daa7abe3ea
I've noticed a few places where class fields as defined in Torque have different names than the corresponding accessors in the C++ class. I think they should match. Most of this change is just mechanically updating the various places that use k##Field##Offset for those fields. Change-Id: I8ba52aed7f6a1cd6b2d71158f71150b66c2c0da0 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3027263 Commit-Queue: Seth Brenith <seth.brenith@microsoft.com> Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Cr-Commit-Position: refs/heads/master@{#75796}
804 lines
33 KiB
C++
804 lines
33 KiB
C++
// Copyright 2019 the V8 project authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style license that can be
|
||
// found in the LICENSE file.
|
||
|
||
#include <sstream>
|
||
|
||
#include "debug-helper-internal.h"
|
||
#include "heap-constants.h"
|
||
#include "include/v8-internal.h"
|
||
#include "src/common/external-pointer.h"
|
||
#include "src/execution/frame-constants.h"
|
||
#include "src/execution/frames.h"
|
||
#include "src/execution/isolate-utils.h"
|
||
#include "src/objects/string-inl.h"
|
||
#include "src/strings/unicode-inl.h"
|
||
#include "torque-generated/class-debug-readers.h"
|
||
#include "torque-generated/debug-macros.h"
|
||
|
||
namespace i = v8::internal;
|
||
|
||
namespace v8 {
|
||
namespace internal {
|
||
namespace debug_helper_internal {
|
||
|
||
constexpr char kObject[] = "v8::internal::Object";
|
||
constexpr char kTaggedValue[] = "v8::internal::TaggedValue";
|
||
constexpr char kSmi[] = "v8::internal::Smi";
|
||
constexpr char kHeapObject[] = "v8::internal::HeapObject";
|
||
#ifdef V8_COMPRESS_POINTERS
|
||
constexpr char kObjectAsStoredInHeap[] = "v8::internal::TaggedValue";
|
||
#else
|
||
constexpr char kObjectAsStoredInHeap[] = "v8::internal::Object";
|
||
#endif
|
||
|
||
std::string AppendAddressAndType(const std::string& brief, uintptr_t address,
|
||
const char* type) {
|
||
std::stringstream brief_stream;
|
||
brief_stream << "0x" << std::hex << address << " <" << type << ">";
|
||
return brief.empty() ? brief_stream.str()
|
||
: brief + " (" + brief_stream.str() + ")";
|
||
}
|
||
|
||
std::string JoinWithSpace(const std::string& a, const std::string& b) {
|
||
return a.empty() || b.empty() ? a + b : a + " " + b;
|
||
}
|
||
|
||
struct TypedObject {
|
||
TypedObject(d::TypeCheckResult type_check_result,
|
||
std::unique_ptr<TqObject> object)
|
||
: type_check_result(type_check_result), object(std::move(object)) {}
|
||
|
||
// How we discovered the object's type, or why we failed to do so.
|
||
d::TypeCheckResult type_check_result;
|
||
|
||
// Pointer to some TqObject subclass, representing the most specific known
|
||
// type for the object.
|
||
std::unique_ptr<TqObject> object;
|
||
|
||
// Collection of other guesses at more specific types than the one represented
|
||
// by |object|.
|
||
std::vector<TypedObject> possible_types;
|
||
};
|
||
|
||
TypedObject GetTypedObjectByHint(uintptr_t address,
|
||
std::string type_hint_string) {
|
||
#define TYPE_NAME_CASE(ClassName, ...) \
|
||
if (type_hint_string == "v8::internal::" #ClassName) { \
|
||
return {d::TypeCheckResult::kUsedTypeHint, \
|
||
std::make_unique<Tq##ClassName>(address)}; \
|
||
}
|
||
|
||
TORQUE_INSTANCE_CHECKERS_SINGLE_FULLY_DEFINED(TYPE_NAME_CASE)
|
||
TORQUE_INSTANCE_CHECKERS_RANGE_FULLY_DEFINED(TYPE_NAME_CASE)
|
||
STRING_CLASS_TYPES(TYPE_NAME_CASE)
|
||
|
||
#undef TYPE_NAME_CASE
|
||
|
||
return {d::TypeCheckResult::kUnknownTypeHint,
|
||
std::make_unique<TqHeapObject>(address)};
|
||
}
|
||
|
||
TypedObject GetTypedObjectForString(uintptr_t address, i::InstanceType type,
|
||
d::TypeCheckResult type_source) {
|
||
class StringGetDispatcher : public i::AllStatic {
|
||
public:
|
||
#define DEFINE_METHOD(ClassName) \
|
||
static inline TypedObject Handle##ClassName( \
|
||
uintptr_t address, d::TypeCheckResult type_source) { \
|
||
return {type_source, std::make_unique<Tq##ClassName>(address)}; \
|
||
}
|
||
STRING_CLASS_TYPES(DEFINE_METHOD)
|
||
#undef DEFINE_METHOD
|
||
static inline TypedObject HandleInvalidString(
|
||
uintptr_t address, d::TypeCheckResult type_source) {
|
||
return {d::TypeCheckResult::kUnknownInstanceType,
|
||
std::make_unique<TqString>(address)};
|
||
}
|
||
};
|
||
|
||
return i::StringShape(type)
|
||
.DispatchToSpecificTypeWithoutCast<StringGetDispatcher, TypedObject>(
|
||
address, type_source);
|
||
}
|
||
|
||
TypedObject GetTypedObjectByInstanceType(uintptr_t address,
|
||
i::InstanceType type,
|
||
d::TypeCheckResult type_source) {
|
||
switch (type) {
|
||
#define INSTANCE_TYPE_CASE(ClassName, INSTANCE_TYPE) \
|
||
case i::INSTANCE_TYPE: \
|
||
return {type_source, std::make_unique<Tq##ClassName>(address)};
|
||
TORQUE_INSTANCE_CHECKERS_SINGLE_FULLY_DEFINED(INSTANCE_TYPE_CASE)
|
||
TORQUE_INSTANCE_CHECKERS_MULTIPLE_FULLY_DEFINED(INSTANCE_TYPE_CASE)
|
||
#undef INSTANCE_TYPE_CASE
|
||
|
||
default:
|
||
|
||
// Special case: concrete subtypes of String are not included in the
|
||
// main instance type list because they use the low bits of the instance
|
||
// type enum as flags.
