFrame::GetValueCount() {
|
|
switch (kind()) {
|
|
case kInterpretedFunction: {
|
|
int parameter_count =
|
|
raw_shared_info_->internal_formal_parameter_count() + 1;
|
|
// + 2 for function and context.
|
|
return height_ + parameter_count + 2;
|
|
}
|
|
|
|
case kArgumentsAdaptor:
|
|
case kConstructStub:
|
|
case kBuiltinContinuation:
|
|
case kJavaScriptBuiltinContinuation:
|
|
return 1 + height_;
|
|
|
|
case kInvalid:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
void TranslatedFrame::Handlify() {
|
|
if (raw_shared_info_ != nullptr) {
|
|
shared_info_ = Handle<SharedFunctionInfo>(raw_shared_info_);
|
|
raw_shared_info_ = nullptr;
|
|
}
|
|
for (auto& value : values_) {
|
|
value.Handlify();
|
|
}
|
|
}
|
|
|
|
|
|
TranslatedFrame TranslatedState::CreateNextTranslatedFrame(
|
|
TranslationIterator* iterator, FixedArray* literal_array, Address fp,
|
|
FILE* trace_file) {
|
|
Translation::Opcode opcode =
|
|
static_cast<Translation::Opcode>(iterator->Next());
|
|
switch (opcode) {
|
|
case Translation::INTERPRETED_FRAME: {
|
|
BailoutId bytecode_offset = BailoutId(iterator->Next());
|
|
SharedFunctionInfo* shared_info =
|
|
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
|
|
int height = iterator->Next();
|
|
if (trace_file != nullptr) {
|
|
std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
|
|
PrintF(trace_file, " reading input frame %s", name.get());
|
|
int arg_count = shared_info->internal_formal_parameter_count() + 1;
|
|
PrintF(trace_file,
|
|
" => bytecode_offset=%d, args=%d, height=%d; inputs:\n",
|
|
bytecode_offset.ToInt(), arg_count, height);
|
|
}
|
|
return TranslatedFrame::InterpretedFrame(bytecode_offset, shared_info,
|
|
height);
|
|
}
|
|
|
|
case Translation::ARGUMENTS_ADAPTOR_FRAME: {
|
|
SharedFunctionInfo* shared_info =
|
|
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
|
|
int height = iterator->Next();
|
|
if (trace_file != nullptr) {
|
|
std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
|
|
PrintF(trace_file, " reading arguments adaptor frame %s", name.get());
|
|
PrintF(trace_file, " => height=%d; inputs:\n", height);
|
|
}
|
|
return TranslatedFrame::ArgumentsAdaptorFrame(shared_info, height);
|
|
}
|
|
|
|
case Translation::CONSTRUCT_STUB_FRAME: {
|
|
BailoutId bailout_id = BailoutId(iterator->Next());
|
|
SharedFunctionInfo* shared_info =
|
|
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
|
|
int height = iterator->Next();
|
|
if (trace_file != nullptr) {
|
|
std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
|
|
PrintF(trace_file, " reading construct stub frame %s", name.get());
|
|
PrintF(trace_file, " => bailout_id=%d, height=%d; inputs:\n",
|
|
bailout_id.ToInt(), height);
|
|
}
|
|
return TranslatedFrame::ConstructStubFrame(bailout_id, shared_info,
|
|
height);
|
|
}
|
|
|
|
case Translation::BUILTIN_CONTINUATION_FRAME: {
|
|
BailoutId bailout_id = BailoutId(iterator->Next());
|
|
SharedFunctionInfo* shared_info =
|
|
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
|
|
int height = iterator->Next();
|
|
if (trace_file != nullptr) {
|
|
std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
|
|
PrintF(trace_file, " reading builtin continuation frame %s",
|
|
name.get());
|
|
PrintF(trace_file, " => bailout_id=%d, height=%d; inputs:\n",
|
|
bailout_id.ToInt(), height);
|
|
}
|
|
// Add one to the height to account for the context which was implicitly
|
|
// added to the translation during code generation.
|
|
int height_with_context = height + 1;
|
|
return TranslatedFrame::BuiltinContinuationFrame(bailout_id, shared_info,
|
|
height_with_context);
|
|
}
|
|
|
|
case Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME: {
|
|
BailoutId bailout_id = BailoutId(iterator->Next());
|
|
SharedFunctionInfo* shared_info =
|
|
SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
|
|
int height = iterator->Next();
|
|
if (trace_file != nullptr) {
|
|
std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
|
|
PrintF(trace_file, " reading JavaScript builtin continuation frame %s",
|
|
name.get());
|
|
PrintF(trace_file, " => bailout_id=%d, height=%d; inputs:\n",
|
|
bailout_id.ToInt(), height);
|
|
}
|
|
// Add one to the height to account for the context which was implicitly
|
|
// added to the translation during code generation.
|
|
int height_with_context = height + 1;
|
|
return TranslatedFrame::JavaScriptBuiltinContinuationFrame(
|
|
bailout_id, shared_info, height_with_context);
|
|
}
|
|
case Translation::UPDATE_FEEDBACK:
|
|
case Translation::BEGIN:
|
|
case Translation::DUPLICATED_OBJECT:
|
|
case Translation::ARGUMENTS_ELEMENTS:
|
|
case Translation::ARGUMENTS_LENGTH:
|
|
case Translation::CAPTURED_OBJECT:
|
|
case Translation::REGISTER:
|
|
case Translation::INT32_REGISTER:
|
|
case Translation::UINT32_REGISTER:
|
|
case Translation::BOOL_REGISTER:
|
|
case Translation::FLOAT_REGISTER:
|
|
case Translation::DOUBLE_REGISTER:
|
|
case Translation::STACK_SLOT:
|
|
case Translation::INT32_STACK_SLOT:
|
|
case Translation::UINT32_STACK_SLOT:
|
|
case Translation::BOOL_STACK_SLOT:
|
|
case Translation::FLOAT_STACK_SLOT:
|
|
case Translation::DOUBLE_STACK_SLOT:
|
|
case Translation::LITERAL:
|
|
break;
|
|
}
|
|
FATAL("We should never get here - unexpected deopt info.");
|
|
return TranslatedFrame::InvalidFrame();
|
|
}
|
|
|
|
|
|
// static
|
|
void TranslatedFrame::AdvanceIterator(
|
|
std::deque<TranslatedValue>::iterator* iter) {
|
|
int values_to_skip = 1;
|
|
while (values_to_skip > 0) {
|
|
// Consume the current element.
|
|
values_to_skip--;
|
|
// Add all the children.
