v8/test/cctest/test-macro-assembler-x64.cc
Benedikt Meurer adb7e37b28 [cleanup] Remove obsolete representations.
In the Crankshaft days we (mis)used the Representation to also express
the various internal representations that the compiler understands. But
with TurboFan we now have proper MachineRepresentation and MachineType,
which do that independently. So there's no need to have this in the
Representation class anymore, and instead the Representation class only
needs to deal with the field representations.

Bug: v8:8749, v8:8834, v8:8865
Change-Id: I34ea9558b5fdf20d6c7939b52762eaffd4316b06
Reviewed-on: https://chromium-review.googlesource.com/c/1479954
Commit-Queue: Benedikt Meurer <bmeurer@chromium.org>
Reviewed-by: Jaroslav Sevcik <jarin@chromium.org>
Cr-Commit-Position: refs/heads/master@{#59750}
2019-02-21 06:07:06 +00:00

985 lines
27 KiB
C++

// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "src/v8.h"
#include "src/base/platform/platform.h"
#include "src/heap/factory.h"
#include "src/macro-assembler.h"
#include "src/objects-inl.h"
#include "src/objects/smi.h"
#include "src/simulator.h"
#include "test/cctest/cctest.h"
#include "test/common/assembler-tester.h"
namespace v8 {
namespace internal {
namespace test_macro_assembler_x64 {
// Test the x64 assembler by compiling some simple functions into
// a buffer and executing them. These tests do not initialize the
// V8 library, create a context, or use any V8 objects.
// The AMD64 calling convention is used, with the first five arguments
// in RSI, RDI, RDX, RCX, R8, and R9, and floating point arguments in
// the XMM registers. The return value is in RAX.
// This calling convention is used on Linux, with GCC, and on Mac OS,
// with GCC. A different convention is used on 64-bit windows.
typedef int(F0)();
#define __ masm->
static void EntryCode(MacroAssembler* masm) {
// Smi constant register is callee save.
__ pushq(kRootRegister);
__ InitializeRootRegister();
}
static void ExitCode(MacroAssembler* masm) { __ popq(kRootRegister); }
TEST(Smi) {
// Check that C++ Smi operations work as expected.
int64_t test_numbers[] = {
0, 1, -1, 127, 128, -128, -129, 255, 256, -256, -257,
Smi::kMaxValue, static_cast<int64_t>(Smi::kMaxValue) + 1,
Smi::kMinValue, static_cast<int64_t>(Smi::kMinValue) - 1
};
int test_number_count = 15;
for (int i = 0; i < test_number_count; i++) {
int64_t number = test_numbers[i];
bool is_valid = Smi::IsValid(number);
bool is_in_range = number >= Smi::kMinValue && number <= Smi::kMaxValue;
CHECK_EQ(is_in_range, is_valid);
if (is_valid) {
Smi smi_from_intptr = Smi::FromIntptr(number);
if (static_cast<int>(number) == number) { // Is a 32-bit int.
Smi smi_from_int = Smi::FromInt(static_cast<int32_t>(number));
CHECK_EQ(smi_from_int, smi_from_intptr);
}
int64_t smi_value = smi_from_intptr->value();
CHECK_EQ(number, smi_value);
}
}
}
static void TestMoveSmi(MacroAssembler* masm, Label* exit, int id, Smi value) {
__ movl(rax, Immediate(id));
__ Move(rcx, value);
__ Set(rdx, static_cast<intptr_t>(value.ptr()));
__ cmpq(rcx, rdx);
__ j(not_equal, exit);
}
// Test that we can move a Smi value literally into a register.
TEST(SmiMove) {
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler; // Create a pointer for the __ macro.