|
||
if (type <= i::LAST_STRING_TYPE) {
|
||
return GetTypedObjectForString(address, type, type_source);
|
||
}
|
||
|
||
#define INSTANCE_RANGE_CASE(ClassName, FIRST_TYPE, LAST_TYPE) \
|
||
if (type >= i::FIRST_TYPE && type <= i::LAST_TYPE) { \
|
||
return {type_source, std::make_unique<Tq##ClassName>(address)}; \
|
||
}
|
||
TORQUE_INSTANCE_CHECKERS_RANGE_FULLY_DEFINED(INSTANCE_RANGE_CASE)
|
||
#undef INSTANCE_RANGE_CASE
|
||
|
||
return {d::TypeCheckResult::kUnknownInstanceType,
|
||
std::make_unique<TqHeapObject>(address)};
|
||
}
|
||
}
|
||
|
||
bool IsTypedHeapObjectInstanceTypeOf(uintptr_t address,
|
||
d::MemoryAccessor accessor,
|
||
i::InstanceType instance_type) {
|
||
auto heap_object = std::make_unique<TqHeapObject>(address);
|
||
Value<uintptr_t> map_ptr = heap_object->GetMapValue(accessor);
|
||
|
||
if (map_ptr.validity == d::MemoryAccessResult::kOk) {
|
||
Value<i::InstanceType> type =
|
||
TqMap(map_ptr.value).GetInstanceTypeValue(accessor);
|
||
if (type.validity == d::MemoryAccessResult::kOk) {
|
||
return instance_type == type.value;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
TypedObject GetTypedHeapObject(uintptr_t address, d::MemoryAccessor accessor,
|
||
const char* type_hint,
|
||
const d::HeapAddresses& heap_addresses) {
|
||
auto heap_object = std::make_unique<TqHeapObject>(address);
|
||
Value<uintptr_t> map_ptr = heap_object->GetMapValue(accessor);
|
||
|
||
if (map_ptr.validity != d::MemoryAccessResult::kOk) {
|
||
// If we can't read the Map pointer from the object, then we likely can't
|
||
// read anything else, so there's not any point in attempting to use the
|
||
// type hint. Just return a failure.
|
||
return {map_ptr.validity == d::MemoryAccessResult::kAddressNotValid
|
||
? d::TypeCheckResult::kObjectPointerInvalid
|
||
: d::TypeCheckResult::kObjectPointerValidButInaccessible,
|
||
std::move(heap_object)};
|
||
}
|
||
|
||
Value<i::InstanceType> type =
|
||
TqMap(map_ptr.value).GetInstanceTypeValue(accessor);
|
||
if (type.validity == d::MemoryAccessResult::kOk) {
|
||
return GetTypedObjectByInstanceType(address, type.value,
|
||
d::TypeCheckResult::kUsedMap);
|
||
}
|
||
|
||
// We can't read the Map, so check whether it is in the list of known Maps,
|
||
// as another way to get its instance type.
|
||
KnownInstanceType known_map_type =
|
||
FindKnownMapInstanceTypes(map_ptr.value, heap_addresses);
|
||
if (known_map_type.confidence == KnownInstanceType::Confidence::kHigh) {
|
||
DCHECK_EQ(known_map_type.types.size(), 1);
|
||
return GetTypedObjectByInstanceType(address, known_map_type.types[0],
|
||
d::TypeCheckResult::kKnownMapPointer);
|
||
}
|
||
|
||
// Create a basic result that says that the object is a HeapObject and we
|
||
// couldn't read its Map.
|
||
TypedObject result = {
|
||
type.validity == d::MemoryAccessResult::kAddressNotValid
|
||
? d::TypeCheckResult::kMapPointerInvalid
|
||
: d::TypeCheckResult::kMapPointerValidButInaccessible,
|
||
std::move(heap_object)};
|
||
|
||
// If a type hint is available, it may give us something more specific than
|
||
// HeapObject. However, a type hint of Object would be even less specific, so
|
||
// we'll only use the type hint if it's a subclass of HeapObject.
