b8cbe08fcc
This is all blank line before/after linting errors. Review URL: http://codereview.chromium.org/7754022 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9204 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
801 lines
22 KiB
C++
801 lines
22 KiB
C++
// Copyright 2011 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// Platform specific code for Solaris 10 goes here. For the POSIX comaptible
|
|
// parts the implementation is in platform-posix.cc.
|
|
|
|
#ifdef __sparc
|
|
# error "V8 does not support the SPARC CPU architecture."
|
|
#endif
|
|
|
|
#include <sys/stack.h> // for stack alignment
|
|
#include <unistd.h> // getpagesize(), usleep()
|
|
#include <sys/mman.h> // mmap()
|
|
#include <ucontext.h> // walkstack(), getcontext()
|
|
#include <dlfcn.h> // dladdr
|
|
#include <pthread.h>
|
|
#include <sched.h> // for sched_yield
|
|
#include <semaphore.h>
|
|
#include <time.h>
|
|
#include <sys/time.h> // gettimeofday(), timeradd()
|
|
#include <errno.h>
|
|
#include <ieeefp.h> // finite()
|
|
#include <signal.h> // sigemptyset(), etc
|
|
#include <sys/regset.h>
|
|
|
|
|
|
#undef MAP_TYPE
|
|
|
|
#include "v8.h"
|
|
|
|
#include "platform.h"
|
|
#include "vm-state-inl.h"
|
|
|
|
|
|
// It seems there is a bug in some Solaris distributions (experienced in
|
|
// SunOS 5.10 Generic_141445-09) which make it difficult or impossible to
|
|
// access signbit() despite the availability of other C99 math functions.
|
|
#ifndef signbit
|
|
// Test sign - usually defined in math.h
|
|
int signbit(double x) {
|
|
// We need to take care of the special case of both positive and negative
|
|
// versions of zero.
|
|
if (x == 0) {
|
|
return fpclass(x) & FP_NZERO;
|
|
} else {
|
|
// This won't detect negative NaN but that should be okay since we don't
|
|
// assume that behavior.
|
|
return x < 0;
|
|
}
|
|
}
|
|
#endif // signbit
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
// 0 is never a valid thread id on Solaris since the main thread is 1 and
|
|
// subsequent have their ids incremented from there
|
|
static const pthread_t kNoThread = (pthread_t) 0;
|
|
|
|
|
|
double ceiling(double x) {
|
|
return ceil(x);
|
|
}
|
|
|
|
|
|
static Mutex* limit_mutex = NULL;
|
|
void OS::Setup() {
|
|
// Seed the random number generator.
|
|
// Convert the current time to a 64-bit integer first, before converting it
|
|
// to an unsigned. Going directly will cause an overflow and the seed to be
|
|
// set to all ones. The seed will be identical for different instances that
|
|
// call this setup code within the same millisecond.
|
|
uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
|
|
srandom(static_cast<unsigned int>(seed));
|
|
limit_mutex = CreateMutex();
|
|
}
|
|
|
|
|
|
uint64_t OS::CpuFeaturesImpliedByPlatform() {
|
|
return 0; // Solaris runs on a lot of things.
|
|
}
|
|
|
|
|
|
int OS::ActivationFrameAlignment() {
|
|
// GCC generates code that requires 16 byte alignment such as movdqa.
|
|
return Max(STACK_ALIGN, 16);
|
|
}
|
|
|
|
|
|
void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
|
|
__asm__ __volatile__("" : : : "memory");
|
|
*ptr = value;
|
|
}
|
|
|
|
|
|
const char* OS::LocalTimezone(double time) {
|
|
if (isnan(time)) return "";
|
|
time_t tv = static_cast<time_t>(floor(time/msPerSecond));
|
|
struct tm* t = localtime(&tv);
|
|
if (NULL == t) return "";
|
|
return tzname[0]; // The location of the timezone string on Solaris.
