83b96b5832
Several code patching paths actually flushed the icache twice. This CL removes all icache flushing on wasm updates from assembler.cc and pushes it into the platform specific unchecked_update_wasm_size and unchecked_update_wasm_memory_reference methods. They were already receiving the ICacheFlushMode, and on some platforms would already perform the flush. R=ahaas@chromium.org Change-Id: I388701f13d733cb5387d5bed4dbed33879179a91 Reviewed-on: https://chromium-review.googlesource.com/450246 Commit-Queue: Clemens Hammacher <clemensh@chromium.org> Reviewed-by: Andreas Haas <ahaas@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Cr-Commit-Position: refs/heads/master@{#43635}
1932 lines
63 KiB
C++
1932 lines
63 KiB
C++
// Copyright (c) 1994-2006 Sun Microsystems Inc.
|
|
// All Rights Reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// - Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// - Redistribution in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// - Neither the name of Sun Microsystems or the names of contributors may
|
|
// be used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// The original source code covered by the above license above has been
|
|
// modified significantly by Google Inc.
|
|
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
|
|
#include "src/assembler.h"
|
|
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include <cmath>
|
|
|
|
#include "src/api.h"
|
|
#include "src/assembler-inl.h"
|
|
#include "src/base/cpu.h"
|
|
#include "src/base/functional.h"
|
|
#include "src/base/ieee754.h"
|
|
#include "src/base/lazy-instance.h"
|
|
#include "src/base/platform/platform.h"
|
|
#include "src/base/utils/random-number-generator.h"
|
|
#include "src/codegen.h"
|
|
#include "src/counters.h"
|
|
#include "src/debug/debug.h"
|
|
#include "src/deoptimizer.h"
|
|
#include "src/disassembler.h"
|
|
#include "src/execution.h"
|
|
#include "src/ic/ic.h"
|
|
#include "src/ic/stub-cache.h"
|
|
#include "src/interpreter/interpreter.h"
|
|
#include "src/ostreams.h"
|
|
#include "src/regexp/jsregexp.h"
|
|
#include "src/regexp/regexp-macro-assembler.h"
|
|
#include "src/regexp/regexp-stack.h"
|
|
#include "src/register-configuration.h"
|
|
#include "src/runtime/runtime.h"
|
|
#include "src/simulator.h" // For flushing instruction cache.
|
|
#include "src/snapshot/serializer-common.h"
|
|
#include "src/wasm/wasm-external-refs.h"
|
|
|
|
// Include native regexp-macro-assembler.
|
|
#ifndef V8_INTERPRETED_REGEXP
|
|
#if V8_TARGET_ARCH_IA32
|
|
#include "src/regexp/ia32/regexp-macro-assembler-ia32.h" // NOLINT
|
|
#elif V8_TARGET_ARCH_X64
|
|
#include "src/regexp/x64/regexp-macro-assembler-x64.h" // NOLINT
|
|
#elif V8_TARGET_ARCH_ARM64
|
|
#include "src/regexp/arm64/regexp-macro-assembler-arm64.h" // NOLINT
|
|
#elif V8_TARGET_ARCH_ARM
|
|
#include "src/regexp/arm/regexp-macro-assembler-arm.h" // NOLINT
|
|
#elif V8_TARGET_ARCH_PPC
|
|
#include "src/regexp/ppc/regexp-macro-assembler-ppc.h" // NOLINT
|
|
#elif V8_TARGET_ARCH_MIPS
|
|
#include "src/regexp/mips/regexp-macro-assembler-mips.h" // NOLINT
|
|
#elif V8_TARGET_ARCH_MIPS64
|
|
#include "src/regexp/mips64/regexp-macro-assembler-mips64.h" // NOLINT
|
|
#elif V8_TARGET_ARCH_S390
|
|
#include "src/regexp/s390/regexp-macro-assembler-s390.h" // NOLINT
|
|
#elif V8_TARGET_ARCH_X87
|
|
#include "src/regexp/x87/regexp-macro-assembler-x87.h" // NOLINT
|
|
#else // Unknown architecture.
|
|
#error "Unknown architecture."
|
|
#endif // Target architecture.
|
|
#endif // V8_INTERPRETED_REGEXP
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Common double constants.
|
|
|
|
struct DoubleConstant BASE_EMBEDDED {
|
|
double min_int;
|
|
double one_half;
|
|
double minus_one_half;
|
|
double negative_infinity;
|
|
uint64_t the_hole_nan;
|
|
double uint32_bias;
|
|
};
|
|
|
|
static DoubleConstant double_constants;
|
|
|
|
static struct V8_ALIGNED(16) {
|
|
uint32_t a;
|
|
uint32_t b;
|
|
uint32_t c;
|
|
uint32_t d;
|
|
} float_absolute_constant = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
|
|
|
|
static struct V8_ALIGNED(16) {
|
|
uint32_t a;
|
|
uint32_t b;
|
|
uint32_t c;
|
|
uint32_t d;
|
|
} float_negate_constant = {0x80000000, 0x80000000, 0x80000000, 0x80000000};
|
|
|
|
static struct V8_ALIGNED(16) {
|
|
uint64_t a;
|
|
uint64_t b;
|
|
} double_absolute_constant = {V8_UINT64_C(0x7FFFFFFFFFFFFFFF),
|
|
V8_UINT64_C(0x7FFFFFFFFFFFFFFF)};
|
|
|
|
static struct V8_ALIGNED(16) {
|
|
uint64_t a;
|
|
uint64_t b;
|
|
} double_negate_constant = {V8_UINT64_C(0x8000000000000000),
|
|
V8_UINT64_C(0x8000000000000000)};
|
|
|
|
const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING";
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Implementation of AssemblerBase
|
|
|
|
AssemblerBase::AssemblerBase(Isolate* isolate, void* buffer, int buffer_size)
|
|
: isolate_(isolate),
|
|
jit_cookie_(0),
|
|
enabled_cpu_features_(0),
|
|
emit_debug_code_(FLAG_debug_code),
|
|
predictable_code_size_(false),
|
|
// We may use the assembler without an isolate.
|
|
serializer_enabled_(isolate && isolate->serializer_enabled()),
|
|
constant_pool_available_(false) {
|
|
DCHECK_NOT_NULL(isolate);
|
|
if (FLAG_mask_constants_with_cookie) {
|
|
jit_cookie_ = isolate->random_number_generator()->NextInt();
|
|
}
|
|
own_buffer_ = buffer == NULL;
|
|
if (buffer_size == 0) buffer_size = kMinimalBufferSize;
|
|
DCHECK(buffer_size > 0);
|
|
if (own_buffer_) buffer = NewArray<byte>(buffer_size);
|
|
buffer_ = static_cast<byte*>(buffer);
|
|
buffer_size_ = buffer_size;
|
|
|
|
pc_ = buffer_;
|
|
}
|
|
|
|
|
|
AssemblerBase::~AssemblerBase() {
|
|
if (own_buffer_) DeleteArray(buffer_);
|
|
}
|
|
|
|
|
|
void AssemblerBase::FlushICache(Isolate* isolate, void* start, size_t size) {
|
|
if (size == 0) return;
|
|
|
|
#if defined(USE_SIMULATOR)
|
|
base::LockGuard<base::Mutex> lock_guard(isolate->simulator_i_cache_mutex());
|
|
Simulator::FlushICache(isolate->simulator_i_cache(), start, size);
|
|
#else
|
|
CpuFeatures::FlushICache(start, size);
|
|
#endif // USE_SIMULATOR
|
|
}
|
|
|
|
|
|
void AssemblerBase::Print() {
|
|
OFStream os(stdout);
|
|
v8::internal::Disassembler::Decode(isolate(), &os, buffer_, pc_, nullptr);
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Implementation of PredictableCodeSizeScope
|
|
|
|
PredictableCodeSizeScope::PredictableCodeSizeScope(AssemblerBase* assembler)
|
|
: PredictableCodeSizeScope(assembler, -1) {}
|
|
|
|
|
|
PredictableCodeSizeScope::PredictableCodeSizeScope(AssemblerBase* assembler,
|
|
int expected_size)
|
|
: assembler_(assembler),
|
|
expected_size_(expected_size),
|
|
start_offset_(assembler->pc_offset()),
|
|
old_value_(assembler->predictable_code_size()) {
|
|
assembler_->set_predictable_code_size(true);
|
|
}
|
|
|
|
|
|
PredictableCodeSizeScope::~PredictableCodeSizeScope() {
|
|
// TODO(svenpanne) Remove the 'if' when everything works.