|
||
if (type_hint != nullptr) {
|
||
TypedObject hint_result = GetTypedObjectByHint(address, type_hint);
|
||
if (result.object->IsSuperclassOf(hint_result.object.get())) {
|
||
result = std::move(hint_result);
|
||
}
|
||
}
|
||
|
||
// If low-confidence results are available from known Maps, include them only
|
||
// if they don't contradict the primary type and would provide some additional
|
||
// specificity.
|
||
for (const i::InstanceType type_guess : known_map_type.types) {
|
||
TypedObject guess_result = GetTypedObjectByInstanceType(
|
||
address, type_guess, d::TypeCheckResult::kKnownMapPointer);
|
||
if (result.object->IsSuperclassOf(guess_result.object.get())) {
|
||
result.possible_types.push_back(std::move(guess_result));
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
// An object visitor that accumulates the first few characters of a string.
|
||
class ReadStringVisitor : public TqObjectVisitor {
|
||
public:
|
||
static v8::base::Optional<std::string> Visit(
|
||
d::MemoryAccessor accessor, const d::HeapAddresses& heap_addresses,
|
||
const TqString* object) {
|
||
ReadStringVisitor visitor(accessor, heap_addresses);
|
||
object->Visit(&visitor);
|
||
return visitor.GetString();
|
||
}
|
||
|
||
// Returns the result as UTF-8 once visiting is complete.
|
||
v8::base::Optional<std::string> GetString() {
|
||
if (failed_) return {};
|
||
std::vector<char> result(
|
||
string_.size() * unibrow::Utf16::kMaxExtraUtf8BytesForOneUtf16CodeUnit);
|
||
unsigned write_index = 0;
|
||
int prev_char = unibrow::Utf16::kNoPreviousCharacter;
|
||
for (size_t read_index = 0; read_index < string_.size(); ++read_index) {
|
||
uint16_t character = string_[read_index];
|
||
write_index +=
|
||
unibrow::Utf8::Encode(result.data() + write_index, character,
|
||
prev_char, /*replace_invalid=*/true);
|
||
prev_char = character;
|
||
}
|
||
return std::string(result.data(), write_index);
|
||
}
|
||
|
||
template <typename TChar>
|
||
Value<TChar> ReadCharacter(uintptr_t data_address, int32_t index) {
|
||
TChar value{};
|
||
d::MemoryAccessResult validity =
|
||
accessor_(data_address + index * sizeof(TChar),
|
||
reinterpret_cast<uint8_t*>(&value), sizeof(value));
|
||
return {validity, value};
|
||
}
|
||
|
||
template <typename TChar>
|
||
void ReadStringCharacters(const TqString* object, uintptr_t data_address) {
|
||
int32_t length = GetOrFinish(object->GetLengthValue(accessor_));
|
||
for (; index_ < length && index_ < limit_ && !done_; ++index_) {
|
||
STATIC_ASSERT(sizeof(TChar) <= sizeof(char16_t));
|
||
char16_t c = static_cast<char16_t>(
|
||
GetOrFinish(ReadCharacter<TChar>(data_address, index_)));
|
||
if (!done_) AddCharacter(c);
|
||
}
|
||
}
|
||
|
||
template <typename TChar, typename TString>
|
||
void ReadSeqString(const TString* object) {
|
||
ReadStringCharacters<TChar>(object, object->GetCharsAddress());
|
||
}
|
||
|
||
void VisitSeqOneByteString(const TqSeqOneByteString* object) override {
|
||
ReadSeqString<char>(object);
|
||
}
|
||
|
||
void VisitSeqTwoByteString(const TqSeqTwoByteString* object) override {
|
||
ReadSeqString<char16_t>(object);
|
||
}
|
||
|
||
void VisitConsString(const TqConsString* object) override {
|
||
uintptr_t first_address = GetOrFinish(object->GetFirstValue(accessor_));
|
||
if (done_) return;
|
||
auto first =
|
||
GetTypedHeapObject(first_address, accessor_, nullptr, heap_addresses_)
|
||
.object;
|
||
first->Visit(this);
|
||
if (done_) return;
|
||
int32_t first_length = GetOrFinish(
|
||
static_cast<TqString*>(first.get())->GetLengthValue(accessor_));
|
||
uintptr_t second = GetOrFinish(object->GetSecondValue(accessor_));
|
||
if (done_) return;
|
||
IndexModifier modifier(this, -first_length, -first_length);
|
||
GetTypedHeapObject(second, accessor_, nullptr, heap_addresses_)
|
||
.object->Visit(this);
|
||
}
|
||
|
||
void VisitSlicedString(const TqSlicedString* object) override {
|
||
uintptr_t parent = GetOrFinish(object->GetParentValue(accessor_));
|
||
int32_t length = GetOrFinish(object->GetLengthValue(accessor_));
|
||
int32_t offset = i::PlatformSmiTagging::SmiToInt(
|
||
GetOrFinish(object->GetOffsetValue(accessor_)));
|
||
if (done_) return;
|
||
int32_t limit_adjust = offset + length - limit_;
|
||
IndexModifier modifier(this, offset, limit_adjust < 0 ? limit_adjust : 0);
|
||
GetTypedHeapObject(parent, accessor_, nullptr, heap_addresses_)
|
||
.object->Visit(this);
|
||
}
|
||
|
||
void VisitThinString(const TqThinString* object) override {
|
||
uintptr_t actual = GetOrFinish(object->GetActualValue(accessor_));
|
||
if (done_) return;
|
||
GetTypedHeapObject(actual, accessor_, nullptr, heap_addresses_)
|
||
.object->Visit(this);
|
||
}
|
||
|
||
bool IsExternalStringCached(const TqExternalString* object) {
|
||
// The safest way to get the instance type is to use known map pointers, in
|
||
// case the map data is not available.