|
|
}
|
|
|
|
|
|
double OS::LocalTimeOffset() {
|
|
// On Solaris, struct tm does not contain a tm_gmtoff field.
|
|
time_t utc = time(NULL);
|
|
ASSERT(utc != -1);
|
|
struct tm* loc = localtime(&utc);
|
|
ASSERT(loc != NULL);
|
|
return static_cast<double>((mktime(loc) - utc) * msPerSecond);
|
|
}
|
|
|
|
|
|
// We keep the lowest and highest addresses mapped as a quick way of
|
|
// determining that pointers are outside the heap (used mostly in assertions
|
|
// and verification). The estimate is conservative, ie, not all addresses in
|
|
// 'allocated' space are actually allocated to our heap. The range is
|
|
// [lowest, highest), inclusive on the low and and exclusive on the high end.
|
|
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
|
|
static void* highest_ever_allocated = reinterpret_cast<void*>(0);
|
|
|
|
|
|
static void UpdateAllocatedSpaceLimits(void* address, int size) {
|
|
ASSERT(limit_mutex != NULL);
|
|
ScopedLock lock(limit_mutex);
|
|
|
|
lowest_ever_allocated = Min(lowest_ever_allocated, address);
|
|
highest_ever_allocated =
|
|
Max(highest_ever_allocated,
|
|
reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
|
|
}
|
|
|
|
|
|
bool OS::IsOutsideAllocatedSpace(void* address) {
|
|
return address < lowest_ever_allocated || address >= highest_ever_allocated;
|
|
}
|
|
|
|
|
|
size_t OS::AllocateAlignment() {
|
|
return static_cast<size_t>(getpagesize());
|
|
}
|
|
|
|
|
|
void* OS::Allocate(const size_t requested,
|
|
size_t* allocated,
|
|
bool is_executable) {
|
|
const size_t msize = RoundUp(requested, getpagesize());
|
|
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
|
|
void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0);
|
|
|
|
if (mbase == MAP_FAILED) {
|
|
LOG(ISOLATE, StringEvent("OS::Allocate", "mmap failed"));
|
|
return NULL;
|
|
}
|
|
*allocated = msize;
|
|
UpdateAllocatedSpaceLimits(mbase, msize);
|
|
return mbase;
|
|
}
|
|
|
|
|
|
void OS::Free(void* address, const size_t size) {
|
|
// TODO(1240712): munmap has a return value which is ignored here.
|
|
int result = munmap(address, size);
|
|
USE(result);
|
|
ASSERT(result == 0);
|
|
}
|
|
|
|
|
|
void OS::Sleep(int milliseconds) {
|
|
useconds_t ms = static_cast<useconds_t>(milliseconds);
|
|
usleep(1000 * ms);
|
|
}
|
|
|
|
|
|
void OS::Abort() {
|
|
// Redirect to std abort to signal abnormal program termination.
