v8/src/torque/implementation-visitor.h
Tobias Tebbi 185eaec097 [torque] declare local value and label bindings in the ImplementationVisitor
While this is mostly a mechanical change to enable re-visiting macros for
inlining, it has a few user-facing effects:

- Labels and (variables, parameters, local constants) are handled separately,
  so they do not shadow each other.
- A local variable or constant is not bound in its initializer.
  This allows code like:

  const x = 5;
  {
    const x = x + 1;
  }


Bug: v8:7793
Change-Id: I968e1f93d92689737362c803342a797d312e95cd
Reviewed-on: https://chromium-review.googlesource.com/c/1276628
Commit-Queue: Tobias Tebbi <tebbi@chromium.org>
Reviewed-by: Daniel Clifford <danno@chromium.org>
Cr-Commit-Position: refs/heads/master@{#56649}
2018-10-15 15:26:34 +00:00

478 lines
16 KiB
C++

// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_TORQUE_IMPLEMENTATION_VISITOR_H_
#define V8_TORQUE_IMPLEMENTATION_VISITOR_H_
#include <string>
#include "src/base/macros.h"
#include "src/torque/ast.h"
#include "src/torque/cfg.h"
#include "src/torque/file-visitor.h"
#include "src/torque/global-context.h"
#include "src/torque/types.h"
#include "src/torque/utils.h"
namespace v8 {
namespace internal {
namespace torque {
// LocationReference is the representation of an l-value, so a value that might
// allow for assignment. For uniformity, this class can also represent
// unassignable temporaries. Assignable values fall in two categories:
// - stack ranges that represent mutable variables, including structs.
// - field or element access expressions that generate operator calls.
class LocationReference {
public:
// An assignable stack range.
static LocationReference VariableAccess(VisitResult variable) {
DCHECK(variable.IsOnStack());
LocationReference result;
result.variable_ = std::move(variable);
return result;
}
// An unassignable value. {description} is only used for error messages.
static LocationReference Temporary(VisitResult temporary,
std::string description) {
LocationReference result;
result.temporary_ = std::move(temporary);
result.temporary_description_ = std::move(description);
return result;
}
static LocationReference ArrayAccess(VisitResult base, VisitResult offset) {
LocationReference result;
result.eval_function_ = std::string{"[]"};
result.assign_function_ = std::string{"[]="};
result.call_arguments_ = {base, offset};
return result;
}
static LocationReference FieldAccess(VisitResult object,
std::string fieldname) {
LocationReference result;
result.eval_function_ = "." + fieldname;
result.assign_function_ = "." + fieldname + "=";
result.call_arguments_ = {object};
return result;
}
bool IsConst() const { return temporary_.has_value(); }
bool IsVariableAccess() const { return variable_.has_value(); }
const VisitResult& variable() const {
DCHECK(IsVariableAccess());
return *variable_;
}
bool IsTemporary() const { return temporary_.has_value(); }
const VisitResult& temporary() const {
DCHECK(IsTemporary());
return *temporary_;
}
// For error reporting.
