v8/test/cctest/wasm/wasm-run-utils.h
Michael Starzinger 224ca74ae4 [asm.js] Propagate language mode to exported functions.
This makes sure the language mode of the module is correctly propagated
through the WebAssembly module, so that exported functions are allocated
with the correct language mode. It extends the existing {ModuleOrigin}
enum to consist of three values now.

R=clemensh@chromium.org
TEST=mjsunit/regress/wasm/regress-985154
BUG=chromium:985154

Change-Id: Id7b566738b1e710cc5001b894022bcd0f2c01bc3
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1708484
Commit-Queue: Michael Starzinger <mstarzinger@chromium.org>
Reviewed-by: Clemens Hammacher <clemensh@chromium.org>
Reviewed-by: Michael Achenbach <machenbach@chromium.org>
Cr-Commit-Position: refs/heads/master@{#62826}
2019-07-19 11:47:48 +00:00

601 lines
20 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef WASM_RUN_UTILS_H
#define WASM_RUN_UTILS_H
#include <setjmp.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <array>
#include <memory>
#include "src/base/utils/random-number-generator.h"
#include "src/codegen/optimized-compilation-info.h"
#include "src/compiler/compiler-source-position-table.h"
#include "src/compiler/graph-visualizer.h"
#include "src/compiler/int64-lowering.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/node.h"
#include "src/compiler/pipeline.h"
#include "src/compiler/wasm-compiler.h"
#include "src/compiler/zone-stats.h"
#include "src/trap-handler/trap-handler.h"
#include "src/wasm/function-body-decoder.h"
#include "src/wasm/local-decl-encoder.h"
#include "src/wasm/wasm-code-manager.h"
#include "src/wasm/wasm-external-refs.h"
#include "src/wasm/wasm-interpreter.h"
#include "src/wasm/wasm-js.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-objects-inl.h"
#include "src/wasm/wasm-objects.h"
#include "src/wasm/wasm-opcodes.h"
#include "src/wasm/wasm-tier.h"
#include "src/zone/accounting-allocator.h"
#include "src/zone/zone.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/call-tester.h"
#include "test/cctest/compiler/graph-and-builders.h"
#include "test/cctest/compiler/value-helper.h"
#include "test/common/wasm/flag-utils.h"
namespace v8 {
namespace internal {
namespace wasm {
using base::ReadLittleEndianValue;
using base::WriteLittleEndianValue;
constexpr uint32_t kMaxFunctions = 10;
constexpr uint32_t kMaxGlobalsSize = 128;
using compiler::CallDescriptor;
using compiler::MachineTypeForC;
using compiler::Node;
// TODO(titzer): check traps more robustly in tests.
// Currently, in tests, we just return 0xDEADBEEF from the function in which
// the trap occurs if the runtime context is not available to throw a JavaScript
// exception.
#define CHECK_TRAP32(x) \
CHECK_EQ(0xDEADBEEF, (bit_cast<uint32_t>(x)) & 0xFFFFFFFF)
#define CHECK_TRAP64(x) \
CHECK_EQ(0xDEADBEEFDEADBEEF, (bit_cast<uint64_t>(x)) & 0xFFFFFFFFFFFFFFFF)
#define CHECK_TRAP(x) CHECK_TRAP32(x)
#define WASM_WRAPPER_RETURN_VALUE 8754
#define BUILD(r, ...) \
do { \
byte code[] = {__VA_ARGS__}; \
r.Build(code, code + arraysize(code)); \
} while (false)
// For tests that must manually import a JSFunction with source code.
struct ManuallyImportedJSFunction {
FunctionSig* sig;
Handle<JSFunction> js_function;
};
// A Wasm module builder. Globals are pre-set, however, memory and code may be
// progressively added by a test. In turn, we piecemeal update the runtime
// objects, i.e. {WasmInstanceObject}, {WasmModuleObject} and, if necessary,
// the interpreter.
