96d15ef6b4
This might be a big win in a browser setting where a lot of string conversions can be avoided. On the other hand it adds extra pressure on the global handle system. Review URL: http://codereview.chromium.org/11404 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@772 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
285 lines
9.9 KiB
C++
285 lines
9.9 KiB
C++
// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef V8_HEAP_INL_H_
|
|
#define V8_HEAP_INL_H_
|
|
|
|
#include "log.h"
|
|
#include "v8-counters.h"
|
|
|
|
namespace v8 { namespace internal {
|
|
|
|
int Heap::MaxHeapObjectSize() {
|
|
return Page::kMaxHeapObjectSize;
|
|
}
|
|
|
|
|
|
Object* Heap::AllocateSymbol(Vector<const char> str,
|
|
int chars,
|
|
uint32_t length_field) {
|
|
if (global_external_symbol_callback_) {
|
|
return AllocateExternalSymbol(str, chars);
|
|
}
|
|
unibrow::Utf8InputBuffer<> buffer(str.start(),
|
|
static_cast<unsigned>(str.length()));
|
|
return AllocateInternalSymbol(&buffer, chars, length_field);
|
|
}
|
|
|
|
|
|
Object* Heap::AllocateRaw(int size_in_bytes,
|
|
AllocationSpace space,
|
|
AllocationSpace retry_space) {
|
|
ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
|
|
ASSERT(space != NEW_SPACE ||
|
|
retry_space == OLD_POINTER_SPACE ||
|
|
retry_space == OLD_DATA_SPACE);
|
|
#ifdef DEBUG
|
|
if (FLAG_gc_interval >= 0 &&
|
|
!disallow_allocation_failure_ &&
|
|
Heap::allocation_timeout_-- <= 0) {
|
|
return Failure::RetryAfterGC(size_in_bytes, space);
|
|
}
|
|
Counters::objs_since_last_full.Increment();
|
|
Counters::objs_since_last_young.Increment();
|
|
#endif
|
|
Object* result;
|
|
if (NEW_SPACE == space) {
|
|
result = new_space_.AllocateRaw(size_in_bytes);
|
|
if (always_allocate() && result->IsFailure()) {
|
|
space = retry_space;
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
if (OLD_POINTER_SPACE == space) {
|
|
result = old_pointer_space_->AllocateRaw(size_in_bytes);
|
|
} else if (OLD_DATA_SPACE == space) {
|
|
result = old_data_space_->AllocateRaw(size_in_bytes);
|
|
} else if (CODE_SPACE == space) {
|
|
result = code_space_->AllocateRaw(size_in_bytes);
|
|
} else if (LO_SPACE == space) {
|
|
result = lo_space_->AllocateRaw(size_in_bytes);
|
|
} else {
|
|
ASSERT(MAP_SPACE == space);
|
|
result = map_space_->AllocateRaw(size_in_bytes);
|
|
}
|
|
if (result->IsFailure()) old_gen_exhausted_ = true;
|
|
return result;
|
|
}
|
|
|
|
|
|
Object* Heap::NumberFromInt32(int32_t value) {
|
|
if (Smi::IsValid(value)) return Smi::FromInt(value);
|
|
// Bypass NumberFromDouble to avoid various redundant checks.
|
|
return AllocateHeapNumber(FastI2D(value));
|
|
}
|
|
|
|
|
|
Object* Heap::NumberFromUint32(uint32_t value) {
|
|
if ((int32_t)value >= 0 && Smi::IsValid((int32_t)value)) {
|
|
return Smi::FromInt((int32_t)value);
|
|
}
|
|
// Bypass NumberFromDouble to avoid various redundant checks.
|
|
return AllocateHeapNumber(FastUI2D(value));
|
|
}
|
|
|
|
|
|
Object* Heap::AllocateRawMap(int size_in_bytes) {
|
|
#ifdef DEBUG
|
|
Counters::objs_since_last_full.Increment();
|
|
Counters::objs_since_last_young.Increment();
|
|
#endif
|
|
Object* result = map_space_->AllocateRaw(size_in_bytes);
|
|
if (result->IsFailure()) old_gen_exhausted_ = true;
|
|
return result;
|
|
}
|
|
|
|
|
|
bool Heap::InNewSpace(Object* object) {
|
|
return new_space_.Contains(object);
|
|
}
|
|
|
|
|
|
bool Heap::InFromSpace(Object* object) {
|
|
return new_space_.FromSpaceContains(object);
|
|
}
|
|
|
|
|
|
bool Heap::InToSpace(Object* object) {
|
|
return new_space_.ToSpaceContains(object);
|
|
}
|
|
|
|
|
|
bool Heap::ShouldBePromoted(Address old_address, int object_size) {
|
|
// An object should be promoted if:
|
|
// - the object has survived a scavenge operation or
|
|
// - to space is already 25% full.
