v8/test/cctest/heap/test-heap.cc
Igor Sheludko d0d877067e [ptr-compr] Pass Isolate to JSObject::MigrateToMap() and friends
Tbr: ulan@chromium.org
Bug: v8:9353
Change-Id: I99533e21fd186f6d0191f4f500d1a3055a0f92c1
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1648260
Commit-Queue: Igor Sheludko <ishell@chromium.org>
Reviewed-by: Toon Verwaest <verwaest@chromium.org>
Cr-Commit-Position: refs/heads/master@{#62082}
2019-06-11 09:58:36 +00:00

6694 lines
231 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include <utility>
#include "src/api/api-inl.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/compilation-cache.h"
#include "src/codegen/macro-assembler-inl.h"
#include "src/debug/debug.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/execution.h"
#include "src/handles/global-handles.h"
#include "src/heap/combined-heap.h"
#include "src/heap/factory.h"
#include "src/heap/gc-tracer.h"
#include "src/heap/heap-inl.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/mark-compact.h"
#include "src/heap/memory-reducer.h"
#include "src/heap/remembered-set.h"
#include "src/ic/ic.h"
#include "src/numbers/hash-seed-inl.h"
#include "src/objects/elements.h"
#include "src/objects/field-type.h"
#include "src/objects/frame-array-inl.h"
#include "src/objects/heap-number-inl.h"
#include "src/objects/js-array-inl.h"
#include "src/objects/js-collection-inl.h"
#include "src/objects/managed.h"
#include "src/objects/objects-inl.h"
#include "src/objects/slots.h"
#include "src/objects/transitions.h"
#include "src/regexp/jsregexp.h"
#include "src/snapshot/snapshot.h"
#include "src/utils/ostreams.h"
#include "test/cctest/cctest.h"
#include "test/cctest/heap/heap-tester.h"
#include "test/cctest/heap/heap-utils.h"
#include "test/cctest/test-feedback-vector.h"
#include "test/cctest/test-transitions.h"
namespace v8 {
namespace internal {
namespace heap {
// We only start allocation-site tracking with the second instantiation.
static const int kPretenureCreationCount =
AllocationSite::kPretenureMinimumCreated + 1;
static void CheckMap(Map map, int type, int instance_size) {
CHECK(map.IsHeapObject());
DCHECK(IsValidHeapObject(CcTest::heap(), map));
CHECK_EQ(ReadOnlyRoots(CcTest::heap()).meta_map(), map.map());
CHECK_EQ(type, map.instance_type());
CHECK_EQ(instance_size, map.instance_size());
}
TEST(HeapMaps) {
CcTest::InitializeVM();
ReadOnlyRoots roots(CcTest::heap());
CheckMap(roots.meta_map(), MAP_TYPE, Map::kSize);
CheckMap(roots.heap_number_map(), HEAP_NUMBER_TYPE, HeapNumber::kSize);
CheckMap(roots.fixed_array_map(), FIXED_ARRAY_TYPE, kVariableSizeSentinel);
CheckMap(roots.hash_table_map(), HASH_TABLE_TYPE, kVariableSizeSentinel);
CheckMap(roots.string_map(), STRING_TYPE, kVariableSizeSentinel);
}
static void VerifyStoredPrototypeMap(Isolate* isolate,
int stored_map_context_index,
int stored_ctor_context_index) {
Handle<Context> context = isolate->native_context();
Handle<Map> this_map(Map::cast(context->get(stored_map_context_index)),
isolate);
Handle<JSFunction> fun(
JSFunction::cast(context->get(stored_ctor_context_index)), isolate);
Handle<JSObject> proto(JSObject::cast(fun->initial_map().prototype()),
isolate);
Handle<Map> that_map(proto->map(), isolate);
CHECK(proto->HasFastProperties());
CHECK_EQ(*this_map, *that_map);
}
// Checks that critical maps stored on the context (mostly used for fast-path
// checks) are unchanged after initialization.
TEST(ContextMaps) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope handle_scope(isolate);
VerifyStoredPrototypeMap(isolate,
Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX,
Context::STRING_FUNCTION_INDEX);
VerifyStoredPrototypeMap(isolate, Context::REGEXP_PROTOTYPE_MAP_INDEX,
Context::REGEXP_FUNCTION_INDEX);
}
TEST(InitialObjects) {
LocalContext env;
HandleScope scope(CcTest::i_isolate());
Handle<Context> context = v8::Utils::OpenHandle(*env);
// Initial ArrayIterator prototype.
CHECK_EQ(
context->initial_array_iterator_prototype(),
*v8::Utils::OpenHandle(*CompileRun("[][Symbol.iterator]().__proto__")));
// Initial Array prototype.
CHECK_EQ(context->initial_array_prototype(),
*v8::Utils::OpenHandle(*CompileRun("Array.prototype")));
// Initial Generator prototype.
CHECK_EQ(context->initial_generator_prototype(),
*v8::Utils::OpenHandle(
*CompileRun("(function*(){}).__proto__.prototype")));
// Initial Iterator prototype.
CHECK_EQ(context->initial_iterator_prototype(),
*v8::Utils::OpenHandle(
*CompileRun("[][Symbol.iterator]().__proto__.__proto__")));
// Initial Object prototype.
CHECK_EQ(context->initial_object_prototype(),
*v8::Utils::OpenHandle(*CompileRun("Object.prototype")));
}
static void CheckOddball(Isolate* isolate, Object obj, const char* string) {
CHECK(obj.IsOddball());
Handle<Object> handle(obj, isolate);
Object print_string = *Object::ToString(isolate, handle).ToHandleChecked();
CHECK(String::cast(print_string).IsOneByteEqualTo(CStrVector(string)));
}
static void CheckSmi(Isolate* isolate, int value, const char* string) {
Handle<Object> handle(Smi::FromInt(value), isolate);
Object print_string = *Object::ToString(isolate, handle).ToHandleChecked();
CHECK(String::cast(print_string).IsOneByteEqualTo(CStrVector(string)));
}
static void CheckNumber(Isolate* isolate, double value, const char* string) {
Handle<Object> number = isolate->factory()->NewNumber(value);
CHECK(number->IsNumber());
Handle<Object> print_string =
Object::ToString(isolate, number).ToHandleChecked();
CHECK(String::cast(*print_string).IsOneByteEqualTo(CStrVector(string)));
}
void CheckEmbeddedObjectsAreEqual(Handle<Code> lhs, Handle<Code> rhs) {
int mode_mask = RelocInfo::ModeMask(RelocInfo::FULL_EMBEDDED_OBJECT);
RelocIterator lhs_it(*lhs, mode_mask);
RelocIterator rhs_it(*rhs, mode_mask);
while (!lhs_it.done() && !rhs_it.done()) {
CHECK(lhs_it.rinfo()->target_object() == rhs_it.rinfo()->target_object());
lhs_it.next();
rhs_it.next();
}
CHECK(lhs_it.done() == rhs_it.done());
}
HEAP_TEST(TestNewSpaceRefsInCopiedCode) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope sc(isolate);
Handle<HeapNumber> value = factory->NewHeapNumber(1.000123);
CHECK(Heap::InYoungGeneration(*value));
i::byte buffer[i::Assembler::kMinimalBufferSize];
MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes,
ExternalAssemblerBuffer(buffer, sizeof(buffer)));
// Add a new-space reference to the code.
masm.Push(value);
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
Handle<Code> copy;
{
CodeSpaceMemoryModificationScope modification_scope(isolate->heap());
copy = factory->CopyCode(code);
}
CheckEmbeddedObjectsAreEqual(code, copy);
CcTest::CollectAllAvailableGarbage();
CheckEmbeddedObjectsAreEqual(code, copy);
}
static void CheckFindCodeObject(Isolate* isolate) {
// Test FindCodeObject
#define __ assm.
Assembler assm(AssemblerOptions{});
__ nop(); // supported on all architectures
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
CHECK(code->IsCode());
HeapObject obj = HeapObject::cast(*code);
Address obj_addr = obj.address();
for (int i = 0; i < obj.Size(); i += kTaggedSize) {
Object found = isolate->FindCodeObject(obj_addr + i);
CHECK_EQ(*code, found);
}
Handle<Code> copy = Factory::CodeBuilder(isolate, desc, Code::STUB).Build();
HeapObject obj_copy = HeapObject::cast(*copy);
Object not_right =
isolate->FindCodeObject(obj_copy.address() + obj_copy.Size() / 2);
CHECK(not_right != *code);
}
TEST(HandleNull) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope outer_scope(isolate);
LocalContext context;
Handle<Object> n(Object(0), isolate);
CHECK(!n.is_null());
}
TEST(HeapObjects) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Heap* heap = isolate->heap();
HandleScope sc(isolate);
Handle<Object> value = factory->NewNumber(1.000123);
CHECK(value->IsHeapNumber());
CHECK(value->IsNumber());
CHECK_EQ(1.000123, value->Number());
value = factory->NewNumber(1.0);
CHECK(value->IsSmi());
CHECK(value->IsNumber());
CHECK_EQ(1.0, value->Number());
value = factory->NewNumberFromInt(1024);
CHECK(value->IsSmi());
CHECK(value->IsNumber());
CHECK_EQ(1024.0, value->Number());
value = factory->NewNumberFromInt(Smi::kMinValue);
CHECK(value->IsSmi());
CHECK(value->IsNumber());
CHECK_EQ(Smi::kMinValue, Handle<Smi>::cast(value)->value());
value = factory->NewNumberFromInt(Smi::kMaxValue);
CHECK(value->IsSmi());
CHECK(value->IsNumber());
CHECK_EQ(Smi::kMaxValue, Handle<Smi>::cast(value)->value());
#if !defined(V8_TARGET_ARCH_64_BIT)
// TODO(lrn): We need a NumberFromIntptr function in order to test this.
value = factory->NewNumberFromInt(Smi::kMinValue - 1);
CHECK(value->IsHeapNumber());
CHECK(value->IsNumber());
CHECK_EQ(static_cast<double>(Smi::kMinValue - 1), value->Number());
#endif
value = factory->NewNumberFromUint(static_cast<uint32_t>(Smi::kMaxValue) + 1);
CHECK(value->IsHeapNumber());
CHECK(value->IsNumber());
CHECK_EQ(static_cast<double>(static_cast<uint32_t>(Smi::kMaxValue) + 1),
value->Number());
value = factory->NewNumberFromUint(static_cast<uint32_t>(1) << 31);
CHECK(value->IsHeapNumber());
CHECK(value->IsNumber());
CHECK_EQ(static_cast<double>(static_cast<uint32_t>(1) << 31),
value->Number());
// nan oddball checks
CHECK(factory->nan_value()->IsNumber());
CHECK(std::isnan(factory->nan_value()->Number()));
Handle<String> s = factory->NewStringFromStaticChars("fisk hest ");
CHECK(s->IsString());
CHECK_EQ(10, s->length());
Handle<String> object_string = Handle<String>::cast(factory->Object_string());
Handle<JSGlobalObject> global(CcTest::i_isolate()->context().global_object(),
isolate);
CHECK(Just(true) == JSReceiver::HasOwnProperty(global, object_string));
// Check ToString for oddballs
ReadOnlyRoots roots(heap);
CheckOddball(isolate, roots.true_value(), "true");
CheckOddball(isolate, roots.false_value(), "false");
CheckOddball(isolate, roots.null_value(), "null");
CheckOddball(isolate, roots.undefined_value(), "undefined");
// Check ToString for Smis
CheckSmi(isolate, 0, "0");
CheckSmi(isolate, 42, "42");
CheckSmi(isolate, -42, "-42");
// Check ToString for Numbers
CheckNumber(isolate, 1.1, "1.1");
CheckFindCodeObject(isolate);
}
TEST(Tagging) {
CcTest::InitializeVM();
int request = 24;
CHECK_EQ(request, static_cast<int>(OBJECT_POINTER_ALIGN(request)));
CHECK(Smi::FromInt(42).IsSmi());
CHECK(Smi::FromInt(Smi::kMinValue).IsSmi());
CHECK(Smi::FromInt(Smi::kMaxValue).IsSmi());
}
TEST(GarbageCollection) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope sc(isolate);
// Check GC.
CcTest::CollectGarbage(NEW_SPACE);
Handle<JSGlobalObject> global(CcTest::i_isolate()->context().global_object(),
isolate);
Handle<String> name = factory->InternalizeUtf8String("theFunction");
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
Handle<String> prop_namex = factory->InternalizeUtf8String("theSlotx");
Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
Handle<Smi> twenty_four(Smi::FromInt(24), isolate);
{
HandleScope inner_scope(isolate);
// Allocate a function and keep it in global object's property.
Handle<JSFunction> function = factory->NewFunctionForTest(name);
Object::SetProperty(isolate, global, name, function).Check();
// Allocate an object. Unrooted after leaving the scope.
Handle<JSObject> obj = factory->NewJSObject(function);
Object::SetProperty(isolate, obj, prop_name, twenty_three).Check();
Object::SetProperty(isolate, obj, prop_namex, twenty_four).Check();
CHECK_EQ(Smi::FromInt(23),
*Object::GetProperty(isolate, obj, prop_name).ToHandleChecked());
CHECK_EQ(Smi::FromInt(24),
*Object::GetProperty(isolate, obj, prop_namex).ToHandleChecked());
}
CcTest::CollectGarbage(NEW_SPACE);
// Function should be alive.
CHECK(Just(true) == JSReceiver::HasOwnProperty(global, name));
// Check function is retained.
Handle<Object> func_value =
Object::GetProperty(isolate, global, name).ToHandleChecked();
CHECK(func_value->IsJSFunction());
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
{
HandleScope inner_scope(isolate);
// Allocate another object, make it reachable from global.
Handle<JSObject> obj = factory->NewJSObject(function);
Object::SetProperty(isolate, global, obj_name, obj).Check();
Object::SetProperty(isolate, obj, prop_name, twenty_three).Check();
}
// After gc, it should survive.
CcTest::CollectGarbage(NEW_SPACE);
CHECK(Just(true) == JSReceiver::HasOwnProperty(global, obj_name));
Handle<Object> obj =
Object::GetProperty(isolate, global, obj_name).ToHandleChecked();
CHECK(obj->IsJSObject());
CHECK_EQ(Smi::FromInt(23),
*Object::GetProperty(isolate, obj, prop_name).ToHandleChecked());
}
static void VerifyStringAllocation(Isolate* isolate, const char* string) {
HandleScope scope(isolate);
Handle<String> s = isolate->factory()->NewStringFromUtf8(
CStrVector(string)).ToHandleChecked();
CHECK_EQ(strlen(string), s->length());
for (int index = 0; index < s->length(); index++) {
CHECK_EQ(static_cast<uint16_t>(string[index]), s->Get(index));
}
}
TEST(String) {
CcTest::InitializeVM();
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
VerifyStringAllocation(isolate, "a");
VerifyStringAllocation(isolate, "ab");
VerifyStringAllocation(isolate, "abc");
VerifyStringAllocation(isolate, "abcd");
VerifyStringAllocation(isolate, "fiskerdrengen er paa havet");
}
TEST(LocalHandles) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
const char* name = "Kasper the spunky";
Handle<String> string = factory->NewStringFromAsciiChecked(name);
CHECK_EQ(strlen(name), string->length());
}
TEST(GlobalHandles) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
GlobalHandles* global_handles = isolate->global_handles();
Handle<Object> h1;
Handle<Object> h2;
Handle<Object> h3;
Handle<Object> h4;
{
HandleScope scope(isolate);
Handle<Object> i = factory->NewStringFromStaticChars("fisk");
Handle<Object> u = factory->NewNumber(1.12344);
h1 = global_handles->Create(*i);
h2 = global_handles->Create(*u);
h3 = global_handles->Create(*i);
h4 = global_handles->Create(*u);
}
// after gc, it should survive
CcTest::CollectGarbage(NEW_SPACE);
CHECK((*h1).IsString());
CHECK((*h2).IsHeapNumber());
CHECK((*h3).IsString());
CHECK((*h4).IsHeapNumber());
CHECK_EQ(*h3, *h1);
GlobalHandles::Destroy(h1.location());
GlobalHandles::Destroy(h3.location());
CHECK_EQ(*h4, *h2);
GlobalHandles::Destroy(h2.location());
GlobalHandles::Destroy(h4.location());
}
static bool WeakPointerCleared = false;
static void TestWeakGlobalHandleCallback(
const v8::WeakCallbackInfo<void>& data) {
std::pair<v8::Persistent<v8::Value>*, int>* p =
reinterpret_cast<std::pair<v8::Persistent<v8::Value>*, int>*>(
data.GetParameter());
if (p->second == 1234) WeakPointerCleared = true;
p->first->Reset();
}
TEST(WeakGlobalUnmodifiedApiHandlesScavenge) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
LocalContext context;
Factory* factory = isolate->factory();
GlobalHandles* global_handles = isolate->global_handles();
WeakPointerCleared = false;
Handle<Object> h1;
Handle<Object> h2;
{
HandleScope scope(isolate);
// Create an Api object that is unmodified.
Local<v8::Function> function = FunctionTemplate::New(context->GetIsolate())
->GetFunction(context.local())
.ToLocalChecked();
Local<v8::Object> i =
function->NewInstance(context.local()).ToLocalChecked();
Handle<Object> u = factory->NewNumber(1.12344);
h1 = global_handles->Create(*u);
h2 = global_handles->Create(*(reinterpret_cast<internal::Address*>(*i)));
}
std::pair<Handle<Object>*, int> handle_and_id(&h2, 1234);
GlobalHandles::MakeWeak(
h2.location(), reinterpret_cast<void*>(&handle_and_id),
&TestWeakGlobalHandleCallback, v8::WeakCallbackType::kParameter);
CcTest::CollectGarbage(NEW_SPACE);
CHECK((*h1).IsHeapNumber());
CHECK(WeakPointerCleared);
GlobalHandles::Destroy(h1.location());
}
TEST(WeakGlobalHandlesMark) {
FLAG_stress_incremental_marking = false;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
GlobalHandles* global_handles = isolate->global_handles();
WeakPointerCleared = false;
Handle<Object> h1;
Handle<Object> h2;
{
HandleScope scope(isolate);
Handle<Object> i = factory->NewStringFromStaticChars("fisk");
Handle<Object> u = factory->NewNumber(1.12344);
h1 = global_handles->Create(*i);
h2 = global_handles->Create(*u);
}
// Make sure the objects are promoted.
CcTest::CollectGarbage(OLD_SPACE);
CcTest::CollectGarbage(NEW_SPACE);
CHECK(!Heap::InYoungGeneration(*h1) && !Heap::InYoungGeneration(*h2));
std::pair<Handle<Object>*, int> handle_and_id(&h2, 1234);
GlobalHandles::MakeWeak(
h2.location(), reinterpret_cast<void*>(&handle_and_id),
&TestWeakGlobalHandleCallback, v8::WeakCallbackType::kParameter);
// Incremental marking potentially marked handles before they turned weak.