|
|
if (expected_size_ >= 0) {
|
|
CHECK_EQ(expected_size_, assembler_->pc_offset() - start_offset_);
|
|
}
|
|
assembler_->set_predictable_code_size(old_value_);
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Implementation of CpuFeatureScope
|
|
|
|
#ifdef DEBUG
|
|
CpuFeatureScope::CpuFeatureScope(AssemblerBase* assembler, CpuFeature f,
|
|
CheckPolicy check)
|
|
: assembler_(assembler) {
|
|
DCHECK_IMPLIES(check == kCheckSupported, CpuFeatures::IsSupported(f));
|
|
old_enabled_ = assembler_->enabled_cpu_features();
|
|
assembler_->EnableCpuFeature(f);
|
|
}
|
|
|
|
CpuFeatureScope::~CpuFeatureScope() {
|
|
assembler_->set_enabled_cpu_features(old_enabled_);
|
|
}
|
|
#endif
|
|
|
|
|
|
bool CpuFeatures::initialized_ = false;
|
|
unsigned CpuFeatures::supported_ = 0;
|
|
unsigned CpuFeatures::icache_line_size_ = 0;
|
|
unsigned CpuFeatures::dcache_line_size_ = 0;
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Implementation of RelocInfoWriter and RelocIterator
|
|
//
|
|
// Relocation information is written backwards in memory, from high addresses
|
|
// towards low addresses, byte by byte. Therefore, in the encodings listed
|
|
// below, the first byte listed it at the highest address, and successive
|
|
// bytes in the record are at progressively lower addresses.
|
|
//
|
|
// Encoding
|
|
//
|
|
// The most common modes are given single-byte encodings. Also, it is
|
|
// easy to identify the type of reloc info and skip unwanted modes in
|
|
// an iteration.
|
|
//
|
|
// The encoding relies on the fact that there are fewer than 14
|
|
// different relocation modes using standard non-compact encoding.
|
|
//
|
|
// The first byte of a relocation record has a tag in its low 2 bits:
|
|
// Here are the record schemes, depending on the low tag and optional higher
|
|
// tags.
|
|
//
|
|
// Low tag:
|
|
// 00: embedded_object: [6-bit pc delta] 00
|
|
//
|
|
// 01: code_target: [6-bit pc delta] 01
|
|
//
|
|
// 10: short_data_record: [6-bit pc delta] 10 followed by
|
|
// [6-bit data delta] [2-bit data type tag]
|
|
//
|
|
// 11: long_record [6 bit reloc mode] 11
|
|
// followed by pc delta
|
|
// followed by optional data depending on type.
|
|
//
|
|
// 1-bit data type tags, used in short_data_record and data_jump long_record:
|
|
// code_target_with_id: 0
|
|
// deopt_reason: 1
|
|
//
|
|
// If a pc delta exceeds 6 bits, it is split into a remainder that fits into
|
|
// 6 bits and a part that does not. The latter is encoded as a long record
|
|
// with PC_JUMP as pseudo reloc info mode. The former is encoded as part of
|
|
// the following record in the usual way. The long pc jump record has variable
|
|
// length:
|
|
// pc-jump: [PC_JUMP] 11
|
|
// [7 bits data] 0
|
|
// ...
|
|
// [7 bits data] 1
|
|
// (Bits 6..31 of pc delta, with leading zeroes
|
|
// dropped, and last non-zero chunk tagged with 1.)
|
|
|
|
const int kTagBits = 2;
|
|
const int kTagMask = (1 << kTagBits) - 1;
|
|
const int kLongTagBits = 6;
|
|
const int kShortDataTypeTagBits = 1;
|
|
const int kShortDataBits = kBitsPerByte - kShortDataTypeTagBits;
|
|
|
|
const int kEmbeddedObjectTag = 0;
|
|
const int kCodeTargetTag = 1;
|
|
const int kLocatableTag = 2;
|
|
const int kDefaultTag = 3;
|
|
|
|
const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
|
|
const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
|
|
const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask;
|
|
|
|
const int kChunkBits = 7;
|
|
const int kChunkMask = (1 << kChunkBits) - 1;
|
|
const int kLastChunkTagBits = 1;
|
|
const int kLastChunkTagMask = 1;
|
|
const int kLastChunkTag = 1;
|
|
|
|
const int kCodeWithIdTag = 0;
|
|
const int kDeoptReasonTag = 1;
|
|
|
|
void RelocInfo::update_wasm_memory_reference(
|
|
Address old_base, Address new_base, ICacheFlushMode icache_flush_mode) {
|
|
DCHECK(IsWasmMemoryReference(rmode_));
|
|
DCHECK_GE(wasm_memory_reference(), old_base);
|
|
Address updated_reference = new_base + (wasm_memory_reference() - old_base);
|
|
// The reference is not checked here but at runtime. Validity of references
|
|
// may change over time.
|
|
unchecked_update_wasm_memory_reference(updated_reference, icache_flush_mode);
|
|
}
|
|
|
|
void RelocInfo::update_wasm_memory_size(uint32_t old_size, uint32_t new_size,
|
|
ICacheFlushMode icache_flush_mode) {
|
|
DCHECK(IsWasmMemorySizeReference(rmode_));
|
|
uint32_t current_size_reference = wasm_memory_size_reference();
|
|
uint32_t updated_size_reference =
|
|
new_size + (current_size_reference - old_size);
|
|
unchecked_update_wasm_size(updated_size_reference, icache_flush_mode);
|
|
}
|
|
|
|
void RelocInfo::update_wasm_global_reference(
|
|
Address old_base, Address new_base, ICacheFlushMode icache_flush_mode) {
|
|
DCHECK(IsWasmGlobalReference(rmode_));
|
|
Address updated_reference;
|
|
DCHECK_LE(old_base, wasm_global_reference());
|
|
updated_reference = new_base + (wasm_global_reference() - old_base);
|
|
DCHECK_LE(new_base, updated_reference);
|
|
unchecked_update_wasm_memory_reference(updated_reference, icache_flush_mode);
|
|
}
|
|
|
|
void RelocInfo::update_wasm_function_table_size_reference(
|
|
uint32_t old_size, uint32_t new_size, ICacheFlushMode icache_flush_mode) {
|
|
DCHECK(IsWasmFunctionTableSizeReference(rmode_));
|
|
uint32_t current_size_reference = wasm_function_table_size_reference();
|
|
uint32_t updated_size_reference =
|
|
new_size + (current_size_reference - old_size);
|
|
unchecked_update_wasm_size(updated_size_reference, icache_flush_mode);
|
|
}
|
|
|
|
void RelocInfo::set_target_address(Address target,
|
|
WriteBarrierMode write_barrier_mode,
|
|
ICacheFlushMode icache_flush_mode) {
|
|
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
|
|
Assembler::set_target_address_at(isolate_, pc_, host_, target,
|
|
icache_flush_mode);
|
|
if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
|
|
IsCodeTarget(rmode_)) {
|
|
Object* target_code = Code::GetCodeFromTargetAddress(target);
|
|
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
|
|
host(), this, HeapObject::cast(target_code));
|
|
}
|
|
}
|
|
|
|
uint32_t RelocInfoWriter::WriteLongPCJump(uint32_t pc_delta) {
|
|
// Return if the pc_delta can fit in kSmallPCDeltaBits bits.
|
|
// Otherwise write a variable length PC jump for the bits that do
|
|
// not fit in the kSmallPCDeltaBits bits.
|
|
if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
|
|
WriteMode(RelocInfo::PC_JUMP);
|
|
uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
|
|
DCHECK(pc_jump > 0);
|
|
// Write kChunkBits size chunks of the pc_jump.
|
|
for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
|
|
byte b = pc_jump & kChunkMask;
|
|
*--pos_ = b << kLastChunkTagBits;
|
|
}
|
|
// Tag the last chunk so it can be identified.
|
|
*pos_ = *pos_ | kLastChunkTag;
|
|
// Return the remaining kSmallPCDeltaBits of the pc_delta.
|
|
return pc_delta & kSmallPCDeltaMask;
|
|
}
|
|
|
|
|
|
void RelocInfoWriter::WriteShortTaggedPC(uint32_t pc_delta, int tag) {
|
|
// Write a byte of tagged pc-delta, possibly preceded by an explicit pc-jump.
|
|
pc_delta = WriteLongPCJump(pc_delta);
|
|
*--pos_ = pc_delta << kTagBits | tag;
|
|
}
|
|
|
|
|
|
void RelocInfoWriter::WriteShortTaggedData(intptr_t data_delta, int tag) {
|
|
*--pos_ = static_cast<byte>(data_delta << kShortDataTypeTagBits | tag);
|
|
}
|
|
|
|
|
|
void RelocInfoWriter::WriteMode(RelocInfo::Mode rmode) {
|
|
STATIC_ASSERT(RelocInfo::NUMBER_OF_MODES <= (1 << kLongTagBits));
|
|
*--pos_ = static_cast<int>((rmode << kTagBits) | kDefaultTag);
|
|
}
|
|
|
|
|
|
void RelocInfoWriter::WriteModeAndPC(uint32_t pc_delta, RelocInfo::Mode rmode) {
|
|
// Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
|
|
pc_delta = WriteLongPCJump(pc_delta);
|
|
WriteMode(rmode);
|
|
*--pos_ = pc_delta;
|
|
}
|
|
|
|
|
|
void RelocInfoWriter::WriteIntData(int number) {
|
|
for (int i = 0; i < kIntSize; i++) {
|
|
*--pos_ = static_cast<byte>(number);
|
|
// Signed right shift is arithmetic shift. Tested in test-utils.cc.