class TestingModuleBuilder {
public:
TestingModuleBuilder(Zone*, ManuallyImportedJSFunction*, ExecutionTier,
RuntimeExceptionSupport, LowerSimd);
void ChangeOriginToAsmjs() { test_module_->origin = kAsmJsSloppyOrigin; }
byte* AddMemory(uint32_t size, SharedFlag shared = SharedFlag::kNotShared);
size_t CodeTableLength() const { return native_module_->num_functions(); }
template <typename T>
T* AddMemoryElems(uint32_t count) {
AddMemory(count * sizeof(T));
return raw_mem_start<T>();
}
template <typename T>
T* AddGlobal(
ValueType type = ValueTypes::ValueTypeFor(MachineTypeForC<T>())) {
const WasmGlobal* global = AddGlobal(type);
return reinterpret_cast<T*>(globals_data_ + global->offset);
}
byte AddSignature(FunctionSig* sig) {
DCHECK_EQ(test_module_->signatures.size(),
test_module_->signature_ids.size());
test_module_->signatures.push_back(sig);
auto canonical_sig_num = test_module_->signature_map.FindOrInsert(*sig);
test_module_->signature_ids.push_back(canonical_sig_num);
size_t size = test_module_->signatures.size();
CHECK_GT(127, size);
return static_cast<byte>(size - 1);
}
uint32_t mem_size() { return mem_size_; }
template <typename T>
T* raw_mem_start() {
DCHECK(mem_start_);
return reinterpret_cast<T*>(mem_start_);
}
template <typename T>
T* raw_mem_end() {
DCHECK(mem_start_);
return reinterpret_cast<T*>(mem_start_ + mem_size_);
}
template <typename T>
T raw_mem_at(int i) {
DCHECK(mem_start_);
return ReadMemory(&(reinterpret_cast<T*>(mem_start_)[i]));
}
template <typename T>
T raw_val_at(int i) {
return ReadMemory(reinterpret_cast<T*>(mem_start_ + i));
}
template <typename T>
void WriteMemory(T* p, T val) {
WriteLittleEndianValue<T>(reinterpret_cast<Address>(p), val);
}
template <typename T>
T ReadMemory(T* p) {
return ReadLittleEndianValue<T>(reinterpret_cast<Address>(p));
}
// Zero-initialize the memory.
void BlankMemory() {
byte* raw = raw_mem_start<byte>();
memset(raw, 0, mem_size_);
}
// Pseudo-randomly intialize the memory.
void RandomizeMemory(unsigned int seed = 88) {
byte* raw = raw_mem_start<byte>();
byte* end = raw_mem_end<byte>();
v8::base::RandomNumberGenerator rng;
rng.SetSeed(seed);
rng.NextBytes(raw, end - raw);
}
void SetMaxMemPages(uint32_t maximum_pages) {
test_module_->maximum_pages = maximum_pages;
if (instance_object()->has_memory_object()) {
instance_object()->memory_object().set_maximum_pages(maximum_pages);
}
}
void SetHasSharedMemory() { test_module_->has_shared_memory = true; }
enum FunctionType { kImport, kWasm };
uint32_t AddFunction(FunctionSig* sig, const char* name, FunctionType type);
// Freezes the signature map of the module and allocates the storage for
// export wrappers.
void FreezeSignatureMapAndInitializeWrapperCache();
// Wrap the code so it can be called as a JS function.
Handle<JSFunction> WrapCode(uint32_t index);
// If function_indexes is {nullptr}, the contents of the table will be
// initialized with null functions.
void AddIndirectFunctionTable(const uint16_t* function_indexes,
uint32_t table_size);
uint32_t AddBytes(Vector<const byte> bytes);
uint32_t AddException(FunctionSig* sig);
uint32_t AddPassiveDataSegment(Vector<const byte> bytes);
uint32_t AddPassiveElementSegment(const std::vector<uint32_t>& entries);
WasmFunction* GetFunctionAt(int index) {
return &test_module_->functions[index];
}
WasmInterpreter* interpreter() const { return interpreter_; }
bool interpret() const { return interpreter_ != nullptr; }
LowerSimd lower_simd() const { return lower_simd_; }
Isolate* isolate() const { return isolate_; }
Handle<WasmInstanceObject> instance_object() const {
return instance_object_;
}
WasmCode* GetFunctionCode(uint32_t index) const {
return native_module_->GetCode(index);
}
Address globals_start() const {
return reinterpret_cast<Address>(globals_data_);
}
void SetExecutable() { native_module_->SetExecutable(true); }
CompilationEnv CreateCompilationEnv();
ExecutionTier execution_tier() const { return execution_tier_; }
RuntimeExceptionSupport runtime_exception_support() const {
return runtime_exception_support_;
}
private:
std::shared_ptr<WasmModule> test_module_;
WasmModule* test_module_ptr_;
Isolate* isolate_;
WasmFeatures enabled_features_;
uint32_t global_offset = 0;
byte* mem_start_ = nullptr;
uint32_t mem_size_ = 0;
alignas(16) byte globals_data_[kMaxGlobalsSize];
WasmInterpreter* interpreter_ = nullptr;
ExecutionTier execution_tier_;
Handle<WasmInstanceObject> instance_object_;
NativeModule* native_module_ = nullptr;
RuntimeExceptionSupport runtime_exception_support_;
LowerSimd lower_simd_;
// Data segment arrays that are normally allocated on the instance.