|
||
Value<uintptr_t> map_ptr = object->GetMapValue(accessor_);
|
||
DCHECK_IMPLIES(map_ptr.validity == d::MemoryAccessResult::kOk,
|
||
!v8::internal::MapWord::IsPacked(map_ptr.value));
|
||
uintptr_t map = GetOrFinish(map_ptr);
|
||
if (done_) return false;
|
||
auto instance_types = FindKnownMapInstanceTypes(map, heap_addresses_);
|
||
// Exactly one of the matched instance types should be a string type,
|
||
// because all maps for string types are in the same space (read-only
|
||
// space). The "uncached" flag on that instance type tells us whether it's
|
||
// safe to read the cached data.
|
||
for (const auto& type : instance_types.types) {
|
||
if ((type & i::kIsNotStringMask) == i::kStringTag &&
|
||
(type & i::kStringRepresentationMask) == i::kExternalStringTag) {
|
||
return (type & i::kUncachedExternalStringMask) !=
|
||
i::kUncachedExternalStringTag;
|
||
}
|
||
}
|
||
|
||
// If for some reason we can't find an external string type here (maybe the
|
||
// caller provided an external string type as the type hint, but it doesn't
|
||
// actually match the in-memory map pointer), then we can't safely use the
|
||
// cached data.
|
||
return false;
|
||
}
|
||
|
||
template <typename TChar>
|
||
void ReadExternalString(const TqExternalString* object) {
|
||
// Cached external strings are easy to read; uncached external strings
|
||
// require knowledge of the embedder. For now, we only read cached external
|
||
// strings.
|
||
if (IsExternalStringCached(object)) {
|
||
ExternalPointer_t resource_data =
|
||
GetOrFinish(object->GetResourceDataValue(accessor_));
|
||
#ifdef V8_COMPRESS_POINTERS
|
||
Isolate* isolate = GetIsolateForHeapSandbox(
|
||
HeapObject::unchecked_cast(Object(heap_addresses_.any_heap_pointer)));
|
||
uintptr_t data_address = static_cast<uintptr_t>(DecodeExternalPointer(
|
||
isolate, resource_data, kExternalStringResourceDataTag));
|
||
#else
|
||
uintptr_t data_address = static_cast<uintptr_t>(resource_data);
|
||
#endif // V8_COMPRESS_POINTERS
|
||
if (done_) return;
|
||
ReadStringCharacters<TChar>(object, data_address);
|
||
} else {
|
||
// TODO(v8:9376): Come up with some way that a caller with full knowledge
|
||
// of a particular embedder could provide a callback function for getting
|
||
// uncached string data.
|
||
AddEllipsisAndFinish();
|
||
}
|
||
}
|
||
|
||
void VisitExternalOneByteString(
|
||
const TqExternalOneByteString* object) override {
|
||
ReadExternalString<char>(object);
|
||
}
|
||
|
||
void VisitExternalTwoByteString(
|
||
const TqExternalTwoByteString* object) override {
|
||
ReadExternalString<char16_t>(object);
|
||
}
|
||
|
||
void VisitObject(const TqObject* object) override {
|
||
// If we fail to find a specific type for a sub-object within a cons string,
|
||
// sliced string, or thin string, we will end up here.
|
||
AddEllipsisAndFinish();
|
||
}
|
||
|
||
private:
|
||
ReadStringVisitor(d::MemoryAccessor accessor,
|
||
const d::HeapAddresses& heap_addresses)
|
||
: accessor_(accessor),
|
||
heap_addresses_(heap_addresses),
|
||
index_(0),
|
||
limit_(INT32_MAX),
|
||
done_(false),
|
||
failed_(false) {}
|
||
|
||
// Unpacks a value that was fetched from the debuggee. If the value indicates
|
||
// that it couldn't successfully fetch memory, then prevents further work.
