d56ee2e3df
Up until now, we cached export wrappers per export index. With the anyref proposal potentially many more functions will need export wrappers, e.g. any function that is stored in a table, and any function accessed by the new ref.func instruction. With this CL, we change the caching scheme an do the caching per signature. Thereby we can guarantee that any export wrapper which potentially exists can be stored in the cache. For cctests which use wasm-run-utils, we don't know the size of the cache anymore ahead of time. However, we assume that no more than 5 signatures will be used in any cctest. If this assumption is not true, we can just adjust the number. The cache is now accessed in all code paths where we need an export wrapper. Bug: chromium:962850 Change-Id: I32df60dfa7801d1e71f7d837da091f388198af1f Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1615247 Commit-Queue: Andreas Haas <ahaas@chromium.org> Reviewed-by: Clemens Hammacher <clemensh@chromium.org> Cr-Commit-Position: refs/heads/master@{#61752}
606 lines
19 KiB
C++
606 lines
19 KiB
C++
// Copyright 2016 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <memory>
|
|
|
|
#include "src/codegen/assembler-inl.h"
|
|
#include "src/wasm/wasm-interpreter.h"
|
|
#include "test/cctest/cctest.h"
|
|
#include "test/cctest/compiler/value-helper.h"
|
|
#include "test/cctest/wasm/wasm-run-utils.h"
|
|
#include "test/common/wasm/test-signatures.h"
|
|
#include "test/common/wasm/wasm-macro-gen.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
namespace wasm {
|
|
namespace test_run_wasm_interpreter {
|
|
|
|
TEST(Run_WasmInt8Const_i) {
|
|
WasmRunner<int32_t> r(ExecutionTier::kInterpreter);
|
|
const byte kExpectedValue = 109;
|
|
// return(kExpectedValue)
|
|
BUILD(r, WASM_I32V_2(kExpectedValue));
|
|
CHECK_EQ(kExpectedValue, r.Call());
|
|
}
|
|
|
|
TEST(Run_WasmIfElse) {
|
|
WasmRunner<int32_t, int32_t> r(ExecutionTier::kInterpreter);
|
|
BUILD(r, WASM_IF_ELSE_I(WASM_GET_LOCAL(0), WASM_I32V_1(9), WASM_I32V_1(10)));
|
|
CHECK_EQ(10, r.Call(0));
|
|
CHECK_EQ(9, r.Call(1));
|
|
}
|
|
|
|
TEST(Run_WasmIfReturn) {
|
|
WasmRunner<int32_t, int32_t> r(ExecutionTier::kInterpreter);
|
|
BUILD(r, WASM_IF(WASM_GET_LOCAL(0), WASM_RETURN1(WASM_I32V_2(77))),
|
|
WASM_I32V_2(65));
|
|
CHECK_EQ(65, r.Call(0));
|
|
CHECK_EQ(77, r.Call(1));
|
|
}
|
|
|
|
TEST(Run_WasmNopsN) {
|
|
const int kMaxNops = 10;
|
|
byte code[kMaxNops + 2];
|
|
for (int nops = 0; nops < kMaxNops; nops++) {
|
|
byte expected = static_cast<byte>(20 + nops);
|
|
memset(code, kExprNop, sizeof(code));
|
|
code[nops] = kExprI32Const;
|
|
code[nops + 1] = expected;
|
|
|
|
WasmRunner<int32_t> r(ExecutionTier::kInterpreter);
|
|
r.Build(code, code + nops + 2);
|
|
CHECK_EQ(expected, r.Call());
|
|
}
|
|
}
|
|
|
|
TEST(Run_WasmConstsN) {
|
|
const int kMaxConsts = 5;
|
|
byte code[kMaxConsts * 3];
|
|
int32_t expected = 0;
|
|
for (int count = 1; count < kMaxConsts; count++) {
|
|
for (int i = 0; i < count; i++) {
|
|
byte val = static_cast<byte>(count * 10 + i);
|
|
code[i * 3] = kExprI32Const;
|
|
code[i * 3 + 1] = val;
|
|
if (i == (count - 1)) {
|
|
code[i * 3 + 2] = kExprNop;
|
|
expected = val;
|
|
} else {
