e03cadab09
BUG=v8:2487 R=yangguo@chromium.org,jkummerow@chromium.org,mstarzinger@chromium.org LOG=n Review URL: https://codereview.chromium.org/1474763008 Cr-Commit-Position: refs/heads/master@{#32359}
343 lines
10 KiB
C++
343 lines
10 KiB
C++
// Copyright 2013 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#if V8_TARGET_ARCH_ARM64
|
|
|
|
#define ARM64_DEFINE_FP_STATICS
|
|
|
|
#include "src/arm64/assembler-arm64-inl.h"
|
|
#include "src/arm64/instructions-arm64.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
bool Instruction::IsLoad() const {
|
|
if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
|
|
return false;
|
|
}
|
|
|
|
if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
|
|
return Mask(LoadStorePairLBit) != 0;
|
|
} else {
|
|
LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreOpMask));
|
|
switch (op) {
|
|
case LDRB_w:
|
|
case LDRH_w:
|
|
case LDR_w:
|
|
case LDR_x:
|
|
case LDRSB_w:
|
|
case LDRSB_x:
|
|
case LDRSH_w:
|
|
case LDRSH_x:
|
|
case LDRSW_x:
|
|
case LDR_s:
|
|
case LDR_d: return true;
|
|
default: return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool Instruction::IsStore() const {
|
|
if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
|
|
return false;
|
|
}
|
|
|
|
if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
|
|
return Mask(LoadStorePairLBit) == 0;
|
|
} else {
|
|
LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreOpMask));
|
|
switch (op) {
|
|
case STRB_w:
|
|
case STRH_w:
|
|
case STR_w:
|
|
case STR_x:
|
|
case STR_s:
|
|
case STR_d: return true;
|
|
default: return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static uint64_t RotateRight(uint64_t value,
|
|
unsigned int rotate,
|
|
unsigned int width) {
|
|
DCHECK(width <= 64);
|
|
rotate &= 63;
|
|
return ((value & ((1UL << rotate) - 1UL)) << (width - rotate)) |
|
|
(value >> rotate);
|
|
}
|
|
|
|
|
|
static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
|
|
uint64_t value,
|
|
unsigned width) {
|
|
DCHECK((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
|
|
(width == 32));
|
|
DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
|
|
uint64_t result = value & ((1UL << width) - 1UL);
|
|
for (unsigned i = width; i < reg_size; i *= 2) {
|
|
result |= (result << i);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
// Logical immediates can't encode zero, so a return value of zero is used to
|
|
// indicate a failure case. Specifically, where the constraints on imm_s are not
|
|
// met.
|
|
uint64_t Instruction::ImmLogical() {
|
|
unsigned reg_size = SixtyFourBits() ? kXRegSizeInBits : kWRegSizeInBits;
|
|
int32_t n = BitN();
|
|
int32_t imm_s = ImmSetBits();
|
|
int32_t imm_r = ImmRotate();
|
|
|
|
// An integer is constructed from the n, imm_s and imm_r bits according to
|
|
// the following table:
|
|
//
|
|
// N imms immr size S R
|
|
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
|
|
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
|
|
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
|
|
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
|
|
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
|
|
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
|
|
// (s bits must not be all set)
|
|
//
|
|
// A pattern is constructed of size bits, where the least significant S+1
|
|
// bits are set. The pattern is rotated right by R, and repeated across a
|
|
// 32 or 64-bit value, depending on destination register width.