|
||
template <typename T>
|
||
T GetOrFinish(Value<T> value) {
|
||
if (value.validity != d::MemoryAccessResult::kOk) {
|
||
AddEllipsisAndFinish();
|
||
}
|
||
return value.value;
|
||
}
|
||
|
||
void AddEllipsisAndFinish() {
|
||
if (!done_) {
|
||
done_ = true;
|
||
if (string_.empty()) {
|
||
failed_ = true;
|
||
} else {
|
||
string_ += u"...";
|
||
}
|
||
}
|
||
}
|
||
|
||
void AddCharacter(char16_t c) {
|
||
if (string_.size() >= kMaxCharacters) {
|
||
AddEllipsisAndFinish();
|
||
} else {
|
||
string_.push_back(c);
|
||
}
|
||
}
|
||
|
||
// Temporarily adds offsets to both index_ and limit_, to handle ConsString
|
||
// and SlicedString.
|
||
class IndexModifier {
|
||
public:
|
||
IndexModifier(ReadStringVisitor* that, int32_t index_adjust,
|
||
int32_t limit_adjust)
|
||
: that_(that),
|
||
index_adjust_(index_adjust),
|
||
limit_adjust_(limit_adjust) {
|
||
that_->index_ += index_adjust_;
|
||
that_->limit_ += limit_adjust_;
|
||
}
|
||
IndexModifier(const IndexModifier&) = delete;
|
||
IndexModifier& operator=(const IndexModifier&) = delete;
|
||
~IndexModifier() {
|
||
that_->index_ -= index_adjust_;
|
||
that_->limit_ -= limit_adjust_;
|
||
}
|
||
|
||
private:
|
||
ReadStringVisitor* that_;
|
||
int32_t index_adjust_;
|
||
int32_t limit_adjust_;
|
||
};
|
||
|
||
static constexpr int kMaxCharacters = 80; // How many characters to print.
|
||
|
||
std::u16string string_; // Result string.
|
||
d::MemoryAccessor accessor_;
|
||
const d::HeapAddresses& heap_addresses_;
|
||
int32_t index_; // Index of next char to read.
|
||
int32_t limit_; // Don't read past this index (set by SlicedString).
|
||
bool done_; // Whether to stop further work.
|
||
bool failed_; // Whether an error was encountered before any valid data.
|
||
};
|
||
|
||
// An object visitor that supplies extra information for some types.
|
||
class AddInfoVisitor : public TqObjectVisitor {
|
||
public:
|
||
// Returns a descriptive string and a list of properties for the given object.
|
||
// Both may be empty, and are meant as an addition or a replacement for,
|
||
// the Torque-generated data about the object.
|
||
static std::pair<std::string, std::vector<std::unique_ptr<ObjectProperty>>>
|
||
Visit(const TqObject* object, d::MemoryAccessor accessor,
|
||
const d::HeapAddresses& heap_addresses) {
|
||
AddInfoVisitor visitor(accessor, heap_addresses);
|
||
object->Visit(&visitor);
|
||
return {std::move(visitor.brief_), std::move(visitor.properties_)};
|
||
}
|
||
|
||
void VisitString(const TqString* object) override {
|
||
auto str = ReadStringVisitor::Visit(accessor_, heap_addresses_, object);
|
||
if (str.has_value()) {
|
||
brief_ = "\"" + *str + "\"";
|
||
}
|
||
}
|
||
|
||
void VisitExternalString(const TqExternalString* object) override {
|
||
VisitString(object);
|
||
// Cast resource field to v8::String::ExternalStringResourceBase* would add
|
||
// more info.
|
||
properties_.push_back(std::make_unique<ObjectProperty>(
|
||
"resource",
|
||
CheckTypeName<v8::String::ExternalStringResourceBase*>(
|
||
"v8::String::ExternalStringResourceBase*"),
|
||
CheckTypeName<v8::String::ExternalStringResourceBase*>(
|
||
"v8::String::ExternalStringResourceBase*"),
|
||
object->GetResourceAddress(), 1,
|
||
sizeof(v8::String::ExternalStringResourceBase*),
|
||
std::vector<std::unique_ptr<StructProperty>>(),
|
||
d::PropertyKind::kSingle));
|
||
}
|
||
|
||
void VisitJSObject(const TqJSObject* object) override {
|
||
// JSObject and its subclasses can be followed directly by an array of
|
||
// property values. The start and end offsets of those values are described
|
||
// by a pair of values in its Map.
|
||
auto map_ptr = object->GetMapValue(accessor_);
|
||
if (map_ptr.validity != d::MemoryAccessResult::kOk) {
|
||
return; // Can't read the JSObject. Nothing useful to do.
|
||
}
|
||
DCHECK(!v8::internal::MapWord::IsPacked(map_ptr.value));
|
||
TqMap map(map_ptr.value);
|
||
|
||
// On JSObject instances, this value is the start of in-object properties.
|
||
// The constructor function index option is only for primitives.
|
||
auto start_offset =
|
||
map.GetInobjectPropertiesStartOrConstructorFunctionIndexValue(
|
||
accessor_);
|
||
|
||
// The total size of the object in memory. This may include over-allocated
|
||
// expansion space that doesn't correspond to any user-accessible property.
|
||
auto instance_size = map.GetInstanceSizeInWordsValue(accessor_);
|
||
|
||
if (start_offset.validity != d::MemoryAccessResult::kOk ||
|
||
instance_size.validity != d::MemoryAccessResult::kOk) {
|
||
return; // Can't read the Map. Nothing useful to do.