|
|
code[i * 3 + 2] = kExprDrop;
|
|
}
|
|
}
|
|
|
|
WasmRunner<int32_t> r(ExecutionTier::kInterpreter);
|
|
r.Build(code, code + (count * 3));
|
|
CHECK_EQ(expected, r.Call());
|
|
}
|
|
}
|
|
|
|
TEST(Run_WasmBlocksN) {
|
|
const int kMaxNops = 10;
|
|
const int kExtra = 5;
|
|
byte code[kMaxNops + kExtra];
|
|
for (int nops = 0; nops < kMaxNops; nops++) {
|
|
byte expected = static_cast<byte>(30 + nops);
|
|
memset(code, kExprNop, sizeof(code));
|
|
code[0] = kExprBlock;
|
|
code[1] = kLocalI32;
|
|
code[2 + nops] = kExprI32Const;
|
|
code[2 + nops + 1] = expected;
|
|
code[2 + nops + 2] = kExprEnd;
|
|
|
|
WasmRunner<int32_t> r(ExecutionTier::kInterpreter);
|
|
r.Build(code, code + nops + kExtra);
|
|
CHECK_EQ(expected, r.Call());
|
|
}
|
|
}
|
|
|
|
TEST(Run_WasmBlockBreakN) {
|
|
const int kMaxNops = 10;
|
|
const int kExtra = 6;
|
|
int run = 0;
|
|
byte code[kMaxNops + kExtra];
|
|
for (int nops = 0; nops < kMaxNops; nops++) {
|
|
// Place the break anywhere within the block.
|
|
for (int index = 0; index < nops; index++) {
|
|
memset(code, kExprNop, sizeof(code));
|
|
code[0] = kExprBlock;
|
|
code[1] = kLocalI32;
|
|
code[sizeof(code) - 1] = kExprEnd;
|
|
|
|
int expected = run++;
|
|
code[2 + index + 0] = kExprI32Const;
|
|
code[2 + index + 1] = static_cast<byte>(expected);
|
|
code[2 + index + 2] = kExprBr;
|
|
code[2 + index + 3] = 0;
|
|
|
|
WasmRunner<int32_t> r(ExecutionTier::kInterpreter);
|
|
r.Build(code, code + kMaxNops + kExtra);
|
|
CHECK_EQ(expected, r.Call());
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(Run_Wasm_nested_ifs_i) {
|
|
WasmRunner<int32_t, int32_t, int32_t> r(ExecutionTier::kInterpreter);
|
|
|
|
BUILD(
|
|
r,
|
|
WASM_IF_ELSE_I(
|
|
WASM_GET_LOCAL(0),
|
|
WASM_IF_ELSE_I(WASM_GET_LOCAL(1), WASM_I32V_1(11), WASM_I32V_1(12)),
|
|
WASM_IF_ELSE_I(WASM_GET_LOCAL(1), WASM_I32V_1(13), WASM_I32V_1(14))));
|
|
|
|
CHECK_EQ(11, r.Call(1, 1));
|
|
CHECK_EQ(12, r.Call(1, 0));
|
|
CHECK_EQ(13, r.Call(0, 1));
|
|
CHECK_EQ(14, r.Call(0, 0));
|
|
}
|
|
|
|
// Repeated from test-run-wasm.cc to avoid poluting header files.
|
|
template <typename T>
|
|
static T factorial(T v) {
|
|
T expected = 1;
|
|
for (T i = v; i > 1; i--) {
|
|
expected *= i;
|
|
}
|
|
return expected;
|
|
}
|
|
|
|
// Basic test of return call in interpreter. Good old factorial.
|
|
TEST(Run_Wasm_returnCallFactorial) {
|
|
EXPERIMENTAL_FLAG_SCOPE(return_call);
|
|
// Run in bounded amount of stack - 8kb.
|
|
FlagScope<int32_t> stack_size(&v8::internal::FLAG_stack_size, 8);
|
|
|
|
WasmRunner<uint32_t, int32_t> r(ExecutionTier::kInterpreter);
|
|
|
|
WasmFunctionCompiler& fact_aux_fn =
|
|
r.NewFunction<int32_t, int32_t, int32_t>("fact_aux");
|
|
|
|
BUILD(r, WASM_RETURN_CALL_FUNCTION(fact_aux_fn.function_index(),
|
|
WASM_GET_LOCAL(0), WASM_I32V(1)));
|
|
|
|
BUILD(fact_aux_fn,
|
|
WASM_IF_ELSE_I(
|
|
WASM_I32_EQ(WASM_I32V(1), WASM_GET_LOCAL(0)), WASM_GET_LOCAL(1),
|
|
WASM_RETURN_CALL_FUNCTION(
|
|
fact_aux_fn.function_index(),
|
|
WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)),
|
|
WASM_I32_MUL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))));
|
|
|
|
// Runs out of stack space without using return call.