const std::string& temporary_description() const {
DCHECK(IsTemporary());
return *temporary_description_;
}
bool IsCallAccess() const {
bool is_call_access = eval_function_.has_value();
DCHECK_EQ(is_call_access, assign_function_.has_value());
return is_call_access;
}
const VisitResultVector& call_arguments() const {
DCHECK(IsCallAccess());
return call_arguments_;
}
const std::string& eval_function() const {
DCHECK(IsCallAccess());
return *eval_function_;
}
const std::string& assign_function() const {
DCHECK(IsCallAccess());
return *assign_function_;
}
private:
base::Optional<VisitResult> variable_;
base::Optional<VisitResult> temporary_;
base::Optional<std::string> temporary_description_;
base::Optional<std::string> eval_function_;
base::Optional<std::string> assign_function_;
VisitResultVector call_arguments_;
LocationReference() = default;
};
template <class T>
class Binding;
template <class T>
class BindingsManager {
public:
base::Optional<Binding<T>*> TryLookup(const std::string& name) {
return current_bindings_[name];
}
private:
friend class Binding<T>;
std::unordered_map<std::string, base::Optional<Binding<T>*>>
current_bindings_;
};
template <class T>
class Binding : public T {
public:
template <class... Args>
Binding(BindingsManager<T>* manager, const std::string& name, Args&&... args)
: T(std::forward<Args>(args)...),
manager_(manager),
name_(name),
previous_binding_(this) {
std::swap(previous_binding_, manager_->current_bindings_[name]);
}
~Binding() { manager_->current_bindings_[name_] = previous_binding_; }
const std::string& name() const { return name_; }
SourcePosition declaration_position() const { return declaration_position_; }
private:
BindingsManager<T>* manager_;
const std::string name_;
base::Optional<Binding*> previous_binding_;
SourcePosition declaration_position_ = CurrentSourcePosition::Get();
DISALLOW_COPY_AND_MOVE_AND_ASSIGN(Binding);
};
template <class T>
class BlockBindings {
public:
explicit BlockBindings(BindingsManager<T>* manager) : manager_(manager) {}
void Add(std::string name, T value) {
for (const auto& binding : bindings_) {
if (binding->name() == name) {
ReportError(
"redeclaration of name \"", name,
"\" in the same block is illegal, previous declaration at: ",
binding->declaration_position());
}
}
bindings_.push_back(base::make_unique<Binding<T>>(manager_, std::move(name),
std::move(value)));
}
std::vector<Binding<T>*> bindings() const {
std::vector<Binding<T>*> result;
result.reserve(bindings_.size());
for (auto& b : bindings_) {
result.push_back(b.get());
}
return result;
}
private:
BindingsManager<T>* manager_;
std::vector<std::unique_ptr<Binding<T>>> bindings_;
};
struct LocalValue {
bool is_const;
VisitResult value;
};
struct LocalLabel {
Block* block;
std::vector<const Type*> parameter_types;
explicit LocalLabel(Block* block,
std::vector<const Type*> parameter_types = {})
: block(block), parameter_types(std::move(parameter_types)) {}
};
struct Arguments {
VisitResultVector parameters;
std::vector<Binding<LocalLabel>*> labels;
};
bool IsCompatibleSignature(const Signature& sig, const TypeVector& types,
const std::vector<Binding<LocalLabel>*>& labels);
class ImplementationVisitor : public FileVisitor {
public:
explicit ImplementationVisitor(GlobalContext& global_context)
: FileVisitor(global_context) {}
void Visit(Ast* ast) { Visit(ast->default_module()); }
VisitResult Visit(Expression* expr);
const Type* Visit(Statement* stmt);
void Visit(Declaration* decl);
VisitResult Visit(StructExpression* decl);
LocationReference GetLocationReference(Expression* location);
LocationReference GetLocationReference(IdentifierExpression* expr);
LocationReference GetLocationReference(FieldAccessExpression* expr);
LocationReference GetLocationReference(ElementAccessExpression* expr);
VisitResult GenerateFetchFromLocation(const LocationReference& reference);
VisitResult GetBuiltinCode(Builtin* builtin);
VisitResult Visit(IdentifierExpression* expr);