|
|
values_to_skip += (*iter)->GetChildrenCount();
|
|
|
|
(*iter)++;
|
|
}
|
|
}
|
|
|
|
Address TranslatedState::ComputeArgumentsPosition(Address input_frame_pointer,
|
|
CreateArgumentsType type,
|
|
int* length) {
|
|
Address parent_frame_pointer = *reinterpret_cast<Address*>(
|
|
input_frame_pointer + StandardFrameConstants::kCallerFPOffset);
|
|
intptr_t parent_frame_type = Memory::intptr_at(
|
|
parent_frame_pointer + CommonFrameConstants::kContextOrFrameTypeOffset);
|
|
|
|
Address arguments_frame;
|
|
if (parent_frame_type ==
|
|
StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)) {
|
|
if (length)
|
|
*length = Smi::cast(*reinterpret_cast<Object**>(
|
|
parent_frame_pointer +
|
|
ArgumentsAdaptorFrameConstants::kLengthOffset))
|
|
->value();
|
|
arguments_frame = parent_frame_pointer;
|
|
} else {
|
|
if (length) *length = formal_parameter_count_;
|
|
arguments_frame = input_frame_pointer;
|
|
}
|
|
|
|
if (type == CreateArgumentsType::kRestParameter) {
|
|
// If the actual number of arguments is less than the number of formal
|
|
// parameters, we have zero rest parameters.
|
|
if (length) *length = std::max(0, *length - formal_parameter_count_);
|
|
}
|
|
|
|
return arguments_frame;
|
|
}
|
|
|
|
// Creates translated values for an arguments backing store, or the backing
|
|
// store for rest parameters depending on the given {type}. The TranslatedValue
|
|
// objects for the fields are not read from the TranslationIterator, but instead
|
|
// created on-the-fly based on dynamic information in the optimized frame.
|
|
void TranslatedState::CreateArgumentsElementsTranslatedValues(
|
|
int frame_index, Address input_frame_pointer, CreateArgumentsType type,
|
|
FILE* trace_file) {
|
|
TranslatedFrame& frame = frames_[frame_index];
|
|
|
|
int length;
|
|
Address arguments_frame =
|
|
ComputeArgumentsPosition(input_frame_pointer, type, &length);
|
|
|
|
int object_index = static_cast<int>(object_positions_.size());
|
|
int value_index = static_cast<int>(frame.values_.size());
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "arguments elements object #%d (type = %d, length = %d)",
|
|
object_index, static_cast<uint8_t>(type), length);
|
|
}
|
|
|
|
object_positions_.push_back({frame_index, value_index});
|
|
frame.Add(TranslatedValue::NewDeferredObject(
|
|
this, length + FixedArray::kHeaderSize / kPointerSize, object_index));
|
|
|
|
frame.Add(
|
|
TranslatedValue::NewTagged(this, isolate_->heap()->fixed_array_map()));
|
|
frame.Add(TranslatedValue::NewInt32(this, length));
|
|
|
|
int number_of_holes = 0;
|
|
if (type == CreateArgumentsType::kMappedArguments) {
|
|
// If the actual number of arguments is less than the number of formal
|
|
// parameters, we have fewer holes to fill to not overshoot the length.
|
|
number_of_holes = Min(formal_parameter_count_, length);
|
|
}
|
|
for (int i = 0; i < number_of_holes; ++i) {
|
|
frame.Add(
|
|
TranslatedValue::NewTagged(this, isolate_->heap()->the_hole_value()));
|
|
}
|
|
for (int i = length - number_of_holes - 1; i >= 0; --i) {
|
|
Address argument_slot = arguments_frame +
|
|
CommonFrameConstants::kFixedFrameSizeAboveFp +
|
|
i * kPointerSize;
|
|
frame.Add(TranslatedValue::NewTagged(
|
|
this, *reinterpret_cast<Object**>(argument_slot)));
|
|
}
|
|
}
|
|
|
|
// We can't intermix stack decoding and allocations because the deoptimization
|
|
// infrastracture is not GC safe.
|
|
// Thus we build a temporary structure in malloced space.
|
|
// The TranslatedValue objects created correspond to the static translation
|
|
// instructions from the TranslationIterator, except for
|
|
// Translation::ARGUMENTS_ELEMENTS, where the number and values of the
|
|
// FixedArray elements depend on dynamic information from the optimized frame.
|
|
// Returns the number of expected nested translations from the
|
|
// TranslationIterator.
|
|
int TranslatedState::CreateNextTranslatedValue(
|
|
int frame_index, TranslationIterator* iterator, FixedArray* literal_array,
|
|
Address fp, RegisterValues* registers, FILE* trace_file) {
|
|
disasm::NameConverter converter;
|
|
|
|
TranslatedFrame& frame = frames_[frame_index];
|
|
int value_index = static_cast<int>(frame.values_.size());
|
|
|
|
Translation::Opcode opcode =
|
|
static_cast<Translation::Opcode>(iterator->Next());
|
|
switch (opcode) {
|
|
case Translation::BEGIN:
|
|
case Translation::INTERPRETED_FRAME:
|
|
case Translation::ARGUMENTS_ADAPTOR_FRAME:
|
|
case Translation::CONSTRUCT_STUB_FRAME:
|
|
case Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME:
|
|
case Translation::BUILTIN_CONTINUATION_FRAME:
|
|
case Translation::UPDATE_FEEDBACK:
|
|
// Peeled off before getting here.