|
|
uint32_t test_values[] = {1, 2, 5, 10, 20, 20000};
|
|
|
|
for (uint32_t v : test_values) {
|
|
uint32_t found = r.Call(v);
|
|
CHECK_EQ(factorial(v), found);
|
|
}
|
|
}
|
|
|
|
TEST(Run_Wasm_returnCallFactorial64) {
|
|
EXPERIMENTAL_FLAG_SCOPE(return_call);
|
|
|
|
int32_t test_values[] = {1, 2, 5, 10, 20};
|
|
WasmRunner<int64_t, int32_t> r(ExecutionTier::kInterpreter);
|
|
|
|
WasmFunctionCompiler& fact_aux_fn =
|
|
r.NewFunction<int64_t, int32_t, int64_t>("fact_aux");
|
|
|
|
BUILD(r, WASM_RETURN_CALL_FUNCTION(fact_aux_fn.function_index(),
|
|
WASM_GET_LOCAL(0), WASM_I64V(1)));
|
|
|
|
BUILD(fact_aux_fn,
|
|
WASM_IF_ELSE_L(
|
|
WASM_I32_EQ(WASM_I32V(1), WASM_GET_LOCAL(0)), WASM_GET_LOCAL(1),
|
|
WASM_RETURN_CALL_FUNCTION(
|
|
fact_aux_fn.function_index(),
|
|
WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)),
|
|
WASM_I64_MUL(WASM_I64_SCONVERT_I32(WASM_GET_LOCAL(0)),
|
|
WASM_GET_LOCAL(1)))));
|
|
|
|
for (int32_t v : test_values) {
|
|
CHECK_EQ(factorial<int64_t>(v), r.Call(v));
|
|
}
|
|
}
|
|
|
|
TEST(Run_Wasm_returnCallIndirectFactorial) {
|
|
EXPERIMENTAL_FLAG_SCOPE(return_call);
|
|
|
|
TestSignatures sigs;
|
|
|
|
WasmRunner<uint32_t, uint32_t> r(ExecutionTier::kInterpreter);
|
|
|
|
WasmFunctionCompiler& fact_aux_fn = r.NewFunction(sigs.i_ii(), "fact_aux");
|
|
fact_aux_fn.SetSigIndex(0);
|
|
|
|
byte sig_index = r.builder().AddSignature(sigs.i_ii());
|
|
|
|
// Function table.
|
|
uint16_t indirect_function_table[] = {
|
|
static_cast<uint16_t>(fact_aux_fn.function_index())};
|
|
|
|
r.builder().AddIndirectFunctionTable(indirect_function_table,
|
|
arraysize(indirect_function_table));
|
|
|
|
BUILD(r, WASM_RETURN_CALL_INDIRECT(sig_index, WASM_I32V(0), WASM_GET_LOCAL(0),
|
|
WASM_I32V(1)));
|
|
|
|
BUILD(fact_aux_fn,
|
|
WASM_IF_ELSE_I(
|
|
WASM_I32_EQ(WASM_I32V(1), WASM_GET_LOCAL(0)), WASM_GET_LOCAL(1),
|
|
WASM_RETURN_CALL_INDIRECT(
|
|
sig_index, WASM_I32V(0),
|
|
WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I32V(1)),
|
|
WASM_I32_MUL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)))));
|
|
|
|
uint32_t test_values[] = {1, 2, 5, 10, 20};
|
|
|
|
for (uint32_t v : test_values) {
|
|
CHECK_EQ(factorial(v), r.Call(v));
|
|
}
|
|
}
|
|
// Make tests more robust by not hard-coding offsets of various operations.
|
|
// The {Find} method finds the offsets for the given bytecodes, returning
|
|
// the offsets in an array.