VisitResult Visit(FieldAccessExpression* expr) {
StackScope scope(this);
return scope.Yield(GenerateFetchFromLocation(GetLocationReference(expr)));
}
VisitResult Visit(ElementAccessExpression* expr) {
StackScope scope(this);
return scope.Yield(GenerateFetchFromLocation(GetLocationReference(expr)));
}
void Visit(ModuleDeclaration* decl);
void Visit(DefaultModuleDeclaration* decl) {
Visit(implicit_cast<ModuleDeclaration*>(decl));
}
void Visit(ExplicitModuleDeclaration* decl) {
Visit(implicit_cast<ModuleDeclaration*>(decl));
}
void Visit(TypeDeclaration* decl) {}
void Visit(TypeAliasDeclaration* decl) {}
void Visit(ExternConstDeclaration* decl) {}
void Visit(StructDeclaration* decl);
void Visit(StandardDeclaration* decl);
void Visit(GenericDeclaration* decl) {}
void Visit(SpecializationDeclaration* decl);
void Visit(TorqueMacroDeclaration* decl, const Signature& signature,
Statement* body);
void Visit(TorqueBuiltinDeclaration* decl, const Signature& signature,
Statement* body);
void Visit(ExternalMacroDeclaration* decl, const Signature& signature,
Statement* body) {}
void Visit(ExternalBuiltinDeclaration* decl, const Signature& signature,
Statement* body) {}
void Visit(ExternalRuntimeDeclaration* decl, const Signature& signature,
Statement* body) {}
void Visit(CallableNode* decl, const Signature& signature, Statement* body);
void Visit(ConstDeclaration* decl);
VisitResult Visit(CallExpression* expr, bool is_tail = false);
const Type* Visit(TailCallStatement* stmt);
VisitResult Visit(ConditionalExpression* expr);
VisitResult Visit(LogicalOrExpression* expr);
VisitResult Visit(LogicalAndExpression* expr);
VisitResult Visit(IncrementDecrementExpression* expr);
VisitResult Visit(AssignmentExpression* expr);
VisitResult Visit(StringLiteralExpression* expr);
VisitResult Visit(NumberLiteralExpression* expr);
VisitResult Visit(AssumeTypeImpossibleExpression* expr);
VisitResult Visit(TryLabelExpression* expr);
VisitResult Visit(StatementExpression* expr);
const Type* Visit(ReturnStatement* stmt);
const Type* Visit(GotoStatement* stmt);
const Type* Visit(IfStatement* stmt);
const Type* Visit(WhileStatement* stmt);
const Type* Visit(BreakStatement* stmt);
const Type* Visit(ContinueStatement* stmt);
const Type* Visit(ForLoopStatement* stmt);
const Type* Visit(VarDeclarationStatement* stmt);
const Type* Visit(VarDeclarationStatement* stmt,
BlockBindings<LocalValue>* block_bindings);
const Type* Visit(ForOfLoopStatement* stmt);
const Type* Visit(BlockStatement* block);
const Type* Visit(ExpressionStatement* stmt);
const Type* Visit(DebugStatement* stmt);
const Type* Visit(AssertStatement* stmt);
void BeginModuleFile(Module* module);
void EndModuleFile(Module* module);
void GenerateImplementation(const std::string& dir, Module* module);
DECLARE_CONTEXTUAL_VARIABLE(ValueBindingsManager,
BindingsManager<LocalValue>);
DECLARE_CONTEXTUAL_VARIABLE(LabelBindingsManager,
BindingsManager<LocalLabel>);
// A BindingsManagersScope has to be active for local bindings to be created.
// Shadowing an existing BindingsManagersScope by creating a new one hides all
// existing bindings while the additional BindingsManagersScope is active.
struct BindingsManagersScope {
ValueBindingsManager::Scope value_bindings_manager;
LabelBindingsManager::Scope label_bindings_manager;
};
private:
std::string GetBaseAssemblerName(Module* module);
std::string GetDSLAssemblerName(Module* module);
// {StackScope} records the stack height at creation time and reconstructs it
// when being destructed by emitting a {DeleteRangeInstruction}, except for
// the slots protected by {StackScope::Yield}. Calling {Yield(v)} deletes all
// slots above the initial stack height except for the slots of {v}, which are
// moved to form the only slots above the initial height and marks them to
// survive destruction of the {StackScope}. A typical pattern is the
// following:
//
// VisitResult result;
// {
// StackScope stack_scope(this);
// // ... create temporary slots ...
