v8/src/x64/fast-codegen-x64.cc
kmillikin@chromium.org b1defd51cb Rename the Location type tags to be consistent with our current naming
scheme for enumerations (eg, EFFECT => kEffect).

Remove the ability to move from one Location to another, which should
never be necessary.

Review URL: http://codereview.chromium.org/340034

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@3175 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2009-10-29 13:58:04 +00:00

781 lines
25 KiB
C++

// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "codegen-inl.h"
#include "debug.h"
#include "fast-codegen.h"
#include "parser.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm_)
// Generate code for a JS function. On entry to the function the receiver
// and arguments have been pushed on the stack left to right, with the
// return address on top of them. The actual argument count matches the
// formal parameter count expected by the function.
//
// The live registers are:
// o rdi: the JS function object being called (ie, ourselves)
// o rsi: our context
// o rbp: our caller's frame pointer
// o rsp: stack pointer (pointing to return address)
//
// The function builds a JS frame. Please see JavaScriptFrameConstants in
// frames-x64.h for its layout.
void FastCodeGenerator::Generate(FunctionLiteral* fun) {
function_ = fun;
SetFunctionPosition(fun);
__ push(rbp); // Caller's frame pointer.
__ movq(rbp, rsp);
__ push(rsi); // Callee's context.
__ push(rdi); // Callee's JS Function.
{ Comment cmnt(masm_, "[ Allocate locals");
int locals_count = fun->scope()->num_stack_slots();
for (int i = 0; i < locals_count; i++) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
}
}
{ Comment cmnt(masm_, "[ Stack check");
Label ok;
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
__ j(above_equal, &ok);
StackCheckStub stub;
__ CallStub(&stub);
__ bind(&ok);
}
{ Comment cmnt(masm_, "[ Declarations");
VisitDeclarations(fun->scope()->declarations());
}
if (FLAG_trace) {
__ CallRuntime(Runtime::kTraceEnter, 0);
}
{ Comment cmnt(masm_, "[ Body");
VisitStatements(fun->body());
}
{ Comment cmnt(masm_, "[ return <undefined>;");
// Emit a 'return undefined' in case control fell off the end of the
// body.
__ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
SetReturnPosition(fun);
if (FLAG_trace) {
__ push(rax);
__ CallRuntime(Runtime::kTraceExit, 1);
}
__ RecordJSReturn();
// Do not use the leave instruction here because it is too short to
// patch with the code required by the debugger.
__ movq(rsp, rbp);
__ pop(rbp);
__ ret((fun->scope()->num_parameters() + 1) * kPointerSize);
#ifdef ENABLE_DEBUGGER_SUPPORT
// Add padding that will be overwritten by a debugger breakpoint. We
// have just generated "movq rsp, rbp; pop rbp; ret k" with length 7
// (3 + 1 + 3).
const int kPadding = Debug::kX64JSReturnSequenceLength - 7;
for (int i = 0; i < kPadding; ++i) {
masm_->int3();
}
#endif
}
}
void FastCodeGenerator::Move(Location destination, Slot* source) {
switch (destination.type()) {
case Location::kUninitialized:
UNREACHABLE();
case Location::kEffect:
break;
case Location::kValue:
__ push(Operand(rbp, SlotOffset(source)));
break;
}
}
void FastCodeGenerator::Move(Location destination, Literal* expr) {
switch (destination.type()) {
case Location::kUninitialized:
UNREACHABLE();
case Location::kEffect:
break;
case Location::kValue:
__ Push(expr->handle());
break;
}
}
void FastCodeGenerator::Move(Slot* destination, Location source) {
switch (source.type()) {
case Location::kUninitialized: // Fall through.
case Location::kEffect:
UNREACHABLE();
case Location::kValue:
__ pop(Operand(rbp, SlotOffset(destination)));
break;
}
}
void FastCodeGenerator::DropAndMove(Location destination, Register source) {
switch (destination.type()) {
case Location::kUninitialized:
UNREACHABLE();
case Location::kEffect:
__ addq(rsp, Immediate(kPointerSize));
break;
case Location::kValue:
__ movq(Operand(rsp, 0), source);
break;
}
}
void FastCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
// Call the runtime to declare the globals.
__ push(rsi); // The context is the first argument.
__ Push(pairs);
__ Push(Smi::FromInt(is_eval_ ? 1 : 0));
__ CallRuntime(Runtime::kDeclareGlobals, 3);
// Return value is ignored.