EntryCode(masm);
Label exit;
TestMoveSmi(masm, &exit, 1, Smi::zero());
TestMoveSmi(masm, &exit, 2, Smi::FromInt(127));
TestMoveSmi(masm, &exit, 3, Smi::FromInt(128));
TestMoveSmi(masm, &exit, 4, Smi::FromInt(255));
TestMoveSmi(masm, &exit, 5, Smi::FromInt(256));
TestMoveSmi(masm, &exit, 6, Smi::FromInt(Smi::kMaxValue));
TestMoveSmi(masm, &exit, 7, Smi::FromInt(-1));
TestMoveSmi(masm, &exit, 8, Smi::FromInt(-128));
TestMoveSmi(masm, &exit, 9, Smi::FromInt(-129));
TestMoveSmi(masm, &exit, 10, Smi::FromInt(-256));
TestMoveSmi(masm, &exit, 11, Smi::FromInt(-257));
TestMoveSmi(masm, &exit, 12, Smi::FromInt(Smi::kMinValue));
__ xorq(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(CcTest::i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
void TestSmiCompare(MacroAssembler* masm, Label* exit, int id, int x, int y) {
__ Move(rcx, Smi::FromInt(x));
__ movq(r8, rcx);
__ Move(rdx, Smi::FromInt(y));
__ movq(r9, rdx);
__ SmiCompare(rcx, rdx);
if (x < y) {
__ movl(rax, Immediate(id + 1));
__ j(greater_equal, exit);
} else if (x > y) {
__ movl(rax, Immediate(id + 2));
__ j(less_equal, exit);
} else {
CHECK_EQ(x, y);
__ movl(rax, Immediate(id + 3));
__ j(not_equal, exit);
}
__ movl(rax, Immediate(id + 4));
__ cmpq(rcx, r8);
__ j(not_equal, exit);
__ incq(rax);
__ cmpq(rdx, r9);
__ j(not_equal, exit);
if (x != y) {
__ SmiCompare(rdx, rcx);
if (y < x) {
__ movl(rax, Immediate(id + 9));
__ j(greater_equal, exit);
} else {
CHECK(y > x);
__ movl(rax, Immediate(id + 10));
__ j(less_equal, exit);
}
} else {
__ cmpq(rcx, rcx);
__ movl(rax, Immediate(id + 11));
__ j(not_equal, exit);
__ incq(rax);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
}
}
// Test that we can compare smis for equality (and more).
TEST(SmiCompare) {
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer(2 * Assembler::kMinimalBufferSize);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
TestSmiCompare(masm, &exit, 0x10, 0, 0);
TestSmiCompare(masm, &exit, 0x20, 0, 1);
TestSmiCompare(masm, &exit, 0x30, 1, 0);
TestSmiCompare(masm, &exit, 0x40, 1, 1);
TestSmiCompare(masm, &exit, 0x50, 0, -1);
TestSmiCompare(masm, &exit, 0x60, -1, 0);
TestSmiCompare(masm, &exit, 0x70, -1, -1);
TestSmiCompare(masm, &exit, 0x80, 0, Smi::kMinValue);
TestSmiCompare(masm, &exit, 0x90, Smi::kMinValue, 0);
TestSmiCompare(masm, &exit, 0xA0, 0, Smi::kMaxValue);
TestSmiCompare(masm, &exit, 0xB0, Smi::kMaxValue, 0);
TestSmiCompare(masm, &exit, 0xC0, -1, Smi::kMinValue);
TestSmiCompare(masm, &exit, 0xD0, Smi::kMinValue, -1);
TestSmiCompare(masm, &exit, 0xE0, -1, Smi::kMaxValue);
TestSmiCompare(masm, &exit, 0xF0, Smi::kMaxValue, -1);
TestSmiCompare(masm, &exit, 0x100, Smi::kMinValue, Smi::kMinValue);
TestSmiCompare(masm, &exit, 0x110, Smi::kMinValue, Smi::kMaxValue);
TestSmiCompare(masm, &exit, 0x120, Smi::kMaxValue, Smi::kMinValue);
TestSmiCompare(masm, &exit, 0x130, Smi::kMaxValue, Smi::kMaxValue);
__ xorq(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(CcTest::i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
TEST(SmiTag) {
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
__ movq(rax, Immediate(1)); // Test number.
__ movq(rcx, Immediate(0));
__ SmiTag(rcx, rcx);
__ Set(rdx, Smi::kZero.ptr());
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(2)); // Test number.
__ movq(rcx, Immediate(1024));
__ SmiTag(rcx, rcx);
__ Set(rdx, Smi::FromInt(1024).ptr());
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(3)); // Test number.
__ movq(rcx, Immediate(-1));
__ SmiTag(rcx, rcx);
__ Set(rdx, Smi::FromInt(-1).ptr());
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(4)); // Test number.
__ movq(rcx, Immediate(Smi::kMaxValue));
__ SmiTag(rcx, rcx);
__ Set(rdx, Smi::FromInt(Smi::kMaxValue).ptr());
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(5)); // Test number.