|
||
}
|
||
int num_properties = instance_size.value - start_offset.value;
|
||
if (num_properties > 0) {
|
||
properties_.push_back(std::make_unique<ObjectProperty>(
|
||
"in-object properties", kObjectAsStoredInHeap, kObject,
|
||
object->GetMapAddress() + start_offset.value * i::kTaggedSize,
|
||
num_properties, i::kTaggedSize,
|
||
std::vector<std::unique_ptr<StructProperty>>(),
|
||
d::PropertyKind::kArrayOfKnownSize));
|
||
}
|
||
}
|
||
|
||
private:
|
||
AddInfoVisitor(d::MemoryAccessor accessor,
|
||
const d::HeapAddresses& heap_addresses)
|
||
: accessor_(accessor), heap_addresses_(heap_addresses) {}
|
||
|
||
// Inputs used by this visitor:
|
||
|
||
d::MemoryAccessor accessor_;
|
||
const d::HeapAddresses& heap_addresses_;
|
||
|
||
// Outputs generated by this visitor:
|
||
|
||
// A brief description of the object.
|
||
std::string brief_;
|
||
// A list of extra properties to append after the automatic ones that are
|
||
// created for all Torque-defined class fields.
|
||
std::vector<std::unique_ptr<ObjectProperty>> properties_;
|
||
};
|
||
|
||
std::unique_ptr<ObjectPropertiesResult> GetHeapObjectPropertiesNotCompressed(
|
||
uintptr_t address, d::MemoryAccessor accessor, const char* type_hint,
|
||
const d::HeapAddresses& heap_addresses) {
|
||
// Regardless of whether we can read the object itself, maybe we can find its
|
||
// pointer in the list of known objects.
|
||
std::string brief = FindKnownObject(address, heap_addresses);
|
||
|
||
TypedObject typed =
|
||
GetTypedHeapObject(address, accessor, type_hint, heap_addresses);
|
||
auto props = typed.object->GetProperties(accessor);
|
||
|
||
// Use the AddInfoVisitor to get any extra properties or descriptive text that
|
||
// can't be directly derived from Torque class definitions.
|
||
auto extra_info =
|
||
AddInfoVisitor::Visit(typed.object.get(), accessor, heap_addresses);
|
||
brief = JoinWithSpace(brief, extra_info.first);
|
||
|
||
// Overwrite existing properties if they have the same name.
|
||
for (size_t i = 0; i < extra_info.second.size(); i++) {
|
||
bool overwrite = false;
|
||
for (size_t j = 0; j < props.size(); j++) {
|
||
if (strcmp(props[j]->GetPublicView()->name,
|
||
extra_info.second[i]->GetPublicView()->name) == 0) {
|
||
props[j] = std::move(extra_info.second[i]);
|
||
overwrite = true;
|
||
break;
|
||
}
|
||
}
|
||
if (overwrite) continue;
|
||
props.push_back(std::move(extra_info.second[i]));
|
||
}
|
||
|
||
brief = AppendAddressAndType(brief, address, typed.object->GetName());
|
||
|
||
// Convert the low-confidence guessed types to a list of strings as expected
|
||
// for the response.
|
||
std::vector<std::string> guessed_types;
|
||
for (const auto& guess : typed.possible_types) {
|
||
guessed_types.push_back(guess.object->GetName());
|
||
}
|
||
|
||
return std::make_unique<ObjectPropertiesResult>(
|
||
typed.type_check_result, brief, typed.object->GetName(), std::move(props),
|
||
std::move(guessed_types));
|
||
}
|
||
|
||
std::unique_ptr<ObjectPropertiesResult> GetHeapObjectPropertiesMaybeCompressed(
|
||
uintptr_t address, d::MemoryAccessor memory_accessor,
|
||
d::HeapAddresses heap_addresses, const char* type_hint) {
|
||
// Try to figure out the heap range, for pointer compression (this is unused
|
||
// if pointer compression is disabled).
|
||
uintptr_t any_uncompressed_ptr = 0;
|
||
if (!IsPointerCompressed(address)) any_uncompressed_ptr = address;
|
||
if (any_uncompressed_ptr == 0)
|
||
any_uncompressed_ptr = heap_addresses.any_heap_pointer;
|
||
if (any_uncompressed_ptr == 0)
|
||
any_uncompressed_ptr = heap_addresses.map_space_first_page;
|
||
if (any_uncompressed_ptr == 0)
|
||
any_uncompressed_ptr = heap_addresses.old_space_first_page;
|
||
if (any_uncompressed_ptr == 0)
|
||
any_uncompressed_ptr = heap_addresses.read_only_space_first_page;
|
||
FillInUnknownHeapAddresses(&heap_addresses, any_uncompressed_ptr);
|
||
if (any_uncompressed_ptr == 0) {
|
||
// We can't figure out the heap range. Just check for known objects.