std::vector<byte> data_segment_data_;
std::vector<Address> data_segment_starts_;
std::vector<uint32_t> data_segment_sizes_;
std::vector<byte> dropped_data_segments_;
std::vector<byte> dropped_elem_segments_;
const WasmGlobal* AddGlobal(ValueType type);
Handle<WasmInstanceObject> InitInstanceObject();
};
void TestBuildingGraph(Zone* zone, compiler::JSGraph* jsgraph,
CompilationEnv* module, FunctionSig* sig,
compiler::SourcePositionTable* source_position_table,
const byte* start, const byte* end);
class WasmFunctionWrapper : private compiler::GraphAndBuilders {
public:
WasmFunctionWrapper(Zone* zone, int num_params);
void Init(CallDescriptor* call_descriptor, MachineType return_type,
Vector<MachineType> param_types);
template <typename ReturnType, typename... ParamTypes>
void Init(CallDescriptor* call_descriptor) {
std::array<MachineType, sizeof...(ParamTypes)> param_machine_types{
{MachineTypeForC<ParamTypes>()...}};
Vector<MachineType> param_vec(param_machine_types.data(),
param_machine_types.size());
Init(call_descriptor, MachineTypeForC<ReturnType>(), param_vec);
}
void SetInnerCode(WasmCode* code) {
intptr_t address = static_cast<intptr_t>(code->instruction_start());
compiler::NodeProperties::ChangeOp(
inner_code_node_,
common()->ExternalConstant(ExternalReference::FromRawAddress(address)));
}
const compiler::Operator* IntPtrConstant(intptr_t value) {
return machine()->Is32()
? common()->Int32Constant(static_cast<int32_t>(value))
: common()->Int64Constant(static_cast<int64_t>(value));
}
void SetInstance(Handle<WasmInstanceObject> instance) {
compiler::NodeProperties::ChangeOp(context_address_,
common()->HeapConstant(instance));
}
Handle<Code> GetWrapperCode();
Signature<MachineType>* signature() const { return signature_; }
private:
Node* inner_code_node_;
Node* context_address_;
MaybeHandle<Code> code_;
Signature<MachineType>* signature_;
};
// A helper for compiling wasm functions for testing.
// It contains the internal state for compilation (i.e. TurboFan graph) and
// interpretation (by adding to the interpreter manually).
class WasmFunctionCompiler : public compiler::GraphAndBuilders {
public:
~WasmFunctionCompiler();
Isolate* isolate() { return builder_->isolate(); }
CallDescriptor* descriptor() {
if (descriptor_ == nullptr) {
descriptor_ = compiler::GetWasmCallDescriptor(zone(), sig);
}
return descriptor_;
}
uint32_t function_index() { return function_->func_index; }
void Build(const byte* start, const byte* end);
byte AllocateLocal(ValueType type) {
uint32_t index = local_decls.AddLocals(1, type);
byte result = static_cast<byte>(index);
DCHECK_EQ(index, result);
return result;
}
void SetSigIndex(int sig_index) { function_->sig_index = sig_index; }
private:
friend class WasmRunnerBase;
WasmFunctionCompiler(Zone* zone, FunctionSig* sig,
TestingModuleBuilder* builder, const char* name);
compiler::JSGraph jsgraph;
FunctionSig* sig;
// The call descriptor is initialized when the function is compiled.
CallDescriptor* descriptor_;
TestingModuleBuilder* builder_;
WasmFunction* function_;
LocalDeclEncoder local_decls;
compiler::SourcePositionTable source_position_table_;
WasmInterpreter* interpreter_;
};
// A helper class to build a module around Wasm bytecode, generate machine
// code, and run that code.
class WasmRunnerBase : public HandleAndZoneScope {
public:
WasmRunnerBase(ManuallyImportedJSFunction* maybe_import,
ExecutionTier execution_tier, int num_params,
RuntimeExceptionSupport runtime_exception_support,
LowerSimd lower_simd)
: zone_(&allocator_, ZONE_NAME),
builder_(&zone_, maybe_import, execution_tier,
runtime_exception_support, lower_simd),
wrapper_(&zone_, num_params) {}
// Builds a graph from the given Wasm code and generates the machine
// code and call wrapper for that graph. This method must not be called
// more than once.
void Build(const byte* start, const byte* end) {
CHECK(!compiled_);
compiled_ = true;
functions_[0]->Build(start, end);
}
// Resets the state for building the next function.