CcTest::CollectAllGarbage();
CHECK((*h1).IsString());
CHECK(WeakPointerCleared);
GlobalHandles::Destroy(h1.location());
}
TEST(DeleteWeakGlobalHandle) {
FLAG_stress_compaction = false;
FLAG_stress_incremental_marking = false;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
GlobalHandles* global_handles = isolate->global_handles();
WeakPointerCleared = false;
Handle<Object> h;
{
HandleScope scope(isolate);
Handle<Object> i = factory->NewStringFromStaticChars("fisk");
h = global_handles->Create(*i);
}
std::pair<Handle<Object>*, int> handle_and_id(&h, 1234);
GlobalHandles::MakeWeak(h.location(), reinterpret_cast<void*>(&handle_and_id),
&TestWeakGlobalHandleCallback,
v8::WeakCallbackType::kParameter);
CHECK(!WeakPointerCleared);
CcTest::CollectGarbage(OLD_SPACE);
CHECK(WeakPointerCleared);
}
TEST(BytecodeArray) {
if (FLAG_never_compact) return;
static const uint8_t kRawBytes[] = {0xC3, 0x7E, 0xA5, 0x5A};
static const int kRawBytesSize = sizeof(kRawBytes);
static const int32_t kFrameSize = 32;
static const int32_t kParameterCount = 2;
ManualGCScope manual_gc_scope;
FLAG_manual_evacuation_candidates_selection = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
heap::SimulateFullSpace(heap->old_space());
Handle<FixedArray> constant_pool =
factory->NewFixedArray(5, AllocationType::kOld);
for (int i = 0; i < 5; i++) {
Handle<Object> number = factory->NewHeapNumber(i);
constant_pool->set(i, *number);
}
// Allocate and initialize BytecodeArray
Handle<BytecodeArray> array = factory->NewBytecodeArray(
kRawBytesSize, kRawBytes, kFrameSize, kParameterCount, constant_pool);
CHECK(array->IsBytecodeArray());
CHECK_EQ(array->length(), (int)sizeof(kRawBytes));
CHECK_EQ(array->frame_size(), kFrameSize);
CHECK_EQ(array->parameter_count(), kParameterCount);
CHECK_EQ(array->constant_pool(), *constant_pool);
CHECK_LE(array->address(), array->GetFirstBytecodeAddress());
CHECK_GE(array->address() + array->BytecodeArraySize(),
array->GetFirstBytecodeAddress() + array->length());
for (int i = 0; i < kRawBytesSize; i++) {
CHECK_EQ(Memory<uint8_t>(array->GetFirstBytecodeAddress() + i),
kRawBytes[i]);
CHECK_EQ(array->get(i), kRawBytes[i]);
}
FixedArray old_constant_pool_address = *constant_pool;
// Perform a full garbage collection and force the constant pool to be on an
// evacuation candidate.
Page* evac_page = Page::FromHeapObject(*constant_pool);
heap::ForceEvacuationCandidate(evac_page);
CcTest::CollectAllGarbage();
// BytecodeArray should survive.
CHECK_EQ(array->length(), kRawBytesSize);
CHECK_EQ(array->frame_size(), kFrameSize);
for (int i = 0; i < kRawBytesSize; i++) {
CHECK_EQ(array->get(i), kRawBytes[i]);
CHECK_EQ(Memory<uint8_t>(array->GetFirstBytecodeAddress() + i),
kRawBytes[i]);
}
// Constant pool should have been migrated.
CHECK_EQ(array->constant_pool(), *constant_pool);
CHECK_NE(array->constant_pool(), old_constant_pool_address);
}
TEST(BytecodeArrayAging) {
static const uint8_t kRawBytes[] = {0xC3, 0x7E, 0xA5, 0x5A};
static const int kRawBytesSize = sizeof(kRawBytes);
static const int32_t kFrameSize = 32;
static const int32_t kParameterCount = 2;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
Handle<BytecodeArray> array =
factory->NewBytecodeArray(kRawBytesSize, kRawBytes, kFrameSize,
kParameterCount, factory->empty_fixed_array());
CHECK_EQ(BytecodeArray::kFirstBytecodeAge, array->bytecode_age());
array->MakeOlder();
CHECK_EQ(BytecodeArray::kQuadragenarianBytecodeAge, array->bytecode_age());
array->set_bytecode_age(BytecodeArray::kLastBytecodeAge);
array->MakeOlder();
CHECK_EQ(BytecodeArray::kLastBytecodeAge, array->bytecode_age());
}
static const char* not_so_random_string_table[] = {
"abstract",
"boolean",
"break",
"byte",
"case",
"catch",
"char",
"class",
"const",
"continue",
"debugger",
"default",
"delete",
"do",
"double",
"else",
"enum",
"export",
"extends",
"false",
"final",
"finally",
"float",
"for",
"function",
"goto",
"if",
"implements",
"import",
"in",
"instanceof",
"int",
"interface",
"long",
"native",
"new",
"null",
"package",
"private",
"protected",
"public",
"return",
"short",
"static",
"super",
"switch",
"synchronized",
"this",
"throw",
"throws",
"transient",
"true",
"try",
"typeof",
"var",
"void",
"volatile",
"while",
"with",
nullptr
};
static void CheckInternalizedStrings(const char** strings) {
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
for (const char* string = *strings; *strings != nullptr;
string = *strings++) {
HandleScope scope(isolate);
Handle<String> a =
isolate->factory()->InternalizeUtf8String(CStrVector(string));
// InternalizeUtf8String may return a failure if a GC is needed.
CHECK(a->IsInternalizedString());
Handle<String> b = factory->InternalizeUtf8String(string);
CHECK_EQ(*b, *a);
CHECK(b->IsOneByteEqualTo(CStrVector(string)));
b = isolate->factory()->InternalizeUtf8String(CStrVector(string));
CHECK_EQ(*b, *a);
CHECK(b->IsOneByteEqualTo(CStrVector(string)));
}
}
TEST(StringTable) {
CcTest::InitializeVM();
v8::HandleScope sc(CcTest::isolate());
CheckInternalizedStrings(not_so_random_string_table);
CheckInternalizedStrings(not_so_random_string_table);
}
TEST(FunctionAllocation) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope sc(CcTest::isolate());
Handle<String> name = factory->InternalizeUtf8String("theFunction");
Handle<JSFunction> function = factory->NewFunctionForTest(name);
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
Handle<Smi> twenty_four(Smi::FromInt(24), isolate);
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
Handle<JSObject> obj = factory->NewJSObject(function);
Object::SetProperty(isolate, obj, prop_name, twenty_three).Check();
CHECK_EQ(Smi::FromInt(23),
*Object::GetProperty(isolate, obj, prop_name).ToHandleChecked());
// Check that we can add properties to function objects.
Object::SetProperty(isolate, function, prop_name, twenty_four).Check();
CHECK_EQ(
Smi::FromInt(24),
*Object::GetProperty(isolate, function, prop_name).ToHandleChecked());
}
TEST(ObjectProperties) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope sc(CcTest::isolate());
Handle<String> object_string(
String::cast(ReadOnlyRoots(CcTest::heap()).Object_string()), isolate);
Handle<Object> object =
Object::GetProperty(isolate, CcTest::i_isolate()->global_object(),
object_string)
.ToHandleChecked();
Handle<JSFunction> constructor = Handle<JSFunction>::cast(object);
Handle<JSObject> obj = factory->NewJSObject(constructor);
Handle<String> first = factory->InternalizeUtf8String("first");
Handle<String> second = factory->InternalizeUtf8String("second");
Handle<Smi> one(Smi::FromInt(1), isolate);
Handle<Smi> two(Smi::FromInt(2), isolate);
// check for empty
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first));
// add first
Object::SetProperty(isolate, obj, first, one).Check();
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first));
// delete first
CHECK(Just(true) ==
JSReceiver::DeleteProperty(obj, first, LanguageMode::kSloppy));
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first));
// add first and then second
Object::SetProperty(isolate, obj, first, one).Check();
Object::SetProperty(isolate, obj, second, two).Check();
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first));
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second));
// delete first and then second
CHECK(Just(true) ==
JSReceiver::DeleteProperty(obj, first, LanguageMode::kSloppy));
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second));
CHECK(Just(true) ==
JSReceiver::DeleteProperty(obj, second, LanguageMode::kSloppy));
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first));
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, second));
// add first and then second
Object::SetProperty(isolate, obj, first, one).Check();
Object::SetProperty(isolate, obj, second, two).Check();
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first));
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second));
// delete second and then first
CHECK(Just(true) ==
JSReceiver::DeleteProperty(obj, second, LanguageMode::kSloppy));
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first));
CHECK(Just(true) ==
JSReceiver::DeleteProperty(obj, first, LanguageMode::kSloppy));
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first));
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, second));
// check string and internalized string match
const char* string1 = "fisk";
Handle<String> s1 = factory->NewStringFromAsciiChecked(string1);
Object::SetProperty(isolate, obj, s1, one).Check();
Handle<String> s1_string = factory->InternalizeUtf8String(string1);
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, s1_string));
// check internalized string and string match
const char* string2 = "fugl";
Handle<String> s2_string = factory->InternalizeUtf8String(string2);
Object::SetProperty(isolate, obj, s2_string, one).Check();
Handle<String> s2 = factory->NewStringFromAsciiChecked(string2);
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, s2));
}
TEST(JSObjectMaps) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope sc(CcTest::isolate());
Handle<String> name = factory->InternalizeUtf8String("theFunction");
Handle<JSFunction> function = factory->NewFunctionForTest(name);
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
Handle<JSObject> obj = factory->NewJSObject(function);
Handle<Map> initial_map(function->initial_map(), isolate);
// Set a propery
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
Object::SetProperty(isolate, obj, prop_name, twenty_three).Check();
CHECK_EQ(Smi::FromInt(23),
*Object::GetProperty(isolate, obj, prop_name).ToHandleChecked());
// Check the map has changed
CHECK(*initial_map != obj->map());
}
TEST(JSArray) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope sc(CcTest::isolate());
Handle<String> name = factory->InternalizeUtf8String("Array");
Handle<Object> fun_obj =
Object::GetProperty(isolate, CcTest::i_isolate()->global_object(), name)
.ToHandleChecked();
Handle<JSFunction> function = Handle<JSFunction>::cast(fun_obj);
// Allocate the object.
Handle<Object> element;
Handle<JSObject> object = factory->NewJSObject(function);
Handle<JSArray> array = Handle<JSArray>::cast(object);
// We just initialized the VM, no heap allocation failure yet.
JSArray::Initialize(array, 0);
// Set array length to 0.
JSArray::SetLength(array, 0);
CHECK_EQ(Smi::kZero, array->length());
// Must be in fast mode.
CHECK(array->HasSmiOrObjectElements());
// array[length] = name.
Object::SetElement(isolate, array, 0, name, ShouldThrow::kDontThrow).Check();
CHECK_EQ(Smi::FromInt(1), array->length());
element = i::Object::GetElement(isolate, array, 0).ToHandleChecked();
CHECK_EQ(*element, *name);
// Set array length with larger than smi value.
JSArray::SetLength(array, static_cast<uint32_t>(Smi::kMaxValue) + 1);
uint32_t int_length = 0;
CHECK(array->length().ToArrayIndex(&int_length));
CHECK_EQ(static_cast<uint32_t>(Smi::kMaxValue) + 1, int_length);
CHECK(array->HasDictionaryElements()); // Must be in slow mode.
// array[length] = name.
Object::SetElement(isolate, array, int_length, name, ShouldThrow::kDontThrow)
.Check();
uint32_t new_int_length = 0;
CHECK(array->length().ToArrayIndex(&new_int_length));
CHECK_EQ(static_cast<double>(int_length), new_int_length - 1);
element = Object::GetElement(isolate, array, int_length).ToHandleChecked();
CHECK_EQ(*element, *name);
element = Object::GetElement(isolate, array, 0).ToHandleChecked();
CHECK_EQ(*element, *name);
}
TEST(JSObjectCopy) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope sc(CcTest::isolate());
Handle<String> object_string(
String::cast(ReadOnlyRoots(CcTest::heap()).Object_string()), isolate);
Handle<Object> object =
Object::GetProperty(isolate, CcTest::i_isolate()->global_object(),
object_string)
.ToHandleChecked();
Handle<JSFunction> constructor = Handle<JSFunction>::cast(object);
Handle<JSObject> obj = factory->NewJSObject(constructor);
Handle<String> first = factory->InternalizeUtf8String("first");
Handle<String> second = factory->InternalizeUtf8String("second");
Handle<Smi> one(Smi::FromInt(1), isolate);
Handle<Smi> two(Smi::FromInt(2), isolate);
Object::SetProperty(isolate, obj, first, one).Check();
Object::SetProperty(isolate, obj, second, two).Check();
Object::SetElement(isolate, obj, 0, first, ShouldThrow::kDontThrow).Check();
Object::SetElement(isolate, obj, 1, second, ShouldThrow::kDontThrow).Check();
// Make the clone.
Handle<Object> value1, value2;
Handle<JSObject> clone = factory->CopyJSObject(obj);
CHECK(!clone.is_identical_to(obj));
value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked();
value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked();
CHECK_EQ(*value1, *value2);
value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked();
value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked();
CHECK_EQ(*value1, *value2);
value1 = Object::GetProperty(isolate, obj, first).ToHandleChecked();
value2 = Object::GetProperty(isolate, clone, first).ToHandleChecked();
CHECK_EQ(*value1, *value2);
value1 = Object::GetProperty(isolate, obj, second).ToHandleChecked();
value2 = Object::GetProperty(isolate, clone, second).ToHandleChecked();
CHECK_EQ(*value1, *value2);
// Flip the values.
Object::SetProperty(isolate, clone, first, two).Check();
Object::SetProperty(isolate, clone, second, one).Check();
Object::SetElement(isolate, clone, 0, second, ShouldThrow::kDontThrow)
.Check();
Object::SetElement(isolate, clone, 1, first, ShouldThrow::kDontThrow).Check();
value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked();
value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked();
CHECK_EQ(*value1, *value2);
value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked();
value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked();
CHECK_EQ(*value1, *value2);
value1 = Object::GetProperty(isolate, obj, second).ToHandleChecked();
value2 = Object::GetProperty(isolate, clone, first).ToHandleChecked();
CHECK_EQ(*value1, *value2);
value1 = Object::GetProperty(isolate, obj, first).ToHandleChecked();
value2 = Object::GetProperty(isolate, clone, second).ToHandleChecked();
CHECK_EQ(*value1, *value2);
}
TEST(StringAllocation) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
const unsigned char chars[] = {0xE5, 0xA4, 0xA7};
for (int length = 0; length < 100; length++) {
v8::HandleScope scope(CcTest::isolate());
char* non_one_byte = NewArray<char>(3 * length + 1);
char* one_byte = NewArray<char>(length + 1);
non_one_byte[3 * length] = 0;
one_byte[length] = 0;
for (int i = 0; i < length; i++) {
one_byte[i] = 'a';
non_one_byte[3 * i] = chars[0];
non_one_byte[3 * i + 1] = chars[1];
non_one_byte[3 * i + 2] = chars[2];
}
Handle<String> non_one_byte_sym = factory->InternalizeUtf8String(
Vector<const char>(non_one_byte, 3 * length));
CHECK_EQ(length, non_one_byte_sym->length());
Handle<String> one_byte_sym =
factory->InternalizeString(OneByteVector(one_byte, length));
CHECK_EQ(length, one_byte_sym->length());
Handle<String> non_one_byte_str =
factory->NewStringFromUtf8(Vector<const char>(non_one_byte, 3 * length))
.ToHandleChecked();
non_one_byte_str->Hash();
CHECK_EQ(length, non_one_byte_str->length());
Handle<String> one_byte_str =
factory->NewStringFromUtf8(Vector<const char>(one_byte, length))
.ToHandleChecked();
one_byte_str->Hash();
CHECK_EQ(length, one_byte_str->length());
DeleteArray(non_one_byte);
DeleteArray(one_byte);
}
}
static int ObjectsFoundInHeap(Heap* heap, Handle<Object> objs[], int size) {
// Count the number of objects found in the heap.
int found_count = 0;
HeapIterator iterator(heap);
for (HeapObject obj = iterator.Next(); !obj.is_null();
obj = iterator.Next()) {
for (int i = 0; i < size; i++) {
if (*objs[i] == obj) {
found_count++;
}
}
}
return found_count;
}
TEST(Iteration) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
// Array of objects to scan haep for.
const int objs_count = 6;
Handle<Object> objs[objs_count];
int next_objs_index = 0;
// Allocate a JS array to OLD_SPACE and NEW_SPACE
objs[next_objs_index++] = factory->NewJSArray(10);
objs[next_objs_index++] =
factory->NewJSArray(10, HOLEY_ELEMENTS, AllocationType::kOld);
// Allocate a small string to OLD_DATA_SPACE and NEW_SPACE
objs[next_objs_index++] = factory->NewStringFromStaticChars("abcdefghij");
objs[next_objs_index++] =
factory->NewStringFromStaticChars("abcdefghij", AllocationType::kOld);
// Allocate a large string (for large object space).
int large_size = kMaxRegularHeapObjectSize + 1;
char* str = new char[large_size];
for (int i = 0; i < large_size - 1; ++i) str[i] = 'a';
str[large_size - 1] = '\0';
objs[next_objs_index++] =
factory->NewStringFromAsciiChecked(str, AllocationType::kOld);
delete[] str;
// Add a Map object to look for.
objs[next_objs_index++] =
Handle<Map>(HeapObject::cast(*objs[0]).map(), isolate);
CHECK_EQ(objs_count, next_objs_index);
CHECK_EQ(objs_count, ObjectsFoundInHeap(CcTest::heap(), objs, objs_count));
}
TEST(TestBytecodeFlushing) {
#ifndef V8_LITE_MODE
FLAG_opt = false;
FLAG_always_opt = false;
i::FLAG_optimize_for_size = false;
#endif // V8_LITE_MODE
i::FLAG_flush_bytecode = true;
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::Isolate* isolate = CcTest::isolate();
Isolate* i_isolate = CcTest::i_isolate();
Factory* factory = i_isolate->factory();
{
v8::HandleScope scope(isolate);
v8::Context::New(isolate)->Enter();
const char* source =
"function foo() {"
" var x = 42;"
" var y = 42;"
" var z = x + y;"
"};"
"foo()";
Handle<String> foo_name = factory->InternalizeUtf8String("foo");
// This compile will add the code to the compilation cache.
{
v8::HandleScope scope(isolate);
CompileRun(source);
}
// Check function is compiled.