|
|
abort();
|
|
}
|
|
|
|
|
|
void OS::DebugBreak() {
|
|
asm("int $3");
|
|
}
|
|
|
|
|
|
class PosixMemoryMappedFile : public OS::MemoryMappedFile {
|
|
public:
|
|
PosixMemoryMappedFile(FILE* file, void* memory, int size)
|
|
: file_(file), memory_(memory), size_(size) { }
|
|
virtual ~PosixMemoryMappedFile();
|
|
virtual void* memory() { return memory_; }
|
|
virtual int size() { return size_; }
|
|
private:
|
|
FILE* file_;
|
|
void* memory_;
|
|
int size_;
|
|
};
|
|
|
|
|
|
OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
|
|
FILE* file = fopen(name, "r+");
|
|
if (file == NULL) return NULL;
|
|
|
|
fseek(file, 0, SEEK_END);
|
|
int size = ftell(file);
|
|
|
|
void* memory =
|
|
mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
|
|
return new PosixMemoryMappedFile(file, memory, size);
|
|
}
|
|
|
|
|
|
OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
|
|
void* initial) {
|
|
FILE* file = fopen(name, "w+");
|
|
if (file == NULL) return NULL;
|
|
int result = fwrite(initial, size, 1, file);
|
|
if (result < 1) {
|
|
fclose(file);
|
|
return NULL;
|
|
}
|
|
void* memory =
|
|
mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
|
|
return new PosixMemoryMappedFile(file, memory, size);
|
|
}
|
|
|
|
|
|
PosixMemoryMappedFile::~PosixMemoryMappedFile() {
|
|
if (memory_) munmap(memory_, size_);
|
|
fclose(file_);
|
|
}
|
|
|
|
|
|
void OS::LogSharedLibraryAddresses() {
|
|
}
|
|
|
|
|
|
void OS::SignalCodeMovingGC() {
|
|
}
|
|
|
|
|
|
struct StackWalker {
|
|
Vector<OS::StackFrame>& frames;
|
|
int index;
|
|
};
|
|
|
|
|
|
static int StackWalkCallback(uintptr_t pc, int signo, void* data) {
|
|
struct StackWalker* walker = static_cast<struct StackWalker*>(data);
|
|
Dl_info info;
|
|
|
|
int i = walker->index;
|
|
|
|
walker->frames[i].address = reinterpret_cast<void*>(pc);
|
|
|
|
// Make sure line termination is in place.
|
|
walker->frames[i].text[OS::kStackWalkMaxTextLen - 1] = '\0';
|
|
|
|
Vector<char> text = MutableCStrVector(walker->frames[i].text,
|
|
OS::kStackWalkMaxTextLen);
|
|
|
|
if (dladdr(reinterpret_cast<void*>(pc), &info) == 0) {
|
|
OS::SNPrintF(text, "[0x%p]", pc);
|
|
} else if ((info.dli_fname != NULL && info.dli_sname != NULL)) {
|
|
// We have symbol info.
|
|
OS::SNPrintF(text, "%s'%s+0x%x", info.dli_fname, info.dli_sname, pc);
|
|
} else {
|
|
// No local symbol info.
|
|
OS::SNPrintF(text,
|
|
"%s'0x%p [0x%p]",
|
|
info.dli_fname,
|
|
pc - reinterpret_cast<uintptr_t>(info.dli_fbase),
|
|
pc);
|
|
}
|
|
walker->index++;
|
|
return 0;
|
|
}
|
|
|
|
|
|
int OS::StackWalk(Vector<OS::StackFrame> frames) {
|
|
ucontext_t ctx;
|
|
struct StackWalker walker = { frames, 0 };
|
|
|
|
if (getcontext(&ctx) < 0) return kStackWalkError;
|
|
|
|
if (!walkcontext(&ctx, StackWalkCallback, &walker)) {
|
|
return kStackWalkError;
|
|
}
|
|
|
|
return walker.index;
|
|
}
|
|
|
|
|
|
// Constants used for mmap.
|
|
static const int kMmapFd = -1;
|
|
static const int kMmapFdOffset = 0;
|
|
|
|
|
|
VirtualMemory::VirtualMemory(size_t size) {
|
|
address_ = mmap(NULL, size, PROT_NONE,
|
|
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
|
|
kMmapFd, kMmapFdOffset);
|
|
size_ = size;
|
|
}
|
|
|
|
|
|
VirtualMemory::~VirtualMemory() {
|
|
if (IsReserved()) {
|
|
if (0 == munmap(address(), size())) address_ = MAP_FAILED;
|
|
}
|
|
}
|
|
|
|
|
|
bool VirtualMemory::IsReserved() {
|
|
return address_ != MAP_FAILED;
|
|
}
|
|
|
|
|
|
bool VirtualMemory::Commit(void* address, size_t size, bool executable) {
|
|
int prot = PROT_READ | PROT_WRITE | (executable ? PROT_EXEC : 0);
|
|
if (MAP_FAILED == mmap(address, size, prot,
|
|
MAP_PRIVATE | MAP_ANON | MAP_FIXED,
|
|
kMmapFd, kMmapFdOffset)) {
|
|
return false;
|
|
}
|
|
|
|
UpdateAllocatedSpaceLimits(address, size);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool VirtualMemory::Uncommit(void* address, size_t size) {
|
|
return mmap(address, size, PROT_NONE,
|
|
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED,
|
|
kMmapFd, kMmapFdOffset) != MAP_FAILED;
|
|
}
|
|
|
|
|
|
class Thread::PlatformData : public Malloced {
|
|
public:
|
|
PlatformData() : thread_(kNoThread) { }
|
|
|
|
pthread_t thread_; // Thread handle for pthread.