|
|
number = number >> kBitsPerByte;
|
|
}
|
|
}
|
|
|
|
|
|
void RelocInfoWriter::WriteData(intptr_t data_delta) {
|
|
for (int i = 0; i < kIntptrSize; i++) {
|
|
*--pos_ = static_cast<byte>(data_delta);
|
|
// Signed right shift is arithmetic shift. Tested in test-utils.cc.
|
|
data_delta = data_delta >> kBitsPerByte;
|
|
}
|
|
}
|
|
|
|
|
|
void RelocInfoWriter::Write(const RelocInfo* rinfo) {
|
|
RelocInfo::Mode rmode = rinfo->rmode();
|
|
#ifdef DEBUG
|
|
byte* begin_pos = pos_;
|
|
#endif
|
|
DCHECK(rinfo->rmode() < RelocInfo::NUMBER_OF_MODES);
|
|
DCHECK(rinfo->pc() - last_pc_ >= 0);
|
|
// Use unsigned delta-encoding for pc.
|
|
uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_);
|
|
|
|
// The two most common modes are given small tags, and usually fit in a byte.
|
|
if (rmode == RelocInfo::EMBEDDED_OBJECT) {
|
|
WriteShortTaggedPC(pc_delta, kEmbeddedObjectTag);
|
|
} else if (rmode == RelocInfo::CODE_TARGET) {
|
|
WriteShortTaggedPC(pc_delta, kCodeTargetTag);
|
|
DCHECK(begin_pos - pos_ <= RelocInfo::kMaxCallSize);
|
|
} else if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
|
|
// Use signed delta-encoding for id.
|
|
DCHECK_EQ(static_cast<int>(rinfo->data()), rinfo->data());
|
|
int id_delta = static_cast<int>(rinfo->data()) - last_id_;
|
|
// Check if delta is small enough to fit in a tagged byte.
|
|
if (is_intn(id_delta, kShortDataBits)) {
|
|
WriteShortTaggedPC(pc_delta, kLocatableTag);
|
|
WriteShortTaggedData(id_delta, kCodeWithIdTag);
|
|
} else {
|
|
// Otherwise, use costly encoding.
|
|
WriteModeAndPC(pc_delta, rmode);
|
|
WriteIntData(id_delta);
|
|
}
|
|
last_id_ = static_cast<int>(rinfo->data());
|
|
} else if (rmode == RelocInfo::DEOPT_REASON) {
|
|
DCHECK(rinfo->data() < (1 << kShortDataBits));
|
|
WriteShortTaggedPC(pc_delta, kLocatableTag);
|
|
WriteShortTaggedData(rinfo->data(), kDeoptReasonTag);
|
|
} else {
|
|
WriteModeAndPC(pc_delta, rmode);
|
|
if (RelocInfo::IsComment(rmode)) {
|
|
WriteData(rinfo->data());
|
|
} else if (RelocInfo::IsConstPool(rmode) ||
|
|
RelocInfo::IsVeneerPool(rmode) || RelocInfo::IsDeoptId(rmode) ||
|
|
RelocInfo::IsDeoptPosition(rmode) ||
|
|
RelocInfo::IsWasmProtectedLanding(rmode)) {
|
|
WriteIntData(static_cast<int>(rinfo->data()));
|
|
}
|
|
}
|
|
last_pc_ = rinfo->pc();
|
|
last_mode_ = rmode;
|
|
#ifdef DEBUG
|
|
DCHECK(begin_pos - pos_ <= kMaxSize);
|
|
#endif
|
|
}
|
|
|
|
|
|
inline int RelocIterator::AdvanceGetTag() {
|
|
return *--pos_ & kTagMask;
|
|
}
|
|
|
|
|
|
inline RelocInfo::Mode RelocIterator::GetMode() {
|
|
return static_cast<RelocInfo::Mode>((*pos_ >> kTagBits) &
|
|
((1 << kLongTagBits) - 1));
|
|
}
|
|
|
|
|
|
inline void RelocIterator::ReadShortTaggedPC() {
|
|
rinfo_.pc_ += *pos_ >> kTagBits;
|
|
}
|
|
|
|
|
|
inline void RelocIterator::AdvanceReadPC() {
|
|
rinfo_.pc_ += *--pos_;
|
|
}
|
|
|
|
|
|
void RelocIterator::AdvanceReadId() {
|
|
int x = 0;
|
|
for (int i = 0; i < kIntSize; i++) {
|
|
x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
|
|
}
|
|
last_id_ += x;
|
|
rinfo_.data_ = last_id_;
|
|
}
|
|
|
|
|
|
void RelocIterator::AdvanceReadInt() {
|
|
int x = 0;
|
|
for (int i = 0; i < kIntSize; i++) {
|
|
x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
|
|
}
|
|
rinfo_.data_ = x;
|
|
}
|
|
|
|
|
|
void RelocIterator::AdvanceReadData() {
|
|
intptr_t x = 0;
|
|
for (int i = 0; i < kIntptrSize; i++) {
|
|
x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
|
|
}
|
|
rinfo_.data_ = x;
|
|
}
|
|
|
|
|
|
void RelocIterator::AdvanceReadLongPCJump() {
|
|
// Read the 32-kSmallPCDeltaBits most significant bits of the
|
|
// pc jump in kChunkBits bit chunks and shift them into place.
|
|
// Stop when the last chunk is encountered.
|
|
uint32_t pc_jump = 0;
|
|
for (int i = 0; i < kIntSize; i++) {
|
|
byte pc_jump_part = *--pos_;
|
|
pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
|
|
if ((pc_jump_part & kLastChunkTagMask) == 1) break;
|
|
}
|
|
// The least significant kSmallPCDeltaBits bits will be added
|
|
// later.
|
|
rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
|
|
}
|
|
|
|
|
|
inline int RelocIterator::GetShortDataTypeTag() {
|
|
return *pos_ & ((1 << kShortDataTypeTagBits) - 1);
|
|
}
|
|
|
|
|
|
inline void RelocIterator::ReadShortTaggedId() {
|
|
int8_t signed_b = *pos_;
|
|
// Signed right shift is arithmetic shift. Tested in test-utils.cc.
|
|
last_id_ += signed_b >> kShortDataTypeTagBits;
|
|
rinfo_.data_ = last_id_;
|
|
}
|
|
|
|
|
|
inline void RelocIterator::ReadShortTaggedData() {
|
|
uint8_t unsigned_b = *pos_;
|
|
rinfo_.data_ = unsigned_b >> kShortDataTypeTagBits;
|
|
}
|
|
|
|
|
|
void RelocIterator::next() {
|
|
DCHECK(!done());
|
|
// Basically, do the opposite of RelocInfoWriter::Write.
|
|
// Reading of data is as far as possible avoided for unwanted modes,
|
|
// but we must always update the pc.
|
|
//
|
|
// We exit this loop by returning when we find a mode we want.
|
|
while (pos_ > end_) {
|
|
int tag = AdvanceGetTag();
|
|
if (tag == kEmbeddedObjectTag) {
|
|
ReadShortTaggedPC();
|
|
if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
|
|
} else if (tag == kCodeTargetTag) {
|
|
ReadShortTaggedPC();
|
|
if (SetMode(RelocInfo::CODE_TARGET)) return;
|
|
} else if (tag == kLocatableTag) {
|
|
ReadShortTaggedPC();
|
|
Advance();
|
|
int data_type_tag = GetShortDataTypeTag();
|
|
if (data_type_tag == kCodeWithIdTag) {
|
|
if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) {
|
|
ReadShortTaggedId();
|
|
return;
|
|
}
|
|
} else {
|
|
DCHECK(data_type_tag == kDeoptReasonTag);
|
|
if (SetMode(RelocInfo::DEOPT_REASON)) {
|
|
ReadShortTaggedData();
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
DCHECK(tag == kDefaultTag);
|
|
RelocInfo::Mode rmode = GetMode();
|
|
if (rmode == RelocInfo::PC_JUMP) {
|
|
AdvanceReadLongPCJump();
|
|
} else {
|
|
AdvanceReadPC();
|
|
if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
|
|
if (SetMode(rmode)) {
|
|
AdvanceReadId();
|
|
return;
|
|
}
|
|
Advance(kIntSize);
|
|
} else if (RelocInfo::IsComment(rmode)) {
|
|
if (SetMode(rmode)) {
|
|
AdvanceReadData();
|
|
return;
|
|
}
|
|
Advance(kIntptrSize);
|
|
} else if (RelocInfo::IsConstPool(rmode) ||
|
|
RelocInfo::IsVeneerPool(rmode) ||
|
|
RelocInfo::IsDeoptId(rmode) ||
|
|
RelocInfo::IsDeoptPosition(rmode) ||
|
|
RelocInfo::IsWasmProtectedLanding(rmode)) {
|
|
if (SetMode(rmode)) {
|
|
AdvanceReadInt();
|
|
return;
|
|
}
|
|
Advance(kIntSize);
|
|
} else if (SetMode(static_cast<RelocInfo::Mode>(rmode))) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (code_age_sequence_ != NULL) {
|
|
byte* old_code_age_sequence = code_age_sequence_;
|
|
code_age_sequence_ = NULL;
|
|
if (SetMode(RelocInfo::CODE_AGE_SEQUENCE)) {
|
|
rinfo_.data_ = 0;
|
|
rinfo_.pc_ = old_code_age_sequence;
|
|
return;
|
|
}
|
|
}
|
|
done_ = true;
|
|
}
|
|
|
|
|
|
RelocIterator::RelocIterator(Code* code, int mode_mask)
|
|
: rinfo_(code->map()->GetIsolate()) {
|
|
rinfo_.host_ = code;
|
|
rinfo_.pc_ = code->instruction_start();
|
|
rinfo_.data_ = 0;
|
|
// Relocation info is read backwards.