|
|
std::unique_ptr<int[]> Find(byte* code, size_t code_size, int n, ...) {
|
|
va_list vl;
|
|
va_start(vl, n);
|
|
|
|
std::unique_ptr<int[]> offsets(new int[n]);
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
offsets[i] = -1;
|
|
}
|
|
|
|
int pos = 0;
|
|
WasmOpcode current = static_cast<WasmOpcode>(va_arg(vl, int));
|
|
for (size_t i = 0; i < code_size; i++) {
|
|
if (code[i] == current) {
|
|
offsets[pos++] = static_cast<int>(i);
|
|
if (pos == n) break;
|
|
current = static_cast<WasmOpcode>(va_arg(vl, int));
|
|
}
|
|
}
|
|
va_end(vl);
|
|
|
|
return offsets;
|
|
}
|
|
|
|
TEST(Breakpoint_I32Add) {
|
|
static const int kLocalsDeclSize = 1;
|
|
static const int kNumBreakpoints = 3;
|
|
byte code[] = {WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))};
|
|
std::unique_ptr<int[]> offsets =
|
|
Find(code, sizeof(code), kNumBreakpoints, kExprGetLocal, kExprGetLocal,
|
|
kExprI32Add);
|
|
|
|
WasmRunner<int32_t, uint32_t, uint32_t> r(ExecutionTier::kInterpreter);
|
|
|
|
r.Build(code, code + arraysize(code));
|
|
|
|
WasmInterpreter* interpreter = r.interpreter();
|
|
WasmInterpreter::Thread* thread = interpreter->GetThread(0);
|
|
for (int i = 0; i < kNumBreakpoints; i++) {
|
|
interpreter->SetBreakpoint(r.function(), kLocalsDeclSize + offsets[i],
|
|
true);
|
|
}
|
|
|
|
FOR_UINT32_INPUTS(a) {
|
|
for (uint32_t b = 11; b < 3000000000u; b += 1000000000u) {
|
|
thread->Reset();
|
|
WasmValue args[] = {WasmValue(a), WasmValue(b)};
|
|
thread->InitFrame(r.function(), args);
|
|
|
|
for (int i = 0; i < kNumBreakpoints; i++) {
|
|
thread->Run(); // run to next breakpoint
|
|
// Check the thread stopped at the right pc.
|
|
CHECK_EQ(WasmInterpreter::PAUSED, thread->state());
|
|
CHECK_EQ(static_cast<size_t>(kLocalsDeclSize + offsets[i]),
|
|
thread->GetBreakpointPc());
|
|
}
|
|
|
|
thread->Run(); // run to completion
|
|
|
|
// Check the thread finished with the right value.
|
|
CHECK_EQ(WasmInterpreter::FINISHED, thread->state());
|
|
uint32_t expected = (a) + (b);
|
|
CHECK_EQ(expected, thread->GetReturnValue().to<uint32_t>());
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(Step_I32Mul) {
|
|
static const int kTraceLength = 4;
|
|
byte code[] = {WASM_I32_MUL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))};
|
|
|
|
WasmRunner<int32_t, uint32_t, uint32_t> r(ExecutionTier::kInterpreter);
|
|
|
|
r.Build(code, code + arraysize(code));
|
|
|
|
WasmInterpreter* interpreter = r.interpreter();
|
|
WasmInterpreter::Thread* thread = interpreter->GetThread(0);
|
|
|
|
FOR_UINT32_INPUTS(a) {
|
|
for (uint32_t b = 33; b < 3000000000u; b += 1000000000u) {
|
|
thread->Reset();
|
|
WasmValue args[] = {WasmValue(a), WasmValue(b)};
|
|
thread->InitFrame(r.function(), args);
|
|
|
|
// Run instructions one by one.
|
|
for (int i = 0; i < kTraceLength - 1; i++) {
|
|
thread->Step();
|
|
// Check the thread stopped.
|
|
CHECK_EQ(WasmInterpreter::PAUSED, thread->state());
|
|
}
|
|
|
|
// Run last instruction.
|
|
thread->Step();
|
|
|
|
// Check the thread finished with the right value.