}
void FastCodeGenerator::VisitReturnStatement(ReturnStatement* stmt) {
Comment cmnt(masm_, "[ ReturnStatement");
SetStatementPosition(stmt);
Expression* expr = stmt->expression();
// Complete the statement based on the type of the subexpression.
if (expr->AsLiteral() != NULL) {
__ Move(rax, expr->AsLiteral()->handle());
} else {
Visit(expr);
Move(rax, expr->location());
}
if (FLAG_trace) {
__ push(rax);
__ CallRuntime(Runtime::kTraceExit, 1);
}
__ RecordJSReturn();
// Do not use the leave instruction here because it is too short to
// patch with the code required by the debugger.
__ movq(rsp, rbp);
__ pop(rbp);
__ ret((function_->scope()->num_parameters() + 1) * kPointerSize);
#ifdef ENABLE_DEBUGGER_SUPPORT
// Add padding that will be overwritten by a debugger breakpoint. We
// have just generated "movq rsp, rbp; pop rbp; ret k" with length 7
// (3 + 1 + 3).
const int kPadding = Debug::kX64JSReturnSequenceLength - 7;
for (int i = 0; i < kPadding; ++i) {
masm_->int3();
}
#endif
}
void FastCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) {
Comment cmnt(masm_, "[ FunctionLiteral");
// Build the function boilerplate and instantiate it.
Handle<JSFunction> boilerplate = BuildBoilerplate(expr);
if (HasStackOverflow()) return;
ASSERT(boilerplate->IsBoilerplate());
// Create a new closure.
__ push(rsi);
__ Push(boilerplate);
__ CallRuntime(Runtime::kNewClosure, 2);
Move(expr->location(), rax);
}
void FastCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
Comment cmnt(masm_, "[ VariableProxy");
Expression* rewrite = expr->var()->rewrite();
if (rewrite == NULL) {
Comment cmnt(masm_, "Global variable");
// Use inline caching. Variable name is passed in rcx and the global
// object on the stack.
__ push(CodeGenerator::GlobalObject());
__ Move(rcx, expr->name());
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET_CONTEXT);
// A test rax instruction following the call is used by the IC to
// indicate that the inobject property case was inlined. Ensure there
// is no test rax instruction here.
DropAndMove(expr->location(), rax);
} else {
Comment cmnt(masm_, "Stack slot");
Move(expr->location(), rewrite->AsSlot());
}
}
void FastCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
Comment cmnt(masm_, "[ RegExp Literal");
Label done;
// Registers will be used as follows:
// rdi = JS function.
// rbx = literals array.
// rax = regexp literal.
__ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ movq(rbx, FieldOperand(rdi, JSFunction::kLiteralsOffset));
int literal_offset =
FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
__ movq(rax, FieldOperand(rbx, literal_offset));
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
__ j(not_equal, &done);
// Create regexp literal using runtime function
// Result will be in rax.
__ push(rbx);
__ Push(Smi::FromInt(expr->literal_index()));
__ Push(expr->pattern());
__ Push(expr->flags());
__ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
// Label done:
__ bind(&done);
Move(expr->location(), rax);
}
void FastCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
Comment cmnt(masm_, "[ ObjectLiteral");
Label boilerplate_exists;
__ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ movq(rbx, FieldOperand(rdi, JSFunction::kLiteralsOffset));
int literal_offset =
FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
__ movq(rax, FieldOperand(rbx, literal_offset));
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
__ j(not_equal, &boilerplate_exists);
// Create boilerplate if it does not exist.
// Literal array (0).
__ push(rbx);
// Literal index (1).
__ Push(Smi::FromInt(expr->literal_index()));
// Constant properties (2).
__ Push(expr->constant_properties());
__ CallRuntime(Runtime::kCreateObjectLiteralBoilerplate, 3);
__ bind(&boilerplate_exists);
// rax contains boilerplate.
// Clone boilerplate.
__ push(rax);
if (expr->depth() == 1) {
__ CallRuntime(Runtime::kCloneShallowLiteralBoilerplate, 1);
} else {
__ CallRuntime(Runtime::kCloneLiteralBoilerplate, 1);
}
// If result_saved == true: the result is saved on top of the stack.