|
|
return old_address < new_space_.age_mark()
|
|
|| (new_space_.Size() + object_size) >= (new_space_.Capacity() >> 2);
|
|
}
|
|
|
|
|
|
void Heap::RecordWrite(Address address, int offset) {
|
|
if (new_space_.Contains(address)) return;
|
|
ASSERT(!new_space_.FromSpaceContains(address));
|
|
SLOW_ASSERT(Contains(address + offset));
|
|
Page::SetRSet(address, offset);
|
|
}
|
|
|
|
|
|
OldSpace* Heap::TargetSpace(HeapObject* object) {
|
|
InstanceType type = object->map()->instance_type();
|
|
AllocationSpace space = TargetSpaceId(type);
|
|
return (space == OLD_POINTER_SPACE)
|
|
? old_pointer_space_
|
|
: old_data_space_;
|
|
}
|
|
|
|
|
|
AllocationSpace Heap::TargetSpaceId(InstanceType type) {
|
|
// Heap numbers and sequential strings are promoted to old data space, all
|
|
// other object types are promoted to old pointer space. We do not use
|
|
// object->IsHeapNumber() and object->IsSeqString() because we already
|
|
// know that object has the heap object tag.
|
|
ASSERT((type != CODE_TYPE) && (type != MAP_TYPE));
|
|
bool has_pointers =
|
|
type != HEAP_NUMBER_TYPE &&
|
|
(type >= FIRST_NONSTRING_TYPE ||
|
|
(type & kStringRepresentationMask) != kSeqStringTag);
|
|
return has_pointers ? OLD_POINTER_SPACE : OLD_DATA_SPACE;
|
|
}
|
|
|
|
|
|
void Heap::CopyBlock(Object** dst, Object** src, int byte_size) {
|
|
ASSERT(IsAligned(byte_size, kPointerSize));
|
|
|
|
// Use block copying memcpy if the segment we're copying is
|
|
// enough to justify the extra call/setup overhead.
|
|
static const int kBlockCopyLimit = 16 * kPointerSize;
|
|
|
|
if (byte_size >= kBlockCopyLimit) {
|
|
memcpy(dst, src, byte_size);
|
|
} else {
|
|
int remaining = byte_size / kPointerSize;
|
|
do {
|
|
remaining--;
|
|
*dst++ = *src++;
|
|
} while (remaining > 0);
|
|
}
|
|
}
|
|
|
|
|
|
Object* Heap::GetKeyedLookupCache() {
|
|
if (keyed_lookup_cache()->IsUndefined()) {
|
|
Object* obj = LookupCache::Allocate(4);
|
|
if (obj->IsFailure()) return obj;
|
|
keyed_lookup_cache_ = obj;
|
|
}
|
|
return keyed_lookup_cache();
|
|
}
|
|
|
|
|
|
void Heap::SetKeyedLookupCache(LookupCache* cache) {
|
|
keyed_lookup_cache_ = cache;
|
|
}
|
|
|
|
|
|
void Heap::ClearKeyedLookupCache() {
|
|
keyed_lookup_cache_ = undefined_value();
|
|
}
|
|
|
|
|
|
#define GC_GREEDY_CHECK() \
|
|
ASSERT(!FLAG_gc_greedy || v8::internal::Heap::GarbageCollectionGreedyCheck())
|
|
|
|
|
|
// Calls the FUNCTION_CALL function and retries it up to three times
|
|
// to guarantee that any allocations performed during the call will
|
|
// succeed if there's enough memory.
|
|
|
|
// Warning: Do not use the identifiers __object__ or __scope__ in a
|
|
// call to this macro.
|
|
|
|
#define CALL_AND_RETRY(FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \
|
|
do { \
|
|
GC_GREEDY_CHECK(); \
|
|
Object* __object__ = FUNCTION_CALL; \
|
|
if (!__object__->IsFailure()) return RETURN_VALUE; \
|
|
if (__object__->IsOutOfMemoryFailure()) { \
|
|
v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_0"); \
|
|
} \
|
|
if (!__object__->IsRetryAfterGC()) return RETURN_EMPTY; \
|
|
Heap::CollectGarbage(Failure::cast(__object__)->requested(), \
|
|
Failure::cast(__object__)->allocation_space()); \
|
|
__object__ = FUNCTION_CALL; \
|
|
if (!__object__->IsFailure()) return RETURN_VALUE; \
|
|
if (__object__->IsOutOfMemoryFailure()) { \
|
|
v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_1"); \
|
|
} \
|
|
if (!__object__->IsRetryAfterGC()) return RETURN_EMPTY; \
|
|
Counters::gc_last_resort_from_handles.Increment(); \
|
|
Heap::CollectAllGarbage(); \
|
|
{ \
|
|
AlwaysAllocateScope __scope__; \
|
|
__object__ = FUNCTION_CALL; \
|
|
} \
|
|
if (!__object__->IsFailure()) return RETURN_VALUE; \
|
|
if (__object__->IsOutOfMemoryFailure()) { \
|
|
/* TODO(1181417): Fix this. */ \
|
|
v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_2"); \
|
|
} \
|
|
ASSERT(!__object__->IsRetryAfterGC()); \
|
|
return RETURN_EMPTY; \
|
|
} while (false)
|
|
|
|
|
|
#define CALL_HEAP_FUNCTION(FUNCTION_CALL, TYPE) \
|
|
CALL_AND_RETRY(FUNCTION_CALL, \
|
|
Handle<TYPE>(TYPE::cast(__object__)), \
|
|
Handle<TYPE>())
|
|
|
|
|
|
#define CALL_HEAP_FUNCTION_VOID(FUNCTION_CALL) \
|
|
CALL_AND_RETRY(FUNCTION_CALL, , )
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
inline bool Heap::allow_allocation(bool new_state) {
|
|
bool old = allocation_allowed_;
|
|
allocation_allowed_ = new_state;
|
|
return old;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_HEAP_INL_H_
|