|
|
CHECK_EQ(WasmInterpreter::FINISHED, thread->state());
|
|
uint32_t expected = (a) * (b);
|
|
CHECK_EQ(expected, thread->GetReturnValue().to<uint32_t>());
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(Breakpoint_I32And_disable) {
|
|
static const int kLocalsDeclSize = 1;
|
|
static const int kNumBreakpoints = 1;
|
|
byte code[] = {WASM_I32_AND(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))};
|
|
std::unique_ptr<int[]> offsets =
|
|
Find(code, sizeof(code), kNumBreakpoints, kExprI32And);
|
|
|
|
WasmRunner<int32_t, uint32_t, uint32_t> r(ExecutionTier::kInterpreter);
|
|
|
|
r.Build(code, code + arraysize(code));
|
|
|
|
WasmInterpreter* interpreter = r.interpreter();
|
|
WasmInterpreter::Thread* thread = interpreter->GetThread(0);
|
|
|
|
FOR_UINT32_INPUTS(a) {
|
|
for (uint32_t b = 11; b < 3000000000u; b += 1000000000u) {
|
|
// Run with and without breakpoints.
|
|
for (int do_break = 0; do_break < 2; do_break++) {
|
|
interpreter->SetBreakpoint(r.function(), kLocalsDeclSize + offsets[0],
|
|
do_break);
|
|
thread->Reset();
|
|
WasmValue args[] = {WasmValue(a), WasmValue(b)};
|
|
thread->InitFrame(r.function(), args);
|
|
|
|
if (do_break) {
|
|
thread->Run(); // run to next breakpoint
|
|
// Check the thread stopped at the right pc.
|
|
CHECK_EQ(WasmInterpreter::PAUSED, thread->state());
|
|
CHECK_EQ(static_cast<size_t>(kLocalsDeclSize + offsets[0]),
|
|
thread->GetBreakpointPc());
|
|
}
|
|
|
|
thread->Run(); // run to completion
|
|
|
|
// Check the thread finished with the right value.
|
|
CHECK_EQ(WasmInterpreter::FINISHED, thread->state());
|
|
uint32_t expected = (a) & (b);
|
|
CHECK_EQ(expected, thread->GetReturnValue().to<uint32_t>());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(MemoryGrow) {
|
|
{
|
|
WasmRunner<int32_t, uint32_t> r(ExecutionTier::kInterpreter);
|
|
r.builder().AddMemory(kWasmPageSize);
|
|
r.builder().SetMaxMemPages(10);
|
|
BUILD(r, WASM_GROW_MEMORY(WASM_GET_LOCAL(0)));
|
|
CHECK_EQ(1, r.Call(1));
|
|
}
|
|
{
|
|
WasmRunner<int32_t, uint32_t> r(ExecutionTier::kInterpreter);
|
|
r.builder().AddMemory(kWasmPageSize);
|
|
r.builder().SetMaxMemPages(10);
|
|
BUILD(r, WASM_GROW_MEMORY(WASM_GET_LOCAL(0)));
|
|
CHECK_EQ(-1, r.Call(11));
|
|
}
|
|
}
|
|
|
|
TEST(MemoryGrowPreservesData) {
|
|
int32_t index = 16;
|
|
int32_t value = 2335;
|
|
WasmRunner<int32_t, uint32_t> r(ExecutionTier::kInterpreter);
|
|
r.builder().AddMemory(kWasmPageSize);
|
|
BUILD(r, WASM_STORE_MEM(MachineType::Int32(), WASM_I32V(index),
|
|
WASM_I32V(value)),
|
|
WASM_GROW_MEMORY(WASM_GET_LOCAL(0)), WASM_DROP,
|
|
WASM_LOAD_MEM(MachineType::Int32(), WASM_I32V(index)));
|
|
CHECK_EQ(value, r.Call(1));
|
|
}
|
|
|
|
TEST(MemoryGrowInvalidSize) {
|
|
// Grow memory by an invalid amount without initial memory.
|
|
WasmRunner<int32_t, uint32_t> r(ExecutionTier::kInterpreter);
|
|
r.builder().AddMemory(kWasmPageSize);
|
|
BUILD(r, WASM_GROW_MEMORY(WASM_GET_LOCAL(0)));
|
|
CHECK_EQ(-1, r.Call(1048575));
|
|
}
|
|
|
|
TEST(ReferenceTypeLocals) {
|
|
{
|
|
WasmRunner<int32_t> r(ExecutionTier::kInterpreter);
|
|
BUILD(r, WASM_REF_IS_NULL(WASM_REF_NULL));
|
|
CHECK_EQ(1, r.Call());
|
|
}
|
|
{
|
|
WasmRunner<int32_t> r(ExecutionTier::kInterpreter);
|
|
r.AllocateLocal(kWasmAnyRef);
|
|
BUILD(r, WASM_REF_IS_NULL(WASM_GET_LOCAL(0)));
|
|
CHECK_EQ(1, r.Call());
|
|
}
|
|
{
|
|
WasmRunner<int32_t> r(ExecutionTier::kInterpreter);
|
|
r.AllocateLocal(kWasmAnyRef);
|
|
BUILD(r, WASM_REF_IS_NULL(WASM_TEE_LOCAL(0, WASM_REF_NULL)));
|
|
CHECK_EQ(1, r.Call());
|
|
}
|
|
// TODO(mstarzinger): Test and support global anyref variables.
