v8/src/v8.cc
danno@chromium.org bdf6895bb3 Encapsulate element handling into a class keyed on ElementsKind
Advantage is that it's much easier to add new element types (like FAST_SMI_ELEMENTS), and that handling logic for each element kind is (more) consolidated.

Currently, only GetElementsWithReceiver uses the new encapsulation, but the goal is to move much more element functionality into the class incrementally.

BUG=none
TEST=none

Review URL: http://codereview.chromium.org/7527001

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@8810 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-08-03 11:12:46 +00:00

221 lines
6.5 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "isolate.h"
#include "elements.h"
#include "bootstrapper.h"
#include "debug.h"
#include "deoptimizer.h"
#include "heap-profiler.h"
#include "hydrogen.h"
#include "lithium-allocator.h"
#include "log.h"
#include "runtime-profiler.h"
#include "serialize.h"
namespace v8 {
namespace internal {
static Mutex* init_once_mutex = OS::CreateMutex();
static bool init_once_called = false;
bool V8::is_running_ = false;
bool V8::has_been_setup_ = false;
bool V8::has_been_disposed_ = false;
bool V8::has_fatal_error_ = false;
bool V8::use_crankshaft_ = true;
static Mutex* entropy_mutex = OS::CreateMutex();
static EntropySource entropy_source;
bool V8::Initialize(Deserializer* des) {
InitializeOncePerProcess();
// The current thread may not yet had entered an isolate to run.
// Note the Isolate::Current() may be non-null because for various
// initialization purposes an initializing thread may be assigned an isolate
// but not actually enter it.
if (i::Isolate::CurrentPerIsolateThreadData() == NULL) {
i::Isolate::EnterDefaultIsolate();
}
ASSERT(i::Isolate::CurrentPerIsolateThreadData() != NULL);
ASSERT(i::Isolate::CurrentPerIsolateThreadData()->thread_id().Equals(
i::ThreadId::Current()));
ASSERT(i::Isolate::CurrentPerIsolateThreadData()->isolate() ==
i::Isolate::Current());
if (IsDead()) return false;
Isolate* isolate = Isolate::Current();
if (isolate->IsInitialized()) return true;
is_running_ = true;
has_been_setup_ = true;
has_fatal_error_ = false;
has_been_disposed_ = false;
return isolate->Init(des);
}
void V8::SetFatalError() {
is_running_ = false;
has_fatal_error_ = true;
}
void V8::TearDown() {
Isolate* isolate = Isolate::Current();
ASSERT(isolate->IsDefaultIsolate());
if (!has_been_setup_ || has_been_disposed_) return;
isolate->TearDown();
is_running_ = false;
has_been_disposed_ = true;
}
static void seed_random(uint32_t* state) {
for (int i = 0; i < 2; ++i) {
if (FLAG_random_seed != 0) {
state[i] = FLAG_random_seed;
} else if (entropy_source != NULL) {
uint32_t val;
ScopedLock lock(entropy_mutex);
entropy_source(reinterpret_cast<unsigned char*>(&val), sizeof(uint32_t));
state[i] = val;
} else {
state[i] = random();
}
}
}
// Random number generator using George Marsaglia's MWC algorithm.
static uint32_t random_base(uint32_t* state) {
// Initialize seed using the system random().
// No non-zero seed will ever become zero again.
if (state[0] == 0) seed_random(state);
// Mix the bits. Never replaces state[i] with 0 if it is nonzero.
state[0] = 18273 * (state[0] & 0xFFFF) + (state[0] >> 16);
state[1] = 36969 * (state[1] & 0xFFFF) + (state[1] >> 16);
return (state[0] << 14) + (state[1] & 0x3FFFF);
}
void V8::SetEntropySource(EntropySource source) {
entropy_source = source;
}
// Used by JavaScript APIs
uint32_t V8::Random(Isolate* isolate) {
ASSERT(isolate == Isolate::Current());
return random_base(isolate->random_seed());
}
// Used internally by the JIT and memory allocator for security
// purposes. So, we keep a different state to prevent informations
// leaks that could be used in an exploit.
uint32_t V8::RandomPrivate(Isolate* isolate) {
ASSERT(isolate == Isolate::Current());
return random_base(isolate->private_random_seed());
}
bool V8::IdleNotification() {
// Returning true tells the caller that there is no need to call
// IdleNotification again.
if (!FLAG_use_idle_notification) return true;
// Tell the heap that it may want to adjust.
return HEAP->IdleNotification();
}
// Use a union type to avoid type-aliasing optimizations in GCC.
typedef union {
double double_value;
uint64_t uint64_t_value;
} double_int_union;
Object* V8::FillHeapNumberWithRandom(Object* heap_number, Isolate* isolate) {
uint64_t random_bits = Random(isolate);
// Make a double* from address (heap_number + sizeof(double)).
double_int_union* r = reinterpret_cast<double_int_union*>(
reinterpret_cast<char*>(heap_number) +
HeapNumber::kValueOffset - kHeapObjectTag);
// Convert 32 random bits to 0.(32 random bits) in a double
// by computing:
// ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
const double binary_million = 1048576.0;
r->double_value = binary_million;
r->uint64_t_value |= random_bits;
r->double_value -= binary_million;
return heap_number;
}
void V8::InitializeOncePerProcess() {
ScopedLock lock(init_once_mutex);
if (init_once_called) return;
init_once_called = true;
// Setup the platform OS support.
OS::Setup();
use_crankshaft_ = FLAG_crankshaft;
if (Serializer::enabled()) {
use_crankshaft_ = false;
}
CPU::Setup();
if (!CPU::SupportsCrankshaft()) {
use_crankshaft_ = false;
}
RuntimeProfiler::GlobalSetup();
// Peephole optimization might interfere with deoptimization.
FLAG_peephole_optimization = !use_crankshaft_;
ElementsAccessor::InitializeOncePerProcess();
}
} } // namespace v8::internal