|
|
};
|
|
|
|
Thread::Thread(const Options& options)
|
|
: data_(new PlatformData()),
|
|
stack_size_(options.stack_size) {
|
|
set_name(options.name);
|
|
}
|
|
|
|
|
|
Thread::Thread(const char* name)
|
|
: data_(new PlatformData()),
|
|
stack_size_(0) {
|
|
set_name(name);
|
|
}
|
|
|
|
|
|
Thread::~Thread() {
|
|
delete data_;
|
|
}
|
|
|
|
|
|
static void* ThreadEntry(void* arg) {
|
|
Thread* thread = reinterpret_cast<Thread*>(arg);
|
|
// This is also initialized by the first argument to pthread_create() but we
|
|
// don't know which thread will run first (the original thread or the new
|
|
// one) so we initialize it here too.
|
|
thread->data()->thread_ = pthread_self();
|
|
ASSERT(thread->data()->thread_ != kNoThread);
|
|
thread->Run();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void Thread::set_name(const char* name) {
|
|
strncpy(name_, name, sizeof(name_));
|
|
name_[sizeof(name_) - 1] = '\0';
|
|
}
|
|
|
|
|
|
void Thread::Start() {
|
|
pthread_attr_t* attr_ptr = NULL;
|
|
pthread_attr_t attr;
|
|
if (stack_size_ > 0) {
|
|
pthread_attr_init(&attr);
|
|
pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_));
|
|
attr_ptr = &attr;
|
|
}
|
|
pthread_create(&data_->thread_, NULL, ThreadEntry, this);
|
|
ASSERT(data_->thread_ != kNoThread);
|
|
}
|
|
|
|
|
|
void Thread::Join() {
|
|
pthread_join(data_->thread_, NULL);
|
|
}
|
|
|
|
|
|
Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
|
|
pthread_key_t key;
|
|
int result = pthread_key_create(&key, NULL);
|
|
USE(result);
|
|
ASSERT(result == 0);
|
|
return static_cast<LocalStorageKey>(key);
|
|
}
|
|
|
|
|
|
void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
|
|
pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
|
|
int result = pthread_key_delete(pthread_key);
|
|
USE(result);
|
|
ASSERT(result == 0);
|
|
}
|
|
|
|
|
|
void* Thread::GetThreadLocal(LocalStorageKey key) {
|
|
pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
|
|
return pthread_getspecific(pthread_key);
|
|
}
|
|
|
|
|
|
void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
|
|
pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
|
|
pthread_setspecific(pthread_key, value);
|
|
}
|
|
|
|
|
|
void Thread::YieldCPU() {
|
|
sched_yield();
|
|
}
|
|
|
|
|
|
class SolarisMutex : public Mutex {
|
|
public:
|
|
SolarisMutex() {
|
|
pthread_mutexattr_t attr;
|
|
pthread_mutexattr_init(&attr);
|
|
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
|
|
pthread_mutex_init(&mutex_, &attr);
|
|
}
|
|
|
|
~SolarisMutex() { pthread_mutex_destroy(&mutex_); }
|
|
|
|
int Lock() { return pthread_mutex_lock(&mutex_); }
|
|
|
|
int Unlock() { return pthread_mutex_unlock(&mutex_); }
|
|
|
|
virtual bool TryLock() {
|
|
int result = pthread_mutex_trylock(&mutex_);
|
|
// Return false if the lock is busy and locking failed.
|
|
if (result == EBUSY) {
|
|
return false;
|
|
}
|
|
ASSERT(result == 0); // Verify no other errors.