__ movq(rcx, Immediate(Smi::kMinValue));
__ SmiTag(rcx, rcx);
__ Set(rdx, Smi::FromInt(Smi::kMinValue).ptr());
__ cmpq(rcx, rdx);
__ j(not_equal, &exit);
// Different target register.
__ movq(rax, Immediate(6)); // Test number.
__ movq(rcx, Immediate(0));
__ SmiTag(r8, rcx);
__ Set(rdx, Smi::zero().ptr());
__ cmpq(r8, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(7)); // Test number.
__ movq(rcx, Immediate(1024));
__ SmiTag(r8, rcx);
__ Set(rdx, Smi::FromInt(1024).ptr());
__ cmpq(r8, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(8)); // Test number.
__ movq(rcx, Immediate(-1));
__ SmiTag(r8, rcx);
__ Set(rdx, Smi::FromInt(-1).ptr());
__ cmpq(r8, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(9)); // Test number.
__ movq(rcx, Immediate(Smi::kMaxValue));
__ SmiTag(r8, rcx);
__ Set(rdx, Smi::FromInt(Smi::kMaxValue).ptr());
__ cmpq(r8, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(10)); // Test number.
__ movq(rcx, Immediate(Smi::kMinValue));
__ SmiTag(r8, rcx);
__ Set(rdx, Smi::FromInt(Smi::kMinValue).ptr());
__ cmpq(r8, rdx);
__ j(not_equal, &exit);
__ xorq(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(CcTest::i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
TEST(SmiCheck) {
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
Condition cond;
__ movl(rax, Immediate(1)); // Test number.
// CheckSmi
__ movl(rcx, Immediate(0));
__ SmiTag(rcx, rcx);
cond = masm->CheckSmi(rcx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ xorq(rcx, Immediate(kSmiTagMask));
cond = masm->CheckSmi(rcx);
__ j(cond, &exit);
__ incq(rax);
__ movl(rcx, Immediate(-1));
__ SmiTag(rcx, rcx);
cond = masm->CheckSmi(rcx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ xorq(rcx, Immediate(kSmiTagMask));
cond = masm->CheckSmi(rcx);
__ j(cond, &exit);
__ incq(rax);
__ movl(rcx, Immediate(Smi::kMaxValue));
__ SmiTag(rcx, rcx);
cond = masm->CheckSmi(rcx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ xorq(rcx, Immediate(kSmiTagMask));
cond = masm->CheckSmi(rcx);
__ j(cond, &exit);
__ incq(rax);
__ movl(rcx, Immediate(Smi::kMinValue));
__ SmiTag(rcx, rcx);
cond = masm->CheckSmi(rcx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ xorq(rcx, Immediate(kSmiTagMask));
cond = masm->CheckSmi(rcx);
__ j(cond, &exit);
// Success
__ xorq(rax, rax);
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(CcTest::i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
void TestSmiIndex(MacroAssembler* masm, Label* exit, int id, int x) {
__ movl(rax, Immediate(id));
for (int i = 0; i < 8; i++) {
__ Move(rcx, Smi::FromInt(x));
SmiIndex index = masm->SmiToIndex(rdx, rcx, i);
CHECK(index.reg == rcx || index.reg == rdx);
__ shlq(index.reg, Immediate(index.scale));
__ Set(r8, static_cast<intptr_t>(x) << i);
__ cmpq(index.reg, r8);
__ j(not_equal, exit);
__ incq(rax);
__ Move(rcx, Smi::FromInt(x));
index = masm->SmiToIndex(rcx, rcx, i);
CHECK(index.reg == rcx);
__ shlq(rcx, Immediate(index.scale));
__ Set(r8, static_cast<intptr_t>(x) << i);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
__ incq(rax);
}
}
TEST(SmiIndex) {
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
TestSmiIndex(masm, &exit, 0x10, 0);
TestSmiIndex(masm, &exit, 0x20, 1);
TestSmiIndex(masm, &exit, 0x30, 100);
TestSmiIndex(masm, &exit, 0x40, 1000);
TestSmiIndex(masm, &exit, 0x50, Smi::kMaxValue);
__ xorq(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(CcTest::i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
TEST(OperandOffset) {
uint32_t data[256];
for (uint32_t i = 0; i < 256; i++) { data[i] = i * 0x01010101; }
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
Label exit;
EntryCode(masm);
__ pushq(r13);
__ pushq(r14);
__ pushq(rbx);
__ pushq(rbp);
__ pushq(Immediate(0x100)); // <-- rbp
__ movq(rbp, rsp);
__ pushq(Immediate(0x101));
__ pushq(Immediate(0x102));
__ pushq(Immediate(0x103));
__ pushq(Immediate(0x104));
__ pushq(Immediate(0x105)); // <-- rbx
__ pushq(Immediate(0x106));
__ pushq(Immediate(0x107));
__ pushq(Immediate(0x108));
__ pushq(Immediate(0x109)); // <-- rsp
// rbp = rsp[9]
// r15 = rsp[3]
// rbx = rsp[5]
// r13 = rsp[7]
__ leaq(r14, Operand(rsp, 3 * kSystemPointerSize));
__ leaq(r13, Operand(rbp, -3 * kSystemPointerSize));
__ leaq(rbx, Operand(rbp, -5 * kSystemPointerSize));
__ movl(rcx, Immediate(2));
__ Move(r8, reinterpret_cast<Address>(&data[128]), RelocInfo::NONE);
__ movl(rax, Immediate(1));
Operand sp0 = Operand(rsp, 0);
// Test 1.