Handle<Object> func_value =
Object::GetProperty(i_isolate, i_isolate->global_object(), foo_name)
.ToHandleChecked();
CHECK(func_value->IsJSFunction());
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
CHECK(function->shared().is_compiled());
// The code will survive at least two GCs.
CcTest::CollectAllGarbage();
CcTest::CollectAllGarbage();
CHECK(function->shared().is_compiled());
// Simulate several GCs that use full marking.
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
CcTest::CollectAllGarbage();
}
// foo should no longer be in the compilation cache
CHECK(!function->shared().is_compiled());
CHECK(!function->is_compiled());
// Call foo to get it recompiled.
CompileRun("foo()");
CHECK(function->shared().is_compiled());
CHECK(function->is_compiled());
}
}
#ifndef V8_LITE_MODE
TEST(TestOptimizeAfterBytecodeFlushingCandidate) {
FLAG_opt = true;
FLAG_always_opt = false;
i::FLAG_optimize_for_size = false;
i::FLAG_incremental_marking = true;
i::FLAG_flush_bytecode = true;
i::FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
const char* source =
"function foo() {"
" var x = 42;"
" var y = 42;"
" var z = x + y;"
"};"
"foo()";
Handle<String> foo_name = factory->InternalizeUtf8String("foo");
// This compile will add the code to the compilation cache.
{
v8::HandleScope scope(CcTest::isolate());
CompileRun(source);
}
// Check function is compiled.
Handle<Object> func_value =
Object::GetProperty(isolate, isolate->global_object(), foo_name)
.ToHandleChecked();
CHECK(func_value->IsJSFunction());
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
CHECK(function->shared().is_compiled());
// The code will survive at least two GCs.
CcTest::CollectAllGarbage();
CcTest::CollectAllGarbage();
CHECK(function->shared().is_compiled());
// Simulate several GCs that use incremental marking.
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
heap::SimulateIncrementalMarking(CcTest::heap());
CcTest::CollectAllGarbage();
}
CHECK(!function->shared().is_compiled());
CHECK(!function->is_compiled());
// This compile will compile the function again.
{
v8::HandleScope scope(CcTest::isolate());
CompileRun("foo();");
}
// Simulate several GCs that use incremental marking but make sure
// the loop breaks once the function is enqueued as a candidate.
for (int i = 0; i < kAgingThreshold; i++) {
heap::SimulateIncrementalMarking(CcTest::heap());
if (function->shared().GetBytecodeArray().IsOld()) break;
CcTest::CollectAllGarbage();
}
// Force optimization while incremental marking is active and while
// the function is enqueued as a candidate.
{
v8::HandleScope scope(CcTest::isolate());
CompileRun(
"%PrepareFunctionForOptimization(foo);"
"%OptimizeFunctionOnNextCall(foo); foo();");
}
// Simulate one final GC and make sure the candidate wasn't flushed.
CcTest::CollectAllGarbage();
CHECK(function->shared().is_compiled());
CHECK(function->is_compiled());
}
#endif // V8_LITE_MODE
TEST(TestUseOfIncrementalBarrierOnCompileLazy) {
if (!FLAG_incremental_marking) return;
// Turn off always_opt because it interferes with running the built-in for
// the last call to g().
FLAG_always_opt = false;
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Heap* heap = isolate->heap();
v8::HandleScope scope(CcTest::isolate());
CompileRun(
"function make_closure(x) {"
" return function() { return x + 3 };"
"}"
"var f = make_closure(5);"
"%PrepareFunctionForOptimization(f); f();"
"var g = make_closure(5);");
// Check f is compiled.
Handle<String> f_name = factory->InternalizeUtf8String("f");
Handle<Object> f_value =
Object::GetProperty(isolate, isolate->global_object(), f_name)
.ToHandleChecked();
Handle<JSFunction> f_function = Handle<JSFunction>::cast(f_value);
CHECK(f_function->is_compiled());
// Check g is not compiled.
Handle<String> g_name = factory->InternalizeUtf8String("g");
Handle<Object> g_value =
Object::GetProperty(isolate, isolate->global_object(), g_name)
.ToHandleChecked();
Handle<JSFunction> g_function = Handle<JSFunction>::cast(g_value);
CHECK(!g_function->is_compiled());
heap::SimulateIncrementalMarking(heap);
CompileRun("%OptimizeFunctionOnNextCall(f); f();");
// g should now have available an optimized function, unmarked by gc. The
// CompileLazy built-in will discover it and install it in the closure, and
// the incremental write barrier should be used.
CompileRun("g();");
CHECK(g_function->is_compiled());
}
TEST(CompilationCacheCachingBehavior) {
// If we do not have the compilation cache turned off, this test is invalid.
if (!FLAG_compilation_cache) {
return;
}
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
CompilationCache* compilation_cache = isolate->compilation_cache();
LanguageMode language_mode = construct_language_mode(FLAG_use_strict);
v8::HandleScope scope(CcTest::isolate());
const char* raw_source =
"function foo() {"
" var x = 42;"
" var y = 42;"
" var z = x + y;"
"};"
"foo();";
Handle<String> source = factory->InternalizeUtf8String(raw_source);
Handle<Context> native_context = isolate->native_context();
{
v8::HandleScope scope(CcTest::isolate());
CompileRun(raw_source);
}
// The script should be in the cache now.
{
v8::HandleScope scope(CcTest::isolate());
MaybeHandle<SharedFunctionInfo> cached_script =
compilation_cache->LookupScript(source, Handle<Object>(), 0, 0,
v8::ScriptOriginOptions(true, false),
native_context, language_mode);
CHECK(!cached_script.is_null());
}
// Check that the code cache entry survives at least one GC.
{
CcTest::CollectAllGarbage();
v8::HandleScope scope(CcTest::isolate());
MaybeHandle<SharedFunctionInfo> cached_script =
compilation_cache->LookupScript(source, Handle<Object>(), 0, 0,
v8::ScriptOriginOptions(true, false),
native_context, language_mode);
CHECK(!cached_script.is_null());
// Progress code age until it's old and ready for GC.
Handle<SharedFunctionInfo> shared = cached_script.ToHandleChecked();
CHECK(shared->HasBytecodeArray());
const int kAgingThreshold = 6;
for (int i = 0; i < kAgingThreshold; i++) {
shared->GetBytecodeArray().MakeOlder();
}
}
CcTest::CollectAllGarbage();
{
v8::HandleScope scope(CcTest::isolate());
// Ensure code aging cleared the entry from the cache.
MaybeHandle<SharedFunctionInfo> cached_script =
compilation_cache->LookupScript(source, Handle<Object>(), 0, 0,
v8::ScriptOriginOptions(true, false),
native_context, language_mode);
CHECK(cached_script.is_null());
}
}
static void OptimizeEmptyFunction(const char* name) {
HandleScope scope(CcTest::i_isolate());
EmbeddedVector<char, 256> source;
SNPrintF(source,
"function %s() { return 0; }"
"%%PrepareFunctionForOptimization(%s);"
"%s(); %s();"
"%%OptimizeFunctionOnNextCall(%s);"
"%s();",
name, name, name, name, name, name);
CompileRun(source.begin());
}
// Count the number of native contexts in the weak list of native contexts.
int CountNativeContexts() {
int count = 0;
Object object = CcTest::heap()->native_contexts_list();
while (!object.IsUndefined(CcTest::i_isolate())) {
count++;
object = Context::cast(object).next_context_link();
}
return count;
}
TEST(TestInternalWeakLists) {
FLAG_always_opt = false;
FLAG_allow_natives_syntax = true;
v8::V8::Initialize();
// Some flags turn Scavenge collections into Mark-sweep collections
// and hence are incompatible with this test case.
if (FLAG_gc_global || FLAG_stress_compaction ||
FLAG_stress_incremental_marking)
return;
FLAG_retain_maps_for_n_gc = 0;
static const int kNumTestContexts = 10;
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
v8::Local<v8::Context> ctx[kNumTestContexts];
if (!isolate->use_optimizer()) return;
CHECK_EQ(0, CountNativeContexts());
// Create a number of global contests which gets linked together.
for (int i = 0; i < kNumTestContexts; i++) {
ctx[i] = v8::Context::New(CcTest::isolate());
// Collect garbage that might have been created by one of the
// installed extensions.
isolate->compilation_cache()->Clear();
CcTest::CollectAllGarbage();
CHECK_EQ(i + 1, CountNativeContexts());
ctx[i]->Enter();
// Create a handle scope so no function objects get stuck in the outer
// handle scope.
HandleScope scope(isolate);
OptimizeEmptyFunction("f1");
OptimizeEmptyFunction("f2");
OptimizeEmptyFunction("f3");
OptimizeEmptyFunction("f4");
OptimizeEmptyFunction("f5");
// Remove function f1, and
CompileRun("f1=null");
// Scavenge treats these references as strong.
for (int j = 0; j < 10; j++) {
CcTest::CollectGarbage(NEW_SPACE);
}
// Mark compact handles the weak references.
isolate->compilation_cache()->Clear();
CcTest::CollectAllGarbage();
// Get rid of f3 and f5 in the same way.
CompileRun("f3=null");
for (int j = 0; j < 10; j++) {
CcTest::CollectGarbage(NEW_SPACE);
}
CcTest::CollectAllGarbage();
CompileRun("f5=null");
for (int j = 0; j < 10; j++) {
CcTest::CollectGarbage(NEW_SPACE);
}
CcTest::CollectAllGarbage();
ctx[i]->Exit();
}
// Force compilation cache cleanup.
CcTest::heap()->NotifyContextDisposed(true);
CcTest::CollectAllGarbage();
// Dispose the native contexts one by one.
for (int i = 0; i < kNumTestContexts; i++) {
// TODO(dcarney): is there a better way to do this?
i::Address* unsafe = reinterpret_cast<i::Address*>(*ctx[i]);
*unsafe = ReadOnlyRoots(CcTest::heap()).undefined_value().ptr();
ctx[i].Clear();
// Scavenge treats these references as strong.
for (int j = 0; j < 10; j++) {
CcTest::CollectGarbage(i::NEW_SPACE);
CHECK_EQ(kNumTestContexts - i, CountNativeContexts());
}
// Mark compact handles the weak references.
CcTest::CollectAllGarbage();
CHECK_EQ(kNumTestContexts - i - 1, CountNativeContexts());
}
CHECK_EQ(0, CountNativeContexts());
}
TEST(TestSizeOfRegExpCode) {
if (!FLAG_regexp_optimization) return;
v8::V8::Initialize();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
LocalContext context;
// Adjust source below and this check to match
// RegExpImple::kRegExpTooLargeToOptimize.
CHECK_EQ(i::RegExpImpl::kRegExpTooLargeToOptimize, 20 * KB);
// Compile a regexp that is much larger if we are using regexp optimizations.
CompileRun(
"var reg_exp_source = '(?:a|bc|def|ghij|klmno|pqrstu)';"
"var half_size_reg_exp;"
"while (reg_exp_source.length < 20 * 1024) {"
" half_size_reg_exp = reg_exp_source;"
" reg_exp_source = reg_exp_source + reg_exp_source;"
"}"
// Flatten string.
"reg_exp_source.match(/f/);");
// Get initial heap size after several full GCs, which will stabilize
// the heap size and return with sweeping finished completely.
CcTest::CollectAllAvailableGarbage();
MarkCompactCollector* collector = CcTest::heap()->mark_compact_collector();
if (collector->sweeping_in_progress()) {
collector->EnsureSweepingCompleted();
}
int initial_size = static_cast<int>(CcTest::heap()->SizeOfObjects());
CompileRun("'foo'.match(reg_exp_source);");
CcTest::CollectAllAvailableGarbage();
int size_with_regexp = static_cast<int>(CcTest::heap()->SizeOfObjects());
CompileRun("'foo'.match(half_size_reg_exp);");
CcTest::CollectAllAvailableGarbage();
int size_with_optimized_regexp =
static_cast<int>(CcTest::heap()->SizeOfObjects());
int size_of_regexp_code = size_with_regexp - initial_size;
// On some platforms the debug-code flag causes huge amounts of regexp code
// to be emitted, breaking this test.
if (!FLAG_debug_code) {
CHECK_LE(size_of_regexp_code, 1 * MB);
}
// Small regexp is half the size, but compiles to more than twice the code
// due to the optimization steps.
CHECK_GE(size_with_optimized_regexp,
size_with_regexp + size_of_regexp_code * 2);
}
HEAP_TEST(TestSizeOfObjects) {
v8::V8::Initialize();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = CcTest::heap();
MarkCompactCollector* collector = heap->mark_compact_collector();
// Get initial heap size after several full GCs, which will stabilize
// the heap size and return with sweeping finished completely.
CcTest::CollectAllAvailableGarbage();
if (collector->sweeping_in_progress()) {
collector->EnsureSweepingCompleted();
}
int initial_size = static_cast<int>(heap->SizeOfObjects());
{
HandleScope scope(isolate);
// Allocate objects on several different old-space pages so that
// concurrent sweeper threads will be busy sweeping the old space on
// subsequent GC runs.
AlwaysAllocateScope always_allocate(CcTest::i_isolate());
int filler_size = static_cast<int>(FixedArray::SizeFor(8192));
for (int i = 1; i <= 100; i++) {
isolate->factory()->NewFixedArray(8192, AllocationType::kOld);
CHECK_EQ(initial_size + i * filler_size,
static_cast<int>(heap->SizeOfObjects()));
}
}
// The heap size should go back to initial size after a full GC, even
// though sweeping didn't finish yet.
CcTest::CollectAllGarbage();
// Normally sweeping would not be complete here, but no guarantees.
CHECK_EQ(initial_size, static_cast<int>(heap->SizeOfObjects()));
// Waiting for sweeper threads should not change heap size.
if (collector->sweeping_in_progress()) {
collector->EnsureSweepingCompleted();
}
CHECK_EQ(initial_size, static_cast<int>(heap->SizeOfObjects()));
}
TEST(TestAlignmentCalculations) {
// Maximum fill amounts are consistent.
int maximum_double_misalignment = kDoubleSize - kTaggedSize;
int max_word_fill = Heap::GetMaximumFillToAlign(kWordAligned);
CHECK_EQ(0, max_word_fill);
int max_double_fill = Heap::GetMaximumFillToAlign(kDoubleAligned);
CHECK_EQ(maximum_double_misalignment, max_double_fill);
int max_double_unaligned_fill = Heap::GetMaximumFillToAlign(kDoubleUnaligned);
CHECK_EQ(maximum_double_misalignment, max_double_unaligned_fill);
Address base = kNullAddress;
int fill = 0;
// Word alignment never requires fill.
fill = Heap::GetFillToAlign(base, kWordAligned);
CHECK_EQ(0, fill);
fill = Heap::GetFillToAlign(base + kTaggedSize, kWordAligned);
CHECK_EQ(0, fill);
// No fill is required when address is double aligned.
fill = Heap::GetFillToAlign(base, kDoubleAligned);
CHECK_EQ(0, fill);
// Fill is required if address is not double aligned.
fill = Heap::GetFillToAlign(base + kTaggedSize, kDoubleAligned);
CHECK_EQ(maximum_double_misalignment, fill);
// kDoubleUnaligned has the opposite fill amounts.
fill = Heap::GetFillToAlign(base, kDoubleUnaligned);
CHECK_EQ(maximum_double_misalignment, fill);
fill = Heap::GetFillToAlign(base + kTaggedSize, kDoubleUnaligned);
CHECK_EQ(0, fill);
}
static HeapObject NewSpaceAllocateAligned(int size,
AllocationAlignment alignment) {
Heap* heap = CcTest::heap();
AllocationResult allocation =
heap->new_space()->AllocateRawAligned(size, alignment);
HeapObject obj;
allocation.To(&obj);
heap->CreateFillerObjectAt(obj.address(), size, ClearRecordedSlots::kNo);
return obj;
}
// Get new space allocation into the desired alignment.
static Address AlignNewSpace(AllocationAlignment alignment, int offset) {
Address* top_addr = CcTest::heap()->new_space()->allocation_top_address();
int fill = Heap::GetFillToAlign(*top_addr, alignment);
int allocation = fill + offset;
if (allocation) {
NewSpaceAllocateAligned(allocation, kWordAligned);
}
return *top_addr;
}
TEST(TestAlignedAllocation) {
// Double misalignment is 4 on 32-bit platforms or when pointer compression
// is enabled, 0 on 64-bit ones when pointer compression is disabled.
const intptr_t double_misalignment = kDoubleSize - kTaggedSize;
Address* top_addr = CcTest::heap()->new_space()->allocation_top_address();
Address start;
HeapObject obj;
HeapObject filler;
if (double_misalignment) {
// Allocate a pointer sized object that must be double aligned at an
// aligned address.
start = AlignNewSpace(kDoubleAligned, 0);
obj = NewSpaceAllocateAligned(kTaggedSize, kDoubleAligned);
CHECK(IsAligned(obj.address(), kDoubleAlignment));
// There is no filler.
CHECK_EQ(kTaggedSize, *top_addr - start);
// Allocate a second pointer sized object that must be double aligned at an
// unaligned address.
start = AlignNewSpace(kDoubleAligned, kTaggedSize);
obj = NewSpaceAllocateAligned(kTaggedSize, kDoubleAligned);
CHECK(IsAligned(obj.address(), kDoubleAlignment));
// There is a filler object before the object.
filler = HeapObject::FromAddress(start);
CHECK(obj != filler && filler.IsFiller() && filler.Size() == kTaggedSize);
CHECK_EQ(kTaggedSize + double_misalignment, *top_addr - start);
// Similarly for kDoubleUnaligned.
start = AlignNewSpace(kDoubleUnaligned, 0);
obj = NewSpaceAllocateAligned(kTaggedSize, kDoubleUnaligned);
CHECK(IsAligned(obj.address() + kTaggedSize, kDoubleAlignment));
CHECK_EQ(kTaggedSize, *top_addr - start);
start = AlignNewSpace(kDoubleUnaligned, kTaggedSize);
obj = NewSpaceAllocateAligned(kTaggedSize, kDoubleUnaligned);
CHECK(IsAligned(obj.address() + kTaggedSize, kDoubleAlignment));
// There is a filler object before the object.
filler = HeapObject::FromAddress(start);
CHECK(obj != filler && filler.IsFiller() && filler.Size() == kTaggedSize);
CHECK_EQ(kTaggedSize + double_misalignment, *top_addr - start);
}
}
static HeapObject OldSpaceAllocateAligned(int size,
AllocationAlignment alignment) {
Heap* heap = CcTest::heap();
AllocationResult allocation =
heap->old_space()->AllocateRawAligned(size, alignment);
HeapObject obj;
allocation.To(&obj);
heap->CreateFillerObjectAt(obj.address(), size, ClearRecordedSlots::kNo);
return obj;
}
// Get old space allocation into the desired alignment.
static Address AlignOldSpace(AllocationAlignment alignment, int offset) {
Address* top_addr = CcTest::heap()->old_space()->allocation_top_address();
int fill = Heap::GetFillToAlign(*top_addr, alignment);
int allocation = fill + offset;
if (allocation) {
OldSpaceAllocateAligned(allocation, kWordAligned);
}
Address top = *top_addr;
// Now force the remaining allocation onto the free list.