|
|
break;
|
|
|
|
case Translation::DUPLICATED_OBJECT: {
|
|
int object_id = iterator->Next();
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "duplicated object #%d", object_id);
|
|
}
|
|
object_positions_.push_back(object_positions_[object_id]);
|
|
TranslatedValue translated_value =
|
|
TranslatedValue::NewDuplicateObject(this, object_id);
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
|
|
case Translation::ARGUMENTS_ELEMENTS: {
|
|
CreateArgumentsType arguments_type =
|
|
static_cast<CreateArgumentsType>(iterator->Next());
|
|
CreateArgumentsElementsTranslatedValues(frame_index, fp, arguments_type,
|
|
trace_file);
|
|
return 0;
|
|
}
|
|
|
|
case Translation::ARGUMENTS_LENGTH: {
|
|
CreateArgumentsType arguments_type =
|
|
static_cast<CreateArgumentsType>(iterator->Next());
|
|
int length;
|
|
ComputeArgumentsPosition(fp, arguments_type, &length);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "arguments length field (type = %d, length = %d)",
|
|
static_cast<uint8_t>(arguments_type), length);
|
|
}
|
|
frame.Add(TranslatedValue::NewInt32(this, length));
|
|
return 0;
|
|
}
|
|
|
|
case Translation::CAPTURED_OBJECT: {
|
|
int field_count = iterator->Next();
|
|
int object_index = static_cast<int>(object_positions_.size());
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "captured object #%d (length = %d)", object_index,
|
|
field_count);
|
|
}
|
|
object_positions_.push_back({frame_index, value_index});
|
|
TranslatedValue translated_value =
|
|
TranslatedValue::NewDeferredObject(this, field_count, object_index);
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
|
|
case Translation::REGISTER: {
|
|
int input_reg = iterator->Next();
|
|
if (registers == nullptr) {
|
|
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
intptr_t value = registers->GetRegister(input_reg);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "0x%08" V8PRIxPTR " ; %s ", value,
|
|
converter.NameOfCPURegister(input_reg));
|
|
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
|
|
}
|
|
TranslatedValue translated_value =
|
|
TranslatedValue::NewTagged(this, reinterpret_cast<Object*>(value));
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
|
|
case Translation::INT32_REGISTER: {
|
|
int input_reg = iterator->Next();
|
|
if (registers == nullptr) {
|
|
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
intptr_t value = registers->GetRegister(input_reg);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%" V8PRIdPTR " ; %s ", value,
|
|
converter.NameOfCPURegister(input_reg));
|
|
}
|
|
TranslatedValue translated_value =
|
|
TranslatedValue::NewInt32(this, static_cast<int32_t>(value));
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
|
|
case Translation::UINT32_REGISTER: {
|
|
int input_reg = iterator->Next();
|
|
if (registers == nullptr) {
|
|
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
intptr_t value = registers->GetRegister(input_reg);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%" V8PRIuPTR " ; %s (uint)", value,
|
|
converter.NameOfCPURegister(input_reg));
|
|
}
|
|
TranslatedValue translated_value =
|
|
TranslatedValue::NewUInt32(this, static_cast<uint32_t>(value));
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
|
|
case Translation::BOOL_REGISTER: {
|
|
int input_reg = iterator->Next();
|
|
if (registers == nullptr) {
|
|
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
intptr_t value = registers->GetRegister(input_reg);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%" V8PRIdPTR " ; %s (bool)", value,
|
|
converter.NameOfCPURegister(input_reg));
|
|
}
|
|
TranslatedValue translated_value =
|
|
TranslatedValue::NewBool(this, static_cast<uint32_t>(value));
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
|
|
case Translation::FLOAT_REGISTER: {
|
|
int input_reg = iterator->Next();
|
|
if (registers == nullptr) {
|
|
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
Float32 value = registers->GetFloatRegister(input_reg);
|
|
if (trace_file != nullptr) {
|
|
PrintF(
|
|
trace_file, "%e ; %s (float)", value.get_scalar(),
|
|
RegisterConfiguration::Default()->GetFloatRegisterName(input_reg));
|
|
}
|
|
TranslatedValue translated_value = TranslatedValue::NewFloat(this, value);
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
|
|
case Translation::DOUBLE_REGISTER: {
|
|
int input_reg = iterator->Next();
|
|
if (registers == nullptr) {
|
|
TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
Float64 value = registers->GetDoubleRegister(input_reg);
|
|
if (trace_file != nullptr) {
|
|
PrintF(
|
|
trace_file, "%e ; %s (double)", value.get_scalar(),
|
|
RegisterConfiguration::Default()->GetDoubleRegisterName(input_reg));
|
|
}
|
|
TranslatedValue translated_value =
|
|
TranslatedValue::NewDouble(this, value);
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
|
|
case Translation::STACK_SLOT: {
|
|
int slot_offset =
|
|
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
|
|
intptr_t value = *(reinterpret_cast<intptr_t*>(fp + slot_offset));
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "0x%08" V8PRIxPTR " ; [fp %c %d] ", value,
|
|
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
|
|
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
|
|
}
|
|
TranslatedValue translated_value =
|
|
TranslatedValue::NewTagged(this, reinterpret_cast<Object*>(value));
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
|
|
case Translation::INT32_STACK_SLOT: {
|
|
int slot_offset =
|
|
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
|
|
uint32_t value = GetUInt32Slot(fp, slot_offset);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%d ; (int) [fp %c %d] ",
|
|
static_cast<int32_t>(value), slot_offset < 0 ? '-' : '+',
|
|
std::abs(slot_offset));
|
|
}
|
|
TranslatedValue translated_value = TranslatedValue::NewInt32(this, value);
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
|
|
case Translation::UINT32_STACK_SLOT: {
|
|
int slot_offset =
|
|
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
|
|
uint32_t value = GetUInt32Slot(fp, slot_offset);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%u ; (uint) [fp %c %d] ", value,
|
|
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
|
|
}
|
|
TranslatedValue translated_value =
|
|
TranslatedValue::NewUInt32(this, value);
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
|
|
case Translation::BOOL_STACK_SLOT: {
|
|
int slot_offset =
|
|
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
|
|
uint32_t value = GetUInt32Slot(fp, slot_offset);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%u ; (bool) [fp %c %d] ", value,
|
|
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
|
|
}
|
|
TranslatedValue translated_value = TranslatedValue::NewBool(this, value);
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
|
|
case Translation::FLOAT_STACK_SLOT: {
|
|
int slot_offset =
|
|
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
|
|
Float32 value = GetFloatSlot(fp, slot_offset);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%e ; (float) [fp %c %d] ", value.get_scalar(),
|
|
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
|
|
}
|
|
TranslatedValue translated_value = TranslatedValue::NewFloat(this, value);
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
|
|
case Translation::DOUBLE_STACK_SLOT: {
|
|
int slot_offset =
|
|
OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
|
|
Float64 value = GetDoubleSlot(fp, slot_offset);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "%e ; (double) [fp %c %d] ", value.get_scalar(),
|
|
slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
|
|
}
|
|
TranslatedValue translated_value =
|
|
TranslatedValue::NewDouble(this, value);
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
|
|
case Translation::LITERAL: {
|
|
int literal_index = iterator->Next();
|
|
Object* value = literal_array->get(literal_index);
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "0x%08" V8PRIxPTR " ; (literal %d) ",
|
|
reinterpret_cast<intptr_t>(value), literal_index);
|
|
reinterpret_cast<Object*>(value)->ShortPrint(trace_file);
|
|
}
|
|
|
|
TranslatedValue translated_value =
|
|
TranslatedValue::NewTagged(this, value);
|
|
frame.Add(translated_value);
|
|
return translated_value.GetChildrenCount();
|
|
}
|
|
}
|
|
|
|
FATAL("We should never get here - unexpected deopt info.");
|
|
}
|
|
|
|
TranslatedState::TranslatedState(const JavaScriptFrame* frame) {
|
|
int deopt_index = Safepoint::kNoDeoptimizationIndex;
|
|
DeoptimizationData* data =
|
|
static_cast<const OptimizedFrame*>(frame)->GetDeoptimizationData(
|
|
&deopt_index);
|
|
DCHECK(data != nullptr && deopt_index != Safepoint::kNoDeoptimizationIndex);
|
|
TranslationIterator it(data->TranslationByteArray(),
|
|
data->TranslationIndex(deopt_index)->value());
|
|
Init(frame->fp(), &it, data->LiteralArray(), nullptr /* registers */,
|
|
nullptr /* trace file */,
|
|
frame->function()->shared()->internal_formal_parameter_count());
|
|
}
|
|
|
|
void TranslatedState::Init(Address input_frame_pointer,
|
|
TranslationIterator* iterator,
|
|
FixedArray* literal_array, RegisterValues* registers,
|
|
FILE* trace_file, int formal_parameter_count) {
|
|
DCHECK(frames_.empty());
|
|
|
|
formal_parameter_count_ = formal_parameter_count;
|
|
|
|
isolate_ = literal_array->GetIsolate();
|
|
// Read out the 'header' translation.