// If result_saved == false: the result is not on the stack, just in rax.
bool result_saved = false;
for (int i = 0; i < expr->properties()->length(); i++) {
ObjectLiteral::Property* property = expr->properties()->at(i);
if (property->IsCompileTimeValue()) continue;
Literal* key = property->key();
Expression* value = property->value();
if (!result_saved) {
__ push(rax); // Save result on the stack
result_saved = true;
}
switch (property->kind()) {
case ObjectLiteral::Property::MATERIALIZED_LITERAL: // fall through
ASSERT(!CompileTimeValue::IsCompileTimeValue(value));
case ObjectLiteral::Property::COMPUTED:
if (key->handle()->IsSymbol()) {
Visit(value);
ASSERT(value->location().is_value());
__ pop(rax);
__ Move(rcx, key->handle());
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
// StoreIC leaves the receiver on the stack.
break;
}
// fall through
case ObjectLiteral::Property::PROTOTYPE:
__ push(rax);
Visit(key);
ASSERT(key->location().is_value());
Visit(value);
ASSERT(value->location().is_value());
__ CallRuntime(Runtime::kSetProperty, 3);
__ movq(rax, Operand(rsp, 0)); // Restore result into rax.
break;
case ObjectLiteral::Property::SETTER: // fall through
case ObjectLiteral::Property::GETTER:
__ push(rax);
Visit(key);
ASSERT(key->location().is_value());
__ Push(property->kind() == ObjectLiteral::Property::SETTER ?
Smi::FromInt(1) :
Smi::FromInt(0));
Visit(value);
ASSERT(value->location().is_value());
__ CallRuntime(Runtime::kDefineAccessor, 4);
__ movq(rax, Operand(rsp, 0)); // Restore result into rax.
break;
default: UNREACHABLE();
}
}
switch (expr->location().type()) {
case Location::kUninitialized:
UNREACHABLE();
case Location::kEffect:
if (result_saved) __ addq(rsp, Immediate(kPointerSize));
break;
case Location::kValue:
if (!result_saved) __ push(rax);
break;
}
}
void FastCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
Comment cmnt(masm_, "[ ArrayLiteral");
Label make_clone;
// Fetch the function's literals array.
__ movq(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ movq(rbx, FieldOperand(rbx, JSFunction::kLiteralsOffset));
// Check if the literal's boilerplate has been instantiated.
int offset =
FixedArray::kHeaderSize + (expr->literal_index() * kPointerSize);
__ movq(rax, FieldOperand(rbx, offset));
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
__ j(not_equal, &make_clone);
// Instantiate the boilerplate.
__ push(rbx);
__ Push(Smi::FromInt(expr->literal_index()));
__ Push(expr->literals());
__ CallRuntime(Runtime::kCreateArrayLiteralBoilerplate, 3);
__ bind(&make_clone);
// Clone the boilerplate.
__ push(rax);
if (expr->depth() > 1) {
__ CallRuntime(Runtime::kCloneLiteralBoilerplate, 1);
} else {
__ CallRuntime(Runtime::kCloneShallowLiteralBoilerplate, 1);
}
bool result_saved = false; // Is the result saved to the stack?
// Emit code to evaluate all the non-constant subexpressions and to store
// them into the newly cloned array.
ZoneList<Expression*>* subexprs = expr->values();
for (int i = 0, len = subexprs->length(); i < len; i++) {
Expression* subexpr = subexprs->at(i);
// If the subexpression is a literal or a simple materialized literal it
// is already set in the cloned array.
if (subexpr->AsLiteral() != NULL ||
CompileTimeValue::IsCompileTimeValue(subexpr)) {
continue;
}
if (!result_saved) {
__ push(rax);
result_saved = true;
}
Visit(subexpr);
ASSERT(subexpr->location().is_value());
// Store the subexpression value in the array's elements.
__ pop(rax); // Subexpression value.
__ movq(rbx, Operand(rsp, 0)); // Copy of array literal.
__ movq(rbx, FieldOperand(rbx, JSObject::kElementsOffset));
int offset = FixedArray::kHeaderSize + (i * kPointerSize);
__ movq(FieldOperand(rbx, offset), rax);
// Update the write barrier for the array store.
__ RecordWrite(rbx, offset, rax, rcx);
}
switch (expr->location().type()) {
case Location::kUninitialized:
UNREACHABLE();
case Location::kEffect:
if (result_saved) __ addq(rsp, Immediate(kPointerSize));
break;
case Location::kValue:
if (!result_saved) __ push(rax);
break;
}
}
void FastCodeGenerator::VisitAssignment(Assignment* expr) {
Comment cmnt(masm_, "[ Assignment");
ASSERT(expr->op() == Token::ASSIGN || expr->op() == Token::INIT_VAR);
// Left-hand side can only be a global or a (parameter or local) slot.
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
ASSERT(var != NULL);
ASSERT(var->is_global() || var->slot() != NULL);
Expression* rhs = expr->value();
Location destination = expr->location();
if (var->is_global()) {
// Assignment to a global variable, use inline caching. Right-hand-side
// value is passed in rax, variable name in rcx, and the global object
// on the stack.