CcTest::heap()->old_space()->FreeLinearAllocationArea();
return top;
}
// Test the case where allocation must be done from the free list, so filler
// may precede or follow the object.
TEST(TestAlignedOverAllocation) {
Heap* heap = CcTest::heap();
// Test checks for fillers before and behind objects and requires a fresh
// page and empty free list.
heap::AbandonCurrentlyFreeMemory(heap->old_space());
// Allocate a dummy object to properly set up the linear allocation info.
AllocationResult dummy = heap->old_space()->AllocateRawUnaligned(kTaggedSize);
CHECK(!dummy.IsRetry());
heap->CreateFillerObjectAt(dummy.ToObjectChecked().address(), kTaggedSize,
ClearRecordedSlots::kNo);
// Double misalignment is 4 on 32-bit platforms or when pointer compression
// is enabled, 0 on 64-bit ones when pointer compression is disabled.
const intptr_t double_misalignment = kDoubleSize - kTaggedSize;
Address start;
HeapObject obj;
HeapObject filler;
if (double_misalignment) {
start = AlignOldSpace(kDoubleAligned, 0);
obj = OldSpaceAllocateAligned(kTaggedSize, kDoubleAligned);
// The object is aligned.
CHECK(IsAligned(obj.address(), kDoubleAlignment));
// Try the opposite alignment case.
start = AlignOldSpace(kDoubleAligned, kTaggedSize);
obj = OldSpaceAllocateAligned(kTaggedSize, kDoubleAligned);
CHECK(IsAligned(obj.address(), kDoubleAlignment));
filler = HeapObject::FromAddress(start);
CHECK(obj != filler);
CHECK(filler.IsFiller());
CHECK_EQ(kTaggedSize, filler.Size());
CHECK(obj != filler && filler.IsFiller() && filler.Size() == kTaggedSize);
// Similarly for kDoubleUnaligned.
start = AlignOldSpace(kDoubleUnaligned, 0);
obj = OldSpaceAllocateAligned(kTaggedSize, kDoubleUnaligned);
// The object is aligned.
CHECK(IsAligned(obj.address() + kTaggedSize, kDoubleAlignment));
// Try the opposite alignment case.
start = AlignOldSpace(kDoubleUnaligned, kTaggedSize);
obj = OldSpaceAllocateAligned(kTaggedSize, kDoubleUnaligned);
CHECK(IsAligned(obj.address() + kTaggedSize, kDoubleAlignment));
filler = HeapObject::FromAddress(start);
CHECK(obj != filler && filler.IsFiller() && filler.Size() == kTaggedSize);
}
}
TEST(HeapNumberAlignment) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Heap* heap = isolate->heap();
HandleScope sc(isolate);
const auto required_alignment =
HeapObject::RequiredAlignment(*factory->heap_number_map());
const int maximum_misalignment =
Heap::GetMaximumFillToAlign(required_alignment);
for (int offset = 0; offset <= maximum_misalignment; offset += kTaggedSize) {
AlignNewSpace(required_alignment, offset);
Handle<Object> number_new = factory->NewNumber(1.000123);
CHECK(number_new->IsHeapNumber());
CHECK(Heap::InYoungGeneration(*number_new));
CHECK_EQ(0, Heap::GetFillToAlign(HeapObject::cast(*number_new).address(),
required_alignment));
AlignOldSpace(required_alignment, offset);
Handle<Object> number_old =
factory->NewNumber(1.000321, AllocationType::kOld);
CHECK(number_old->IsHeapNumber());
CHECK(heap->InOldSpace(*number_old));
CHECK_EQ(0, Heap::GetFillToAlign(HeapObject::cast(*number_old).address(),
required_alignment));
}
}
TEST(MutableHeapNumberAlignment) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Heap* heap = isolate->heap();
HandleScope sc(isolate);
const auto required_alignment =
HeapObject::RequiredAlignment(*factory->mutable_heap_number_map());
const int maximum_misalignment =
Heap::GetMaximumFillToAlign(required_alignment);
for (int offset = 0; offset <= maximum_misalignment; offset += kTaggedSize) {
AlignNewSpace(required_alignment, offset);
Handle<Object> number_new = factory->NewMutableHeapNumber(1.000123);
CHECK(number_new->IsMutableHeapNumber());
CHECK(Heap::InYoungGeneration(*number_new));
CHECK_EQ(0, Heap::GetFillToAlign(HeapObject::cast(*number_new).address(),
required_alignment));
AlignOldSpace(required_alignment, offset);
Handle<Object> number_old =
factory->NewMutableHeapNumber(1.000321, AllocationType::kOld);
CHECK(number_old->IsMutableHeapNumber());
CHECK(heap->InOldSpace(*number_old));
CHECK_EQ(0, Heap::GetFillToAlign(HeapObject::cast(*number_old).address(),
required_alignment));
}
}
TEST(TestSizeOfObjectsVsHeapIteratorPrecision) {
CcTest::InitializeVM();
HeapIterator iterator(CcTest::heap());
intptr_t size_of_objects_1 = CcTest::heap()->SizeOfObjects();
intptr_t size_of_objects_2 = 0;
for (HeapObject obj = iterator.Next(); !obj.is_null();
obj = iterator.Next()) {
if (!obj.IsFreeSpace()) {
size_of_objects_2 += obj.Size();
}
}
// Delta must be within 5% of the larger result.
// TODO(gc): Tighten this up by distinguishing between byte
// arrays that are real and those that merely mark free space
// on the heap.
if (size_of_objects_1 > size_of_objects_2) {
intptr_t delta = size_of_objects_1 - size_of_objects_2;
PrintF("Heap::SizeOfObjects: %" V8PRIdPTR
", "
"Iterator: %" V8PRIdPTR
", "
"delta: %" V8PRIdPTR "\n",
size_of_objects_1, size_of_objects_2, delta);
CHECK_GT(size_of_objects_1 / 20, delta);
} else {
intptr_t delta = size_of_objects_2 - size_of_objects_1;
PrintF("Heap::SizeOfObjects: %" V8PRIdPTR
", "
"Iterator: %" V8PRIdPTR
", "
"delta: %" V8PRIdPTR "\n",
size_of_objects_1, size_of_objects_2, delta);
CHECK_GT(size_of_objects_2 / 20, delta);
}
}
TEST(GrowAndShrinkNewSpace) {
// Avoid shrinking new space in GC epilogue. This can happen if allocation
// throughput samples have been taken while executing the benchmark.
FLAG_predictable = true;
CcTest::InitializeVM();
Heap* heap = CcTest::heap();
NewSpace* new_space = heap->new_space();
if (heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) {
return;
}
// Make sure we're in a consistent state to start out.
CcTest::CollectAllGarbage();
CcTest::CollectAllGarbage();
new_space->Shrink();
// Explicitly growing should double the space capacity.
size_t old_capacity, new_capacity;
old_capacity = new_space->TotalCapacity();
new_space->Grow();
new_capacity = new_space->TotalCapacity();
CHECK_EQ(2 * old_capacity, new_capacity);
old_capacity = new_space->TotalCapacity();
{
v8::HandleScope temporary_scope(CcTest::isolate());
heap::SimulateFullSpace(new_space);
}
new_capacity = new_space->TotalCapacity();
CHECK_EQ(old_capacity, new_capacity);
// Explicitly shrinking should not affect space capacity.
old_capacity = new_space->TotalCapacity();
new_space->Shrink();
new_capacity = new_space->TotalCapacity();
CHECK_EQ(old_capacity, new_capacity);
// Let the scavenger empty the new space.
CcTest::CollectGarbage(NEW_SPACE);
CHECK_LE(new_space->Size(), old_capacity);
// Explicitly shrinking should halve the space capacity.
old_capacity = new_space->TotalCapacity();
new_space->Shrink();
new_capacity = new_space->TotalCapacity();
CHECK_EQ(old_capacity, 2 * new_capacity);
// Consecutive shrinking should not affect space capacity.
old_capacity = new_space->TotalCapacity();
new_space->Shrink();
new_space->Shrink();
new_space->Shrink();
new_capacity = new_space->TotalCapacity();
CHECK_EQ(old_capacity, new_capacity);
}
TEST(CollectingAllAvailableGarbageShrinksNewSpace) {
CcTest::InitializeVM();
Heap* heap = CcTest::heap();
if (heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) {
return;
}
v8::HandleScope scope(CcTest::isolate());
NewSpace* new_space = heap->new_space();
size_t old_capacity, new_capacity;
old_capacity = new_space->TotalCapacity();
new_space->Grow();
new_capacity = new_space->TotalCapacity();
CHECK_EQ(2 * old_capacity, new_capacity);
{
v8::HandleScope temporary_scope(CcTest::isolate());
heap::SimulateFullSpace(new_space);
}
CcTest::CollectAllAvailableGarbage();
new_capacity = new_space->TotalCapacity();
CHECK_EQ(old_capacity, new_capacity);
}
static int NumberOfGlobalObjects() {
int count = 0;
HeapIterator iterator(CcTest::heap());
for (HeapObject obj = iterator.Next(); !obj.is_null();
obj = iterator.Next()) {
if (obj.IsJSGlobalObject()) count++;
}
return count;
}
// Test that we don't embed maps from foreign contexts into
// optimized code.
TEST(LeakNativeContextViaMap) {
FLAG_allow_natives_syntax = true;
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope outer_scope(isolate);
v8::Persistent<v8::Context> ctx1p;
v8::Persistent<v8::Context> ctx2p;
{
v8::HandleScope scope(isolate);
ctx1p.Reset(isolate, v8::Context::New(isolate));
ctx2p.Reset(isolate, v8::Context::New(isolate));
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
}
CcTest::CollectAllAvailableGarbage();
CHECK_EQ(2, NumberOfGlobalObjects());
{
v8::HandleScope inner_scope(isolate);
CompileRun("var v = {x: 42}");
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
v8::Local<v8::Value> v =
ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked();
ctx2->Enter();
CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust());
v8::Local<v8::Value> res = CompileRun(
"function f() { return o.x; }"
"%PrepareFunctionForOptimization(f);"
"for (var i = 0; i < 10; ++i) f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
CHECK_EQ(42, res->Int32Value(ctx2).FromJust());
CHECK(ctx2->Global()
->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0))
.FromJust());
ctx2->Exit();
v8::Local<v8::Context>::New(isolate, ctx1)->Exit();
ctx1p.Reset();
isolate->ContextDisposedNotification();
}
CcTest::CollectAllAvailableGarbage();
CHECK_EQ(1, NumberOfGlobalObjects());
ctx2p.Reset();
CcTest::CollectAllAvailableGarbage();
CHECK_EQ(0, NumberOfGlobalObjects());
}
// Test that we don't embed functions from foreign contexts into
// optimized code.
TEST(LeakNativeContextViaFunction) {
FLAG_allow_natives_syntax = true;
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope outer_scope(isolate);
v8::Persistent<v8::Context> ctx1p;
v8::Persistent<v8::Context> ctx2p;
{
v8::HandleScope scope(isolate);
ctx1p.Reset(isolate, v8::Context::New(isolate));
ctx2p.Reset(isolate, v8::Context::New(isolate));
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
}
CcTest::CollectAllAvailableGarbage();
CHECK_EQ(2, NumberOfGlobalObjects());
{
v8::HandleScope inner_scope(isolate);
CompileRun("var v = function() { return 42; }");
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
v8::Local<v8::Value> v =
ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked();
ctx2->Enter();
CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust());
v8::Local<v8::Value> res = CompileRun(
"function f(x) { return x(); }"
"%PrepareFunctionForOptimization(f);"
"for (var i = 0; i < 10; ++i) f(o);"
"%OptimizeFunctionOnNextCall(f);"
"f(o);");
CHECK_EQ(42, res->Int32Value(ctx2).FromJust());
CHECK(ctx2->Global()
->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0))
.FromJust());
ctx2->Exit();
ctx1->Exit();
ctx1p.Reset();
isolate->ContextDisposedNotification();
}
CcTest::CollectAllAvailableGarbage();
CHECK_EQ(1, NumberOfGlobalObjects());
ctx2p.Reset();
CcTest::CollectAllAvailableGarbage();
CHECK_EQ(0, NumberOfGlobalObjects());
}
TEST(LeakNativeContextViaMapKeyed) {
FLAG_allow_natives_syntax = true;
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope outer_scope(isolate);
v8::Persistent<v8::Context> ctx1p;
v8::Persistent<v8::Context> ctx2p;
{
v8::HandleScope scope(isolate);
ctx1p.Reset(isolate, v8::Context::New(isolate));
ctx2p.Reset(isolate, v8::Context::New(isolate));
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
}
CcTest::CollectAllAvailableGarbage();
CHECK_EQ(2, NumberOfGlobalObjects());
{
v8::HandleScope inner_scope(isolate);
CompileRun("var v = [42, 43]");
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
v8::Local<v8::Value> v =
ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked();
ctx2->Enter();
CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust());
v8::Local<v8::Value> res = CompileRun(
"function f() { return o[0]; }"
"%PrepareFunctionForOptimization(f);"
"for (var i = 0; i < 10; ++i) f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
CHECK_EQ(42, res->Int32Value(ctx2).FromJust());
CHECK(ctx2->Global()
->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0))
.FromJust());
ctx2->Exit();
ctx1->Exit();
ctx1p.Reset();
isolate->ContextDisposedNotification();
}
CcTest::CollectAllAvailableGarbage();
CHECK_EQ(1, NumberOfGlobalObjects());
ctx2p.Reset();
CcTest::CollectAllAvailableGarbage();
CHECK_EQ(0, NumberOfGlobalObjects());
}
TEST(LeakNativeContextViaMapProto) {
FLAG_allow_natives_syntax = true;
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope outer_scope(isolate);
v8::Persistent<v8::Context> ctx1p;
v8::Persistent<v8::Context> ctx2p;
{
v8::HandleScope scope(isolate);
ctx1p.Reset(isolate, v8::Context::New(isolate));
ctx2p.Reset(isolate, v8::Context::New(isolate));
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
}
CcTest::CollectAllAvailableGarbage();
CHECK_EQ(2, NumberOfGlobalObjects());
{
v8::HandleScope inner_scope(isolate);
CompileRun("var v = { y: 42}");
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
v8::Local<v8::Value> v =
ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked();
ctx2->Enter();
CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust());
v8::Local<v8::Value> res = CompileRun(
"function f() {"
" var p = {x: 42};"
" p.__proto__ = o;"
" return p.x;"
"}"
"%PrepareFunctionForOptimization(f);"
"for (var i = 0; i < 10; ++i) f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
CHECK_EQ(42, res->Int32Value(ctx2).FromJust());
CHECK(ctx2->Global()
->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0))
.FromJust());
ctx2->Exit();
ctx1->Exit();
ctx1p.Reset();
isolate->ContextDisposedNotification();
}
CcTest::CollectAllAvailableGarbage();
CHECK_EQ(1, NumberOfGlobalObjects());
ctx2p.Reset();
CcTest::CollectAllAvailableGarbage();
CHECK_EQ(0, NumberOfGlobalObjects());
}
TEST(InstanceOfStubWriteBarrier) {
if (!FLAG_incremental_marking) return;
ManualGCScope manual_gc_scope;
FLAG_allow_natives_syntax = true;
#ifdef VERIFY_HEAP
FLAG_verify_heap = true;
#endif
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_optimizer()) return;
if (FLAG_force_marking_deque_overflows) return;
v8::HandleScope outer_scope(CcTest::isolate());
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
{
v8::HandleScope scope(CcTest::isolate());
CompileRun(
"function foo () { }"
"function mkbar () { return new (new Function(\"\")) (); }"
"function f (x) { return (x instanceof foo); }"
"function g () { f(mkbar()); }"
"%PrepareFunctionForOptimization(f);"
"f(new foo()); f(new foo());"
"%OptimizeFunctionOnNextCall(f);"
"f(new foo()); g();");
}
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
marking->Stop();
CcTest::heap()->StartIncrementalMarking(i::Heap::kNoGCFlags,
i::GarbageCollectionReason::kTesting);
i::Handle<JSFunction> f = i::Handle<JSFunction>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked())));
CHECK(f->IsOptimized());
IncrementalMarking::MarkingState* marking_state = marking->marking_state();
const double kStepSizeInMs = 100;
while (!marking_state->IsBlack(f->code()) && !marking->IsStopped()) {
// Discard any pending GC requests otherwise we will get GC when we enter
// code below.
marking->V8Step(kStepSizeInMs, IncrementalMarking::NO_GC_VIA_STACK_GUARD,
StepOrigin::kV8);
}
CHECK(marking->IsMarking());
{
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Object> global = CcTest::global();
v8::Local<v8::Function> g = v8::Local<v8::Function>::Cast(
global->Get(ctx, v8_str("g")).ToLocalChecked());
g->Call(ctx, global, 0, nullptr).ToLocalChecked();
}
CcTest::heap()->incremental_marking()->set_should_hurry(true);
CcTest::CollectGarbage(OLD_SPACE);
}
HEAP_TEST(GCFlags) {
if (!FLAG_incremental_marking) return;
CcTest::InitializeVM();
Heap* heap = CcTest::heap();
heap->set_current_gc_flags(Heap::kNoGCFlags);
CHECK_EQ(Heap::kNoGCFlags, heap->current_gc_flags_);
// Check whether we appropriately reset flags after GC.
CcTest::heap()->CollectAllGarbage(Heap::kReduceMemoryFootprintMask,
GarbageCollectionReason::kTesting);
CHECK_EQ(Heap::kNoGCFlags, heap->current_gc_flags_);
MarkCompactCollector* collector = heap->mark_compact_collector();
if (collector->sweeping_in_progress()) {
collector->EnsureSweepingCompleted();
}
IncrementalMarking* marking = heap->incremental_marking();
marking->Stop();
heap->StartIncrementalMarking(Heap::kReduceMemoryFootprintMask,
i::GarbageCollectionReason::kTesting);
CHECK_NE(0, heap->current_gc_flags_ & Heap::kReduceMemoryFootprintMask);
CcTest::CollectGarbage(NEW_SPACE);
// NewSpace scavenges should not overwrite the flags.
CHECK_NE(0, heap->current_gc_flags_ & Heap::kReduceMemoryFootprintMask);
CcTest::CollectAllGarbage();
CHECK_EQ(Heap::kNoGCFlags, heap->current_gc_flags_);
}
HEAP_TEST(Regress845060) {
// Regression test for crbug.com/845060, where a raw pointer to a string's
// data was kept across an allocation. If the allocation causes GC and
// moves the string, such raw pointers become invalid.