|
|
Translation::Opcode opcode =
|
|
static_cast<Translation::Opcode>(iterator->Next());
|
|
CHECK(opcode == Translation::BEGIN);
|
|
|
|
int count = iterator->Next();
|
|
frames_.reserve(count);
|
|
iterator->Next(); // Drop JS frames count.
|
|
int update_feedback_count = iterator->Next();
|
|
CHECK_GE(update_feedback_count, 0);
|
|
CHECK_LE(update_feedback_count, 1);
|
|
|
|
if (update_feedback_count == 1) {
|
|
ReadUpdateFeedback(iterator, literal_array, trace_file);
|
|
}
|
|
|
|
std::stack<int> nested_counts;
|
|
|
|
// Read the frames
|
|
for (int frame_index = 0; frame_index < count; frame_index++) {
|
|
// Read the frame descriptor.
|
|
frames_.push_back(CreateNextTranslatedFrame(
|
|
iterator, literal_array, input_frame_pointer, trace_file));
|
|
TranslatedFrame& frame = frames_.back();
|
|
|
|
// Read the values.
|
|
int values_to_process = frame.GetValueCount();
|
|
while (values_to_process > 0 || !nested_counts.empty()) {
|
|
if (trace_file != nullptr) {
|
|
if (nested_counts.empty()) {
|
|
// For top level values, print the value number.
|
|
PrintF(trace_file, " %3i: ",
|
|
frame.GetValueCount() - values_to_process);
|
|
} else {
|
|
// Take care of indenting for nested values.
|
|
PrintF(trace_file, " ");
|
|
for (size_t j = 0; j < nested_counts.size(); j++) {
|
|
PrintF(trace_file, " ");
|
|
}
|
|
}
|
|
}
|
|
|
|
int nested_count =
|
|
CreateNextTranslatedValue(frame_index, iterator, literal_array,
|
|
input_frame_pointer, registers, trace_file);
|
|
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, "\n");
|
|
}
|
|
|
|
// Update the value count and resolve the nesting.
|
|
values_to_process--;
|
|
if (nested_count > 0) {
|
|
nested_counts.push(values_to_process);
|
|
values_to_process = nested_count;
|
|
} else {
|
|
while (values_to_process == 0 && !nested_counts.empty()) {
|
|
values_to_process = nested_counts.top();
|
|
nested_counts.pop();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
CHECK(!iterator->HasNext() ||
|
|
static_cast<Translation::Opcode>(iterator->Next()) ==
|
|
Translation::BEGIN);
|
|
}
|
|
|
|
void TranslatedState::Prepare(Address stack_frame_pointer) {
|
|
for (auto& frame : frames_) frame.Handlify();
|
|
|
|
if (feedback_vector_ != nullptr) {
|
|
feedback_vector_handle_ =
|
|
Handle<FeedbackVector>(feedback_vector_, isolate());
|
|
feedback_vector_ = nullptr;
|
|
}
|
|
stack_frame_pointer_ = stack_frame_pointer;
|
|
|
|
UpdateFromPreviouslyMaterializedObjects();
|
|
}
|
|
|
|
TranslatedValue* TranslatedState::GetValueByObjectIndex(int object_index) {
|
|
CHECK_LT(static_cast<size_t>(object_index), object_positions_.size());
|
|
TranslatedState::ObjectPosition pos = object_positions_[object_index];
|
|
return &(frames_[pos.frame_index_].values_[pos.value_index_]);
|
|
}
|
|
|
|
Handle<Object> TranslatedState::InitializeObjectAt(TranslatedValue* slot) {
|
|
slot = ResolveCapturedObject(slot);
|
|
|
|
DisallowHeapAllocation no_allocation;
|
|
if (slot->materialization_state() != TranslatedValue::kFinished) {
|
|
std::stack<int> worklist;
|
|
worklist.push(slot->object_index());
|
|
slot->mark_finished();
|
|
|
|
while (!worklist.empty()) {
|
|
int index = worklist.top();
|
|
worklist.pop();
|
|
InitializeCapturedObjectAt(index, &worklist, no_allocation);
|
|
}
|
|
}
|
|
return slot->GetStorage();
|
|
}
|
|
|
|
void TranslatedState::InitializeCapturedObjectAt(
|
|
int object_index, std::stack<int>* worklist,
|
|
const DisallowHeapAllocation& no_allocation) {
|
|
CHECK_LT(static_cast<size_t>(object_index), object_positions_.size());
|
|
TranslatedState::ObjectPosition pos = object_positions_[object_index];
|
|
int value_index = pos.value_index_;
|
|
|
|
TranslatedFrame* frame = &(frames_[pos.frame_index_]);
|
|
TranslatedValue* slot = &(frame->values_[value_index]);
|
|
value_index++;
|
|
|
|
CHECK_EQ(TranslatedValue::kFinished, slot->materialization_state());
|
|
CHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
|
|
|
|
// Ensure all fields are initialized.
|
|
int children_init_index = value_index;
|
|
for (int i = 0; i < slot->GetChildrenCount(); i++) {
|
|
// If the field is an object that has not been initialized yet, queue it
|
|
// for initialization (and mark it as such).
|
|
TranslatedValue* child_slot = frame->ValueAt(children_init_index);
|
|
if (child_slot->kind() == TranslatedValue::kCapturedObject ||
|
|
child_slot->kind() == TranslatedValue::kDuplicatedObject) {
|
|
child_slot = ResolveCapturedObject(child_slot);
|
|
if (child_slot->materialization_state() != TranslatedValue::kFinished) {
|
|
DCHECK_EQ(TranslatedValue::kAllocated,
|
|
child_slot->materialization_state());
|
|
worklist->push(child_slot->object_index());
|
|
child_slot->mark_finished();
|
|
}
|
|
}
|
|
SkipSlots(1, frame, &children_init_index);
|
|
}
|
|
|
|
// Read the map.