|
||
std::string brief = FindKnownObject(address, heap_addresses);
|
||
brief = AppendAddressAndType(brief, address, kTaggedValue);
|
||
return std::make_unique<ObjectPropertiesResult>(
|
||
d::TypeCheckResult::kUnableToDecompress, brief, kTaggedValue);
|
||
}
|
||
|
||
address = EnsureDecompressed(address, any_uncompressed_ptr);
|
||
|
||
return GetHeapObjectPropertiesNotCompressed(address, memory_accessor,
|
||
type_hint, heap_addresses);
|
||
}
|
||
|
||
std::unique_ptr<ObjectPropertiesResult> GetObjectProperties(
|
||
uintptr_t address, d::MemoryAccessor memory_accessor,
|
||
const d::HeapAddresses& heap_addresses, const char* type_hint) {
|
||
if (static_cast<uint32_t>(address) == i::kClearedWeakHeapObjectLower32) {
|
||
return std::make_unique<ObjectPropertiesResult>(
|
||
d::TypeCheckResult::kWeakRef, "cleared weak ref", kHeapObject);
|
||
}
|
||
bool is_weak = (address & i::kHeapObjectTagMask) == i::kWeakHeapObjectTag;
|
||
if (is_weak) {
|
||
address &= ~i::kWeakHeapObjectMask;
|
||
}
|
||
if (i::Internals::HasHeapObjectTag(address)) {
|
||
std::unique_ptr<ObjectPropertiesResult> result =
|
||
GetHeapObjectPropertiesMaybeCompressed(address, memory_accessor,
|
||
heap_addresses, type_hint);
|
||
if (is_weak) {
|
||
result->Prepend("weak ref to ");
|
||
}
|
||
return result;
|
||
}
|
||
|
||
// For smi values, construct a response with a description representing the
|
||
// untagged value.
|
||
int32_t value = i::PlatformSmiTagging::SmiToInt(address);
|
||
std::stringstream stream;
|
||
stream << value << " (0x" << std::hex << value << ")";
|
||
return std::make_unique<ObjectPropertiesResult>(d::TypeCheckResult::kSmi,
|
||
stream.str(), kSmi);
|
||
}
|
||
|
||
std::unique_ptr<StackFrameResult> GetStackFrame(
|
||
uintptr_t frame_pointer, d::MemoryAccessor memory_accessor) {
|
||
// Read the data at frame_pointer + kContextOrFrameTypeOffset.
|
||
intptr_t context_or_frame_type = 0;
|
||
d::MemoryAccessResult validity = memory_accessor(
|
||
frame_pointer + CommonFrameConstants::kContextOrFrameTypeOffset,
|
||
reinterpret_cast<void*>(&context_or_frame_type), sizeof(intptr_t));
|
||
auto props = std::vector<std::unique_ptr<ObjectProperty>>();
|
||
if (validity == d::MemoryAccessResult::kOk) {
|
||
// If it is context, not frame marker then add new property
|
||
// "currently_executing_function".
|
||
if (!StackFrame::IsTypeMarker(context_or_frame_type)) {
|
||
props.push_back(std::make_unique<ObjectProperty>(
|
||
"currently_executing_jsfunction",
|
||
CheckTypeName<v8::internal::JSFunction>("v8::internal::JSFunction"),
|
||
CheckTypeName<v8::internal::JSFunction*>("v8::internal::JSFunction"),
|
||
frame_pointer + StandardFrameConstants::kFunctionOffset, 1,
|
||
sizeof(v8::internal::JSFunction),
|
||
std::vector<std::unique_ptr<StructProperty>>(),
|
||
d::PropertyKind::kSingle));
|
||
// Add more items in the Locals pane representing the JS function name,
|
||
// source file name, and line & column numbers within the source file, so
|
||
// that the user doesn’t need to dig through the shared_function_info to
|
||
// find them.
|
||
intptr_t js_function_ptr = 0;
|
||
validity = memory_accessor(
|
||
frame_pointer + StandardFrameConstants::kFunctionOffset,
|
||
reinterpret_cast<void*>(&js_function_ptr), sizeof(intptr_t));
|
||
if (validity == d::MemoryAccessResult::kOk) {
|
||
TqJSFunction js_function(js_function_ptr);
|
||
auto shared_function_info_ptr =
|
||
js_function.GetSharedFunctionInfoValue(memory_accessor);
|
||
if (shared_function_info_ptr.validity == d::MemoryAccessResult::kOk) {
|
||
TqSharedFunctionInfo shared_function_info(
|
||
shared_function_info_ptr.value);
|
||
auto script_or_debug_info_ptr =
|
||
shared_function_info.GetScriptOrDebugInfoValue(memory_accessor);
|
||
if (script_or_debug_info_ptr.validity == d::MemoryAccessResult::kOk) {
|
||
// Make sure script_or_debug_info_ptr is script.