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
pthread_mutex_t mutex_;
|
|
};
|
|
|
|
|
|
Mutex* OS::CreateMutex() {
|
|
return new SolarisMutex();
|
|
}
|
|
|
|
|
|
class SolarisSemaphore : public Semaphore {
|
|
public:
|
|
explicit SolarisSemaphore(int count) { sem_init(&sem_, 0, count); }
|
|
virtual ~SolarisSemaphore() { sem_destroy(&sem_); }
|
|
|
|
virtual void Wait();
|
|
virtual bool Wait(int timeout);
|
|
virtual void Signal() { sem_post(&sem_); }
|
|
private:
|
|
sem_t sem_;
|
|
};
|
|
|
|
|
|
void SolarisSemaphore::Wait() {
|
|
while (true) {
|
|
int result = sem_wait(&sem_);
|
|
if (result == 0) return; // Successfully got semaphore.
|
|
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
|
|
}
|
|
}
|
|
|
|
|
|
#ifndef TIMEVAL_TO_TIMESPEC
|
|
#define TIMEVAL_TO_TIMESPEC(tv, ts) do { \
|
|
(ts)->tv_sec = (tv)->tv_sec; \
|
|
(ts)->tv_nsec = (tv)->tv_usec * 1000; \
|
|
} while (false)
|
|
#endif
|
|
|
|
|
|
#ifndef timeradd
|
|
#define timeradd(a, b, result) \
|
|
do { \
|
|
(result)->tv_sec = (a)->tv_sec + (b)->tv_sec; \
|
|
(result)->tv_usec = (a)->tv_usec + (b)->tv_usec; \
|
|
if ((result)->tv_usec >= 1000000) { \
|
|
++(result)->tv_sec; \
|
|
(result)->tv_usec -= 1000000; \
|
|
} \
|
|
} while (0)
|
|
#endif
|
|
|
|
|
|
bool SolarisSemaphore::Wait(int timeout) {
|
|
const long kOneSecondMicros = 1000000; // NOLINT
|
|
|
|
// Split timeout into second and nanosecond parts.
|
|
struct timeval delta;
|
|
delta.tv_usec = timeout % kOneSecondMicros;
|
|
delta.tv_sec = timeout / kOneSecondMicros;
|
|
|
|
struct timeval current_time;
|
|
// Get the current time.
|
|
if (gettimeofday(¤t_time, NULL) == -1) {
|
|
return false;
|
|
}
|
|
|
|
// Calculate time for end of timeout.
|
|
struct timeval end_time;
|
|
timeradd(¤t_time, &delta, &end_time);
|
|
|
|
struct timespec ts;
|
|
TIMEVAL_TO_TIMESPEC(&end_time, &ts);
|
|
// Wait for semaphore signalled or timeout.
|
|
while (true) {
|
|
int result = sem_timedwait(&sem_, &ts);
|
|
if (result == 0) return true; // Successfully got semaphore.
|
|
if (result == -1 && errno == ETIMEDOUT) return false; // Timeout.
|
|
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
|
|
}
|
|
}
|
|
|
|
|
|
Semaphore* OS::CreateSemaphore(int count) {
|
|
return new SolarisSemaphore(count);
|
|
}
|
|
|
|
|
|
static pthread_t GetThreadID() {
|
|
return pthread_self();
|
|
}
|
|
|
|
static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
|
|
USE(info);
|
|
if (signal != SIGPROF) return;
|
|
Isolate* isolate = Isolate::UncheckedCurrent();
|
|
if (isolate == NULL || !isolate->IsInitialized() || !isolate->IsInUse()) {
|
|
// We require a fully initialized and entered isolate.