|
|
pos_ = code->relocation_start() + code->relocation_size();
|
|
end_ = code->relocation_start();
|
|
done_ = false;
|
|
mode_mask_ = mode_mask;
|
|
last_id_ = 0;
|
|
byte* sequence = code->FindCodeAgeSequence();
|
|
// We get the isolate from the map, because at serialization time
|
|
// the code pointer has been cloned and isn't really in heap space.
|
|
Isolate* isolate = code->map()->GetIsolate();
|
|
if (sequence != NULL && !Code::IsYoungSequence(isolate, sequence)) {
|
|
code_age_sequence_ = sequence;
|
|
} else {
|
|
code_age_sequence_ = NULL;
|
|
}
|
|
if (mode_mask_ == 0) pos_ = end_;
|
|
next();
|
|
}
|
|
|
|
|
|
RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask)
|
|
: rinfo_(desc.origin->isolate()) {
|
|
rinfo_.pc_ = desc.buffer;
|
|
rinfo_.data_ = 0;
|
|
// Relocation info is read backwards.
|
|
pos_ = desc.buffer + desc.buffer_size;
|
|
end_ = pos_ - desc.reloc_size;
|
|
done_ = false;
|
|
mode_mask_ = mode_mask;
|
|
last_id_ = 0;
|
|
code_age_sequence_ = NULL;
|
|
if (mode_mask_ == 0) pos_ = end_;
|
|
next();
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Implementation of RelocInfo
|
|
|
|
bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
|
|
return DebugCodegen::DebugBreakSlotIsPatched(pc_);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
bool RelocInfo::RequiresRelocation(const CodeDesc& desc) {
|
|
// Ensure there are no code targets or embedded objects present in the
|
|
// deoptimization entries, they would require relocation after code
|
|
// generation.
|
|
int mode_mask = RelocInfo::kCodeTargetMask |
|
|
RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
|
|
RelocInfo::ModeMask(RelocInfo::CELL) |
|
|
RelocInfo::kApplyMask;
|
|
RelocIterator it(desc, mode_mask);
|
|
return !it.done();
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef ENABLE_DISASSEMBLER
|
|
const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
|
|
switch (rmode) {
|
|
case NONE32:
|
|
return "no reloc 32";
|
|
case NONE64:
|
|
return "no reloc 64";
|
|
case EMBEDDED_OBJECT:
|
|
return "embedded object";
|
|
case CODE_TARGET:
|
|
return "code target";
|
|
case CODE_TARGET_WITH_ID:
|
|
return "code target with id";
|
|
case CELL:
|
|
return "property cell";
|
|
case RUNTIME_ENTRY:
|
|
return "runtime entry";
|
|
case COMMENT:
|
|
return "comment";
|
|
case EXTERNAL_REFERENCE:
|
|
return "external reference";
|
|
case INTERNAL_REFERENCE:
|
|
return "internal reference";
|
|
case INTERNAL_REFERENCE_ENCODED:
|
|
return "encoded internal reference";
|
|
case DEOPT_SCRIPT_OFFSET:
|
|
return "deopt script offset";
|
|
case DEOPT_INLINING_ID:
|
|
return "deopt inlining id";
|
|
case DEOPT_REASON:
|
|
return "deopt reason";
|
|
case DEOPT_ID:
|
|
return "deopt index";
|
|
case CONST_POOL:
|
|
return "constant pool";
|
|
case VENEER_POOL:
|
|
return "veneer pool";
|
|
case DEBUG_BREAK_SLOT_AT_POSITION:
|
|
return "debug break slot at position";
|
|
case DEBUG_BREAK_SLOT_AT_RETURN:
|
|
return "debug break slot at return";
|
|
case DEBUG_BREAK_SLOT_AT_CALL:
|
|
return "debug break slot at call";
|
|
case DEBUG_BREAK_SLOT_AT_TAIL_CALL:
|
|
return "debug break slot at tail call";
|
|
case CODE_AGE_SEQUENCE:
|
|
return "code age sequence";
|
|
case WASM_MEMORY_REFERENCE:
|
|
return "wasm memory reference";
|
|
case WASM_MEMORY_SIZE_REFERENCE:
|
|
return "wasm memory size reference";
|
|
case WASM_GLOBAL_REFERENCE:
|
|
return "wasm global value reference";
|
|
case WASM_FUNCTION_TABLE_SIZE_REFERENCE:
|
|
return "wasm function table size reference";
|
|
case WASM_PROTECTED_INSTRUCTION_LANDING:
|
|
return "wasm protected instruction landing";
|
|
case NUMBER_OF_MODES:
|
|
case PC_JUMP:
|
|
UNREACHABLE();
|
|
return "number_of_modes";
|
|
}
|
|
return "unknown relocation type";
|
|
}
|
|
|
|
|
|
void RelocInfo::Print(Isolate* isolate, std::ostream& os) { // NOLINT
|
|
os << static_cast<const void*>(pc_) << " " << RelocModeName(rmode_);
|
|
if (IsComment(rmode_)) {
|
|
os << " (" << reinterpret_cast<char*>(data_) << ")";
|
|
} else if (rmode_ == DEOPT_SCRIPT_OFFSET || rmode_ == DEOPT_INLINING_ID) {
|
|
os << " (" << data() << ")";
|
|
} else if (rmode_ == DEOPT_REASON) {
|
|
os << " ("
|
|
<< DeoptimizeReasonToString(static_cast<DeoptimizeReason>(data_)) << ")";
|
|
} else if (rmode_ == EMBEDDED_OBJECT) {
|
|
os << " (" << Brief(target_object()) << ")";
|
|
} else if (rmode_ == EXTERNAL_REFERENCE) {
|
|
ExternalReferenceEncoder ref_encoder(isolate);
|
|
os << " ("
|
|
<< ref_encoder.NameOfAddress(isolate, target_external_reference())
|
|
<< ") (" << static_cast<const void*>(target_external_reference())
|
|
<< ")";
|
|
} else if (IsCodeTarget(rmode_)) {
|
|
Code* code = Code::GetCodeFromTargetAddress(target_address());
|
|
os << " (" << Code::Kind2String(code->kind()) << ") ("
|
|
<< static_cast<const void*>(target_address()) << ")";
|
|
if (rmode_ == CODE_TARGET_WITH_ID) {
|
|
os << " (id=" << static_cast<int>(data_) << ")";
|
|
}
|
|
} else if (IsRuntimeEntry(rmode_) &&
|
|
isolate->deoptimizer_data() != NULL) {
|
|
// Depotimization bailouts are stored as runtime entries.
|
|
int id = Deoptimizer::GetDeoptimizationId(
|
|
isolate, target_address(), Deoptimizer::EAGER);
|
|
if (id != Deoptimizer::kNotDeoptimizationEntry) {
|
|
os << " (deoptimization bailout " << id << ")";
|
|
}
|
|
} else if (IsConstPool(rmode_)) {
|
|
os << " (size " << static_cast<int>(data_) << ")";
|
|
}
|
|
|
|
os << "\n";
|
|
}
|
|
#endif // ENABLE_DISASSEMBLER
|
|
|
|
|
|
#ifdef VERIFY_HEAP
|
|
void RelocInfo::Verify(Isolate* isolate) {
|
|
switch (rmode_) {
|
|
case EMBEDDED_OBJECT:
|
|
Object::VerifyPointer(target_object());
|
|
break;
|
|
case CELL:
|
|
Object::VerifyPointer(target_cell());
|
|
break;
|
|
case CODE_TARGET_WITH_ID:
|
|
case CODE_TARGET: {
|
|
// convert inline target address to code object
|
|
Address addr = target_address();
|
|
CHECK(addr != NULL);
|
|
// Check that we can find the right code object.