|
||
auto address = script_or_debug_info_ptr.value;
|
||
if (IsTypedHeapObjectInstanceTypeOf(address, memory_accessor,
|
||
i::InstanceType::SCRIPT_TYPE)) {
|
||
TqScript script(script_or_debug_info_ptr.value);
|
||
props.push_back(std::make_unique<ObjectProperty>(
|
||
"script_name", kObjectAsStoredInHeap, kObject,
|
||
script.GetNameAddress(), 1, i::kTaggedSize,
|
||
std::vector<std::unique_ptr<StructProperty>>(),
|
||
d::PropertyKind::kSingle));
|
||
props.push_back(std::make_unique<ObjectProperty>(
|
||
"script_source", kObjectAsStoredInHeap, kObject,
|
||
script.GetSourceAddress(), 1, i::kTaggedSize,
|
||
std::vector<std::unique_ptr<StructProperty>>(),
|
||
d::PropertyKind::kSingle));
|
||
}
|
||
}
|
||
auto name_or_scope_info_ptr =
|
||
shared_function_info.GetNameOrScopeInfoValue(memory_accessor);
|
||
if (name_or_scope_info_ptr.validity == d::MemoryAccessResult::kOk) {
|
||
auto scope_info_address = name_or_scope_info_ptr.value;
|
||
// Make sure name_or_scope_info_ptr is scope info.
|
||
if (IsTypedHeapObjectInstanceTypeOf(
|
||
scope_info_address, memory_accessor,
|
||
i::InstanceType::SCOPE_INFO_TYPE)) {
|
||
auto indexed_field_slice_function_variable_info =
|
||
TqDebugFieldSliceScopeInfoFunctionVariableInfo(
|
||
memory_accessor, scope_info_address);
|
||
if (indexed_field_slice_function_variable_info.validity ==
|
||
d::MemoryAccessResult::kOk) {
|
||
props.push_back(std::make_unique<ObjectProperty>(
|
||
"function_name", kObjectAsStoredInHeap, kObject,
|
||
scope_info_address - i::kHeapObjectTag +
|
||
std::get<1>(
|
||
indexed_field_slice_function_variable_info.value),
|
||
std::get<2>(
|
||
indexed_field_slice_function_variable_info.value),
|
||
i::kTaggedSize,
|
||
std::vector<std::unique_ptr<StructProperty>>(),
|
||
d::PropertyKind::kSingle));
|
||
}
|
||
std::vector<std::unique_ptr<StructProperty>>
|
||
position_info_struct_field_list;
|
||
position_info_struct_field_list.push_back(
|
||
std::make_unique<StructProperty>(
|
||
"start", kObjectAsStoredInHeap, kObject, 0, 0, 0));
|
||
position_info_struct_field_list.push_back(
|
||
std::make_unique<StructProperty>("end", kObjectAsStoredInHeap,
|
||
kObject, 4, 0, 0));
|
||
auto indexed_field_slice_position_info =
|
||
TqDebugFieldSliceScopeInfoPositionInfo(memory_accessor,
|
||
scope_info_address);
|
||
if (indexed_field_slice_position_info.validity ==
|
||
d::MemoryAccessResult::kOk) {
|
||
props.push_back(std::make_unique<ObjectProperty>(
|
||
"function_character_offset", "", "",
|
||
scope_info_address - i::kHeapObjectTag +
|
||
std::get<1>(indexed_field_slice_position_info.value),
|
||
std::get<2>(indexed_field_slice_position_info.value),
|
||
i::kTaggedSize, std::move(position_info_struct_field_list),
|
||
d::PropertyKind::kSingle));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return std::make_unique<StackFrameResult>(std::move(props));
|
||
}
|
||
|
||
} // namespace debug_helper_internal
|
||
} // namespace internal
|
||
} // namespace v8
|
||
|
||
namespace di = v8::internal::debug_helper_internal;
|
||
|
||
extern "C" {
|
||
V8_DEBUG_HELPER_EXPORT d::ObjectPropertiesResult*
|
||
_v8_debug_helper_GetObjectProperties(uintptr_t object,
|
||
d::MemoryAccessor memory_accessor,
|
||
const d::HeapAddresses& heap_addresses,
|
||
const char* type_hint) {
|
||
return di::GetObjectProperties(object, memory_accessor, heap_addresses,
|
||
type_hint)
|
||
.release()
|
||
->GetPublicView();
|
||
}
|
||
V8_DEBUG_HELPER_EXPORT void _v8_debug_helper_Free_ObjectPropertiesResult(
|
||
d::ObjectPropertiesResult* result) {
|
||
std::unique_ptr<di::ObjectPropertiesResult> ptr(
|
||
static_cast<di::ObjectPropertiesResultExtended*>(result)->base);
|
||
}
|
||
|
||
V8_DEBUG_HELPER_EXPORT d::StackFrameResult* _v8_debug_helper_GetStackFrame(
|
||
uintptr_t frame_pointer, d::MemoryAccessor memory_accessor) {
|
||
return di::GetStackFrame(frame_pointer, memory_accessor)
|
||
.release()
|
||
->GetPublicView();
|
||
}
|
||
V8_DEBUG_HELPER_EXPORT void _v8_debug_helper_Free_StackFrameResult(
|
||
d::StackFrameResult* result) {
|
||
std::unique_ptr<di::StackFrameResult> ptr(
|
||
static_cast<di::StackFrameResultExtended*>(result)->base);
|
||
}
|
||
}
|