|
|
//
|
|
|
|
if (n == 1) {
|
|
if (imm_s == 0x3F) {
|
|
return 0;
|
|
}
|
|
uint64_t bits = (1UL << (imm_s + 1)) - 1;
|
|
return RotateRight(bits, imm_r, 64);
|
|
} else {
|
|
if ((imm_s >> 1) == 0x1F) {
|
|
return 0;
|
|
}
|
|
for (int width = 0x20; width >= 0x2; width >>= 1) {
|
|
if ((imm_s & width) == 0) {
|
|
int mask = width - 1;
|
|
if ((imm_s & mask) == mask) {
|
|
return 0;
|
|
}
|
|
uint64_t bits = (1UL << ((imm_s & mask) + 1)) - 1;
|
|
return RepeatBitsAcrossReg(reg_size,
|
|
RotateRight(bits, imm_r & mask, width),
|
|
width);
|
|
}
|
|
}
|
|
}
|
|
UNREACHABLE();
|
|
return 0;
|
|
}
|
|
|
|
|
|
float Instruction::ImmFP32() {
|
|
// ImmFP: abcdefgh (8 bits)
|
|
// Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
|
|
// where B is b ^ 1
|
|
uint32_t bits = ImmFP();
|
|
uint32_t bit7 = (bits >> 7) & 0x1;
|
|
uint32_t bit6 = (bits >> 6) & 0x1;
|
|
uint32_t bit5_to_0 = bits & 0x3f;
|
|
uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
|
|
|
|
return rawbits_to_float(result);
|
|
}
|
|
|
|
|
|
double Instruction::ImmFP64() {
|
|
// ImmFP: abcdefgh (8 bits)
|
|
// Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
|
|
// 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
|
|
// where B is b ^ 1
|
|
uint32_t bits = ImmFP();
|
|
uint64_t bit7 = (bits >> 7) & 0x1;
|
|
uint64_t bit6 = (bits >> 6) & 0x1;
|
|
uint64_t bit5_to_0 = bits & 0x3f;
|
|
uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
|
|
|
|
return rawbits_to_double(result);
|
|
}
|
|
|
|
|
|
LSDataSize CalcLSPairDataSize(LoadStorePairOp op) {
|
|
switch (op) {
|
|
case STP_x:
|
|
case LDP_x:
|
|
case STP_d:
|
|
case LDP_d: return LSDoubleWord;
|
|
default: return LSWord;
|
|
}
|
|
}
|
|
|
|
|
|
int64_t Instruction::ImmPCOffset() {
|
|
int64_t offset;
|
|
if (IsPCRelAddressing()) {
|
|
// PC-relative addressing. Only ADR is supported.
|
|
offset = ImmPCRel();
|
|
} else if (BranchType() != UnknownBranchType) {
|
|
// All PC-relative branches.
|
|
// Relative branch offsets are instruction-size-aligned.
|
|
offset = ImmBranch() << kInstructionSizeLog2;
|
|
} else if (IsUnresolvedInternalReference()) {
|
|
// Internal references are always word-aligned.
|
|
offset = ImmUnresolvedInternalReference() << kInstructionSizeLog2;
|
|
} else {
|
|
// Load literal (offset from PC).
|
|
DCHECK(IsLdrLiteral());
|
|
// The offset is always shifted by 2 bits, even for loads to 64-bits
|
|
// registers.
|
|
offset = ImmLLiteral() << kInstructionSizeLog2;
|
|
}
|
|
return offset;
|
|
}
|
|
|
|
|
|
Instruction* Instruction::ImmPCOffsetTarget() {
|
|
return InstructionAtOffset(ImmPCOffset());
|
|
}
|
|
|
|
|
|
bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
|
|
ptrdiff_t offset) {
|
|
return is_intn(offset, ImmBranchRangeBitwidth(branch_type));
|
|
}
|
|
|
|
|
|
bool Instruction::IsTargetInImmPCOffsetRange(Instruction* target) {
|
|
return IsValidImmPCOffset(BranchType(), DistanceTo(target));
|
|
}
|
|
|
|
|
|
void Instruction::SetImmPCOffsetTarget(Isolate* isolate, Instruction* target) {
|
|
if (IsPCRelAddressing()) {
|
|
SetPCRelImmTarget(isolate, target);
|
|
} else if (BranchType() != UnknownBranchType) {
|
|
SetBranchImmTarget(target);
|
|
} else if (IsUnresolvedInternalReference()) {
|
|
SetUnresolvedInternalReferenceImmTarget(isolate, target);
|
|
} else {
|
|
// Load literal (offset from PC).
|
|
SetImmLLiteral(target);
|
|
}
|
|
}
|
|
|
|
|
|
void Instruction::SetPCRelImmTarget(Isolate* isolate, Instruction* target) {
|
|
// ADRP is not supported, so 'this' must point to an ADR instruction.