// The main function called will always be the first function.
template <typename ReturnType, typename... ParamTypes>
WasmFunctionCompiler& NewFunction(const char* name = nullptr) {
return NewFunction(CreateSig<ReturnType, ParamTypes...>(), name);
}
// Resets the state for building the next function.
// The main function called will be the last generated function.
// Returns the index of the previously built function.
WasmFunctionCompiler& NewFunction(FunctionSig* sig,
const char* name = nullptr) {
functions_.emplace_back(
new WasmFunctionCompiler(&zone_, sig, &builder_, name));
builder().AddSignature(sig);
return *functions_.back();
}
byte AllocateLocal(ValueType type) {
return functions_[0]->AllocateLocal(type);
}
uint32_t function_index() { return functions_[0]->function_index(); }
WasmFunction* function() { return functions_[0]->function_; }
WasmInterpreter* interpreter() {
DCHECK(interpret());
return functions_[0]->interpreter_;
}
bool possible_nondeterminism() { return possible_nondeterminism_; }
TestingModuleBuilder& builder() { return builder_; }
Zone* zone() { return &zone_; }
bool interpret() { return builder_.interpret(); }
template <typename ReturnType, typename... ParamTypes>
FunctionSig* CreateSig() {
std::array<MachineType, sizeof...(ParamTypes)> param_machine_types{
{MachineTypeForC<ParamTypes>()...}};
Vector<MachineType> param_vec(param_machine_types.data(),
param_machine_types.size());
return CreateSig(MachineTypeForC<ReturnType>(), param_vec);
}
private:
FunctionSig* CreateSig(MachineType return_type,
Vector<MachineType> param_types);
protected:
v8::internal::AccountingAllocator allocator_;
Zone zone_;
TestingModuleBuilder builder_;
std::vector<std::unique_ptr<WasmFunctionCompiler>> functions_;
WasmFunctionWrapper wrapper_;
bool compiled_ = false;
bool possible_nondeterminism_ = false;
int32_t main_fn_index_ = 0;
public:
// This field has to be static. Otherwise, gcc complains about the use in
// the lambda context below.
static bool trap_happened;
};
template <typename ReturnType, typename... ParamTypes>
class WasmRunner : public WasmRunnerBase {
public:
WasmRunner(ExecutionTier execution_tier,
ManuallyImportedJSFunction* maybe_import = nullptr,
const char* main_fn_name = "main",
RuntimeExceptionSupport runtime_exception_support =
kNoRuntimeExceptionSupport,
LowerSimd lower_simd = kNoLowerSimd)
: WasmRunnerBase(maybe_import, execution_tier, sizeof...(ParamTypes),
runtime_exception_support, lower_simd) {
WasmFunctionCompiler& main_fn =
NewFunction<ReturnType, ParamTypes...>(main_fn_name);
// Non-zero if there is an import.
main_fn_index_ = main_fn.function_index();
if (!interpret()) {
wrapper_.Init<ReturnType, ParamTypes...>(main_fn.descriptor());
}
}
WasmRunner(ExecutionTier execution_tier, LowerSimd lower_simd)
: WasmRunner(execution_tier, nullptr, "main", kNoRuntimeExceptionSupport,
lower_simd) {}
void SetUpTrapCallback() {
WasmRunnerBase::trap_happened = false;
auto trap_callback = []() -> void {
WasmRunnerBase::trap_happened = true;
set_trap_callback_for_testing(nullptr);
};
set_trap_callback_for_testing(trap_callback);
}
ReturnType Call(ParamTypes... p) {
DCHECK(compiled_);
if (interpret()) return CallInterpreter(p...);
ReturnType return_value = static_cast<ReturnType>(0xDEADBEEFDEADBEEF);
SetUpTrapCallback();
wrapper_.SetInnerCode(builder_.GetFunctionCode(main_fn_index_));
wrapper_.SetInstance(builder_.instance_object());
builder_.SetExecutable();
Handle<Code> wrapper_code = wrapper_.GetWrapperCode();
compiler::CodeRunner<int32_t> runner(CcTest::InitIsolateOnce(),
wrapper_code, wrapper_.signature());