FLAG_allow_natives_syntax = true;
FLAG_stress_incremental_marking = false;
FLAG_stress_compaction = false;
CcTest::InitializeVM();
LocalContext context;
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
// Preparation: create a string in new space.
Local<Value> str = CompileRun("var str = (new Array(10000)).join('x'); str");
CHECK(Heap::InYoungGeneration(*v8::Utils::OpenHandle(*str)));
// Idle incremental marking sets the "kReduceMemoryFootprint" flag, which
// causes from_space to be unmapped after scavenging.
heap->StartIdleIncrementalMarking(GarbageCollectionReason::kTesting);
CHECK(heap->ShouldReduceMemory());
// Run the test (which allocates results) until the original string was
// promoted to old space. Unmapping of from_space causes accesses to any
// stale raw pointers to crash.
CompileRun("while (%InNewSpace(str)) { str.split(''); }");
CHECK(!Heap::InYoungGeneration(*v8::Utils::OpenHandle(*str)));
}
TEST(IdleNotificationFinishMarking) {
if (!FLAG_incremental_marking) return;
ManualGCScope manual_gc_scope;
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
const int initial_gc_count = CcTest::heap()->gc_count();
heap::SimulateFullSpace(CcTest::heap()->old_space());
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
marking->Stop();
CcTest::heap()->StartIncrementalMarking(i::Heap::kNoGCFlags,
i::GarbageCollectionReason::kTesting);
CHECK_EQ(CcTest::heap()->gc_count(), initial_gc_count);
const double kStepSizeInMs = 100;
do {
marking->V8Step(kStepSizeInMs, IncrementalMarking::NO_GC_VIA_STACK_GUARD,
StepOrigin::kV8);
} while (
!CcTest::heap()->mark_compact_collector()->marking_worklist()->IsEmpty());
marking->SetWeakClosureWasOverApproximatedForTesting(true);
// The next idle notification has to finish incremental marking.
const double kLongIdleTime = 1000.0;
CcTest::isolate()->IdleNotificationDeadline(
(v8::base::TimeTicks::HighResolutionNow().ToInternalValue() /
static_cast<double>(v8::base::Time::kMicrosecondsPerSecond)) +
kLongIdleTime);
CHECK_EQ(CcTest::heap()->gc_count(), initial_gc_count + 1);
}
// Test that HAllocateObject will always return an object in new-space.
TEST(OptimizedAllocationAlwaysInNewSpace) {
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
if (FLAG_gc_global || FLAG_stress_compaction ||
FLAG_stress_incremental_marking)
return;
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
heap::SimulateFullSpace(CcTest::heap()->new_space());
AlwaysAllocateScope always_allocate(CcTest::i_isolate());
v8::Local<v8::Value> res = CompileRun(
"function c(x) {"
" this.x = x;"
" for (var i = 0; i < 32; i++) {"
" this['x' + i] = x;"
" }"
"}"
"function f(x) { return new c(x); };"
"%PrepareFunctionForOptimization(f);"
"f(1); f(2); f(3);"
"%OptimizeFunctionOnNextCall(f);"
"f(4);");
CHECK_EQ(4, res.As<v8::Object>()
->GetRealNamedProperty(ctx, v8_str("x"))
.ToLocalChecked()
->Int32Value(ctx)
.FromJust());
i::Handle<JSReceiver> o =
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res));
CHECK(Heap::InYoungGeneration(*o));
}
TEST(OptimizedPretenuringAllocationFolding) {
FLAG_allow_natives_syntax = true;
FLAG_expose_gc = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
if (FLAG_gc_global || FLAG_stress_compaction ||
FLAG_stress_incremental_marking)
return;
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
// Grow new space unitl maximum capacity reached.
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
CcTest::heap()->new_space()->Grow();
}
i::ScopedVector<char> source(1024);
i::SNPrintF(source,
"var number_elements = %d;"
"var elements = new Array();"
"function f() {"
" for (var i = 0; i < number_elements; i++) {"
" elements[i] = [[{}], [1.1]];"
" }"
" return elements[number_elements-1]"
"};"
"%%PrepareFunctionForOptimization(f);"
"f(); gc();"
"f(); f();"
"%%OptimizeFunctionOnNextCall(f);"
"f();",
kPretenureCreationCount);
v8::Local<v8::Value> res = CompileRun(source.begin());
v8::Local<v8::Value> int_array =
v8::Object::Cast(*res)->Get(ctx, v8_str("0")).ToLocalChecked();
i::Handle<JSObject> int_array_handle = i::Handle<JSObject>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(int_array)));
v8::Local<v8::Value> double_array =
v8::Object::Cast(*res)->Get(ctx, v8_str("1")).ToLocalChecked();
i::Handle<JSObject> double_array_handle = i::Handle<JSObject>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(double_array)));
i::Handle<JSReceiver> o =
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res));
CHECK(CcTest::heap()->InOldSpace(*o));
CHECK(CcTest::heap()->InOldSpace(*int_array_handle));
CHECK(CcTest::heap()->InOldSpace(int_array_handle->elements()));
CHECK(CcTest::heap()->InOldSpace(*double_array_handle));
CHECK(CcTest::heap()->InOldSpace(double_array_handle->elements()));
}
TEST(OptimizedPretenuringObjectArrayLiterals) {
FLAG_allow_natives_syntax = true;
FLAG_expose_gc = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
if (FLAG_gc_global || FLAG_stress_compaction ||
FLAG_stress_incremental_marking) {
return;
}
v8::HandleScope scope(CcTest::isolate());
// Grow new space unitl maximum capacity reached.
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
CcTest::heap()->new_space()->Grow();
}
i::ScopedVector<char> source(1024);
i::SNPrintF(source,
"var number_elements = %d;"
"var elements = new Array(number_elements);"
"function f() {"
" for (var i = 0; i < number_elements; i++) {"
" elements[i] = [{}, {}, {}];"
" }"
" return elements[number_elements - 1];"
"};"
"%%PrepareFunctionForOptimization(f);"
"f(); gc();"
"f(); f();"
"%%OptimizeFunctionOnNextCall(f);"
"f();",
kPretenureCreationCount);
v8::Local<v8::Value> res = CompileRun(source.begin());
i::Handle<JSObject> o = Handle<JSObject>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)));
CHECK(CcTest::heap()->InOldSpace(o->elements()));
CHECK(CcTest::heap()->InOldSpace(*o));
}
TEST(OptimizedPretenuringNestedInObjectProperties) {
FLAG_allow_natives_syntax = true;
FLAG_expose_gc = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
if (FLAG_gc_global || FLAG_stress_compaction ||
FLAG_stress_incremental_marking) {
return;
}
v8::HandleScope scope(CcTest::isolate());
// Grow new space until maximum capacity reached.
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
CcTest::heap()->new_space()->Grow();
}
// Keep the nested literal alive while its root is freed
i::ScopedVector<char> source(1024);
i::SNPrintF(source,
"let number_elements = %d;"
"let elements = new Array(number_elements);"
"function f() {"
" for (let i = 0; i < number_elements; i++) {"
" let l = {a: {c: 2.2, d: {e: 3.3}}, b: 1.1}; "
" elements[i] = l.a;"
" }"
" return elements[number_elements-1];"
"};"
"%%PrepareFunctionForOptimization(f);"
"f(); gc(); gc();"
"f(); f();"
"%%OptimizeFunctionOnNextCall(f);"
"f();",
kPretenureCreationCount);
v8::Local<v8::Value> res = CompileRun(source.begin());
i::Handle<JSObject> o = Handle<JSObject>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)));
// Nested literal sites are only pretenured if the top level
// literal is pretenured
CHECK(Heap::InYoungGeneration(*o));
}
TEST(OptimizedPretenuringMixedInObjectProperties) {
FLAG_allow_natives_syntax = true;
FLAG_expose_gc = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
if (FLAG_gc_global || FLAG_stress_compaction ||
FLAG_stress_incremental_marking)
return;
v8::HandleScope scope(CcTest::isolate());
// Grow new space unitl maximum capacity reached.
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
CcTest::heap()->new_space()->Grow();
}
i::ScopedVector<char> source(1024);
i::SNPrintF(source,
"var number_elements = %d;"
"var elements = new Array(number_elements);"
"function f() {"
" for (var i = 0; i < number_elements; i++) {"
" elements[i] = {a: {c: 2.2, d: {}}, b: 1.1};"
" }"
" return elements[number_elements - 1];"
"};"
"%%PrepareFunctionForOptimization(f);"
"f(); gc();"
"f(); f();"
"%%OptimizeFunctionOnNextCall(f);"
"f();",
kPretenureCreationCount);
v8::Local<v8::Value> res = CompileRun(source.begin());
i::Handle<JSObject> o = Handle<JSObject>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)));
CHECK(CcTest::heap()->InOldSpace(*o));
FieldIndex idx1 = FieldIndex::ForPropertyIndex(o->map(), 0);
FieldIndex idx2 = FieldIndex::ForPropertyIndex(o->map(), 1);
CHECK(CcTest::heap()->InOldSpace(o->RawFastPropertyAt(idx1)));
if (!o->IsUnboxedDoubleField(idx2)) {
CHECK(CcTest::heap()->InOldSpace(o->RawFastPropertyAt(idx2)));
} else {
CHECK_EQ(1.1, o->RawFastDoublePropertyAt(idx2));
}
JSObject inner_object = JSObject::cast(o->RawFastPropertyAt(idx1));
CHECK(CcTest::heap()->InOldSpace(inner_object));
if (!inner_object.IsUnboxedDoubleField(idx1)) {
CHECK(CcTest::heap()->InOldSpace(inner_object.RawFastPropertyAt(idx1)));
} else {
CHECK_EQ(2.2, inner_object.RawFastDoublePropertyAt(idx1));
}
CHECK(CcTest::heap()->InOldSpace(inner_object.RawFastPropertyAt(idx2)));
}
TEST(OptimizedPretenuringDoubleArrayProperties) {
FLAG_allow_natives_syntax = true;
FLAG_expose_gc = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
if (FLAG_gc_global || FLAG_stress_compaction ||
FLAG_stress_incremental_marking)
return;
v8::HandleScope scope(CcTest::isolate());
// Grow new space until maximum capacity reached.
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
CcTest::heap()->new_space()->Grow();
}
i::ScopedVector<char> source(1024);
i::SNPrintF(source,
"var number_elements = %d;"
"var elements = new Array(number_elements);"
"function f() {"
" for (var i = 0; i < number_elements; i++) {"
" elements[i] = {a: 1.1, b: 2.2};"
" }"
" return elements[i - 1];"
"};"
"%%PrepareFunctionForOptimization(f);"
"f(); gc();"
"f(); f();"
"%%OptimizeFunctionOnNextCall(f);"
"f();",
kPretenureCreationCount);
v8::Local<v8::Value> res = CompileRun(source.begin());
i::Handle<JSObject> o = Handle<JSObject>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)));
CHECK(CcTest::heap()->InOldSpace(*o));
CHECK_EQ(o->property_array(),
ReadOnlyRoots(CcTest::heap()).empty_property_array());
}
TEST(OptimizedPretenuringdoubleArrayLiterals) {
FLAG_allow_natives_syntax = true;
FLAG_expose_gc = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
if (FLAG_gc_global || FLAG_stress_compaction ||
FLAG_stress_incremental_marking)
return;
v8::HandleScope scope(CcTest::isolate());
// Grow new space unitl maximum capacity reached.
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
CcTest::heap()->new_space()->Grow();
}
i::ScopedVector<char> source(1024);
i::SNPrintF(source,
"var number_elements = %d;"
"var elements = new Array(number_elements);"
"function f() {"
" for (var i = 0; i < number_elements; i++) {"
" elements[i] = [1.1, 2.2, 3.3];"
" }"
" return elements[number_elements - 1];"
"};"
"%%PrepareFunctionForOptimization(f);"
"f(); gc();"
"f(); f();"
"%%OptimizeFunctionOnNextCall(f);"
"f();",
kPretenureCreationCount);
v8::Local<v8::Value> res = CompileRun(source.begin());
i::Handle<JSObject> o = Handle<JSObject>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)));
CHECK(CcTest::heap()->InOldSpace(o->elements()));
CHECK(CcTest::heap()->InOldSpace(*o));
}
TEST(OptimizedPretenuringNestedMixedArrayLiterals) {
FLAG_allow_natives_syntax = true;
FLAG_expose_gc = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
if (FLAG_gc_global || FLAG_stress_compaction ||
FLAG_stress_incremental_marking)
return;
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
// Grow new space unitl maximum capacity reached.
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
CcTest::heap()->new_space()->Grow();
}
i::ScopedVector<char> source(1024);
i::SNPrintF(source,
"var number_elements = %d;"
"var elements = new Array(number_elements);"
"function f() {"
" for (var i = 0; i < number_elements; i++) {"
" elements[i] = [[{}, {}, {}], [1.1, 2.2, 3.3]];"
" }"
" return elements[number_elements - 1];"
"};"
"%%PrepareFunctionForOptimization(f);"
"f(); gc();"
"f(); f();"
"%%OptimizeFunctionOnNextCall(f);"
"f();",
kPretenureCreationCount);
v8::Local<v8::Value> res = CompileRun(source.begin());
v8::Local<v8::Value> int_array =
v8::Object::Cast(*res)->Get(ctx, v8_str("0")).ToLocalChecked();
i::Handle<JSObject> int_array_handle = i::Handle<JSObject>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(int_array)));
v8::Local<v8::Value> double_array =
v8::Object::Cast(*res)->Get(ctx, v8_str("1")).ToLocalChecked();
i::Handle<JSObject> double_array_handle = i::Handle<JSObject>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(double_array)));
Handle<JSObject> o = Handle<JSObject>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)));
CHECK(CcTest::heap()->InOldSpace(*o));
CHECK(CcTest::heap()->InOldSpace(*int_array_handle));
CHECK(CcTest::heap()->InOldSpace(int_array_handle->elements()));
CHECK(CcTest::heap()->InOldSpace(*double_array_handle));
CHECK(CcTest::heap()->InOldSpace(double_array_handle->elements()));
}
TEST(OptimizedPretenuringNestedObjectLiterals) {
FLAG_allow_natives_syntax = true;
FLAG_expose_gc = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
if (FLAG_gc_global || FLAG_stress_compaction ||
FLAG_stress_incremental_marking)
return;
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
// Grow new space unitl maximum capacity reached.
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
CcTest::heap()->new_space()->Grow();
}
i::ScopedVector<char> source(1024);
i::SNPrintF(source,
"var number_elements = %d;"
"var elements = new Array(number_elements);"
"function f() {"
" for (var i = 0; i < number_elements; i++) {"
" elements[i] = [[{}, {}, {}],[{}, {}, {}]];"
" }"
" return elements[number_elements - 1];"
"};"
"%%PrepareFunctionForOptimization(f);"
"f(); gc();"
"f(); f();"
"%%OptimizeFunctionOnNextCall(f);"
"f();",
kPretenureCreationCount);
v8::Local<v8::Value> res = CompileRun(source.begin());
v8::Local<v8::Value> int_array_1 =
v8::Object::Cast(*res)->Get(ctx, v8_str("0")).ToLocalChecked();
Handle<JSObject> int_array_handle_1 = Handle<JSObject>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(int_array_1)));
v8::Local<v8::Value> int_array_2 =
v8::Object::Cast(*res)->Get(ctx, v8_str("1")).ToLocalChecked();
Handle<JSObject> int_array_handle_2 = Handle<JSObject>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(int_array_2)));
Handle<JSObject> o = Handle<JSObject>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)));
CHECK(CcTest::heap()->InOldSpace(*o));
CHECK(CcTest::heap()->InOldSpace(*int_array_handle_1));
CHECK(CcTest::heap()->InOldSpace(int_array_handle_1->elements()));
CHECK(CcTest::heap()->InOldSpace(*int_array_handle_2));
CHECK(CcTest::heap()->InOldSpace(int_array_handle_2->elements()));
}
TEST(OptimizedPretenuringNestedDoubleLiterals) {
FLAG_allow_natives_syntax = true;
FLAG_expose_gc = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
if (FLAG_gc_global || FLAG_stress_compaction ||
FLAG_stress_incremental_marking)
return;
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
// Grow new space unitl maximum capacity reached.
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
CcTest::heap()->new_space()->Grow();
}
i::ScopedVector<char> source(1024);
i::SNPrintF(source,
"var number_elements = %d;"
"var elements = new Array(number_elements);"
"function f() {"
" for (var i = 0; i < number_elements; i++) {"
" elements[i] = [[1.1, 1.2, 1.3],[2.1, 2.2, 2.3]];"
" }"
" return elements[number_elements - 1];"
"};"
"%%PrepareFunctionForOptimization(f);"
"f(); gc();"
"f(); f();"
"%%OptimizeFunctionOnNextCall(f);"
"f();",
kPretenureCreationCount);
v8::Local<v8::Value> res = CompileRun(source.begin());
v8::Local<v8::Value> double_array_1 =
v8::Object::Cast(*res)->Get(ctx, v8_str("0")).ToLocalChecked();
i::Handle<JSObject> double_array_handle_1 = i::Handle<JSObject>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(double_array_1)));
v8::Local<v8::Value> double_array_2 =
v8::Object::Cast(*res)->Get(ctx, v8_str("1")).ToLocalChecked();
i::Handle<JSObject> double_array_handle_2 = Handle<JSObject>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(double_array_2)));
i::Handle<JSObject> o = Handle<JSObject>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)));
CHECK(CcTest::heap()->InOldSpace(*o));
CHECK(CcTest::heap()->InOldSpace(*double_array_handle_1));
CHECK(CcTest::heap()->InOldSpace(double_array_handle_1->elements()));
CHECK(CcTest::heap()->InOldSpace(*double_array_handle_2));
CHECK(CcTest::heap()->InOldSpace(double_array_handle_2->elements()));
}
// Test regular array literals allocation.
TEST(OptimizedAllocationArrayLiterals) {
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
if (FLAG_gc_global || FLAG_stress_compaction ||
FLAG_stress_incremental_marking)
return;
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
v8::Local<v8::Value> res = CompileRun(
"function f() {"
" var numbers = new Array(1, 2, 3);"
" numbers[0] = 3.14;"
" return numbers;"
"};"
"%PrepareFunctionForOptimization(f);"
"f(); f(); f();"
"%OptimizeFunctionOnNextCall(f);"
"f();");
CHECK_EQ(static_cast<int>(3.14), v8::Object::Cast(*res)
->Get(ctx, v8_str("0"))
.ToLocalChecked()
->Int32Value(ctx)
.FromJust());
i::Handle<JSObject> o = Handle<JSObject>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)));
CHECK(Heap::InYoungGeneration(o->elements()));
}
static int CountMapTransitions(i::Isolate* isolate, Map map) {
DisallowHeapAllocation no_gc;
return TransitionsAccessor(isolate, map, &no_gc).NumberOfTransitions();
}
// Test that map transitions are cleared and maps are collected with
// incremental marking as well.