// result = stack_scope.Yield(surviving_slots);
// }
class StackScope {
public:
explicit StackScope(ImplementationVisitor* visitor) : visitor_(visitor) {
base_ = visitor_->assembler().CurrentStack().AboveTop();
}
VisitResult Yield(VisitResult result) {
DCHECK(!closed_);
closed_ = true;
if (!result.IsOnStack()) {
if (!visitor_->assembler().CurrentBlockIsComplete()) {
visitor_->assembler().DropTo(base_);
}
return result;
}
DCHECK_LE(base_, result.stack_range().begin());
DCHECK_LE(result.stack_range().end(),
visitor_->assembler().CurrentStack().AboveTop());
visitor_->assembler().DropTo(result.stack_range().end());
visitor_->assembler().DeleteRange(
StackRange{base_, result.stack_range().begin()});
base_ = visitor_->assembler().CurrentStack().AboveTop();
return VisitResult(result.type(), visitor_->assembler().TopRange(
result.stack_range().Size()));
}
void Close() {
DCHECK(!closed_);
closed_ = true;
if (!visitor_->assembler().CurrentBlockIsComplete()) {
visitor_->assembler().DropTo(base_);
}
}
~StackScope() {
if (closed_) {
DCHECK_IMPLIES(
!visitor_->assembler().CurrentBlockIsComplete(),
base_ == visitor_->assembler().CurrentStack().AboveTop());
} else {
Close();
}
}
private:
ImplementationVisitor* visitor_;
BottomOffset base_;
bool closed_ = false;
};
class BreakContinueActivator {
public:
BreakContinueActivator(Block* break_block, Block* continue_block)
: break_binding_{&LabelBindingsManager::Get(), "_break",
LocalLabel{break_block}},
continue_binding_{&LabelBindingsManager::Get(), "_continue",
LocalLabel{continue_block}} {}
private:
Binding<LocalLabel> break_binding_;
Binding<LocalLabel> continue_binding_;
};
base::Optional<Binding<LocalValue>*> TryLookupLocalValue(
const std::string& name);
base::Optional<Binding<LocalLabel>*> TryLookupLabel(const std::string& name);
Binding<LocalLabel>* LookupLabel(const std::string& name);
Block* LookupSimpleLabel(const std::string& name);
Callable* LookupCall(const std::string& name, const Arguments& arguments,
const TypeVector& specialization_types);
const Type* GetCommonType(const Type* left, const Type* right);
VisitResult GenerateCopy(const VisitResult& to_copy);
void GenerateAssignToLocation(const LocationReference& reference,
const VisitResult& assignment_value);
VisitResult GenerateCall(const std::string& callable_name,
Arguments parameters,
const TypeVector& specialization_types = {},
bool tail_call = false);
VisitResult GeneratePointerCall(Expression* callee,
const Arguments& parameters, bool tail_call);
void GenerateBranch(const VisitResult& condition, Block* true_block,
Block* false_block);
void GenerateExpressionBranch(Expression* expression, Block* true_block,
Block* false_block);
void GenerateMacroFunctionDeclaration(std::ostream& o,
const std::string& macro_prefix,
Macro* macro);
void GenerateFunctionDeclaration(std::ostream& o,
const std::string& macro_prefix,
const std::string& name,
const Signature& signature,
const NameVector& parameter_names);
VisitResult GenerateImplicitConvert(const Type* destination_type,
VisitResult source);
void Specialize(const SpecializationKey& key, CallableNode* callable,
const CallableNodeSignature* signature,
Statement* body) override {
Declarations::GenericScopeActivator scope(declarations(), key);
Visit(callable, MakeSignature(signature), body);
}
StackRange GenerateLabelGoto(LocalLabel* label,
base::Optional<StackRange> arguments = {});
std::vector<Binding<LocalLabel>*> LabelsFromIdentifiers(
const std::vector<std::string>& names);
StackRange LowerParameter(const Type* type, const std::string& parameter_name,
Stack<std::string>* lowered_parameters);
std::string ExternalLabelName(const std::string& label_name);
std::string ExternalLabelParameterName(const std::string& label_name,
size_t i);
std::string ExternalParameterName(const std::string& name);
std::ostream& source_out() { return module_->source_stream(); }
std::ostream& header_out() { return module_->header_stream(); }
CfgAssembler& assembler() { return *assembler_; }
void SetReturnValue(VisitResult return_value) {
DCHECK_IMPLIES(return_value_, *return_value_ == return_value);
return_value_ = std::move(return_value);
}
VisitResult GetAndClearReturnValue() {
VisitResult return_value = *return_value_;
return_value_ = base::nullopt;
return return_value;
}
base::Optional<CfgAssembler> assembler_;
base::Optional<VisitResult> return_value_;
};
} // namespace torque
} // namespace internal
} // namespace v8
#endif // V8_TORQUE_IMPLEMENTATION_VISITOR_H_