|
|
Code* code = Code::GetCodeFromTargetAddress(addr);
|
|
Object* found = isolate->FindCodeObject(addr);
|
|
CHECK(found->IsCode());
|
|
CHECK(code->address() == HeapObject::cast(found)->address());
|
|
break;
|
|
}
|
|
case INTERNAL_REFERENCE:
|
|
case INTERNAL_REFERENCE_ENCODED: {
|
|
Address target = target_internal_reference();
|
|
Address pc = target_internal_reference_address();
|
|
Code* code = Code::cast(isolate->FindCodeObject(pc));
|
|
CHECK(target >= code->instruction_start());
|
|
CHECK(target <= code->instruction_end());
|
|
break;
|
|
}
|
|
case RUNTIME_ENTRY:
|
|
case COMMENT:
|
|
case EXTERNAL_REFERENCE:
|
|
case DEOPT_SCRIPT_OFFSET:
|
|
case DEOPT_INLINING_ID:
|
|
case DEOPT_REASON:
|
|
case DEOPT_ID:
|
|
case CONST_POOL:
|
|
case VENEER_POOL:
|
|
case DEBUG_BREAK_SLOT_AT_POSITION:
|
|
case DEBUG_BREAK_SLOT_AT_RETURN:
|
|
case DEBUG_BREAK_SLOT_AT_CALL:
|
|
case DEBUG_BREAK_SLOT_AT_TAIL_CALL:
|
|
case WASM_MEMORY_REFERENCE:
|
|
case WASM_MEMORY_SIZE_REFERENCE:
|
|
case WASM_GLOBAL_REFERENCE:
|
|
case WASM_FUNCTION_TABLE_SIZE_REFERENCE:
|
|
case WASM_PROTECTED_INSTRUCTION_LANDING:
|
|
// TODO(eholk): make sure the protected instruction is in range.
|
|
case NONE32:
|
|
case NONE64:
|
|
break;
|
|
case NUMBER_OF_MODES:
|
|
case PC_JUMP:
|
|
UNREACHABLE();
|
|
break;
|
|
case CODE_AGE_SEQUENCE:
|
|
DCHECK(Code::IsYoungSequence(isolate, pc_) || code_age_stub()->IsCode());
|
|
break;
|
|
}
|
|
}
|
|
#endif // VERIFY_HEAP
|
|
|
|
|
|
// Implementation of ExternalReference
|
|
|
|
static ExternalReference::Type BuiltinCallTypeForResultSize(int result_size) {
|
|
switch (result_size) {
|
|
case 1:
|
|
return ExternalReference::BUILTIN_CALL;
|
|
case 2:
|
|
return ExternalReference::BUILTIN_CALL_PAIR;
|
|
case 3:
|
|
return ExternalReference::BUILTIN_CALL_TRIPLE;
|
|
}
|
|
UNREACHABLE();
|
|
return ExternalReference::BUILTIN_CALL;
|
|
}
|
|
|
|
|
|
void ExternalReference::SetUp() {
|
|
double_constants.min_int = kMinInt;
|
|
double_constants.one_half = 0.5;
|
|
double_constants.minus_one_half = -0.5;
|
|
double_constants.the_hole_nan = kHoleNanInt64;
|
|
double_constants.negative_infinity = -V8_INFINITY;
|
|
double_constants.uint32_bias =
|
|
static_cast<double>(static_cast<uint32_t>(0xFFFFFFFF)) + 1;
|
|
}
|
|
|
|
ExternalReference::ExternalReference(Address address, Isolate* isolate)
|
|
: address_(Redirect(isolate, address)) {}
|
|
|
|
ExternalReference::ExternalReference(
|
|
ApiFunction* fun,
|
|
Type type = ExternalReference::BUILTIN_CALL,
|
|
Isolate* isolate = NULL)
|
|
: address_(Redirect(isolate, fun->address(), type)) {}
|
|
|
|
|
|
ExternalReference::ExternalReference(Builtins::Name name, Isolate* isolate)
|
|
: address_(isolate->builtins()->builtin_address(name)) {}
|
|
|
|
|
|
ExternalReference::ExternalReference(Runtime::FunctionId id, Isolate* isolate)
|
|
: ExternalReference(Runtime::FunctionForId(id), isolate) {}
|
|
|
|
|
|
ExternalReference::ExternalReference(const Runtime::Function* f,
|
|
Isolate* isolate)
|
|
: address_(Redirect(isolate, f->entry,
|
|
BuiltinCallTypeForResultSize(f->result_size))) {}
|
|
|
|
|
|
ExternalReference ExternalReference::isolate_address(Isolate* isolate) {
|
|
return ExternalReference(isolate);
|
|
}
|
|
|
|
ExternalReference ExternalReference::interpreter_dispatch_table_address(
|
|
Isolate* isolate) {
|
|
return ExternalReference(isolate->interpreter()->dispatch_table_address());
|
|
}
|
|
|
|
ExternalReference ExternalReference::interpreter_dispatch_counters(
|
|
Isolate* isolate) {
|
|
return ExternalReference(
|
|
isolate->interpreter()->bytecode_dispatch_counters_table());
|
|
}
|
|
|
|
ExternalReference::ExternalReference(StatsCounter* counter)
|
|
: address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {}
|
|
|
|
|
|
ExternalReference::ExternalReference(Isolate::AddressId id, Isolate* isolate)
|
|
: address_(isolate->get_address_from_id(id)) {}
|
|
|
|
|
|
ExternalReference::ExternalReference(const SCTableReference& table_ref)
|
|
: address_(table_ref.address()) {}
|
|
|
|
|
|
ExternalReference ExternalReference::
|
|
incremental_marking_record_write_function(Isolate* isolate) {
|
|
return ExternalReference(Redirect(
|
|
isolate,
|
|
FUNCTION_ADDR(IncrementalMarking::RecordWriteFromCode)));
|
|
}
|
|
|
|
ExternalReference
|
|
ExternalReference::incremental_marking_record_write_code_entry_function(
|
|
Isolate* isolate) {
|
|
return ExternalReference(Redirect(
|
|
isolate,
|
|
FUNCTION_ADDR(IncrementalMarking::RecordWriteOfCodeEntryFromCode)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::store_buffer_overflow_function(
|
|
Isolate* isolate) {
|
|
return ExternalReference(Redirect(
|
|
isolate,
|
|
FUNCTION_ADDR(StoreBuffer::StoreBufferOverflow)));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::delete_handle_scope_extensions(
|
|
Isolate* isolate) {
|
|
return ExternalReference(Redirect(
|
|
isolate,
|
|
FUNCTION_ADDR(HandleScope::DeleteExtensions)));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::get_date_field_function(
|
|
Isolate* isolate) {
|
|
return ExternalReference(Redirect(isolate, FUNCTION_ADDR(JSDate::GetField)));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::get_make_code_young_function(
|
|
Isolate* isolate) {
|
|
return ExternalReference(Redirect(
|
|
isolate, FUNCTION_ADDR(Code::MakeCodeAgeSequenceYoung)));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::get_mark_code_as_executed_function(
|
|
Isolate* isolate) {
|
|
return ExternalReference(Redirect(
|
|
isolate, FUNCTION_ADDR(Code::MarkCodeAsExecuted)));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::date_cache_stamp(Isolate* isolate) {
|
|
return ExternalReference(isolate->date_cache()->stamp_address());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::stress_deopt_count(Isolate* isolate) {
|
|
return ExternalReference(isolate->stress_deopt_count_address());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::new_deoptimizer_function(
|
|
Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(Deoptimizer::New)));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::compute_output_frames_function(
|
|
Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(Deoptimizer::ComputeOutputFrames)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_f32_trunc(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::f32_trunc_wrapper)));
|
|
}
|
|
ExternalReference ExternalReference::wasm_f32_floor(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::f32_floor_wrapper)));
|
|
}
|
|
ExternalReference ExternalReference::wasm_f32_ceil(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::f32_ceil_wrapper)));
|
|
}
|
|
ExternalReference ExternalReference::wasm_f32_nearest_int(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::f32_nearest_int_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_f64_trunc(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::f64_trunc_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_f64_floor(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::f64_floor_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_f64_ceil(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::f64_ceil_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_f64_nearest_int(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::f64_nearest_int_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_int64_to_float32(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::int64_to_float32_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_uint64_to_float32(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::uint64_to_float32_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_int64_to_float64(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::int64_to_float64_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_uint64_to_float64(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::uint64_to_float64_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_float32_to_int64(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::float32_to_int64_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_float32_to_uint64(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::float32_to_uint64_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_float64_to_int64(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::float64_to_int64_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_float64_to_uint64(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::float64_to_uint64_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_int64_div(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::int64_div_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_int64_mod(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::int64_mod_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_uint64_div(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::uint64_div_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_uint64_mod(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::uint64_mod_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_word32_ctz(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::word32_ctz_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_word64_ctz(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::word64_ctz_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_word32_popcnt(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::word32_popcnt_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_word64_popcnt(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::word64_popcnt_wrapper)));
|
|
}
|
|
|
|
static void f64_acos_wrapper(double* param) {
|
|
WriteDoubleValue(param, base::ieee754::acos(ReadDoubleValue(param)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::f64_acos_wrapper_function(
|
|
Isolate* isolate) {
|
|
return ExternalReference(Redirect(isolate, FUNCTION_ADDR(f64_acos_wrapper)));
|
|
}
|
|