|
|
}
|
|
|
|
TEST(TestPossibleNondeterminism) {
|
|
{
|
|
WasmRunner<int32_t, float> r(ExecutionTier::kInterpreter);
|
|
BUILD(r, WASM_I32_REINTERPRET_F32(WASM_GET_LOCAL(0)));
|
|
r.Call(1048575.5f);
|
|
CHECK(!r.possible_nondeterminism());
|
|
r.Call(std::numeric_limits<float>::quiet_NaN());
|
|
CHECK(!r.possible_nondeterminism());
|
|
}
|
|
{
|
|
WasmRunner<int64_t, double> r(ExecutionTier::kInterpreter);
|
|
BUILD(r, WASM_I64_REINTERPRET_F64(WASM_GET_LOCAL(0)));
|
|
r.Call(16.0);
|
|
CHECK(!r.possible_nondeterminism());
|
|
r.Call(std::numeric_limits<double>::quiet_NaN());
|
|
CHECK(!r.possible_nondeterminism());
|
|
}
|
|
{
|
|
WasmRunner<float, float> r(ExecutionTier::kInterpreter);
|
|
BUILD(r, WASM_F32_COPYSIGN(WASM_F32(42.0f), WASM_GET_LOCAL(0)));
|
|
r.Call(16.0f);
|
|
CHECK(!r.possible_nondeterminism());
|
|
r.Call(std::numeric_limits<double>::quiet_NaN());
|
|
CHECK(!r.possible_nondeterminism());
|
|
}
|
|
{
|
|
WasmRunner<double, double> r(ExecutionTier::kInterpreter);
|
|
BUILD(r, WASM_F64_COPYSIGN(WASM_F64(42.0), WASM_GET_LOCAL(0)));
|
|
r.Call(16.0);
|
|
CHECK(!r.possible_nondeterminism());
|
|
r.Call(std::numeric_limits<double>::quiet_NaN());
|
|
CHECK(!r.possible_nondeterminism());
|
|
}
|
|
{
|
|
int32_t index = 16;
|
|
WasmRunner<int32_t, float> r(ExecutionTier::kInterpreter);
|
|
r.builder().AddMemory(kWasmPageSize);
|
|
BUILD(r, WASM_STORE_MEM(MachineType::Float32(), WASM_I32V(index),
|
|
WASM_GET_LOCAL(0)),
|
|
WASM_I32V(index));
|
|
r.Call(1345.3456f);
|
|
CHECK(!r.possible_nondeterminism());
|
|
r.Call(std::numeric_limits<float>::quiet_NaN());
|
|
CHECK(!r.possible_nondeterminism());
|
|
}
|
|
{
|
|
int32_t index = 16;
|
|
WasmRunner<int32_t, double> r(ExecutionTier::kInterpreter);
|
|
r.builder().AddMemory(kWasmPageSize);
|
|
BUILD(r, WASM_STORE_MEM(MachineType::Float64(), WASM_I32V(index),
|
|
WASM_GET_LOCAL(0)),
|
|
WASM_I32V(index));
|
|
r.Call(1345.3456);
|
|
CHECK(!r.possible_nondeterminism());
|
|
r.Call(std::numeric_limits<double>::quiet_NaN());
|
|
CHECK(!r.possible_nondeterminism());
|
|
}
|
|
{
|
|
WasmRunner<float, float> r(ExecutionTier::kInterpreter);
|
|
BUILD(r, WASM_F32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
|
|
r.Call(1048575.5f);
|
|
CHECK(!r.possible_nondeterminism());
|
|
r.Call(std::numeric_limits<float>::quiet_NaN());
|
|
CHECK(r.possible_nondeterminism());
|
|
}
|
|
{
|
|
WasmRunner<double, double> r(ExecutionTier::kInterpreter);
|
|
BUILD(r, WASM_F64_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
|
|
r.Call(16.0);
|
|
CHECK(!r.possible_nondeterminism());
|
|
r.Call(std::numeric_limits<double>::quiet_NaN());
|
|
CHECK(r.possible_nondeterminism());
|
|
}
|
|
{
|
|
WasmRunner<int32_t, float> r(ExecutionTier::kInterpreter);
|
|
BUILD(r, WASM_F32_EQ(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