|
|
// The map should never be materialized, so let us check we already have
|
|
// an existing object here.
|
|
CHECK_EQ(frame->values_[value_index].kind(), TranslatedValue::kTagged);
|
|
Handle<Map> map = Handle<Map>::cast(frame->values_[value_index].GetValue());
|
|
CHECK(map->IsMap());
|
|
value_index++;
|
|
|
|
// Handle the special cases.
|
|
switch (map->instance_type()) {
|
|
case MUTABLE_HEAP_NUMBER_TYPE:
|
|
case FIXED_DOUBLE_ARRAY_TYPE:
|
|
return;
|
|
|
|
case FIXED_ARRAY_TYPE:
|
|
case HASH_TABLE_TYPE:
|
|
case PROPERTY_ARRAY_TYPE:
|
|
case CONTEXT_EXTENSION_TYPE:
|
|
InitializeObjectWithTaggedFieldsAt(frame, &value_index, slot, map,
|
|
no_allocation);
|
|
break;
|
|
|
|
default:
|
|
CHECK(map->IsJSObjectMap());
|
|
InitializeJSObjectAt(frame, &value_index, slot, map, no_allocation);
|
|
break;
|
|
}
|
|
CHECK_EQ(value_index, children_init_index);
|
|
}
|
|
|
|
void TranslatedState::EnsureObjectAllocatedAt(TranslatedValue* slot) {
|
|
slot = ResolveCapturedObject(slot);
|
|
|
|
if (slot->materialization_state() == TranslatedValue::kUninitialized) {
|
|
std::stack<int> worklist;
|
|
worklist.push(slot->object_index());
|
|
slot->mark_allocated();
|
|
|
|
while (!worklist.empty()) {
|
|
int index = worklist.top();
|
|
worklist.pop();
|
|
EnsureCapturedObjectAllocatedAt(index, &worklist);
|
|
}
|
|
}
|
|
}
|
|
|
|
void TranslatedState::MaterializeFixedDoubleArray(TranslatedFrame* frame,
|
|
int* value_index,
|
|
TranslatedValue* slot,
|
|
Handle<Map> map) {
|
|
int length = Smi::cast(frame->values_[*value_index].GetRawValue())->value();
|
|
(*value_index)++;
|
|
Handle<FixedDoubleArray> array = Handle<FixedDoubleArray>::cast(
|
|
isolate()->factory()->NewFixedDoubleArray(length));
|
|
CHECK_GT(length, 0);
|
|
for (int i = 0; i < length; i++) {
|
|
CHECK_NE(TranslatedValue::kCapturedObject,
|
|
frame->values_[*value_index].kind());
|
|
Handle<Object> value = frame->values_[*value_index].GetValue();
|
|
if (value->IsNumber()) {
|
|
array->set(i, value->Number());
|
|
} else {
|
|
CHECK(value.is_identical_to(isolate()->factory()->the_hole_value()));
|
|
array->set_the_hole(isolate(), i);
|
|
}
|
|
(*value_index)++;
|
|
}
|
|
slot->set_storage(array);
|
|
}
|
|
|
|
void TranslatedState::MaterializeMutableHeapNumber(TranslatedFrame* frame,
|
|
int* value_index,
|
|
TranslatedValue* slot) {
|
|
CHECK_NE(TranslatedValue::kCapturedObject,
|
|
frame->values_[*value_index].kind());
|
|
Handle<Object> value = frame->values_[*value_index].GetValue();
|
|
Handle<HeapNumber> box;
|
|
CHECK(value->IsNumber());
|
|
box = isolate()->factory()->NewHeapNumber(value->Number(), MUTABLE);
|
|
(*value_index)++;
|
|
slot->set_storage(box);
|
|
}
|
|
|
|
namespace {
|
|
|
|
enum DoubleStorageKind : uint8_t {
|
|
kStoreTagged,
|
|
kStoreUnboxedDouble,
|
|
kStoreMutableHeapNumber,
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void TranslatedState::SkipSlots(int slots_to_skip, TranslatedFrame* frame,
|
|
int* value_index) {
|
|
while (slots_to_skip > 0) {
|
|
TranslatedValue* slot = &(frame->values_[*value_index]);
|
|
(*value_index)++;
|
|
slots_to_skip--;
|
|
|
|
if (slot->kind() == TranslatedValue::kCapturedObject) {
|
|
slots_to_skip += slot->GetChildrenCount();
|
|
}
|
|
}
|
|
}
|
|
|
|
void TranslatedState::EnsureCapturedObjectAllocatedAt(
|
|
int object_index, std::stack<int>* worklist) {
|
|
CHECK_LT(static_cast<size_t>(object_index), object_positions_.size());
|
|
TranslatedState::ObjectPosition pos = object_positions_[object_index];
|
|
int value_index = pos.value_index_;
|
|
|
|
TranslatedFrame* frame = &(frames_[pos.frame_index_]);
|
|
TranslatedValue* slot = &(frame->values_[value_index]);
|
|
value_index++;
|
|
|
|
CHECK_EQ(TranslatedValue::kAllocated, slot->materialization_state());
|
|
CHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
|
|
|
|
// Read the map.
|
|
// The map should never be materialized, so let us check we already have
|
|
// an existing object here.
|
|
CHECK_EQ(frame->values_[value_index].kind(), TranslatedValue::kTagged);
|
|
Handle<Map> map = Handle<Map>::cast(frame->values_[value_index].GetValue());
|
|
CHECK(map->IsMap());
|
|
value_index++;
|
|
|
|
// Handle the special cases.
|
|
switch (map->instance_type()) {
|
|
case FIXED_DOUBLE_ARRAY_TYPE:
|
|
// Materialize (i.e. allocate&initialize) the array and return since
|
|
// there is no need to process the children.
|
|
return MaterializeFixedDoubleArray(frame, &value_index, slot, map);
|
|
|
|
case MUTABLE_HEAP_NUMBER_TYPE:
|
|
// Materialize (i.e. allocate&initialize) the heap number and return.
|
|
// There is no need to process the children.
|
|
return MaterializeMutableHeapNumber(frame, &value_index, slot);
|
|
|
|
case FIXED_ARRAY_TYPE:
|
|
case HASH_TABLE_TYPE: {
|
|
// Check we have the right size.
|
|
int array_length =
|
|
Smi::cast(frame->values_[value_index].GetRawValue())->value();
|
|
|
|
int instance_size = FixedArray::SizeFor(array_length);
|
|
CHECK_EQ(instance_size, slot->GetChildrenCount() * kPointerSize);
|
|
|
|
// Canonicalize empty fixed array.