|
|
static void f64_asin_wrapper(double* param) {
|
|
WriteDoubleValue(param, base::ieee754::asin(ReadDoubleValue(param)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::f64_asin_wrapper_function(
|
|
Isolate* isolate) {
|
|
return ExternalReference(Redirect(isolate, FUNCTION_ADDR(f64_asin_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_float64_pow(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::float64_pow_wrapper)));
|
|
}
|
|
|
|
static void f64_mod_wrapper(double* param0, double* param1) {
|
|
WriteDoubleValue(param0,
|
|
modulo(ReadDoubleValue(param0), ReadDoubleValue(param1)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::f64_mod_wrapper_function(
|
|
Isolate* isolate) {
|
|
return ExternalReference(Redirect(isolate, FUNCTION_ADDR(f64_mod_wrapper)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::wasm_call_trap_callback_for_testing(
|
|
Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(wasm::call_trap_callback_for_testing)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::log_enter_external_function(
|
|
Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(Logger::EnterExternal)));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::log_leave_external_function(
|
|
Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(Logger::LeaveExternal)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::roots_array_start(Isolate* isolate) {
|
|
return ExternalReference(isolate->heap()->roots_array_start());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::allocation_sites_list_address(
|
|
Isolate* isolate) {
|
|
return ExternalReference(isolate->heap()->allocation_sites_list_address());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_stack_limit(Isolate* isolate) {
|
|
return ExternalReference(isolate->stack_guard()->address_of_jslimit());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_real_stack_limit(
|
|
Isolate* isolate) {
|
|
return ExternalReference(isolate->stack_guard()->address_of_real_jslimit());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_regexp_stack_limit(
|
|
Isolate* isolate) {
|
|
return ExternalReference(isolate->regexp_stack()->limit_address());
|
|
}
|
|
|
|
ExternalReference ExternalReference::store_buffer_top(Isolate* isolate) {
|
|
return ExternalReference(isolate->heap()->store_buffer_top_address());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::new_space_allocation_top_address(
|
|
Isolate* isolate) {
|
|
return ExternalReference(isolate->heap()->NewSpaceAllocationTopAddress());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::new_space_allocation_limit_address(
|
|
Isolate* isolate) {
|
|
return ExternalReference(isolate->heap()->NewSpaceAllocationLimitAddress());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::old_space_allocation_top_address(
|
|
Isolate* isolate) {
|
|
return ExternalReference(isolate->heap()->OldSpaceAllocationTopAddress());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::old_space_allocation_limit_address(
|
|
Isolate* isolate) {
|
|
return ExternalReference(isolate->heap()->OldSpaceAllocationLimitAddress());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::handle_scope_level_address(
|
|
Isolate* isolate) {
|
|
return ExternalReference(HandleScope::current_level_address(isolate));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::handle_scope_next_address(
|
|
Isolate* isolate) {
|
|
return ExternalReference(HandleScope::current_next_address(isolate));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::handle_scope_limit_address(
|
|
Isolate* isolate) {
|
|
return ExternalReference(HandleScope::current_limit_address(isolate));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::scheduled_exception_address(
|
|
Isolate* isolate) {
|
|
return ExternalReference(isolate->scheduled_exception_address());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_pending_message_obj(
|
|
Isolate* isolate) {
|
|
return ExternalReference(isolate->pending_message_obj_address());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_min_int() {
|
|
return ExternalReference(reinterpret_cast<void*>(&double_constants.min_int));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_one_half() {
|
|
return ExternalReference(reinterpret_cast<void*>(&double_constants.one_half));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_minus_one_half() {
|
|
return ExternalReference(
|
|
reinterpret_cast<void*>(&double_constants.minus_one_half));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_negative_infinity() {
|
|
return ExternalReference(
|
|
reinterpret_cast<void*>(&double_constants.negative_infinity));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_the_hole_nan() {
|
|
return ExternalReference(
|
|
reinterpret_cast<void*>(&double_constants.the_hole_nan));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_uint32_bias() {
|
|
return ExternalReference(
|
|
reinterpret_cast<void*>(&double_constants.uint32_bias));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_float_abs_constant() {
|
|
return ExternalReference(reinterpret_cast<void*>(&float_absolute_constant));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_float_neg_constant() {
|
|
return ExternalReference(reinterpret_cast<void*>(&float_negate_constant));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_double_abs_constant() {
|
|
return ExternalReference(reinterpret_cast<void*>(&double_absolute_constant));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_double_neg_constant() {
|
|
return ExternalReference(reinterpret_cast<void*>(&double_negate_constant));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::is_profiling_address(Isolate* isolate) {
|
|
return ExternalReference(isolate->is_profiling_address());
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::invoke_function_callback(
|
|
Isolate* isolate) {
|
|
Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback);
|
|
ExternalReference::Type thunk_type = ExternalReference::PROFILING_API_CALL;
|
|
ApiFunction thunk_fun(thunk_address);
|
|
return ExternalReference(&thunk_fun, thunk_type, isolate);
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::invoke_accessor_getter_callback(
|
|
Isolate* isolate) {
|
|
Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback);
|
|
ExternalReference::Type thunk_type =
|
|
ExternalReference::PROFILING_GETTER_CALL;
|
|
ApiFunction thunk_fun(thunk_address);
|
|
return ExternalReference(&thunk_fun, thunk_type, isolate);
|
|
}
|
|
|
|
|
|
#ifndef V8_INTERPRETED_REGEXP
|
|
|
|
ExternalReference ExternalReference::re_check_stack_guard_state(
|
|
Isolate* isolate) {
|
|
Address function;
|
|
#if V8_TARGET_ARCH_X64
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState);
|
|
#elif V8_TARGET_ARCH_IA32
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState);
|
|
#elif V8_TARGET_ARCH_ARM64
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerARM64::CheckStackGuardState);
|
|
#elif V8_TARGET_ARCH_ARM
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState);
|
|
#elif V8_TARGET_ARCH_PPC
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerPPC::CheckStackGuardState);
|
|
#elif V8_TARGET_ARCH_MIPS
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState);
|
|
#elif V8_TARGET_ARCH_MIPS64
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState);
|
|
#elif V8_TARGET_ARCH_S390
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerS390::CheckStackGuardState);
|
|
#elif V8_TARGET_ARCH_X87
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerX87::CheckStackGuardState);
|
|
#else
|
|
UNREACHABLE();
|
|
#endif
|
|
return ExternalReference(Redirect(isolate, function));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::re_grow_stack(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::re_case_insensitive_compare_uc16(
|
|
Isolate* isolate) {
|
|
return ExternalReference(Redirect(
|
|
isolate,
|
|
FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16)));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::re_word_character_map() {
|
|
return ExternalReference(
|
|
NativeRegExpMacroAssembler::word_character_map_address());
|
|
}
|
|
|
|
ExternalReference ExternalReference::address_of_static_offsets_vector(
|
|
Isolate* isolate) {
|
|
return ExternalReference(
|
|
reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector()));
|
|
}
|
|
|
|
ExternalReference ExternalReference::address_of_regexp_stack_memory_address(
|
|
Isolate* isolate) {
|
|
return ExternalReference(
|
|
isolate->regexp_stack()->memory_address());
|
|
}
|
|
|
|
ExternalReference ExternalReference::address_of_regexp_stack_memory_size(
|
|
Isolate* isolate) {
|
|
return ExternalReference(isolate->regexp_stack()->memory_size_address());
|
|
}
|
|
|
|
#endif // V8_INTERPRETED_REGEXP
|
|
|
|
ExternalReference ExternalReference::ieee754_acos_function(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(base::ieee754::acos), BUILTIN_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::ieee754_acosh_function(Isolate* isolate) {
|
|
return ExternalReference(Redirect(
|
|
isolate, FUNCTION_ADDR(base::ieee754::acosh), BUILTIN_FP_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::ieee754_asin_function(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(base::ieee754::asin), BUILTIN_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::ieee754_asinh_function(Isolate* isolate) {
|
|
return ExternalReference(Redirect(
|
|
isolate, FUNCTION_ADDR(base::ieee754::asinh), BUILTIN_FP_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::ieee754_atan_function(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(base::ieee754::atan), BUILTIN_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::ieee754_atanh_function(Isolate* isolate) {
|
|
return ExternalReference(Redirect(
|
|
isolate, FUNCTION_ADDR(base::ieee754::atanh), BUILTIN_FP_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::ieee754_atan2_function(Isolate* isolate) {