// Code for the right-hand-side expression depends on its type.
if (rhs->AsLiteral() != NULL) {
__ Move(rax, rhs->AsLiteral()->handle());
} else {
ASSERT(rhs->location().is_value());
Visit(rhs);
__ pop(rax);
}
__ Move(rcx, var->name());
__ push(CodeGenerator::GlobalObject());
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// Overwrite the global object on the stack with the result if needed.
DropAndMove(expr->location(), rax);
} else {
// Local or parameter assignment.
// Code for the right-hand-side expression depends on its type.
if (rhs->AsLiteral() != NULL) {
// Two cases: 'temp <- (var = constant)', or 'var = constant' with a
// discarded result. Always perform the assignment.
__ Move(kScratchRegister, rhs->AsLiteral()->handle());
__ movq(Operand(rbp, SlotOffset(var->slot())), kScratchRegister);
Move(expr->location(), kScratchRegister);
} else {
ASSERT(rhs->location().is_value());
Visit(rhs);
switch (expr->location().type()) {
case Location::kUninitialized:
UNREACHABLE();
case Location::kEffect:
// Case 'var = temp'. Discard right-hand-side temporary.
Move(var->slot(), rhs->location());
break;
case Location::kValue:
// Case 'temp1 <- (var = temp0)'. Preserve right-hand-side
// temporary on the stack.
__ movq(kScratchRegister, Operand(rsp, 0));
__ movq(Operand(rbp, SlotOffset(var->slot())), kScratchRegister);
break;
}
}
}
}
void FastCodeGenerator::VisitProperty(Property* expr) {
Comment cmnt(masm_, "[ Property");
Expression* key = expr->key();
uint32_t dummy;
// Record the source position for the property load.
SetSourcePosition(expr->position());
// Evaluate receiver.
Visit(expr->obj());
if (key->AsLiteral() != NULL && key->AsLiteral()->handle()->IsSymbol() &&
!String::cast(*(key->AsLiteral()->handle()))->AsArrayIndex(&dummy)) {
// Do a NAMED property load.
// The IC expects the property name in rcx and the receiver on the stack.
__ Move(rcx, key->AsLiteral()->handle());
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
// By emitting a nop we make sure that we do not have a "test eax,..."
// instruction after the call it is treated specially by the LoadIC code.
__ nop();
} else {
// Do a KEYED property load.
Visit(expr->key());
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
__ call(ic, RelocInfo::CODE_TARGET);
// By emitting a nop we make sure that we do not have a "test ..."
// instruction after the call it is treated specially by the LoadIC code.
__ nop();
// Drop key left on the stack by IC.
__ addq(rsp, Immediate(kPointerSize));
}
switch (expr->location().type()) {
case Location::kUninitialized:
UNREACHABLE();
case Location::kValue:
__ movq(Operand(rsp, 0), rax);
break;
case Location::kEffect:
__ addq(rsp, Immediate(kPointerSize));
break;
}
}
void FastCodeGenerator::VisitCall(Call* expr) {
Expression* fun = expr->expression();
ZoneList<Expression*>* args = expr->arguments();
Variable* var = fun->AsVariableProxy()->AsVariable();
ASSERT(var != NULL && !var->is_this() && var->is_global());
ASSERT(!var->is_possibly_eval());
__ Push(var->name());
// Push global object (receiver).
__ push(CodeGenerator::GlobalObject());
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Visit(args->at(i));
ASSERT(args->at(i)->location().is_value());
}
// Record source position for debugger
SetSourcePosition(expr->position());
// Call the IC initialization code.
Handle<Code> ic = CodeGenerator::ComputeCallInitialize(arg_count,
NOT_IN_LOOP);
__ call(ic, RelocInfo::CODE_TARGET_CONTEXT);
// Restore context register.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
// Discard the function left on TOS.
DropAndMove(expr->location(), rax);
}
void FastCodeGenerator::VisitCallNew(CallNew* node) {
Comment cmnt(masm_, "[ CallNew");
// According to ECMA-262, section 11.2.2, page 44, the function
// expression in new calls must be evaluated before the
// arguments.
// Push function on the stack.
Visit(node->expression());
ASSERT(node->expression()->location().is_value());
// If location is value, already on the stack,
// Push global object (receiver).
__ push(CodeGenerator::GlobalObject());
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = node->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Visit(args->at(i));
ASSERT(args->at(i)->location().is_value());
// If location is value, it is already on the stack,
// so nothing to do here.
}
// Call the construct call builtin that handles allocation and
// constructor invocation.
SetSourcePosition(node->position());
// Load function, arg_count into rdi and rax.