|
|
return;
|
|
}
|
|
if (v8::Locker::IsActive() &&
|
|
!isolate->thread_manager()->IsLockedByCurrentThread()) {
|
|
return;
|
|
}
|
|
|
|
Sampler* sampler = isolate->logger()->sampler();
|
|
if (sampler == NULL || !sampler->IsActive()) return;
|
|
|
|
TickSample sample_obj;
|
|
TickSample* sample = CpuProfiler::TickSampleEvent(isolate);
|
|
if (sample == NULL) sample = &sample_obj;
|
|
|
|
// Extracting the sample from the context is extremely machine dependent.
|
|
ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
|
|
mcontext_t& mcontext = ucontext->uc_mcontext;
|
|
sample->state = isolate->current_vm_state();
|
|
|
|
sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_PC]);
|
|
sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_SP]);
|
|
sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_FP]);
|
|
|
|
sampler->SampleStack(sample);
|
|
sampler->Tick(sample);
|
|
}
|
|
|
|
class Sampler::PlatformData : public Malloced {
|
|
public:
|
|
PlatformData() : vm_tid_(GetThreadID()) {}
|
|
|
|
pthread_t vm_tid() const { return vm_tid_; }
|
|
|
|
private:
|
|
pthread_t vm_tid_;
|
|
};
|
|
|
|
|
|
class SignalSender : public Thread {
|
|
public:
|
|
enum SleepInterval {
|
|
HALF_INTERVAL,
|
|
FULL_INTERVAL
|
|
};
|
|
|
|
explicit SignalSender(int interval)
|
|
: Thread("SignalSender"),
|
|
interval_(interval) {}
|
|
|
|
static void InstallSignalHandler() {
|
|
struct sigaction sa;
|
|
sa.sa_sigaction = ProfilerSignalHandler;
|
|
sigemptyset(&sa.sa_mask);
|
|
sa.sa_flags = SA_RESTART | SA_SIGINFO;
|
|
signal_handler_installed_ =
|
|
(sigaction(SIGPROF, &sa, &old_signal_handler_) == 0);
|
|
}
|
|
|
|
static void RestoreSignalHandler() {
|
|
if (signal_handler_installed_) {
|
|
sigaction(SIGPROF, &old_signal_handler_, 0);
|
|
signal_handler_installed_ = false;
|
|
}
|
|
}
|
|
|
|
static void AddActiveSampler(Sampler* sampler) {
|
|
ScopedLock lock(mutex_);
|
|
SamplerRegistry::AddActiveSampler(sampler);
|
|
if (instance_ == NULL) {
|
|
// Start a thread that will send SIGPROF signal to VM threads,
|
|
// when CPU profiling will be enabled.
|
|
instance_ = new SignalSender(sampler->interval());
|
|
instance_->Start();
|
|
} else {
|
|
ASSERT(instance_->interval_ == sampler->interval());
|
|
}
|
|
}
|
|
|
|
static void RemoveActiveSampler(Sampler* sampler) {
|
|
ScopedLock lock(mutex_);
|
|
SamplerRegistry::RemoveActiveSampler(sampler);
|
|
if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
|
|
RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_);
|
|
delete instance_;
|
|
instance_ = NULL;
|
|
RestoreSignalHandler();
|
|
}
|
|
}
|
|
|
|
// Implement Thread::Run().
|
|
virtual void Run() {
|
|
SamplerRegistry::State state;
|
|
while ((state = SamplerRegistry::GetState()) !=
|
|
SamplerRegistry::HAS_NO_SAMPLERS) {
|
|
bool cpu_profiling_enabled =
|
|
(state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
|
|
bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
|
|
if (cpu_profiling_enabled && !signal_handler_installed_) {
|
|
InstallSignalHandler();
|
|
} else if (!cpu_profiling_enabled && signal_handler_installed_) {
|
|
RestoreSignalHandler();
|
|
}
|
|
|
|
// When CPU profiling is enabled both JavaScript and C++ code is
|
|
// profiled. We must not suspend.