__ movl(rdx, sp0); // Sanity check.
__ cmpl(rdx, Immediate(0x109));
__ j(not_equal, &exit);
__ incq(rax);
// Test 2.
// Zero to non-zero displacement.
__ movl(rdx, Operand(sp0, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x107));
__ j(not_equal, &exit);
__ incq(rax);
Operand sp2 = Operand(rsp, 2 * kSystemPointerSize);
// Test 3.
__ movl(rdx, sp2); // Sanity check.
__ cmpl(rdx, Immediate(0x107));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(sp2, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
// Non-zero to zero displacement.
__ movl(rdx, Operand(sp2, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x109));
__ j(not_equal, &exit);
__ incq(rax);
Operand sp2c2 =
Operand(rsp, rcx, times_system_pointer_size, 2 * kSystemPointerSize);
// Test 6.
__ movl(rdx, sp2c2); // Sanity check.
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(sp2c2, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x103));
__ j(not_equal, &exit);
__ incq(rax);
// Non-zero to zero displacement.
__ movl(rdx, Operand(sp2c2, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x107));
__ j(not_equal, &exit);
__ incq(rax);
Operand bp0 = Operand(rbp, 0);
// Test 9.
__ movl(rdx, bp0); // Sanity check.
__ cmpl(rdx, Immediate(0x100));
__ j(not_equal, &exit);
__ incq(rax);
// Zero to non-zero displacement.
__ movl(rdx, Operand(bp0, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x102));
__ j(not_equal, &exit);
__ incq(rax);
Operand bp2 = Operand(rbp, -2 * kSystemPointerSize);
// Test 11.
__ movl(rdx, bp2); // Sanity check.
__ cmpl(rdx, Immediate(0x102));
__ j(not_equal, &exit);
__ incq(rax);
// Non-zero to zero displacement.
__ movl(rdx, Operand(bp2, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x100));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bp2, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x104));
__ j(not_equal, &exit);
__ incq(rax);
Operand bp2c4 =
Operand(rbp, rcx, times_system_pointer_size, -4 * kSystemPointerSize);
// Test 14:
__ movl(rdx, bp2c4); // Sanity check.
__ cmpl(rdx, Immediate(0x102));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bp2c4, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x100));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bp2c4, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x104));
__ j(not_equal, &exit);
__ incq(rax);
Operand bx0 = Operand(rbx, 0);
// Test 17.
__ movl(rdx, bx0); // Sanity check.
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx0, 5 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x100));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx0, -4 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x109));
__ j(not_equal, &exit);
__ incq(rax);
Operand bx2 = Operand(rbx, 2 * kSystemPointerSize);
// Test 20.
__ movl(rdx, bx2); // Sanity check.
__ cmpl(rdx, Immediate(0x103));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx2, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x101));
__ j(not_equal, &exit);
__ incq(rax);
// Non-zero to zero displacement.
__ movl(rdx, Operand(bx2, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
Operand bx2c2 =
Operand(rbx, rcx, times_system_pointer_size, -2 * kSystemPointerSize);
// Test 23.
__ movl(rdx, bx2c2); // Sanity check.
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx2c2, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x103));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx2c2, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x107));
__ j(not_equal, &exit);
__ incq(rax);
Operand r80 = Operand(r8, 0);
// Test 26.