|
|
return ExternalReference(Redirect(
|
|
isolate, FUNCTION_ADDR(base::ieee754::atan2), BUILTIN_FP_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::ieee754_cbrt_function(Isolate* isolate) {
|
|
return ExternalReference(Redirect(isolate, FUNCTION_ADDR(base::ieee754::cbrt),
|
|
BUILTIN_FP_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::ieee754_cos_function(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(base::ieee754::cos), BUILTIN_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::ieee754_cosh_function(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(base::ieee754::cosh), BUILTIN_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::ieee754_exp_function(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(base::ieee754::exp), BUILTIN_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::ieee754_expm1_function(Isolate* isolate) {
|
|
return ExternalReference(Redirect(
|
|
isolate, FUNCTION_ADDR(base::ieee754::expm1), BUILTIN_FP_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::ieee754_log_function(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(base::ieee754::log), BUILTIN_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::ieee754_log1p_function(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(base::ieee754::log1p), BUILTIN_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::ieee754_log10_function(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(base::ieee754::log10), BUILTIN_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::ieee754_log2_function(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(base::ieee754::log2), BUILTIN_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::ieee754_sin_function(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(base::ieee754::sin), BUILTIN_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::ieee754_sinh_function(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(base::ieee754::sinh), BUILTIN_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::ieee754_tan_function(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(base::ieee754::tan), BUILTIN_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::ieee754_tanh_function(Isolate* isolate) {
|
|
return ExternalReference(
|
|
Redirect(isolate, FUNCTION_ADDR(base::ieee754::tanh), BUILTIN_FP_CALL));
|
|
}
|
|
|
|
void* libc_memchr(void* string, int character, size_t search_length) {
|
|
return memchr(string, character, search_length);
|
|
}
|
|
|
|
ExternalReference ExternalReference::libc_memchr_function(Isolate* isolate) {
|
|
return ExternalReference(Redirect(isolate, FUNCTION_ADDR(libc_memchr)));
|
|
}
|
|
|
|
void* libc_memset(void* string, int character, size_t n) {
|
|
return memset(string, character, n);
|
|
}
|
|
|
|
ExternalReference ExternalReference::libc_memset_function(Isolate* isolate) {
|
|
return ExternalReference(Redirect(isolate, FUNCTION_ADDR(libc_memset)));
|
|
}
|
|
|
|
ExternalReference ExternalReference::page_flags(Page* page) {
|
|
return ExternalReference(reinterpret_cast<Address>(page) +
|
|
MemoryChunk::kFlagsOffset);
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::ForDeoptEntry(Address entry) {
|
|
return ExternalReference(entry);
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::cpu_features() {
|
|
DCHECK(CpuFeatures::initialized_);
|
|
return ExternalReference(&CpuFeatures::supported_);
|
|
}
|
|
|
|
ExternalReference ExternalReference::is_tail_call_elimination_enabled_address(
|
|
Isolate* isolate) {
|
|
return ExternalReference(isolate->is_tail_call_elimination_enabled_address());
|
|
}
|
|
|
|
ExternalReference ExternalReference::promise_hook_or_debug_is_active_address(
|
|
Isolate* isolate) {
|
|
return ExternalReference(isolate->promise_hook_or_debug_is_active_address());
|
|
}
|
|
|
|
ExternalReference ExternalReference::debug_is_active_address(
|
|
Isolate* isolate) {
|
|
return ExternalReference(isolate->debug()->is_active_address());
|
|
}
|
|
|
|
ExternalReference ExternalReference::debug_hook_on_function_call_address(
|
|
Isolate* isolate) {
|
|
return ExternalReference(isolate->debug()->hook_on_function_call_address());
|
|
}
|
|
|
|
ExternalReference ExternalReference::runtime_function_table_address(
|
|
Isolate* isolate) {
|
|
return ExternalReference(
|
|
const_cast<Runtime::Function*>(Runtime::RuntimeFunctionTable(isolate)));
|
|
}
|
|
|
|
|
|
double power_helper(Isolate* isolate, double x, double y) {
|
|
int y_int = static_cast<int>(y);
|
|
if (y == y_int) {
|
|
return power_double_int(x, y_int); // Returns 1 if exponent is 0.
|
|
}
|
|
if (y == 0.5) {
|
|
lazily_initialize_fast_sqrt(isolate);
|
|
return (std::isinf(x)) ? V8_INFINITY
|
|
: fast_sqrt(x + 0.0, isolate); // Convert -0 to +0.
|
|
}
|
|
if (y == -0.5) {
|
|
lazily_initialize_fast_sqrt(isolate);
|
|
return (std::isinf(x)) ? 0 : 1.0 / fast_sqrt(x + 0.0,
|
|
isolate); // Convert -0 to +0.
|
|
}
|
|
return power_double_double(x, y);
|
|
}
|
|
|
|
|
|
// Helper function to compute x^y, where y is known to be an
|
|
// integer. Uses binary decomposition to limit the number of
|
|
// multiplications; see the discussion in "Hacker's Delight" by Henry
|
|
// S. Warren, Jr., figure 11-6, page 213.
|
|
double power_double_int(double x, int y) {
|
|
double m = (y < 0) ? 1 / x : x;
|
|
unsigned n = (y < 0) ? -y : y;
|
|
double p = 1;
|
|
while (n != 0) {
|
|
if ((n & 1) != 0) p *= m;
|
|
m *= m;
|
|
if ((n & 2) != 0) p *= m;
|
|
m *= m;
|
|
n >>= 2;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
|
|
double power_double_double(double x, double y) {
|
|
// The checks for special cases can be dropped in ia32 because it has already
|
|
// been done in generated code before bailing out here.
|
|
if (std::isnan(y) || ((x == 1 || x == -1) && std::isinf(y))) {
|
|
return std::numeric_limits<double>::quiet_NaN();
|
|
}
|
|
return Pow(x, y);
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::power_double_double_function(
|
|
Isolate* isolate) {
|
|
return ExternalReference(Redirect(isolate,
|
|
FUNCTION_ADDR(power_double_double),
|
|
BUILTIN_FP_FP_CALL));
|
|
}
|
|
|
|
|
|
ExternalReference ExternalReference::mod_two_doubles_operation(
|
|
Isolate* isolate) {
|
|
return ExternalReference(Redirect(isolate,
|
|
FUNCTION_ADDR(modulo),
|
|
BUILTIN_FP_FP_CALL));
|
|
}
|
|
|
|
ExternalReference ExternalReference::debug_last_step_action_address(
|
|
Isolate* isolate) {
|
|
return ExternalReference(isolate->debug()->last_step_action_address());
|
|
}
|
|
|
|
ExternalReference ExternalReference::debug_suspended_generator_address(
|
|
Isolate* isolate) {
|
|
return ExternalReference(isolate->debug()->suspended_generator_address());
|
|
}
|
|
|
|
ExternalReference ExternalReference::debug_restart_fp_address(
|
|
Isolate* isolate) {
|
|
return ExternalReference(isolate->debug()->restart_fp_address());
|
|
}
|
|
|
|
ExternalReference ExternalReference::fixed_typed_array_base_data_offset() {
|
|
return ExternalReference(reinterpret_cast<void*>(
|
|
FixedTypedArrayBase::kDataOffset - kHeapObjectTag));
|
|
}
|
|
|
|
|
|
bool operator==(ExternalReference lhs, ExternalReference rhs) {
|
|
return lhs.address() == rhs.address();
|
|
}
|
|
|
|
|
|
bool operator!=(ExternalReference lhs, ExternalReference rhs) {
|
|
return !(lhs == rhs);
|
|
}
|
|
|
|
|
|
size_t hash_value(ExternalReference reference) {
|
|
return base::hash<Address>()(reference.address());
|
|
}
|
|
|
|
|
|
std::ostream& operator<<(std::ostream& os, ExternalReference reference) {
|
|
os << static_cast<const void*>(reference.address());
|
|
const Runtime::Function* fn = Runtime::FunctionForEntry(reference.address());
|
|
if (fn) os << "<" << fn->name << ".entry>";
|
|
return os;
|
|
}
|
|
|
|
|
|
ConstantPoolBuilder::ConstantPoolBuilder(int ptr_reach_bits,
|
|
int double_reach_bits) {
|
|
info_[ConstantPoolEntry::INTPTR].entries.reserve(64);
|
|
info_[ConstantPoolEntry::INTPTR].regular_reach_bits = ptr_reach_bits;
|
|
info_[ConstantPoolEntry::DOUBLE].regular_reach_bits = double_reach_bits;
|
|
}
|
|
|
|
|
|
ConstantPoolEntry::Access ConstantPoolBuilder::NextAccess(
|
|
ConstantPoolEntry::Type type) const {
|
|
const PerTypeEntryInfo& info = info_[type];
|
|
|
|
if (info.overflow()) return ConstantPoolEntry::OVERFLOWED;
|
|
|
|
int dbl_count = info_[ConstantPoolEntry::DOUBLE].regular_count;
|
|
int dbl_offset = dbl_count * kDoubleSize;
|
|
int ptr_count = info_[ConstantPoolEntry::INTPTR].regular_count;
|
|
int ptr_offset = ptr_count * kPointerSize + dbl_offset;
|
|
|
|
if (type == ConstantPoolEntry::DOUBLE) {
|
|
// Double overflow detection must take into account the reach for both types
|
|
int ptr_reach_bits = info_[ConstantPoolEntry::INTPTR].regular_reach_bits;
|
|
if (!is_uintn(dbl_offset, info.regular_reach_bits) ||
|
|
(ptr_count > 0 &&
|
|
!is_uintn(ptr_offset + kDoubleSize - kPointerSize, ptr_reach_bits))) {
|
|
return ConstantPoolEntry::OVERFLOWED;
|
|
}
|
|
} else {
|
|
DCHECK(type == ConstantPoolEntry::INTPTR);
|
|
if (!is_uintn(ptr_offset, info.regular_reach_bits)) {
|
|
return ConstantPoolEntry::OVERFLOWED;
|
|
}
|
|
}
|
|
|
|
return ConstantPoolEntry::REGULAR;
|
|
}
|
|
|
|
|
|
ConstantPoolEntry::Access ConstantPoolBuilder::AddEntry(
|
|
ConstantPoolEntry& entry, ConstantPoolEntry::Type type) {
|
|
DCHECK(!emitted_label_.is_bound());
|
|
PerTypeEntryInfo& info = info_[type];
|
|
const int entry_size = ConstantPoolEntry::size(type);
|
|
bool merged = false;
|
|
|
|
if (entry.sharing_ok()) {
|
|
// Try to merge entries
|
|
std::vector<ConstantPoolEntry>::iterator it = info.shared_entries.begin();
|
|
int end = static_cast<int>(info.shared_entries.size());
|
|
for (int i = 0; i < end; i++, it++) {
|
|
if ((entry_size == kPointerSize) ? entry.value() == it->value()
|
|
: entry.value64() == it->value64()) {
|
|
// Merge with found entry.