|
|
if (*map == isolate()->heap()->empty_fixed_array()->map() &&
|
|
array_length == 0) {
|
|
slot->set_storage(isolate()->factory()->empty_fixed_array());
|
|
} else {
|
|
slot->set_storage(AllocateStorageFor(slot));
|
|
}
|
|
|
|
// Make sure all the remaining children (after the map) are allocated.
|
|
return EnsureChildrenAllocated(slot->GetChildrenCount() - 1, frame,
|
|
&value_index, worklist);
|
|
}
|
|
|
|
case PROPERTY_ARRAY_TYPE: {
|
|
// Check we have the right size.
|
|
int length_or_hash =
|
|
Smi::cast(frame->values_[value_index].GetRawValue())->value();
|
|
int array_length = PropertyArray::LengthField::decode(length_or_hash);
|
|
int instance_size = PropertyArray::SizeFor(array_length);
|
|
CHECK_EQ(instance_size, slot->GetChildrenCount() * kPointerSize);
|
|
|
|
slot->set_storage(AllocateStorageFor(slot));
|
|
// Make sure all the remaining children (after the map) are allocated.
|
|
return EnsureChildrenAllocated(slot->GetChildrenCount() - 1, frame,
|
|
&value_index, worklist);
|
|
}
|
|
|
|
case CONTEXT_EXTENSION_TYPE: {
|
|
CHECK_EQ(map->instance_size(), slot->GetChildrenCount() * kPointerSize);
|
|
slot->set_storage(AllocateStorageFor(slot));
|
|
// Make sure all the remaining children (after the map) are allocated.
|
|
return EnsureChildrenAllocated(slot->GetChildrenCount() - 1, frame,
|
|
&value_index, worklist);
|
|
}
|
|
|
|
default:
|
|
CHECK(map->IsJSObjectMap());
|
|
EnsureJSObjectAllocated(slot, map);
|
|
TranslatedValue* properties_slot = &(frame->values_[value_index]);
|
|
value_index++;
|
|
if (properties_slot->kind() == TranslatedValue::kCapturedObject) {
|
|
// If we are materializing the property array, make sure we put
|
|
// the mutable heap numbers at the right places.
|
|
EnsurePropertiesAllocatedAndMarked(properties_slot, map);
|
|
EnsureChildrenAllocated(properties_slot->GetChildrenCount(), frame,
|
|
&value_index, worklist);
|
|
}
|
|
// Make sure all the remaining children (after the map and properties) are
|
|
// allocated.
|
|
return EnsureChildrenAllocated(slot->GetChildrenCount() - 2, frame,
|
|
&value_index, worklist);
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
void TranslatedState::EnsureChildrenAllocated(int count, TranslatedFrame* frame,
|
|
int* value_index,
|
|
std::stack<int>* worklist) {
|
|
// Ensure all children are allocated.
|
|
for (int i = 0; i < count; i++) {
|
|
// If the field is an object that has not been allocated yet, queue it
|
|
// for initialization (and mark it as such).
|
|
TranslatedValue* child_slot = frame->ValueAt(*value_index);
|
|
if (child_slot->kind() == TranslatedValue::kCapturedObject ||
|
|
child_slot->kind() == TranslatedValue::kDuplicatedObject) {
|
|
child_slot = ResolveCapturedObject(child_slot);
|
|
if (child_slot->materialization_state() ==
|
|
TranslatedValue::kUninitialized) {
|
|
worklist->push(child_slot->object_index());
|
|
child_slot->mark_allocated();
|
|
}
|
|
} else {
|
|
// Make sure the simple values (heap numbers, etc.) are properly
|
|
// initialized.
|
|
child_slot->MaterializeSimple();
|
|
}
|
|
SkipSlots(1, frame, value_index);
|
|
}
|
|
}
|
|
|
|
void TranslatedState::EnsurePropertiesAllocatedAndMarked(
|
|
TranslatedValue* properties_slot, Handle<Map> map) {
|
|
CHECK_EQ(TranslatedValue::kUninitialized,
|
|
properties_slot->materialization_state());
|
|
|
|
Handle<ByteArray> object_storage = AllocateStorageFor(properties_slot);
|
|
properties_slot->mark_allocated();
|
|
properties_slot->set_storage(object_storage);
|
|
|
|
// Set markers for the double properties.
|
|
Handle<DescriptorArray> descriptors(map->instance_descriptors());
|
|
int field_count = map->NumberOfOwnDescriptors();
|
|
for (int i = 0; i < field_count; i++) {
|
|
FieldIndex index = FieldIndex::ForDescriptor(*map, i);
|
|
if (descriptors->GetDetails(i).representation().IsDouble() &&
|
|
!index.is_inobject()) {
|
|
CHECK(!map->IsUnboxedDoubleField(index));
|
|
int outobject_index = index.outobject_array_index();
|
|
int array_index = outobject_index * kPointerSize;
|
|
object_storage->set(array_index, kStoreMutableHeapNumber);
|
|
}
|
|
}
|
|
}
|
|
|
|
Handle<ByteArray> TranslatedState::AllocateStorageFor(TranslatedValue* slot) {
|
|
int allocate_size =
|
|
ByteArray::LengthFor(slot->GetChildrenCount() * kPointerSize);
|
|
// It is important to allocate all the objects tenured so that the marker
|
|
// does not visit them.
|
|
Handle<ByteArray> object_storage =
|
|
isolate()->factory()->NewByteArray(allocate_size, TENURED);
|
|
for (int i = 0; i < object_storage->length(); i++) {
|
|
object_storage->set(i, kStoreTagged);
|
|
}
|
|
return object_storage;
|
|
}
|
|
|
|
void TranslatedState::EnsureJSObjectAllocated(TranslatedValue* slot,
|
|
Handle<Map> map) {
|
|
CHECK_EQ(map->instance_size(), slot->GetChildrenCount() * kPointerSize);
|
|
|
|
Handle<ByteArray> object_storage = AllocateStorageFor(slot);
|
|
// Now we handle the interesting (JSObject) case.
|
|
Handle<DescriptorArray> descriptors(map->instance_descriptors());
|
|
int field_count = map->NumberOfOwnDescriptors();
|
|
|
|
// Set markers for the double properties.