int32_t result;
{
SetThreadInWasmFlag();
result = runner.Call(static_cast<void*>(&p)...,
static_cast<void*>(&return_value));
ClearThreadInWasmFlag();
}
CHECK_EQ(WASM_WRAPPER_RETURN_VALUE, result);
return WasmRunnerBase::trap_happened
? static_cast<ReturnType>(0xDEADBEEFDEADBEEF)
: return_value;
}
ReturnType CallInterpreter(ParamTypes... p) {
WasmInterpreter::Thread* thread = interpreter()->GetThread(0);
thread->Reset();
std::array<WasmValue, sizeof...(p)> args{{WasmValue(p)...}};
thread->InitFrame(function(), args.data());
thread->Run();
CHECK_GT(thread->NumInterpretedCalls(), 0);
if (thread->state() == WasmInterpreter::FINISHED) {
WasmValue val = thread->GetReturnValue();
possible_nondeterminism_ |= thread->PossibleNondeterminism();
return val.to<ReturnType>();
} else if (thread->state() == WasmInterpreter::TRAPPED) {
// TODO(titzer): return the correct trap code
int64_t result = 0xDEADBEEFDEADBEEF;
return static_cast<ReturnType>(result);
} else {
// TODO(titzer): falling off end
return ReturnType{0};
}
}
void CheckCallApplyViaJS(double expected, uint32_t function_index,
Handle<Object>* buffer, int count) {
Isolate* isolate = builder_.isolate();
SetUpTrapCallback();
if (jsfuncs_.size() <= function_index) {
jsfuncs_.resize(function_index + 1);
}
if (jsfuncs_[function_index].is_null()) {
jsfuncs_[function_index] = builder_.WrapCode(function_index);
}
Handle<JSFunction> jsfunc = jsfuncs_[function_index];
Handle<Object> global(isolate->context().global_object(), isolate);
MaybeHandle<Object> retval =
Execution::TryCall(isolate, jsfunc, global, count, buffer,
Execution::MessageHandling::kReport, nullptr);
if (retval.is_null() || WasmRunnerBase::trap_happened) {
CHECK_EQ(expected, static_cast<double>(0xDEADBEEF));
} else {
Handle<Object> result = retval.ToHandleChecked();
if (result->IsSmi()) {
CHECK_EQ(expected, Smi::ToInt(*result));
} else {
CHECK(result->IsHeapNumber());
CHECK_DOUBLE_EQ(expected, HeapNumber::cast(*result).value());
}
}
if (builder_.interpret()) {
CHECK_GT(builder_.interpreter()->GetThread(0)->NumInterpretedCalls(), 0);
}
}
void CheckCallViaJS(double expected, ParamTypes... p) {
Isolate* isolate = builder_.isolate();
// MSVC doesn't allow empty arrays, so include a dummy at the end.
Handle<Object> buffer[] = {isolate->factory()->NewNumber(p)...,
Handle<Object>()};
CheckCallApplyViaJS(expected, function()->func_index, buffer, sizeof...(p));
}
Handle<Code> GetWrapperCode() { return wrapper_.GetWrapperCode(); }
private:
wasm::WasmCodeRefScope code_ref_scope_;
std::vector<Handle<JSFunction>> jsfuncs_;
void SetThreadInWasmFlag() {
*reinterpret_cast<int*>(trap_handler::GetThreadInWasmThreadLocalAddress()) =
true;
}
void ClearThreadInWasmFlag() {
*reinterpret_cast<int*>(trap_handler::GetThreadInWasmThreadLocalAddress()) =
false;
}
};
// A macro to define tests that run in different engine configurations.
#define WASM_EXEC_TEST(name) \
void RunWasm_##name(ExecutionTier execution_tier); \
TEST(RunWasmTurbofan_##name) { RunWasm_##name(ExecutionTier::kTurbofan); } \
TEST(RunWasmLiftoff_##name) { RunWasm_##name(ExecutionTier::kLiftoff); } \
TEST(RunWasmInterpreter_##name) { \
RunWasm_##name(ExecutionTier::kInterpreter); \
} \
void RunWasm_##name(ExecutionTier execution_tier)
#define WASM_COMPILED_EXEC_TEST(name) \
void RunWasm_##name(ExecutionTier execution_tier); \
TEST(RunWasmTurbofan_##name) { RunWasm_##name(ExecutionTier::kTurbofan); } \
TEST(RunWasmLiftoff_##name) { RunWasm_##name(ExecutionTier::kLiftoff); } \
void RunWasm_##name(ExecutionTier execution_tier)
} // namespace wasm
} // namespace internal
} // namespace v8
#endif