|
|
entry.set_merged_index(i);
|
|
merged = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// By definition, merged entries have regular access.
|
|
DCHECK(!merged || entry.merged_index() < info.regular_count);
|
|
ConstantPoolEntry::Access access =
|
|
(merged ? ConstantPoolEntry::REGULAR : NextAccess(type));
|
|
|
|
// Enforce an upper bound on search time by limiting the search to
|
|
// unique sharable entries which fit in the regular section.
|
|
if (entry.sharing_ok() && !merged && access == ConstantPoolEntry::REGULAR) {
|
|
info.shared_entries.push_back(entry);
|
|
} else {
|
|
info.entries.push_back(entry);
|
|
}
|
|
|
|
// We're done if we found a match or have already triggered the
|
|
// overflow state.
|
|
if (merged || info.overflow()) return access;
|
|
|
|
if (access == ConstantPoolEntry::REGULAR) {
|
|
info.regular_count++;
|
|
} else {
|
|
info.overflow_start = static_cast<int>(info.entries.size()) - 1;
|
|
}
|
|
|
|
return access;
|
|
}
|
|
|
|
|
|
void ConstantPoolBuilder::EmitSharedEntries(Assembler* assm,
|
|
ConstantPoolEntry::Type type) {
|
|
PerTypeEntryInfo& info = info_[type];
|
|
std::vector<ConstantPoolEntry>& shared_entries = info.shared_entries;
|
|
const int entry_size = ConstantPoolEntry::size(type);
|
|
int base = emitted_label_.pos();
|
|
DCHECK(base > 0);
|
|
int shared_end = static_cast<int>(shared_entries.size());
|
|
std::vector<ConstantPoolEntry>::iterator shared_it = shared_entries.begin();
|
|
for (int i = 0; i < shared_end; i++, shared_it++) {
|
|
int offset = assm->pc_offset() - base;
|
|
shared_it->set_offset(offset); // Save offset for merged entries.
|
|
if (entry_size == kPointerSize) {
|
|
assm->dp(shared_it->value());
|
|
} else {
|
|
assm->dq(shared_it->value64());
|
|
}
|
|
DCHECK(is_uintn(offset, info.regular_reach_bits));
|
|
|
|
// Patch load sequence with correct offset.
|
|
assm->PatchConstantPoolAccessInstruction(shared_it->position(), offset,
|
|
ConstantPoolEntry::REGULAR, type);
|
|
}
|
|
}
|
|
|
|
|
|
void ConstantPoolBuilder::EmitGroup(Assembler* assm,
|
|
ConstantPoolEntry::Access access,
|
|
ConstantPoolEntry::Type type) {
|
|
PerTypeEntryInfo& info = info_[type];
|
|
const bool overflow = info.overflow();
|
|
std::vector<ConstantPoolEntry>& entries = info.entries;
|
|
std::vector<ConstantPoolEntry>& shared_entries = info.shared_entries;
|
|
const int entry_size = ConstantPoolEntry::size(type);
|
|
int base = emitted_label_.pos();
|
|
DCHECK(base > 0);
|
|
int begin;
|
|
int end;
|
|
|
|
if (access == ConstantPoolEntry::REGULAR) {
|
|
// Emit any shared entries first
|
|
EmitSharedEntries(assm, type);
|
|
}
|
|
|
|
if (access == ConstantPoolEntry::REGULAR) {
|
|
begin = 0;
|
|
end = overflow ? info.overflow_start : static_cast<int>(entries.size());
|
|
} else {
|
|
DCHECK(access == ConstantPoolEntry::OVERFLOWED);
|
|
if (!overflow) return;
|
|
begin = info.overflow_start;
|
|
end = static_cast<int>(entries.size());
|
|
}
|
|
|
|
std::vector<ConstantPoolEntry>::iterator it = entries.begin();
|
|
if (begin > 0) std::advance(it, begin);
|
|
for (int i = begin; i < end; i++, it++) {
|
|
// Update constant pool if necessary and get the entry's offset.
|
|
int offset;
|
|
ConstantPoolEntry::Access entry_access;
|
|
if (!it->is_merged()) {
|
|
// Emit new entry
|
|
offset = assm->pc_offset() - base;
|
|
entry_access = access;
|
|
if (entry_size == kPointerSize) {
|
|
assm->dp(it->value());
|
|
} else {
|
|
assm->dq(it->value64());
|
|
}
|
|
} else {
|
|
// Retrieve offset from shared entry.
|
|
offset = shared_entries[it->merged_index()].offset();
|
|
entry_access = ConstantPoolEntry::REGULAR;
|
|
}
|
|
|
|
DCHECK(entry_access == ConstantPoolEntry::OVERFLOWED ||
|
|
is_uintn(offset, info.regular_reach_bits));
|
|
|
|
// Patch load sequence with correct offset.
|
|
assm->PatchConstantPoolAccessInstruction(it->position(), offset,
|
|
entry_access, type);
|
|
}
|
|
}
|
|
|
|
|
|
// Emit and return position of pool. Zero implies no constant pool.
|
|
int ConstantPoolBuilder::Emit(Assembler* assm) {
|
|
bool emitted = emitted_label_.is_bound();
|
|
bool empty = IsEmpty();
|
|
|
|
if (!emitted) {
|
|
// Mark start of constant pool. Align if necessary.
|
|
if (!empty) assm->DataAlign(kDoubleSize);
|
|
assm->bind(&emitted_label_);
|
|
if (!empty) {
|
|
// Emit in groups based on access and type.
|
|
// Emit doubles first for alignment purposes.
|
|
EmitGroup(assm, ConstantPoolEntry::REGULAR, ConstantPoolEntry::DOUBLE);
|
|
EmitGroup(assm, ConstantPoolEntry::REGULAR, ConstantPoolEntry::INTPTR);
|
|
if (info_[ConstantPoolEntry::DOUBLE].overflow()) {
|
|
assm->DataAlign(kDoubleSize);
|
|
EmitGroup(assm, ConstantPoolEntry::OVERFLOWED,
|
|
ConstantPoolEntry::DOUBLE);
|
|
}
|
|
if (info_[ConstantPoolEntry::INTPTR].overflow()) {
|
|
EmitGroup(assm, ConstantPoolEntry::OVERFLOWED,
|
|
ConstantPoolEntry::INTPTR);
|
|
}
|
|
}
|
|
}
|
|
|
|
return !empty ? emitted_label_.pos() : 0;
|
|
}
|
|
|
|
|
|
// Platform specific but identical code for all the platforms.
|
|
|
|
void Assembler::RecordDeoptReason(DeoptimizeReason reason,
|
|
SourcePosition position, int id) {
|
|
if (FLAG_trace_deopt || isolate()->is_profiling()) {
|
|
EnsureSpace ensure_space(this);
|
|
RecordRelocInfo(RelocInfo::DEOPT_SCRIPT_OFFSET, position.ScriptOffset());
|
|
RecordRelocInfo(RelocInfo::DEOPT_INLINING_ID, position.InliningId());
|
|
RecordRelocInfo(RelocInfo::DEOPT_REASON, static_cast<int>(reason));
|
|
RecordRelocInfo(RelocInfo::DEOPT_ID, id);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::RecordComment(const char* msg) {
|
|
if (FLAG_code_comments) {
|
|
EnsureSpace ensure_space(this);
|
|
RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::RecordDebugBreakSlot(RelocInfo::Mode mode) {
|
|
EnsureSpace ensure_space(this);
|
|
DCHECK(RelocInfo::IsDebugBreakSlot(mode));
|
|
RecordRelocInfo(mode);
|
|
}
|
|
|
|
|
|
void Assembler::DataAlign(int m) {
|
|
DCHECK(m >= 2 && base::bits::IsPowerOfTwo32(m));
|
|
while ((pc_offset() & (m - 1)) != 0) {
|
|
db(0);
|
|
}
|
|
}
|
|
} // namespace internal
|
|
} // namespace v8
|