|
|
for (int i = 0; i < field_count; i++) {
|
|
FieldIndex index = FieldIndex::ForDescriptor(*map, i);
|
|
if (descriptors->GetDetails(i).representation().IsDouble() &&
|
|
index.is_inobject()) {
|
|
CHECK_GE(index.index(), FixedArray::kHeaderSize / kPointerSize);
|
|
int array_index = index.index() * kPointerSize - FixedArray::kHeaderSize;
|
|
uint8_t marker = map->IsUnboxedDoubleField(index)
|
|
? kStoreUnboxedDouble
|
|
: kStoreMutableHeapNumber;
|
|
object_storage->set(array_index, marker);
|
|
}
|
|
}
|
|
slot->set_storage(object_storage);
|
|
}
|
|
|
|
Handle<Object> TranslatedState::GetValueAndAdvance(TranslatedFrame* frame,
|
|
int* value_index) {
|
|
TranslatedValue* slot = frame->ValueAt(*value_index);
|
|
SkipSlots(1, frame, value_index);
|
|
if (slot->kind() == TranslatedValue::kDuplicatedObject) {
|
|
slot = ResolveCapturedObject(slot);
|
|
}
|
|
CHECK_NE(TranslatedValue::kUninitialized, slot->materialization_state());
|
|
return slot->GetStorage();
|
|
}
|
|
|
|
void TranslatedState::InitializeJSObjectAt(
|
|
TranslatedFrame* frame, int* value_index, TranslatedValue* slot,
|
|
Handle<Map> map, const DisallowHeapAllocation& no_allocation) {
|
|
Handle<HeapObject> object_storage = Handle<HeapObject>::cast(slot->storage_);
|
|
DCHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
|
|
|
|
// The object should have at least a map and some payload.
|
|
CHECK_GE(slot->GetChildrenCount(), 2);
|
|
|
|
// Notify the concurrent marker about the layout change.
|
|
isolate()->heap()->NotifyObjectLayoutChange(
|
|
*object_storage, slot->GetChildrenCount() * kPointerSize, no_allocation);
|
|
|
|
// Fill the property array field.
|
|
{
|
|
Handle<Object> properties = GetValueAndAdvance(frame, value_index);
|
|
WRITE_FIELD(*object_storage, JSObject::kPropertiesOrHashOffset,
|
|
*properties);
|
|
WRITE_BARRIER(isolate()->heap(), *object_storage,
|
|
JSObject::kPropertiesOrHashOffset, *properties);
|
|
}
|
|
|
|
// For all the other fields we first look at the fixed array and check the
|
|
// marker to see if we store an unboxed double.
|
|
DCHECK_EQ(kPointerSize, JSObject::kPropertiesOrHashOffset);
|
|
for (int i = 2; i < slot->GetChildrenCount(); i++) {
|
|
// Initialize and extract the value from its slot.
|
|
Handle<Object> field_value = GetValueAndAdvance(frame, value_index);
|
|
|
|
// Read out the marker and ensure the field is consistent with
|
|
// what the markers in the storage say (note that all heap numbers
|
|
// should be fully initialized by now).
|
|
int offset = i * kPointerSize;
|
|
uint8_t marker = READ_UINT8_FIELD(*object_storage, offset);
|
|
if (marker == kStoreUnboxedDouble) {
|
|
double double_field_value;
|
|
if (field_value->IsSmi()) {
|
|
double_field_value = Smi::cast(*field_value)->value();
|
|
} else {
|
|
CHECK(field_value->IsHeapNumber());
|
|
double_field_value = HeapNumber::cast(*field_value)->value();
|
|
}
|
|
WRITE_DOUBLE_FIELD(*object_storage, offset, double_field_value);
|
|
} else if (marker == kStoreMutableHeapNumber) {
|
|
CHECK(field_value->IsMutableHeapNumber());
|
|
WRITE_FIELD(*object_storage, offset, *field_value);
|
|
WRITE_BARRIER(isolate()->heap(), *object_storage, offset, *field_value);
|
|
} else {
|
|
CHECK_EQ(kStoreTagged, marker);
|
|
WRITE_FIELD(*object_storage, offset, *field_value);
|
|
WRITE_BARRIER(isolate()->heap(), *object_storage, offset, *field_value);
|
|
}
|
|
}
|
|
object_storage->synchronized_set_map(*map);
|
|
}
|
|
|
|
void TranslatedState::InitializeObjectWithTaggedFieldsAt(
|
|
TranslatedFrame* frame, int* value_index, TranslatedValue* slot,
|
|
Handle<Map> map, const DisallowHeapAllocation& no_allocation) {
|
|
Handle<HeapObject> object_storage = Handle<HeapObject>::cast(slot->storage_);
|
|
|
|
// Skip the writes if we already have the canonical empty fixed array.
|
|
if (*object_storage == isolate()->heap()->empty_fixed_array()) {
|
|
CHECK_EQ(2, slot->GetChildrenCount());
|
|
Handle<Object> length_value = GetValueAndAdvance(frame, value_index);
|
|
CHECK_EQ(*length_value, Smi::FromInt(0));
|
|
return;
|
|
}
|
|
|
|
// Notify the concurrent marker about the layout change.
|
|
isolate()->heap()->NotifyObjectLayoutChange(
|
|
*object_storage, slot->GetChildrenCount() * kPointerSize, no_allocation);
|
|
|
|
// Write the fields to the object.
|
|
for (int i = 1; i < slot->GetChildrenCount(); i++) {
|
|
Handle<Object> field_value = GetValueAndAdvance(frame, value_index);
|
|
int offset = i * kPointerSize;
|
|
uint8_t marker = READ_UINT8_FIELD(*object_storage, offset);
|
|
if (i > 1 && marker == kStoreMutableHeapNumber) {
|
|
CHECK(field_value->IsMutableHeapNumber());
|
|
} else {
|
|
CHECK(marker == kStoreTagged || i == 1);
|
|
CHECK(!field_value->IsMutableHeapNumber());
|
|
}
|
|
|
|
WRITE_FIELD(*object_storage, offset, *field_value);
|
|
WRITE_BARRIER(isolate()->heap(), *object_storage, offset, *field_value);
|
|
}
|
|
|
|
object_storage->synchronized_set_map(*map);
|
|
}
|
|
|
|
TranslatedValue* TranslatedState::ResolveCapturedObject(TranslatedValue* slot) {
|
|
while (slot->kind() == TranslatedValue::kDuplicatedObject) {
|
|
slot = GetValueByObjectIndex(slot->object_index());
|
|
}
|
|
CHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
|
|
return slot;
|
|
}
|
|
|
|
TranslatedFrame* TranslatedState::GetFrameFromJSFrameIndex(int jsframe_index) {
|
|
for (size_t i = 0; i < frames_.size(); i++) {
|
|
if (frames_[i].kind() == TranslatedFrame::kInterpretedFunction ||
|
|
frames_[i].kind() == TranslatedFrame::kJavaScriptBuiltinContinuation) {
|
|
if (jsframe_index > 0) {
|
|
jsframe_index--;
|
|
} else {
|
|
return &(frames_[i]);
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
TranslatedFrame* TranslatedState::GetArgumentsInfoFromJSFrameIndex(
|
|
int jsframe_index, int* args_count) {
|
|
for (size_t i = 0; i < frames_.size(); i++) {
|
|
if (frames_[i].kind() == TranslatedFrame::kInterpretedFunction ||
|
|
frames_[i].kind() == TranslatedFrame::kJavaScriptBuiltinContinuation) {
|
|
if (jsframe_index > 0) {
|
|
jsframe_index--;
|
|
} else {
|
|
// We have the JS function frame, now check if it has arguments
|
|
// adaptor.