|
|
DCHECK(IsAdr());
|
|
|
|
ptrdiff_t target_offset = DistanceTo(target);
|
|
Instr imm;
|
|
if (Instruction::IsValidPCRelOffset(target_offset)) {
|
|
imm = Assembler::ImmPCRelAddress(static_cast<int>(target_offset));
|
|
SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
|
|
} else {
|
|
PatchingAssembler patcher(isolate, this,
|
|
PatchingAssembler::kAdrFarPatchableNInstrs);
|
|
patcher.PatchAdrFar(target_offset);
|
|
}
|
|
}
|
|
|
|
|
|
void Instruction::SetBranchImmTarget(Instruction* target) {
|
|
DCHECK(IsAligned(DistanceTo(target), kInstructionSize));
|
|
DCHECK(IsValidImmPCOffset(BranchType(),
|
|
DistanceTo(target) >> kInstructionSizeLog2));
|
|
int offset = static_cast<int>(DistanceTo(target) >> kInstructionSizeLog2);
|
|
Instr branch_imm = 0;
|
|
uint32_t imm_mask = 0;
|
|
switch (BranchType()) {
|
|
case CondBranchType: {
|
|
branch_imm = Assembler::ImmCondBranch(offset);
|
|
imm_mask = ImmCondBranch_mask;
|
|
break;
|
|
}
|
|
case UncondBranchType: {
|
|
branch_imm = Assembler::ImmUncondBranch(offset);
|
|
imm_mask = ImmUncondBranch_mask;
|
|
break;
|
|
}
|
|
case CompareBranchType: {
|
|
branch_imm = Assembler::ImmCmpBranch(offset);
|
|
imm_mask = ImmCmpBranch_mask;
|
|
break;
|
|
}
|
|
case TestBranchType: {
|
|
branch_imm = Assembler::ImmTestBranch(offset);
|
|
imm_mask = ImmTestBranch_mask;
|
|
break;
|
|
}
|
|
default: UNREACHABLE();
|
|
}
|
|
SetInstructionBits(Mask(~imm_mask) | branch_imm);
|
|
}
|
|
|
|
|
|
void Instruction::SetUnresolvedInternalReferenceImmTarget(Isolate* isolate,
|
|
Instruction* target) {
|
|
DCHECK(IsUnresolvedInternalReference());
|
|
DCHECK(IsAligned(DistanceTo(target), kInstructionSize));
|
|
DCHECK(is_int32(DistanceTo(target) >> kInstructionSizeLog2));
|
|
int32_t target_offset =
|
|
static_cast<int32_t>(DistanceTo(target) >> kInstructionSizeLog2);
|
|
uint32_t high16 = unsigned_bitextract_32(31, 16, target_offset);
|
|
uint32_t low16 = unsigned_bitextract_32(15, 0, target_offset);
|
|
|
|
PatchingAssembler patcher(isolate, this, 2);
|
|
patcher.brk(high16);
|
|
patcher.brk(low16);
|
|
}
|
|
|
|
|
|
void Instruction::SetImmLLiteral(Instruction* source) {
|
|
DCHECK(IsLdrLiteral());
|
|
DCHECK(IsAligned(DistanceTo(source), kInstructionSize));
|
|
DCHECK(Assembler::IsImmLLiteral(DistanceTo(source)));
|
|
Instr imm = Assembler::ImmLLiteral(
|
|
static_cast<int>(DistanceTo(source) >> kLoadLiteralScaleLog2));
|
|
Instr mask = ImmLLiteral_mask;
|
|
|
|
SetInstructionBits(Mask(~mask) | imm);
|
|
}
|
|
|
|
|
|
// TODO(jbramley): We can't put this inline in the class because things like
|
|
// xzr and Register are not defined in that header. Consider adding
|
|
// instructions-arm64-inl.h to work around this.
|
|
bool InstructionSequence::IsInlineData() const {
|
|
// Inline data is encoded as a single movz instruction which writes to xzr
|
|
// (x31).
|
|
return IsMovz() && SixtyFourBits() && (Rd() == kZeroRegCode);
|
|
// TODO(all): If we extend ::InlineData() to support bigger data, we need
|
|
// to update this method too.
|
|
}
|
|
|
|
|
|
// TODO(jbramley): We can't put this inline in the class because things like
|
|
// xzr and Register are not defined in that header. Consider adding
|
|
// instructions-arm64-inl.h to work around this.
|
|
uint64_t InstructionSequence::InlineData() const {
|
|
DCHECK(IsInlineData());
|
|
uint64_t payload = ImmMoveWide();
|
|
// TODO(all): If we extend ::InlineData() to support bigger data, we need
|
|
// to update this method too.
|
|
return payload;
|
|
}
|
|
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
#endif // V8_TARGET_ARCH_ARM64
|