|
|
r.Call(16.0);
|
|
CHECK(!r.possible_nondeterminism());
|
|
r.Call(std::numeric_limits<float>::quiet_NaN());
|
|
CHECK(!r.possible_nondeterminism());
|
|
}
|
|
{
|
|
WasmRunner<int32_t, double> r(ExecutionTier::kInterpreter);
|
|
BUILD(r, WASM_F64_EQ(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
|
|
r.Call(16.0);
|
|
CHECK(!r.possible_nondeterminism());
|
|
r.Call(std::numeric_limits<double>::quiet_NaN());
|
|
CHECK(!r.possible_nondeterminism());
|
|
}
|
|
{
|
|
WasmRunner<float, float> r(ExecutionTier::kInterpreter);
|
|
BUILD(r, WASM_F32_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
|
|
r.Call(1048575.5f);
|
|
CHECK(!r.possible_nondeterminism());
|
|
r.Call(std::numeric_limits<float>::quiet_NaN());
|
|
CHECK(r.possible_nondeterminism());
|
|
}
|
|
{
|
|
WasmRunner<double, double> r(ExecutionTier::kInterpreter);
|
|
BUILD(r, WASM_F64_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
|
|
r.Call(16.0);
|
|
CHECK(!r.possible_nondeterminism());
|
|
r.Call(std::numeric_limits<double>::quiet_NaN());
|
|
CHECK(r.possible_nondeterminism());
|
|
}
|
|
}
|
|
|
|
TEST(WasmInterpreterActivations) {
|
|
WasmRunner<void> r(ExecutionTier::kInterpreter);
|
|
Isolate* isolate = r.main_isolate();
|
|
BUILD(r, WASM_UNREACHABLE);
|
|
|
|
WasmInterpreter* interpreter = r.interpreter();
|
|
WasmInterpreter::Thread* thread = interpreter->GetThread(0);
|
|
CHECK_EQ(0, thread->NumActivations());
|
|
uint32_t act0 = thread->StartActivation();
|
|
CHECK_EQ(0, act0);
|
|
thread->InitFrame(r.function(), nullptr);
|
|
uint32_t act1 = thread->StartActivation();
|
|
CHECK_EQ(1, act1);
|
|
thread->InitFrame(r.function(), nullptr);
|
|
CHECK_EQ(2, thread->NumActivations());
|
|
CHECK_EQ(2, thread->GetFrameCount());
|
|
CHECK_EQ(WasmInterpreter::TRAPPED, thread->Run());
|
|
thread->RaiseException(isolate, handle(Smi::kZero, isolate));
|
|
CHECK_EQ(1, thread->GetFrameCount());
|
|
CHECK_EQ(2, thread->NumActivations());
|
|
thread->FinishActivation(act1);
|
|
isolate->clear_pending_exception();
|
|
CHECK_EQ(1, thread->GetFrameCount());
|
|
CHECK_EQ(1, thread->NumActivations());
|
|
CHECK_EQ(WasmInterpreter::TRAPPED, thread->Run());
|
|
thread->RaiseException(isolate, handle(Smi::kZero, isolate));
|
|
CHECK_EQ(0, thread->GetFrameCount());
|
|
CHECK_EQ(1, thread->NumActivations());
|
|
thread->FinishActivation(act0);
|
|
isolate->clear_pending_exception();
|
|
CHECK_EQ(0, thread->NumActivations());
|
|
}
|
|
|
|
TEST(InterpreterLoadWithoutMemory) {
|
|
WasmRunner<int32_t, int32_t> r(ExecutionTier::kInterpreter);
|
|
r.builder().AddMemory(0);
|
|
BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0)));
|
|
CHECK_TRAP32(r.Call(0));
|
|
}
|
|
|
|
} // namespace test_run_wasm_interpreter
|
|
} // namespace wasm
|
|
} // namespace internal
|
|
} // namespace v8
|