__ movl(rdx, r80); // Sanity check.
__ cmpl(rdx, Immediate(0x80808080));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -8 * kIntSize));
__ cmpl(rdx, Immediate(0x78787878));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, 8 * kIntSize));
__ cmpl(rdx, Immediate(0x88888888));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -64 * kIntSize));
__ cmpl(rdx, Immediate(0x40404040));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, 64 * kIntSize));
__ cmpl(rdx, Immediate(0xC0C0C0C0));
__ j(not_equal, &exit);
__ incq(rax);
Operand r88 = Operand(r8, 8 * kIntSize);
// Test 31.
__ movl(rdx, r88); // Sanity check.
__ cmpl(rdx, Immediate(0x88888888));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r88, -8 * kIntSize));
__ cmpl(rdx, Immediate(0x80808080));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r88, 8 * kIntSize));
__ cmpl(rdx, Immediate(0x90909090));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r88, -64 * kIntSize));
__ cmpl(rdx, Immediate(0x48484848));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r88, 64 * kIntSize));
__ cmpl(rdx, Immediate(0xC8C8C8C8));
__ j(not_equal, &exit);
__ incq(rax);
Operand r864 = Operand(r8, 64 * kIntSize);
// Test 36.
__ movl(rdx, r864); // Sanity check.
__ cmpl(rdx, Immediate(0xC0C0C0C0));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, -8 * kIntSize));
__ cmpl(rdx, Immediate(0xB8B8B8B8));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, 8 * kIntSize));
__ cmpl(rdx, Immediate(0xC8C8C8C8));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, -64 * kIntSize));
__ cmpl(rdx, Immediate(0x80808080));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, 32 * kIntSize));
__ cmpl(rdx, Immediate(0xE0E0E0E0));
__ j(not_equal, &exit);
__ incq(rax);
// 32-bit offset to 8-bit offset.
__ movl(rdx, Operand(r864, -60 * kIntSize));
__ cmpl(rdx, Immediate(0x84848484));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, 60 * kIntSize));
__ cmpl(rdx, Immediate(0xFCFCFCFC));
__ j(not_equal, &exit);
__ incq(rax);
// Test unaligned offsets.
// Test 43.
__ movl(rdx, Operand(r80, 2));
__ cmpl(rdx, Immediate(0x81818080));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -2));
__ cmpl(rdx, Immediate(0x80807F7F));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, 126));
__ cmpl(rdx, Immediate(0xA0A09F9F));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -126));
__ cmpl(rdx, Immediate(0x61616060));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, 254));
__ cmpl(rdx, Immediate(0xC0C0BFBF));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -254));
__ cmpl(rdx, Immediate(0x41414040));
__ j(not_equal, &exit);
__ incq(rax);
// Success.
__ movl(rax, Immediate(0));
__ bind(&exit);
__ leaq(rsp, Operand(rbp, kSystemPointerSize));
__ popq(rbp);
__ popq(rbx);
__ popq(r14);
__ popq(r13);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(CcTest::i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
void TestFloat32x4Abs(MacroAssembler* masm, Label* exit, float x, float y,
float z, float w) {
__ subq(rsp, Immediate(kSimd128Size));
__ Move(xmm1, x);
__ Movss(Operand(rsp, 0 * kFloatSize), xmm1);
__ Move(xmm2, y);
__ Movss(Operand(rsp, 1 * kFloatSize), xmm2);
__ Move(xmm3, z);
__ Movss(Operand(rsp, 2 * kFloatSize), xmm3);
__ Move(xmm4, w);
__ Movss(Operand(rsp, 3 * kFloatSize), xmm4);
__ Movups(xmm0, Operand(rsp, 0));
__ Absps(xmm0);
__ Movups(Operand(rsp, 0), xmm0);
__ incq(rax);
__ Move(xmm1, fabsf(x));
__ Ucomiss(xmm1, Operand(rsp, 0 * kFloatSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm2, fabsf(y));
__ Ucomiss(xmm2, Operand(rsp, 1 * kFloatSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm3, fabsf(z));
__ Ucomiss(xmm3, Operand(rsp, 2 * kFloatSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm4, fabsf(w));
__ Ucomiss(xmm4, Operand(rsp, 3 * kFloatSize));
__ j(not_equal, exit);
__ addq(rsp, Immediate(kSimd128Size));
}