TEST(Regress1465) {
if (!FLAG_incremental_marking) return;
FLAG_stress_compaction = false;
FLAG_stress_incremental_marking = false;
FLAG_allow_natives_syntax = true;
FLAG_trace_incremental_marking = true;
FLAG_retain_maps_for_n_gc = 0;
CcTest::InitializeVM();
v8::Isolate* isolate = CcTest::isolate();
i::Isolate* i_isolate = CcTest::i_isolate();
v8::HandleScope scope(isolate);
v8::Local<v8::Context> ctx = isolate->GetCurrentContext();
static const int transitions_count = 256;
CompileRun("function F() {}");
{
AlwaysAllocateScope always_allocate(CcTest::i_isolate());
for (int i = 0; i < transitions_count; i++) {
EmbeddedVector<char, 64> buffer;
SNPrintF(buffer, "var o = new F; o.prop%d = %d;", i, i);
CompileRun(buffer.begin());
}
CompileRun("var root = new F;");
}
i::Handle<JSReceiver> root =
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(
CcTest::global()->Get(ctx, v8_str("root")).ToLocalChecked()));
// Count number of live transitions before marking.
int transitions_before = CountMapTransitions(i_isolate, root->map());
CompileRun("%DebugPrint(root);");
CHECK_EQ(transitions_count, transitions_before);
heap::SimulateIncrementalMarking(CcTest::heap());
CcTest::CollectAllGarbage();
// Count number of live transitions after marking. Note that one transition
// is left, because 'o' still holds an instance of one transition target.
int transitions_after = CountMapTransitions(i_isolate, root->map());
CompileRun("%DebugPrint(root);");
CHECK_EQ(1, transitions_after);
}
static i::Handle<JSObject> GetByName(const char* name) {
return i::Handle<JSObject>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(
CcTest::global()
->Get(CcTest::isolate()->GetCurrentContext(), v8_str(name))
.ToLocalChecked())));
}
#ifdef DEBUG
static void AddTransitions(int transitions_count) {
AlwaysAllocateScope always_allocate(CcTest::i_isolate());
for (int i = 0; i < transitions_count; i++) {
EmbeddedVector<char, 64> buffer;
SNPrintF(buffer, "var o = new F; o.prop%d = %d;", i, i);
CompileRun(buffer.begin());
}
}
static void AddPropertyTo(
int gc_count, Handle<JSObject> object, const char* property_name) {
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Handle<String> prop_name = factory->InternalizeUtf8String(property_name);
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
FLAG_gc_interval = gc_count;
FLAG_gc_global = true;
FLAG_retain_maps_for_n_gc = 0;
CcTest::heap()->set_allocation_timeout(gc_count);
Object::SetProperty(isolate, object, prop_name, twenty_three).Check();
}
TEST(TransitionArrayShrinksDuringAllocToZero) {
FLAG_stress_compaction = false;
FLAG_stress_incremental_marking = false;
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
i::Isolate* i_isolate = CcTest::i_isolate();
v8::HandleScope scope(CcTest::isolate());
static const int transitions_count = 10;
CompileRun("function F() { }");
AddTransitions(transitions_count);
CompileRun("var root = new F;");
Handle<JSObject> root = GetByName("root");
// Count number of live transitions before marking.
int transitions_before = CountMapTransitions(i_isolate, root->map());
CHECK_EQ(transitions_count, transitions_before);
// Get rid of o
CompileRun("o = new F;"
"root = new F");
root = GetByName("root");
AddPropertyTo(2, root, "funny");
CcTest::CollectGarbage(NEW_SPACE);
// Count number of live transitions after marking. Note that one transition
// is left, because 'o' still holds an instance of one transition target.
int transitions_after =
CountMapTransitions(i_isolate, Map::cast(root->map().GetBackPointer()));
CHECK_EQ(1, transitions_after);
}
TEST(TransitionArrayShrinksDuringAllocToOne) {
FLAG_stress_compaction = false;
FLAG_stress_incremental_marking = false;
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
i::Isolate* i_isolate = CcTest::i_isolate();
v8::HandleScope scope(CcTest::isolate());
static const int transitions_count = 10;
CompileRun("function F() {}");
AddTransitions(transitions_count);
CompileRun("var root = new F;");
Handle<JSObject> root = GetByName("root");
// Count number of live transitions before marking.
int transitions_before = CountMapTransitions(i_isolate, root->map());
CHECK_EQ(transitions_count, transitions_before);
root = GetByName("root");
AddPropertyTo(2, root, "funny");
CcTest::CollectGarbage(NEW_SPACE);
// Count number of live transitions after marking. Note that one transition
// is left, because 'o' still holds an instance of one transition target.
int transitions_after =
CountMapTransitions(i_isolate, Map::cast(root->map().GetBackPointer()));
CHECK_EQ(2, transitions_after);
}
TEST(TransitionArrayShrinksDuringAllocToOnePropertyFound) {
FLAG_stress_compaction = false;
FLAG_stress_incremental_marking = false;
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
i::Isolate* i_isolate = CcTest::i_isolate();
v8::HandleScope scope(CcTest::isolate());
static const int transitions_count = 10;
CompileRun("function F() {}");
AddTransitions(transitions_count);
CompileRun("var root = new F;");
Handle<JSObject> root = GetByName("root");
// Count number of live transitions before marking.
int transitions_before = CountMapTransitions(i_isolate, root->map());
CHECK_EQ(transitions_count, transitions_before);
root = GetByName("root");
AddPropertyTo(0, root, "prop9");
CcTest::CollectGarbage(OLD_SPACE);
// Count number of live transitions after marking. Note that one transition
// is left, because 'o' still holds an instance of one transition target.
int transitions_after =
CountMapTransitions(i_isolate, Map::cast(root->map().GetBackPointer()));
CHECK_EQ(1, transitions_after);
}
#endif // DEBUG
TEST(ReleaseOverReservedPages) {
if (FLAG_never_compact) return;
FLAG_trace_gc = true;
// The optimizer can allocate stuff, messing up the test.
#ifndef V8_LITE_MODE
FLAG_opt = false;
FLAG_always_opt = false;
#endif // V8_LITE_MODE
// - Parallel compaction increases fragmentation, depending on how existing
// memory is distributed. Since this is non-deterministic because of
// concurrent sweeping, we disable it for this test.
// - Concurrent sweeping adds non determinism, depending on when memory is
// available for further reuse.
// - Fast evacuation of pages may result in a different page count in old
// space.
ManualGCScope manual_gc_scope;
FLAG_page_promotion = false;
FLAG_parallel_compaction = false;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
// If there's snapshot available, we don't know whether 20 small arrays will
// fit on the initial pages.
if (!isolate->snapshot_available()) return;
Factory* factory = isolate->factory();
Heap* heap = isolate->heap();
v8::HandleScope scope(CcTest::isolate());
// Ensure that the young generation is empty.
CcTest::CollectGarbage(NEW_SPACE);
CcTest::CollectGarbage(NEW_SPACE);
static const int number_of_test_pages = 20;
// Prepare many pages with low live-bytes count.
PagedSpace* old_space = heap->old_space();
const int initial_page_count = old_space->CountTotalPages();
const int overall_page_count = number_of_test_pages + initial_page_count;
for (int i = 0; i < number_of_test_pages; i++) {
AlwaysAllocateScope always_allocate(isolate);
heap::SimulateFullSpace(old_space);
factory->NewFixedArray(1, AllocationType::kOld);
}
CHECK_EQ(overall_page_count, old_space->CountTotalPages());
// Triggering one GC will cause a lot of garbage to be discovered but
// even spread across all allocated pages.
CcTest::CollectAllGarbage();
CHECK_GE(overall_page_count, old_space->CountTotalPages());
// Triggering subsequent GCs should cause at least half of the pages
// to be released to the OS after at most two cycles.
CcTest::CollectAllGarbage();
CHECK_GE(overall_page_count, old_space->CountTotalPages());
CcTest::CollectAllGarbage();
CHECK_GE(overall_page_count, old_space->CountTotalPages() * 2);
// Triggering a last-resort GC should cause all pages to be released to the
// OS so that other processes can seize the memory. If we get a failure here
// where there are 2 pages left instead of 1, then we should increase the
// size of the first page a little in SizeOfFirstPage in spaces.cc. The
// first page should be small in order to reduce memory used when the VM
// boots, but if the 20 small arrays don't fit on the first page then that's
// an indication that it is too small.
CcTest::CollectAllAvailableGarbage();
CHECK_GE(initial_page_count, old_space->CountTotalPages());
}
static int forced_gc_counter = 0;
void MockUseCounterCallback(v8::Isolate* isolate,
v8::Isolate::UseCounterFeature feature) {
isolate->GetCurrentContext();
if (feature == v8::Isolate::kForcedGC) {
forced_gc_counter++;
}
}
TEST(CountForcedGC) {
FLAG_expose_gc = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::HandleScope scope(CcTest::isolate());
isolate->SetUseCounterCallback(MockUseCounterCallback);
forced_gc_counter = 0;
const char* source = "gc();";
CompileRun(source);
CHECK_GT(forced_gc_counter, 0);
}
#ifdef OBJECT_PRINT
TEST(PrintSharedFunctionInfo) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
const char* source = "f = function() { return 987654321; }\n"
"g = function() { return 123456789; }\n";
CompileRun(source);
i::Handle<JSFunction> g = i::Handle<JSFunction>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
CcTest::global()->Get(ctx, v8_str("g")).ToLocalChecked())));
StdoutStream os;
g->shared().Print(os);
os << std::endl;
}
#endif // OBJECT_PRINT
TEST(IncrementalMarkingPreservesMonomorphicCallIC) {
if (!FLAG_use_ic) return;
if (!FLAG_incremental_marking) return;
if (FLAG_always_opt) return;
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Value> fun1, fun2;
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
{
CompileRun("function fun() {};");
fun1 = CcTest::global()->Get(ctx, v8_str("fun")).ToLocalChecked();
}
{
CompileRun("function fun() {};");
fun2 = CcTest::global()->Get(ctx, v8_str("fun")).ToLocalChecked();
}
// Prepare function f that contains type feedback for the two closures.
CHECK(CcTest::global()->Set(ctx, v8_str("fun1"), fun1).FromJust());
CHECK(CcTest::global()->Set(ctx, v8_str("fun2"), fun2).FromJust());
CompileRun(
"function f(a, b) { a(); b(); } %EnsureFeedbackVectorForFunction(f); "
"f(fun1, fun2);");
Handle<JSFunction> f = Handle<JSFunction>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked())));
Handle<FeedbackVector> feedback_vector(f->feedback_vector(), f->GetIsolate());
FeedbackVectorHelper feedback_helper(feedback_vector);
int expected_slots = 2;
CHECK_EQ(expected_slots, feedback_helper.slot_count());
int slot1 = 0;
int slot2 = 1;
CHECK(feedback_vector->Get(feedback_helper.slot(slot1))->IsWeak());
CHECK(feedback_vector->Get(feedback_helper.slot(slot2))->IsWeak());
heap::SimulateIncrementalMarking(CcTest::heap());
CcTest::CollectAllGarbage();
CHECK(feedback_vector->Get(feedback_helper.slot(slot1))->IsWeak());
CHECK(feedback_vector->Get(feedback_helper.slot(slot2))->IsWeak());
}
static void CheckVectorIC(Handle<JSFunction> f, int slot_index,
InlineCacheState desired_state) {
Handle<FeedbackVector> vector =
Handle<FeedbackVector>(f->feedback_vector(), f->GetIsolate());
FeedbackVectorHelper helper(vector);
FeedbackSlot slot = helper.slot(slot_index);
FeedbackNexus nexus(vector, slot);
CHECK(nexus.ic_state() == desired_state);
}
TEST(IncrementalMarkingPreservesMonomorphicConstructor) {
if (!FLAG_incremental_marking) return;
if (FLAG_always_opt) return;
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
// Prepare function f that contains a monomorphic IC for object
// originating from the same native context.
CompileRun(
"function fun() { this.x = 1; };"
"function f(o) { return new o(); }"
"%EnsureFeedbackVectorForFunction(f);"
"f(fun); f(fun);");
Handle<JSFunction> f = Handle<JSFunction>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked())));
Handle<FeedbackVector> vector(f->feedback_vector(), f->GetIsolate());
CHECK(vector->Get(FeedbackSlot(0))->IsWeakOrCleared());
heap::SimulateIncrementalMarking(CcTest::heap());
CcTest::CollectAllGarbage();
CHECK(vector->Get(FeedbackSlot(0))->IsWeakOrCleared());
}
TEST(IncrementalMarkingPreservesMonomorphicIC) {
if (!FLAG_use_ic) return;
if (!FLAG_incremental_marking) return;
if (FLAG_always_opt) return;
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
// Prepare function f that contains a monomorphic IC for object
// originating from the same native context.
CompileRun(
"function fun() { this.x = 1; }; var obj = new fun();"
"%EnsureFeedbackVectorForFunction(f);"
"function f(o) { return o.x; } f(obj); f(obj);");
Handle<JSFunction> f = Handle<JSFunction>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked())));
CheckVectorIC(f, 0, MONOMORPHIC);
heap::SimulateIncrementalMarking(CcTest::heap());
CcTest::CollectAllGarbage();
CheckVectorIC(f, 0, MONOMORPHIC);
}
TEST(IncrementalMarkingPreservesPolymorphicIC) {
if (!FLAG_use_ic) return;
if (!FLAG_incremental_marking) return;
if (FLAG_always_opt) return;
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Value> obj1, obj2;
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
{
LocalContext env;
CompileRun("function fun() { this.x = 1; }; var obj = new fun();");
obj1 = env->Global()->Get(env.local(), v8_str("obj")).ToLocalChecked();
}
{
LocalContext env;
CompileRun("function fun() { this.x = 2; }; var obj = new fun();");
obj2 = env->Global()->Get(env.local(), v8_str("obj")).ToLocalChecked();
}
// Prepare function f that contains a polymorphic IC for objects
// originating from two different native contexts.
CHECK(CcTest::global()->Set(ctx, v8_str("obj1"), obj1).FromJust());
CHECK(CcTest::global()->Set(ctx, v8_str("obj2"), obj2).FromJust());
CompileRun(
"function f(o) { return o.x; }; "
"%EnsureFeedbackVectorForFunction(f);"
"f(obj1); f(obj1); f(obj2);");
Handle<JSFunction> f = Handle<JSFunction>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked())));
CheckVectorIC(f, 0, POLYMORPHIC);
// Fire context dispose notification.
heap::SimulateIncrementalMarking(CcTest::heap());
CcTest::CollectAllGarbage();
CheckVectorIC(f, 0, POLYMORPHIC);
}
TEST(ContextDisposeDoesntClearPolymorphicIC) {
if (!FLAG_use_ic) return;
if (!FLAG_incremental_marking) return;
if (FLAG_always_opt) return;
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::Local<v8::Value> obj1, obj2;
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
{
LocalContext env;
CompileRun("function fun() { this.x = 1; }; var obj = new fun();");
obj1 = env->Global()->Get(env.local(), v8_str("obj")).ToLocalChecked();
}
{
LocalContext env;
CompileRun("function fun() { this.x = 2; }; var obj = new fun();");
obj2 = env->Global()->Get(env.local(), v8_str("obj")).ToLocalChecked();
}
// Prepare function f that contains a polymorphic IC for objects
// originating from two different native contexts.
CHECK(CcTest::global()->Set(ctx, v8_str("obj1"), obj1).FromJust());
CHECK(CcTest::global()->Set(ctx, v8_str("obj2"), obj2).FromJust());
CompileRun(
"function f(o) { return o.x; }; "
"%EnsureFeedbackVectorForFunction(f);"
"f(obj1); f(obj1); f(obj2);");
Handle<JSFunction> f = Handle<JSFunction>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked())));
CheckVectorIC(f, 0, POLYMORPHIC);
// Fire context dispose notification.
CcTest::isolate()->ContextDisposedNotification();
heap::SimulateIncrementalMarking(CcTest::heap());
CcTest::CollectAllGarbage();
CheckVectorIC(f, 0, POLYMORPHIC);
}
class SourceResource : public v8::String::ExternalOneByteStringResource {
public:
explicit SourceResource(const char* data)
: data_(data), length_(strlen(data)) { }
void Dispose() override {
i::DeleteArray(data_);
data_ = nullptr;
}
const char* data() const override { return data_; }
size_t length() const override { return length_; }
bool IsDisposed() { return data_ == nullptr; }
private:
const char* data_;
size_t length_;
};
void ReleaseStackTraceDataTest(v8::Isolate* isolate, const char* source,
const char* accessor) {
// Test that the data retained by the Error.stack accessor is released
// after the first time the accessor is fired. We use external string
// to check whether the data is being released since the external string
// resource's callback is fired when the external string is GC'ed.
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
v8::HandleScope scope(isolate);
SourceResource* resource = new SourceResource(i::StrDup(source));
{
v8::HandleScope scope(isolate);
v8::Local<v8::Context> ctx = isolate->GetCurrentContext();
v8::Local<v8::String> source_string =
v8::String::NewExternalOneByte(isolate, resource).ToLocalChecked();
i_isolate->heap()->CollectAllAvailableGarbage(
i::GarbageCollectionReason::kTesting);
v8::Script::Compile(ctx, source_string)
.ToLocalChecked()
->Run(ctx)
.ToLocalChecked();
CHECK(!resource->IsDisposed());
}
// i_isolate->heap()->CollectAllAvailableGarbage();
CHECK(!resource->IsDisposed());
CompileRun(accessor);
i_isolate->heap()->CollectAllAvailableGarbage(
i::GarbageCollectionReason::kTesting);
// External source has been released.
CHECK(resource->IsDisposed());
delete resource;
}
UNINITIALIZED_TEST(ReleaseStackTraceData) {
if (FLAG_always_opt) {
// TODO(ulan): Remove this once the memory leak via code_next_link is fixed.
// See: https://codereview.chromium.org/181833004/
return;
}
#ifndef V8_LITE_MODE
// ICs retain objects.