|
|
if (i > 0 &&
|
|
frames_[i - 1].kind() == TranslatedFrame::kArgumentsAdaptor) {
|
|
*args_count = frames_[i - 1].height();
|
|
return &(frames_[i - 1]);
|
|
}
|
|
*args_count =
|
|
frames_[i].shared_info()->internal_formal_parameter_count() + 1;
|
|
return &(frames_[i]);
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void TranslatedState::StoreMaterializedValuesAndDeopt(JavaScriptFrame* frame) {
|
|
MaterializedObjectStore* materialized_store =
|
|
isolate_->materialized_object_store();
|
|
Handle<FixedArray> previously_materialized_objects =
|
|
materialized_store->Get(stack_frame_pointer_);
|
|
|
|
Handle<Object> marker = isolate_->factory()->arguments_marker();
|
|
|
|
int length = static_cast<int>(object_positions_.size());
|
|
bool new_store = false;
|
|
if (previously_materialized_objects.is_null()) {
|
|
previously_materialized_objects =
|
|
isolate_->factory()->NewFixedArray(length, TENURED);
|
|
for (int i = 0; i < length; i++) {
|
|
previously_materialized_objects->set(i, *marker);
|
|
}
|
|
new_store = true;
|
|
}
|
|
|
|
CHECK_EQ(length, previously_materialized_objects->length());
|
|
|
|
bool value_changed = false;
|
|
for (int i = 0; i < length; i++) {
|
|
TranslatedState::ObjectPosition pos = object_positions_[i];
|
|
TranslatedValue* value_info =
|
|
&(frames_[pos.frame_index_].values_[pos.value_index_]);
|
|
|
|
CHECK(value_info->IsMaterializedObject());
|
|
|
|
// Skip duplicate objects (i.e., those that point to some
|
|
// other object id).
|
|
if (value_info->object_index() != i) continue;
|
|
|
|
Handle<Object> value(value_info->GetRawValue(), isolate_);
|
|
|
|
if (!value.is_identical_to(marker)) {
|
|
if (previously_materialized_objects->get(i) == *marker) {
|
|
previously_materialized_objects->set(i, *value);
|
|
value_changed = true;
|
|
} else {
|
|
CHECK(previously_materialized_objects->get(i) == *value);
|
|
}
|
|
}
|
|
}
|
|
if (new_store && value_changed) {
|
|
materialized_store->Set(stack_frame_pointer_,
|
|
previously_materialized_objects);
|
|
CHECK_EQ(frames_[0].kind(), TranslatedFrame::kInterpretedFunction);
|
|
CHECK_EQ(frame->function(), frames_[0].front().GetRawValue());
|
|
Deoptimizer::DeoptimizeFunction(frame->function(), frame->LookupCode());
|
|
}
|
|
}
|
|
|
|
void TranslatedState::UpdateFromPreviouslyMaterializedObjects() {
|
|
MaterializedObjectStore* materialized_store =
|
|
isolate_->materialized_object_store();
|
|
Handle<FixedArray> previously_materialized_objects =
|
|
materialized_store->Get(stack_frame_pointer_);
|
|
|
|
// If we have no previously materialized objects, there is nothing to do.
|
|
if (previously_materialized_objects.is_null()) return;
|
|
|
|
Handle<Object> marker = isolate_->factory()->arguments_marker();
|
|
|
|
int length = static_cast<int>(object_positions_.size());
|
|
CHECK_EQ(length, previously_materialized_objects->length());
|
|
|
|
for (int i = 0; i < length; i++) {
|
|
// For a previously materialized objects, inject their value into the
|
|
// translated values.
|
|
if (previously_materialized_objects->get(i) != *marker) {
|
|
TranslatedState::ObjectPosition pos = object_positions_[i];
|
|
TranslatedValue* value_info =
|
|
&(frames_[pos.frame_index_].values_[pos.value_index_]);
|
|
CHECK(value_info->IsMaterializedObject());
|
|
|
|
if (value_info->kind() == TranslatedValue::kCapturedObject) {
|
|
value_info->set_initialized_storage(
|
|
Handle<Object>(previously_materialized_objects->get(i), isolate_));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void TranslatedState::VerifyMaterializedObjects() {
|
|
#if VERIFY_HEAP
|
|
int length = static_cast<int>(object_positions_.size());
|
|
for (int i = 0; i < length; i++) {
|
|
TranslatedValue* slot = GetValueByObjectIndex(i);
|
|
if (slot->kind() == TranslatedValue::kCapturedObject) {
|
|
CHECK_EQ(slot, GetValueByObjectIndex(slot->object_index()));
|
|
if (slot->materialization_state() == TranslatedValue::kFinished) {
|
|
slot->GetStorage()->ObjectVerify();
|
|
} else {
|
|
CHECK_EQ(slot->materialization_state(),
|
|
TranslatedValue::kUninitialized);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
bool TranslatedState::DoUpdateFeedback() {
|
|
if (!feedback_vector_handle_.is_null()) {
|
|
CHECK(!feedback_slot_.IsInvalid());
|
|
isolate()->CountUsage(v8::Isolate::kDeoptimizerDisableSpeculation);
|
|
CallICNexus nexus(feedback_vector_handle_, feedback_slot_);
|
|
nexus.SetSpeculationMode(SpeculationMode::kDisallowSpeculation);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void TranslatedState::ReadUpdateFeedback(TranslationIterator* iterator,
|
|
FixedArray* literal_array,
|
|
FILE* trace_file) {
|
|
CHECK_EQ(Translation::UPDATE_FEEDBACK, iterator->Next());
|
|
feedback_vector_ = FeedbackVector::cast(literal_array->get(iterator->Next()));
|
|
feedback_slot_ = FeedbackSlot(iterator->Next());
|
|
if (trace_file != nullptr) {
|
|
PrintF(trace_file, " reading FeedbackVector (slot %d)\n",
|
|
feedback_slot_.ToInt());
|
|
}
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
// Undefine the heap manipulation macros.
|
|
#include "src/objects/object-macros-undef.h"
|