|
|
if (!cpu_profiling_enabled) {
|
|
if (rate_limiter_.SuspendIfNecessary()) continue;
|
|
}
|
|
if (cpu_profiling_enabled && runtime_profiler_enabled) {
|
|
if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
|
|
return;
|
|
}
|
|
Sleep(HALF_INTERVAL);
|
|
if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
|
|
return;
|
|
}
|
|
Sleep(HALF_INTERVAL);
|
|
} else {
|
|
if (cpu_profiling_enabled) {
|
|
if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile,
|
|
this)) {
|
|
return;
|
|
}
|
|
}
|
|
if (runtime_profiler_enabled) {
|
|
if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile,
|
|
NULL)) {
|
|
return;
|
|
}
|
|
}
|
|
Sleep(FULL_INTERVAL);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void DoCpuProfile(Sampler* sampler, void* raw_sender) {
|
|
if (!sampler->IsProfiling()) return;
|
|
SignalSender* sender = reinterpret_cast<SignalSender*>(raw_sender);
|
|
sender->SendProfilingSignal(sampler->platform_data()->vm_tid());
|
|
}
|
|
|
|
static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
|
|
if (!sampler->isolate()->IsInitialized()) return;
|
|
sampler->isolate()->runtime_profiler()->NotifyTick();
|
|
}
|
|
|
|
void SendProfilingSignal(pthread_t tid) {
|
|
if (!signal_handler_installed_) return;
|
|
pthread_kill(tid, SIGPROF);
|
|
}
|
|
|
|
void Sleep(SleepInterval full_or_half) {
|
|
// Convert ms to us and subtract 100 us to compensate delays
|
|
// occuring during signal delivery.
|
|
useconds_t interval = interval_ * 1000 - 100;
|
|
if (full_or_half == HALF_INTERVAL) interval /= 2;
|
|
int result = usleep(interval);
|
|
#ifdef DEBUG
|
|
if (result != 0 && errno != EINTR) {
|
|
fprintf(stderr,
|
|
"SignalSender usleep error; interval = %u, errno = %d\n",
|
|
interval,
|
|
errno);
|
|
ASSERT(result == 0 || errno == EINTR);
|
|
}
|
|
#endif
|
|
USE(result);
|
|
}
|
|
|
|
const int interval_;
|
|
RuntimeProfilerRateLimiter rate_limiter_;
|
|
|
|
// Protects the process wide state below.
|
|
static Mutex* mutex_;
|
|
static SignalSender* instance_;
|
|
static bool signal_handler_installed_;
|
|
static struct sigaction old_signal_handler_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(SignalSender);
|
|
};
|
|
|
|
Mutex* SignalSender::mutex_ = OS::CreateMutex();
|
|
SignalSender* SignalSender::instance_ = NULL;
|
|
struct sigaction SignalSender::old_signal_handler_;
|
|
bool SignalSender::signal_handler_installed_ = false;
|
|
|
|
|
|
Sampler::Sampler(Isolate* isolate, int interval)
|
|
: isolate_(isolate),
|
|
interval_(interval),
|
|
profiling_(false),
|
|
active_(false),
|
|
samples_taken_(0) {
|
|
data_ = new PlatformData;
|
|
}
|
|
|
|
|
|
Sampler::~Sampler() {
|
|
ASSERT(!IsActive());
|
|
delete data_;
|
|
}
|
|
|
|
|
|
void Sampler::Start() {
|
|
ASSERT(!IsActive());
|
|
SetActive(true);
|
|
SignalSender::AddActiveSampler(this);
|
|
}
|
|
|
|
|
|
void Sampler::Stop() {
|
|
ASSERT(IsActive());
|
|
SignalSender::RemoveActiveSampler(this);
|
|
SetActive(false);
|
|
}
|
|
|
|
} } // namespace v8::internal
|