FLAG_use_ic = false;
#endif // V8_LITE_MODE
FLAG_concurrent_recompilation = false;
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
{
v8::Isolate::Scope isolate_scope(isolate);
v8::HandleScope handle_scope(isolate);
v8::Context::New(isolate)->Enter();
static const char* source1 = "var error = null; "
/* Normal Error */ "try { "
" throw new Error(); "
"} catch (e) { "
" error = e; "
"} ";
static const char* source2 = "var error = null; "
/* Stack overflow */ "try { "
" (function f() { f(); })(); "
"} catch (e) { "
" error = e; "
"} ";
static const char* source3 = "var error = null; "
/* Normal Error */ "try { "
/* as prototype */ " throw new Error(); "
"} catch (e) { "
" error = {}; "
" error.__proto__ = e; "
"} ";
static const char* source4 = "var error = null; "
/* Stack overflow */ "try { "
/* as prototype */ " (function f() { f(); })(); "
"} catch (e) { "
" error = {}; "
" error.__proto__ = e; "
"} ";
static const char* getter = "error.stack";
static const char* setter = "error.stack = 0";
ReleaseStackTraceDataTest(isolate, source1, setter);
ReleaseStackTraceDataTest(isolate, source2, setter);
// We do not test source3 and source4 with setter, since the setter is
// supposed to (untypically) write to the receiver, not the holder. This is
// to emulate the behavior of a data property.
ReleaseStackTraceDataTest(isolate, source1, getter);
ReleaseStackTraceDataTest(isolate, source2, getter);
ReleaseStackTraceDataTest(isolate, source3, getter);
ReleaseStackTraceDataTest(isolate, source4, getter);
}
isolate->Dispose();
}
// TODO(mmarchini) also write tests for async/await and Promise.all
void DetailedErrorStackTraceTest(const char* src,
std::function<void(Handle<FrameArray>)> test) {
FLAG_detailed_error_stack_trace = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::TryCatch try_catch(CcTest::isolate());
CompileRun(src);
CHECK(try_catch.HasCaught());
Handle<Object> exception = v8::Utils::OpenHandle(*try_catch.Exception());
Isolate* isolate = CcTest::i_isolate();
Handle<Name> key = isolate->factory()->stack_trace_symbol();
Handle<FixedArray> stack_trace(Handle<FixedArray>::cast(
Object::GetProperty(isolate, exception, key).ToHandleChecked()));
test(GetFrameArrayFromStackTrace(isolate, stack_trace));
}
// * Test interpreted function error
TEST(DetailedErrorStackTrace) {
static const char* source =
"function func1(arg1) { "
" let err = new Error(); "
" throw err; "
"} "
"function func2(arg1, arg2) { "
" func1(42); "
"} "
"class Foo {}; "
"function main(arg1, arg2) { "
" func2(arg1, false); "
"} "
"var foo = new Foo(); "
"main(foo); ";
DetailedErrorStackTraceTest(source, [](Handle<FrameArray> stack_trace) {
FixedArray foo_parameters = stack_trace->Parameters(0);
CHECK_EQ(foo_parameters.length(), 1);
CHECK(foo_parameters.get(0).IsSmi());
CHECK_EQ(Smi::ToInt(foo_parameters.get(0)), 42);
FixedArray bar_parameters = stack_trace->Parameters(1);
CHECK_EQ(bar_parameters.length(), 2);
CHECK(bar_parameters.get(0).IsJSObject());
CHECK(bar_parameters.get(1).IsBoolean());
Handle<Object> foo = Handle<Object>::cast(GetByName("foo"));
CHECK_EQ(bar_parameters.get(0), *foo);
CHECK(!bar_parameters.get(1).BooleanValue(CcTest::i_isolate()));
FixedArray main_parameters = stack_trace->Parameters(2);
CHECK_EQ(main_parameters.length(), 2);
CHECK(main_parameters.get(0).IsJSObject());
CHECK(main_parameters.get(1).IsUndefined());
CHECK_EQ(main_parameters.get(0), *foo);
});
}
// * Test optimized function with inline frame error
TEST(DetailedErrorStackTraceInline) {
FLAG_allow_natives_syntax = true;
static const char* source =
"function add(x) { "
" if (x == 42) "
" throw new Error(); "
" return x + x; "
"} "
"add(0); "
"add(1); "
"function foo(x) { "
" return add(x + 1) "
"} "
"%PrepareFunctionForOptimization(foo); "
"foo(40); "
"%OptimizeFunctionOnNextCall(foo); "
"foo(41); ";
DetailedErrorStackTraceTest(source, [](Handle<FrameArray> stack_trace) {
FixedArray parameters_add = stack_trace->Parameters(0);
CHECK_EQ(parameters_add.length(), 1);
CHECK(parameters_add.get(0).IsSmi());
CHECK_EQ(Smi::ToInt(parameters_add.get(0)), 42);
FixedArray parameters_foo = stack_trace->Parameters(1);
CHECK_EQ(parameters_foo.length(), 1);
CHECK(parameters_foo.get(0).IsSmi());
CHECK_EQ(Smi::ToInt(parameters_foo.get(0)), 41);
});
}
// * Test builtin exit error
TEST(DetailedErrorStackTraceBuiltinExit) {
static const char* source =
"function test(arg1) { "
" (new Number()).toFixed(arg1); "
"} "
"test(9999); ";
DetailedErrorStackTraceTest(source, [](Handle<FrameArray> stack_trace) {
FixedArray parameters = stack_trace->Parameters(0);
CHECK_EQ(parameters.length(), 2);
CHECK(parameters.get(0).IsSmi());
CHECK_EQ(Smi::ToInt(parameters.get(0)), 9999);
});
}
TEST(Regress169928) {
FLAG_allow_natives_syntax = true;
#ifndef V8_LITE_MODE
FLAG_opt = false;
#endif // V8_LITE_MODE
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
LocalContext env;
Factory* factory = isolate->factory();
v8::HandleScope scope(CcTest::isolate());
// Some flags turn Scavenge collections into Mark-sweep collections
// and hence are incompatible with this test case.
if (FLAG_gc_global || FLAG_stress_compaction ||
FLAG_stress_incremental_marking)
return;
// Prepare the environment
CompileRun("function fastliteralcase(literal, value) {"
" literal[0] = value;"
" return literal;"
"}"
"function get_standard_literal() {"
" var literal = [1, 2, 3];"
" return literal;"
"}"
"obj = fastliteralcase(get_standard_literal(), 1);"
"obj = fastliteralcase(get_standard_literal(), 1.5);"
"obj = fastliteralcase(get_standard_literal(), 2);");
// prepare the heap
v8::Local<v8::String> mote_code_string =
v8_str("fastliteralcase(mote, 2.5);");
v8::Local<v8::String> array_name = v8_str("mote");
CHECK(CcTest::global()
->Set(env.local(), array_name, v8::Int32::New(CcTest::isolate(), 0))
.FromJust());
// First make sure we flip spaces
CcTest::CollectGarbage(NEW_SPACE);
// Allocate the object.
Handle<FixedArray> array_data =
factory->NewFixedArray(2, AllocationType::kYoung);
array_data->set(0, Smi::FromInt(1));
array_data->set(1, Smi::FromInt(2));
heap::AllocateAllButNBytes(
CcTest::heap()->new_space(),
JSArray::kSize + AllocationMemento::kSize + kTaggedSize);
Handle<JSArray> array =
factory->NewJSArrayWithElements(array_data, PACKED_SMI_ELEMENTS);
CHECK_EQ(Smi::FromInt(2), array->length());
CHECK(array->HasSmiOrObjectElements());
// We need filler the size of AllocationMemento object, plus an extra
// fill pointer value.
HeapObject obj;
AllocationResult allocation =
CcTest::heap()->new_space()->AllocateRawUnaligned(
AllocationMemento::kSize + kTaggedSize);
CHECK(allocation.To(&obj));
Address addr_obj = obj.address();
CcTest::heap()->CreateFillerObjectAt(addr_obj,
AllocationMemento::kSize + kTaggedSize,
ClearRecordedSlots::kNo);
// Give the array a name, making sure not to allocate strings.
v8::Local<v8::Object> array_obj = v8::Utils::ToLocal(array);
CHECK(CcTest::global()->Set(env.local(), array_name, array_obj).FromJust());
// This should crash with a protection violation if we are running a build
// with the bug.
AlwaysAllocateScope aa_scope(isolate);
v8::Script::Compile(env.local(), mote_code_string)
.ToLocalChecked()
->Run(env.local())
.ToLocalChecked();
}
TEST(LargeObjectSlotRecording) {
if (!FLAG_incremental_marking) return;
if (FLAG_never_compact) return;
ManualGCScope manual_gc_scope;
FLAG_manual_evacuation_candidates_selection = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
// Create an object on an evacuation candidate.
heap::SimulateFullSpace(heap->old_space());
Handle<FixedArray> lit =
isolate->factory()->NewFixedArray(4, AllocationType::kOld);
Page* evac_page = Page::FromHeapObject(*lit);
heap::ForceEvacuationCandidate(evac_page);
FixedArray old_location = *lit;
// Allocate a large object.
int size = Max(1000000, kMaxRegularHeapObjectSize + KB);
CHECK_LT(kMaxRegularHeapObjectSize, size);
Handle<FixedArray> lo =
isolate->factory()->NewFixedArray(size, AllocationType::kOld);
CHECK(heap->lo_space()->Contains(*lo));
// Start incremental marking to active write barrier.
heap::SimulateIncrementalMarking(heap, false);
// Create references from the large object to the object on the evacuation
// candidate.
const int kStep = size / 10;
for (int i = 0; i < size; i += kStep) {
lo->set(i, *lit);
CHECK(lo->get(i) == old_location);
}
heap::SimulateIncrementalMarking(heap, true);
// Move the evaucation candidate object.
CcTest::CollectAllGarbage();
// Verify that the pointers in the large object got updated.
for (int i = 0; i < size; i += kStep) {
CHECK_EQ(lo->get(i), *lit);
CHECK(lo->get(i) != old_location);
}
}
class DummyVisitor : public RootVisitor {
public:
void VisitRootPointers(Root root, const char* description,
FullObjectSlot start, FullObjectSlot end) override {}
};
TEST(DeferredHandles) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
v8::HandleScope scope(reinterpret_cast<v8::Isolate*>(isolate));
HandleScopeData* data = isolate->handle_scope_data();
Handle<Object> init(ReadOnlyRoots(heap).empty_string(), isolate);
while (data->next < data->limit) {
Handle<Object> obj(ReadOnlyRoots(heap).empty_string(), isolate);
}
// An entire block of handles has been filled.
// Next handle would require a new block.
CHECK(data->next == data->limit);
DeferredHandleScope deferred(isolate);
DummyVisitor visitor;
isolate->handle_scope_implementer()->Iterate(&visitor);
delete deferred.Detach();
}
TEST(IncrementalMarkingStepMakesBigProgressWithLargeObjects) {
if (!FLAG_incremental_marking) return;
ManualGCScope manual_gc_scope;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
CompileRun("function f(n) {"
" var a = new Array(n);"
" for (var i = 0; i < n; i += 100) a[i] = i;"
"};"
"f(10 * 1024 * 1024);");
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
if (marking->IsStopped()) {
CcTest::heap()->StartIncrementalMarking(
i::Heap::kNoGCFlags, i::GarbageCollectionReason::kTesting);
}
heap::SimulateIncrementalMarking(CcTest::heap());
CHECK(marking->IsComplete() ||
marking->IsReadyToOverApproximateWeakClosure());
}
TEST(DisableInlineAllocation) {
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
CompileRun(
"function test() {"
" var x = [];"
" for (var i = 0; i < 10; i++) {"
" x[i] = [ {}, [1,2,3], [1,x,3] ];"
" }"
"}"
"function run() {"
" %PrepareFunctionForOptimization(test);"
" %OptimizeFunctionOnNextCall(test);"
" test();"
" %DeoptimizeFunction(test);"
"}");
// Warm-up with inline allocation enabled.
CompileRun("test(); test(); run();");
// Run test with inline allocation disabled.
CcTest::heap()->DisableInlineAllocation();
CompileRun("run()");
// Run test with inline allocation re-enabled.
CcTest::heap()->EnableInlineAllocation();
CompileRun("run()");
}
static int AllocationSitesCount(Heap* heap) {
int count = 0;
for (Object site = heap->allocation_sites_list(); site.IsAllocationSite();) {
AllocationSite cur = AllocationSite::cast(site);
CHECK(cur.HasWeakNext());
site = cur.weak_next();
count++;
}
return count;
}
static int SlimAllocationSiteCount(Heap* heap) {
int count = 0;
for (Object weak_list = heap->allocation_sites_list();
weak_list.IsAllocationSite();) {
AllocationSite weak_cur = AllocationSite::cast(weak_list);
for (Object site = weak_cur.nested_site(); site.IsAllocationSite();) {
AllocationSite cur = AllocationSite::cast(site);
CHECK(!cur.HasWeakNext());
site = cur.nested_site();
count++;
}
weak_list = weak_cur.weak_next();
}
return count;
}
TEST(EnsureAllocationSiteDependentCodesProcessed) {
if (FLAG_always_opt || !FLAG_opt) return;
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::internal::Heap* heap = CcTest::heap();
GlobalHandles* global_handles = isolate->global_handles();
if (!isolate->use_optimizer()) return;
// The allocation site at the head of the list is ours.
Handle<AllocationSite> site;
{
LocalContext context;
v8::HandleScope scope(context->GetIsolate());
int count = AllocationSitesCount(heap);
CompileRun(
"var bar = function() { return (new Array()); };"
"%PrepareFunctionForOptimization(bar);"
"var a = bar();"
"bar();"
"bar();");
// One allocation site should have been created.
int new_count = AllocationSitesCount(heap);
CHECK_EQ(new_count, (count + 1));
site = Handle<AllocationSite>::cast(
global_handles->Create(
AllocationSite::cast(heap->allocation_sites_list())));
CompileRun("%OptimizeFunctionOnNextCall(bar); bar();");
Handle<JSFunction> bar_handle = Handle<JSFunction>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
CcTest::global()
->Get(context.local(), v8_str("bar"))
.ToLocalChecked())));
int dependency_group_count = 0;
DependentCode dependency = site->dependent_code();
while (dependency != ReadOnlyRoots(heap).empty_weak_fixed_array()) {
CHECK(dependency.group() ==
DependentCode::kAllocationSiteTransitionChangedGroup ||
dependency.group() ==
DependentCode::kAllocationSiteTenuringChangedGroup);
CHECK_EQ(1, dependency.count());
CHECK(dependency.object_at(0)->IsWeak());
Code function_bar =
Code::cast(dependency.object_at(0)->GetHeapObjectAssumeWeak());
CHECK_EQ(bar_handle->code(), function_bar);
dependency = dependency.next_link();
dependency_group_count++;
}
// Expect a dependent code object for transitioning and pretenuring.
CHECK_EQ(2, dependency_group_count);
}
// Now make sure that a gc should get rid of the function, even though we
// still have the allocation site alive.
for (int i = 0; i < 4; i++) {
CcTest::CollectAllGarbage();
}
// The site still exists because of our global handle, but the code is no
// longer referred to by dependent_code().
CHECK(site->dependent_code().object_at(0)->IsCleared());
}
void CheckNumberOfAllocations(Heap* heap, const char* source,
int expected_full_alloc,
int expected_slim_alloc) {
int prev_fat_alloc_count = AllocationSitesCount(heap);
int prev_slim_alloc_count = SlimAllocationSiteCount(heap);
CompileRun(source);
int fat_alloc_sites = AllocationSitesCount(heap) - prev_fat_alloc_count;
int slim_alloc_sites = SlimAllocationSiteCount(heap) - prev_slim_alloc_count;
CHECK_EQ(expected_full_alloc, fat_alloc_sites);
CHECK_EQ(expected_slim_alloc, slim_alloc_sites);
}
TEST(AllocationSiteCreation) {
FLAG_always_opt = false;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
i::FLAG_allow_natives_syntax = true;
// Array literals.
CheckNumberOfAllocations(heap,
"function f1() {"
" return []; "
"};"
"%EnsureFeedbackVectorForFunction(f1); f1();",
1, 0);
CheckNumberOfAllocations(heap,
"function f2() {"
" return [1, 2];"
"};"
"%EnsureFeedbackVectorForFunction(f2); f2();",
1, 0);
CheckNumberOfAllocations(heap,
"function f3() {"
" return [[1], [2]];"
"};"
"%EnsureFeedbackVectorForFunction(f3); f3();",
1, 2);
CheckNumberOfAllocations(heap,
"function f4() { "
"return [0, [1, 1.1, 1.2, "
"], 1.5, [2.1, 2.2], 3];"
"};"
"%EnsureFeedbackVectorForFunction(f4); f4();",
1, 2);
// Object literals have lazy AllocationSites
CheckNumberOfAllocations(heap,
"function f5() {"
" return {};"
"};"
"%EnsureFeedbackVectorForFunction(f5); f5();",
0, 0);
// No AllocationSites are created for the empty object literal.
for (int i = 0; i < 5; i++) {
CheckNumberOfAllocations(heap, "f5(); ", 0, 0);
}
CheckNumberOfAllocations(heap,
"function f6() {"
" return {a:1};"
"};"
"%EnsureFeedbackVectorForFunction(f6); f6();",
0, 0);
CheckNumberOfAllocations(heap, "f6(); ", 1, 0);
CheckNumberOfAllocations(heap,
"function f7() {"
" return {a:1, b:2};"
"};"
"%EnsureFeedbackVectorForFunction(f7); f7(); ",
0, 0);
CheckNumberOfAllocations(heap, "f7(); ", 1, 0);
// No Allocation sites are created for object subliterals
CheckNumberOfAllocations(heap,
"function f8() {"
"return {a:{}, b:{ a:2, c:{ d:{f:{}}} } }; "
"};"
"%EnsureFeedbackVectorForFunction(f8); f8();",
0, 0);
CheckNumberOfAllocations(heap, "f8(); ", 1, 0);
// We currently eagerly create allocation sites if there are sub-arrays.
// Allocation sites are created only for array subliterals
CheckNumberOfAllocations(heap,
"function f9() {"
"return {a:[1, 2, 3], b:{ a:2, c:{ d:{f:[]} } }}; "
"};"
"%EnsureFeedbackVectorForFunction(f9); f9(); ",
1, 2);
// No new AllocationSites created on the second invocation.
CheckNumberOfAllocations(heap, "f9(); ", 0, 0);
}
TEST(AllocationSiteCreationForIIFE) {
// No feedback vectors and hence no allocation sites.