__ Set(rax, arg_count);
// Function is in rsp[arg_count + 1].
__ movq(rdi, Operand(rsp, rax, times_pointer_size, kPointerSize));
Handle<Code> construct_builtin(Builtins::builtin(Builtins::JSConstructCall));
__ Call(construct_builtin, RelocInfo::CONSTRUCT_CALL);
// Replace function on TOS with result in rax, or pop it.
DropAndMove(node->location(), rax);
}
void FastCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
Comment cmnt(masm_, "[ CallRuntime");
ZoneList<Expression*>* args = expr->arguments();
Runtime::Function* function = expr->function();
ASSERT(function != NULL);
// Push the arguments ("left-to-right").
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Visit(args->at(i));
ASSERT(args->at(i)->location().is_value());
}
__ CallRuntime(function, arg_count);
Move(expr->location(), rax);
}
void FastCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) {
switch (expr->op()) {
case Token::COMMA:
ASSERT(expr->left()->location().is_effect());
ASSERT_EQ(expr->right()->location().type(), expr->location().type());
Visit(expr->left());
Visit(expr->right());
break;
case Token::OR:
case Token::AND:
EmitLogicalOperation(expr);
break;
case Token::ADD:
case Token::SUB:
case Token::DIV:
case Token::MOD:
case Token::MUL:
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SHL:
case Token::SHR:
case Token::SAR: {
ASSERT(expr->left()->location().is_value());
ASSERT(expr->right()->location().is_value());
Visit(expr->left());
Visit(expr->right());
GenericBinaryOpStub stub(expr->op(),
NO_OVERWRITE,
NO_GENERIC_BINARY_FLAGS);
__ CallStub(&stub);
Move(expr->location(), rax);
break;
}
default:
UNREACHABLE();
}
}
void FastCodeGenerator::EmitLogicalOperation(BinaryOperation* expr) {
// Compile a short-circuited boolean operation in a non-test context.
// Compile (e0 || e1) as if it were
// (let (temp = e0) temp ? temp : e1).
// Compile (e0 && e1) as if it were
// (let (temp = e0) !temp ? temp : e1).
Label eval_right, done;
Label *left_true, *left_false; // Where to branch to if lhs has that value.
if (expr->op() == Token::OR) {
left_true = &done;
left_false = &eval_right;
} else {
left_true = &eval_right;
left_false = &done;
}
Location destination = expr->location();
Expression* left = expr->left();
Expression* right = expr->right();
// Use the shared ToBoolean stub to find the boolean value of the
// left-hand subexpression. Load the value into rax to perform some
// inlined checks assumed by the stub.
// Compile the left-hand value into rax. Put it on the stack if we may
// need it as the value of the whole expression.
if (left->AsLiteral() != NULL) {
__ Move(rax, left->AsLiteral()->handle());
if (destination.is_value()) __ push(rax);
} else {
Visit(left);
ASSERT(left->location().is_value());
switch (destination.type()) {
case Location::kUninitialized:
UNREACHABLE();
case Location::kEffect:
// Pop the left-hand value into rax because we will not need it as the
// final result.
__ pop(rax);
break;
case Location::kValue:
// Copy the left-hand value into rax because we may need it as the
// final result.
__ movq(rax, Operand(rsp, 0));
break;
}
}
// The left-hand value is in rax. It is also on the stack iff the
// destination location is value.
// Perform fast checks assumed by the stub.
// The undefined value is false.
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
__ j(equal, left_false);
__ CompareRoot(rax, Heap::kTrueValueRootIndex); // True is true.
__ j(equal, left_true);
__ CompareRoot(rax, Heap::kFalseValueRootIndex); // False is false.
__ j(equal, left_false);
ASSERT(kSmiTag == 0);
__ SmiCompare(rax, Smi::FromInt(0)); // The smi zero is false.
__ j(equal, left_false);
Condition is_smi = masm_->CheckSmi(rax); // All other smis are true.
__ j(is_smi, left_true);
// Call the stub for all other cases.
__ push(rax);
ToBooleanStub stub;
__ CallStub(&stub);
__ testq(rax, rax); // The stub returns nonzero for true.
if (expr->op() == Token::OR) {
__ j(not_zero, &done);
} else {
__ j(zero, &done);
}
__ bind(&eval_right);
// Discard the left-hand value if present on the stack.
if (destination.is_value()) {
__ addq(rsp, Immediate(kPointerSize));
}
// Save or discard the right-hand value as needed.
Visit(right);
ASSERT_EQ(destination.type(), right->location().type());
__ bind(&done);
}
} } // namespace v8::internal