void TestFloat32x4Neg(MacroAssembler* masm, Label* exit, float x, float y,
float z, float w) {
__ subq(rsp, Immediate(kSimd128Size));
__ Move(xmm1, x);
__ Movss(Operand(rsp, 0 * kFloatSize), xmm1);
__ Move(xmm2, y);
__ Movss(Operand(rsp, 1 * kFloatSize), xmm2);
__ Move(xmm3, z);
__ Movss(Operand(rsp, 2 * kFloatSize), xmm3);
__ Move(xmm4, w);
__ Movss(Operand(rsp, 3 * kFloatSize), xmm4);
__ Movups(xmm0, Operand(rsp, 0));
__ Negps(xmm0);
__ Movups(Operand(rsp, 0), xmm0);
__ incq(rax);
__ Move(xmm1, -x);
__ Ucomiss(xmm1, Operand(rsp, 0 * kFloatSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm2, -y);
__ Ucomiss(xmm2, Operand(rsp, 1 * kFloatSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm3, -z);
__ Ucomiss(xmm3, Operand(rsp, 2 * kFloatSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm4, -w);
__ Ucomiss(xmm4, Operand(rsp, 3 * kFloatSize));
__ j(not_equal, exit);
__ addq(rsp, Immediate(kSimd128Size));
}
void TestFloat64x2Abs(MacroAssembler* masm, Label* exit, double x, double y) {
__ subq(rsp, Immediate(kSimd128Size));
__ Move(xmm1, x);
__ Movsd(Operand(rsp, 0 * kDoubleSize), xmm1);
__ Move(xmm2, y);
__ Movsd(Operand(rsp, 1 * kDoubleSize), xmm2);
__ movupd(xmm0, Operand(rsp, 0));
__ Abspd(xmm0);
__ movupd(Operand(rsp, 0), xmm0);
__ incq(rax);
__ Move(xmm1, fabs(x));
__ Ucomisd(xmm1, Operand(rsp, 0 * kDoubleSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm2, fabs(y));
__ Ucomisd(xmm2, Operand(rsp, 1 * kDoubleSize));
__ j(not_equal, exit);
__ addq(rsp, Immediate(kSimd128Size));
}
void TestFloat64x2Neg(MacroAssembler* masm, Label* exit, double x, double y) {
__ subq(rsp, Immediate(kSimd128Size));
__ Move(xmm1, x);
__ Movsd(Operand(rsp, 0 * kDoubleSize), xmm1);
__ Move(xmm2, y);
__ Movsd(Operand(rsp, 1 * kDoubleSize), xmm2);
__ movupd(xmm0, Operand(rsp, 0));
__ Negpd(xmm0);
__ movupd(Operand(rsp, 0), xmm0);
__ incq(rax);
__ Move(xmm1, -x);
__ Ucomisd(xmm1, Operand(rsp, 0 * kDoubleSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm2, -y);
__ Ucomisd(xmm2, Operand(rsp, 1 * kDoubleSize));
__ j(not_equal, exit);
__ addq(rsp, Immediate(kSimd128Size));
}
TEST(SIMDMacros) {
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
__ xorq(rax, rax);
TestFloat32x4Abs(masm, &exit, 1.5, -1.5, 0.5, -0.5);
TestFloat32x4Neg(masm, &exit, 1.5, -1.5, 0.5, -0.5);
TestFloat64x2Abs(masm, &exit, 1.75, -1.75);
TestFloat64x2Neg(masm, &exit, 1.75, -1.75);
__ xorq(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(CcTest::i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
TEST(AreAliased) {
DCHECK(!AreAliased(rax));
DCHECK(!AreAliased(rax, no_reg));
DCHECK(!AreAliased(no_reg, rax, no_reg));
DCHECK(AreAliased(rax, rax));
DCHECK(!AreAliased(no_reg, no_reg));
DCHECK(!AreAliased(rax, rbx, rcx, rdx, no_reg));
DCHECK(AreAliased(rax, rbx, rcx, rdx, rax, no_reg));
// no_regs are allowed in
DCHECK(!AreAliased(rax, no_reg, rbx, no_reg, rcx, no_reg, rdx, no_reg));
DCHECK(AreAliased(rax, no_reg, rbx, no_reg, rcx, no_reg, rdx, rax, no_reg));
}
#undef __
} // namespace test_macro_assembler_x64
} // namespace internal
} // namespace v8