// TODO(mythria): Once lazy feedback allocation is enabled by default
// re-evaluate if we need any of these tests.
if (FLAG_lite_mode || FLAG_lazy_feedback_allocation) return;
FLAG_always_opt = false;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
i::FLAG_enable_one_shot_optimization = true;
// No allocation sites within IIFE/top-level
CheckNumberOfAllocations(heap,
R"(
(function f4() {
return [ 0, [ 1, 1.1, 1.2,], 1.5, [2.1, 2.2], 3 ];
})();
)",
0, 0);
CheckNumberOfAllocations(heap,
R"(
l = [ 1, 2, 3, 4];
)",
0, 0);
CheckNumberOfAllocations(heap,
R"(
a = [];
)",
0, 0);
CheckNumberOfAllocations(heap,
R"(
(function f4() {
return [];
})();
)",
0, 0);
// No allocation sites for literals in an iife/top level code even if it has
// array subliterals
CheckNumberOfAllocations(heap,
R"(
(function f10() {
return {a: [1], b: [2]};
})();
)",
0, 0);
CheckNumberOfAllocations(heap,
R"(
l = {
a: 1,
b: {
c: [5],
}
};
)",
0, 0);
// Eagerly create allocation sites for literals within a loop of iife or
// top-level code
CheckNumberOfAllocations(heap,
R"(
(function f11() {
while(true) {
return {a: [1], b: [2]};
}
})();
)",
1, 2);
CheckNumberOfAllocations(heap,
R"(
for (i = 0; i < 1; ++i) {
l = {
a: 1,
b: {
c: [5],
}
};
}
)",
1, 1);
}
TEST(CellsInOptimizedCodeAreWeak) {
if (FLAG_always_opt || !FLAG_opt) return;
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::internal::Heap* heap = CcTest::heap();
if (!isolate->use_optimizer()) return;
HandleScope outer_scope(heap->isolate());
Handle<Code> code;
{
LocalContext context;
HandleScope scope(heap->isolate());
CompileRun(
"bar = (function() {"
" function bar() {"
" return foo(1);"
" };"
" %PrepareFunctionForOptimization(bar);"
" var foo = function(x) { with (x) { return 1 + x; } };"
" %NeverOptimizeFunction(foo);"
" bar(foo);"
" bar(foo);"
" bar(foo);"
" %OptimizeFunctionOnNextCall(bar);"
" bar(foo);"
" return bar;})();");
Handle<JSFunction> bar = Handle<JSFunction>::cast(v8::Utils::OpenHandle(
*v8::Local<v8::Function>::Cast(CcTest::global()
->Get(context.local(), v8_str("bar"))
.ToLocalChecked())));
code = scope.CloseAndEscape(Handle<Code>(bar->code(), isolate));
}
// Now make sure that a gc should get rid of the function
for (int i = 0; i < 4; i++) {
CcTest::CollectAllGarbage();
}
CHECK(code->marked_for_deoptimization());
CHECK(code->embedded_objects_cleared());
}
TEST(ObjectsInOptimizedCodeAreWeak) {
if (FLAG_always_opt || !FLAG_opt) return;
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::internal::Heap* heap = CcTest::heap();
if (!isolate->use_optimizer()) return;
HandleScope outer_scope(heap->isolate());
Handle<Code> code;
{
LocalContext context;
HandleScope scope(heap->isolate());
CompileRun(
"function bar() {"
" return foo(1);"
"};"
"%PrepareFunctionForOptimization(bar);"
"function foo(x) { with (x) { return 1 + x; } };"
"%NeverOptimizeFunction(foo);"
"bar();"
"bar();"
"bar();"
"%OptimizeFunctionOnNextCall(bar);"
"bar();");
Handle<JSFunction> bar = Handle<JSFunction>::cast(v8::Utils::OpenHandle(
*v8::Local<v8::Function>::Cast(CcTest::global()
->Get(context.local(), v8_str("bar"))
.ToLocalChecked())));
code = scope.CloseAndEscape(Handle<Code>(bar->code(), isolate));
}
// Now make sure that a gc should get rid of the function
for (int i = 0; i < 4; i++) {
CcTest::CollectAllGarbage();
}
CHECK(code->marked_for_deoptimization());
CHECK(code->embedded_objects_cleared());
}
TEST(NewSpaceObjectsInOptimizedCode) {
if (FLAG_always_opt || !FLAG_opt) return;
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
if (!isolate->use_optimizer()) return;
HandleScope outer_scope(isolate);
Handle<Code> code;
{
LocalContext context;
HandleScope scope(isolate);
CompileRun(
"var foo;"
"var bar;"
"(function() {"
" function foo_func(x) { with (x) { return 1 + x; } };"
" %NeverOptimizeFunction(foo_func);"
" function bar_func() {"
" return foo(1);"
" };"
" %PrepareFunctionForOptimization(bar_func);"
" bar = bar_func;"
" foo = foo_func;"
" bar_func();"
" bar_func();"
" bar_func();"
" %OptimizeFunctionOnNextCall(bar_func);"
" bar_func();"
"})();");
Handle<JSFunction> bar = Handle<JSFunction>::cast(v8::Utils::OpenHandle(
*v8::Local<v8::Function>::Cast(CcTest::global()
->Get(context.local(), v8_str("bar"))
.ToLocalChecked())));
Handle<JSFunction> foo = Handle<JSFunction>::cast(v8::Utils::OpenHandle(
*v8::Local<v8::Function>::Cast(CcTest::global()
->Get(context.local(), v8_str("foo"))
.ToLocalChecked())));
CHECK(Heap::InYoungGeneration(*foo));
CcTest::CollectGarbage(NEW_SPACE);
CcTest::CollectGarbage(NEW_SPACE);
CHECK(!Heap::InYoungGeneration(*foo));
#ifdef VERIFY_HEAP
CcTest::heap()->Verify();
#endif
CHECK(!bar->code().marked_for_deoptimization());
code = scope.CloseAndEscape(Handle<Code>(bar->code(), isolate));
}
// Now make sure that a gc should get rid of the function
for (int i = 0; i < 4; i++) {
CcTest::CollectAllGarbage();
}
CHECK(code->marked_for_deoptimization());
CHECK(code->embedded_objects_cleared());
}
TEST(ObjectsInEagerlyDeoptimizedCodeAreWeak) {
if (FLAG_always_opt || !FLAG_opt) return;
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::internal::Heap* heap = CcTest::heap();
if (!isolate->use_optimizer()) return;
HandleScope outer_scope(heap->isolate());
Handle<Code> code;
{
LocalContext context;
HandleScope scope(heap->isolate());
CompileRun(
"function bar() {"
" return foo(1);"
"};"
"function foo(x) { with (x) { return 1 + x; } };"
"%NeverOptimizeFunction(foo);"
"%PrepareFunctionForOptimization(bar);"
"bar();"
"bar();"
"bar();"
"%OptimizeFunctionOnNextCall(bar);"
"bar();"
"%DeoptimizeFunction(bar);");
Handle<JSFunction> bar = Handle<JSFunction>::cast(v8::Utils::OpenHandle(
*v8::Local<v8::Function>::Cast(CcTest::global()
->Get(context.local(), v8_str("bar"))
.ToLocalChecked())));
code = scope.CloseAndEscape(Handle<Code>(bar->code(), isolate));
}
CHECK(code->marked_for_deoptimization());
// Now make sure that a gc should get rid of the function
for (int i = 0; i < 4; i++) {
CcTest::CollectAllGarbage();
}
CHECK(code->marked_for_deoptimization());
CHECK(code->embedded_objects_cleared());
}
static Handle<JSFunction> OptimizeDummyFunction(v8::Isolate* isolate,
const char* name) {
EmbeddedVector<char, 256> source;
SNPrintF(source,
"function %s() { return 0; }"
"%%PrepareFunctionForOptimization(%s);"
"%s(); %s();"
"%%OptimizeFunctionOnNextCall(%s);"
"%s();",
name, name, name, name, name, name);
CompileRun(source.begin());
i::Handle<JSFunction> fun = Handle<JSFunction>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
CcTest::global()
->Get(isolate->GetCurrentContext(), v8_str(name))
.ToLocalChecked())));
return fun;
}
static int GetCodeChainLength(Code code) {
int result = 0;
while (code.next_code_link().IsCode()) {
result++;
code = Code::cast(code.next_code_link());
}
return result;
}
TEST(NextCodeLinkIsWeak) {
FLAG_always_opt = false;
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::internal::Heap* heap = CcTest::heap();
if (!isolate->use_optimizer()) return;
HandleScope outer_scope(heap->isolate());
Handle<Code> code;
CcTest::CollectAllAvailableGarbage();
int code_chain_length_before, code_chain_length_after;
{
HandleScope scope(heap->isolate());
Handle<JSFunction> mortal =
OptimizeDummyFunction(CcTest::isolate(), "mortal");
Handle<JSFunction> immortal =
OptimizeDummyFunction(CcTest::isolate(), "immortal");
CHECK_EQ(immortal->code().next_code_link(), mortal->code());
code_chain_length_before = GetCodeChainLength(immortal->code());
// Keep the immortal code and let the mortal code die.
code = scope.CloseAndEscape(Handle<Code>(immortal->code(), isolate));
CompileRun("mortal = null; immortal = null;");
}
CcTest::CollectAllAvailableGarbage();
// Now mortal code should be dead.
code_chain_length_after = GetCodeChainLength(*code);
CHECK_EQ(code_chain_length_before - 1, code_chain_length_after);
}
TEST(NextCodeLinkInCodeDataContainerIsCleared) {
FLAG_always_opt = false;
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::internal::Heap* heap = CcTest::heap();
if (!isolate->use_optimizer()) return;
HandleScope outer_scope(heap->isolate());
Handle<CodeDataContainer> code_data_container;
{
HandleScope scope(heap->isolate());
Handle<JSFunction> mortal1 =
OptimizeDummyFunction(CcTest::isolate(), "mortal1");
Handle<JSFunction> mortal2 =
OptimizeDummyFunction(CcTest::isolate(), "mortal2");
CHECK_EQ(mortal2->code().next_code_link(), mortal1->code());
code_data_container = scope.CloseAndEscape(Handle<CodeDataContainer>(
mortal2->code().code_data_container(), isolate));
CompileRun("mortal1 = null; mortal2 = null;");
}
CcTest::CollectAllAvailableGarbage();
CHECK(code_data_container->next_code_link().IsUndefined(isolate));
}
static Handle<Code> DummyOptimizedCode(Isolate* isolate) {
i::byte buffer[i::Assembler::kMinimalBufferSize];
MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes,
ExternalAssemblerBuffer(buffer, sizeof(buffer)));
CodeDesc desc;
masm.Push(isolate->factory()->undefined_value());
masm.Push(isolate->factory()->undefined_value());
masm.Drop(2);
masm.GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, Code::OPTIMIZED_FUNCTION)
.set_self_reference(masm.CodeObject())
.Build();
CHECK(code->IsCode());
return code;
}
TEST(NextCodeLinkIsWeak2) {
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::internal::Heap* heap = CcTest::heap();
if (!isolate->use_optimizer()) return;
HandleScope outer_scope(heap->isolate());
CcTest::CollectAllAvailableGarbage();
Handle<Context> context(Context::cast(heap->native_contexts_list()), isolate);
Handle<Code> new_head;
Handle<Object> old_head(context->get(Context::OPTIMIZED_CODE_LIST), isolate);
{
HandleScope scope(heap->isolate());
Handle<Code> immortal = DummyOptimizedCode(isolate);
Handle<Code> mortal = DummyOptimizedCode(isolate);
mortal->set_next_code_link(*old_head);
immortal->set_next_code_link(*mortal);
context->set(Context::OPTIMIZED_CODE_LIST, *immortal);
new_head = scope.CloseAndEscape(immortal);
}
CcTest::CollectAllAvailableGarbage();
// Now mortal code should be dead.
CHECK_EQ(*old_head, new_head->next_code_link());
}
static bool weak_ic_cleared = false;
static void ClearWeakIC(
const v8::WeakCallbackInfo<v8::Persistent<v8::Object>>& data) {
printf("clear weak is called\n");
weak_ic_cleared = true;
data.GetParameter()->Reset();
}
TEST(WeakFunctionInConstructor) {
if (FLAG_always_opt) return;
FLAG_stress_compaction = false;
FLAG_stress_incremental_marking = false;
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::Isolate* isolate = CcTest::isolate();
LocalContext env;
v8::HandleScope scope(isolate);
CompileRun(
"function createObj(obj) {"
" return new obj();"
"}");
i::Handle<JSFunction> createObj = Handle<JSFunction>::cast(
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
CcTest::global()
->Get(env.local(), v8_str("createObj"))
.ToLocalChecked())));
v8::Persistent<v8::Object> garbage;
{
v8::HandleScope scope(isolate);
const char* source =
" (function() {"
" function hat() { this.x = 5; }"
" %EnsureFeedbackVectorForFunction(hat);"
" %EnsureFeedbackVectorForFunction(createObj);"
" createObj(hat);"
" createObj(hat);"
" return hat;"
" })();";
garbage.Reset(isolate, CompileRun(env.local(), source)
.ToLocalChecked()
->ToObject(env.local())
.ToLocalChecked());
}
weak_ic_cleared = false;
garbage.SetWeak(&garbage, &ClearWeakIC, v8::WeakCallbackType::kParameter);
CcTest::CollectAllGarbage();
CHECK(weak_ic_cleared);
// We've determined the constructor in createObj has had it's weak cell
// cleared. Now, verify that one additional call with a new function
// allows monomorphicity.
Handle<FeedbackVector> feedback_vector =
Handle<FeedbackVector>(createObj->feedback_vector(), CcTest::i_isolate());
for (int i = 0; i < 20; i++) {
MaybeObject slot_value = feedback_vector->Get(FeedbackSlot(0));
CHECK(slot_value->IsWeakOrCleared());
if (slot_value->IsCleared()) break;
CcTest::CollectAllGarbage();
}
MaybeObject slot_value = feedback_vector->Get(FeedbackSlot(0));
CHECK(slot_value->IsCleared());
CompileRun(
"function coat() { this.x = 6; }"
"createObj(coat);");
slot_value = feedback_vector->Get(FeedbackSlot(0));
CHECK(slot_value->IsWeak());
}
// Checks that the value returned by execution of the source is weak.
void CheckWeakness(const char* source) {
FLAG_stress_compaction = false;
FLAG_stress_incremental_marking = false;
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::Isolate* isolate = CcTest::isolate();
LocalContext env;
v8::HandleScope scope(isolate);
v8::Persistent<v8::Object> garbage;
{
v8::HandleScope scope(isolate);
garbage.Reset(isolate, CompileRun(env.local(), source)
.ToLocalChecked()
->ToObject(env.local())
.ToLocalChecked());
}
weak_ic_cleared = false;
garbage.SetWeak(&garbage, &ClearWeakIC, v8::WeakCallbackType::kParameter);
CcTest::CollectAllGarbage();
CHECK(weak_ic_cleared);
}
// Each of the following "weak IC" tests creates an IC that embeds a map with
// the prototype pointing to _proto_ and checks that the _proto_ dies on GC.
TEST(WeakMapInMonomorphicLoadIC) {
CheckWeakness(
"function loadIC(obj) {"
" return obj.name;"
"}"
"%EnsureFeedbackVectorForFunction(loadIC);"
" (function() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" loadIC(obj);"
" loadIC(obj);"
" loadIC(obj);"
" return proto;"
" })();");
}
TEST(WeakMapInPolymorphicLoadIC) {
CheckWeakness(
"function loadIC(obj) {"
" return obj.name;"
"}"
"%EnsureFeedbackVectorForFunction(loadIC);"
" (function() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" loadIC(obj);"
" loadIC(obj);"
" loadIC(obj);"
" var poly = Object.create(proto);"
" poly.x = true;"
" loadIC(poly);"
" return proto;"
" })();");
}
TEST(WeakMapInMonomorphicKeyedLoadIC) {
CheckWeakness(
"function keyedLoadIC(obj, field) {"
" return obj[field];"
"}"
"%EnsureFeedbackVectorForFunction(keyedLoadIC);"
" (function() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" keyedLoadIC(obj, 'name');"
" keyedLoadIC(obj, 'name');"
" keyedLoadIC(obj, 'name');"
" return proto;"
" })();");
}
TEST(WeakMapInPolymorphicKeyedLoadIC) {
CheckWeakness(
"function keyedLoadIC(obj, field) {"
" return obj[field];"
"}"
"%EnsureFeedbackVectorForFunction(keyedLoadIC);"
" (function() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" keyedLoadIC(obj, 'name');"
" keyedLoadIC(obj, 'name');"
" keyedLoadIC(obj, 'name');"
" var poly = Object.create(proto);"
" poly.x = true;"
" keyedLoadIC(poly, 'name');"
" return proto;"
" })();");
}
TEST(WeakMapInMonomorphicStoreIC) {
CheckWeakness(
"function storeIC(obj, value) {"
" obj.name = value;"
"}"
"%EnsureFeedbackVectorForFunction(storeIC);"
" (function() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" storeIC(obj, 'x');"
" storeIC(obj, 'x');"
" storeIC(obj, 'x');"
" return proto;"
" })();");
}
TEST(WeakMapInPolymorphicStoreIC) {
CheckWeakness(
"function storeIC(obj, value) {"
" obj.name = value;"
"}"
"%EnsureFeedbackVectorForFunction(storeIC);"
" (function() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" storeIC(obj, 'x');"
" storeIC(obj, 'x');"
" storeIC(obj, 'x');"
" var poly = Object.create(proto);"
" poly.x = true;"
" storeIC(poly, 'x');"
" return proto;"
" })();");
}
TEST(WeakMapInMonomorphicKeyedStoreIC) {
CheckWeakness(
"function keyedStoreIC(obj, field, value) {"
" obj[field] = value;"
"}"
"%EnsureFeedbackVectorForFunction(keyedStoreIC);"
" (function() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" keyedStoreIC(obj, 'x');"
" keyedStoreIC(obj, 'x');"
" keyedStoreIC(obj, 'x');"
" return proto;"
" })();");
}
TEST(WeakMapInPolymorphicKeyedStoreIC) {
CheckWeakness(
"function keyedStoreIC(obj, field, value) {"
" obj[field] = value;"
"}"
"%EnsureFeedbackVectorForFunction(keyedStoreIC);"
" (function() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" keyedStoreIC(obj, 'x');"
" keyedStoreIC(obj, 'x');"
" keyedStoreIC(obj, 'x');"
" var poly = Object.create(proto);"
" poly.x = true;"
" keyedStoreIC(poly, 'x');"
" return proto;"
" })();");
}
TEST(WeakMapInMonomorphicCompareNilIC) {
FLAG_allow_natives_syntax = true;
CheckWeakness(
"function compareNilIC(obj) {"
" return obj == null;"
"}"
"%EnsureFeedbackVectorForFunction(compareNilIC);"
" (function() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" compareNilIC(obj);"
" compareNilIC(obj);"
" compareNilIC(obj);"
" return proto;"
" })();");
}
Handle<JSFunction> GetFunctionByName(Isolate* isolate, const char* name) {
Handle<String> str = isolate->factory()->InternalizeUtf8String(name);
Handle<Object> obj =
Object::GetProperty(isolate, isolate->global_object(), str)
.ToHandleChecked();
return Handle<JSFunction>::cast(obj);
}
void CheckIC(Handle<JSFunction> function, int slot_index,
InlineCacheState state) {
FeedbackVector vector = function->feedback_vector();
FeedbackSlot slot(slot_index);
FeedbackNexus nexus(vector, slot);
CHECK_EQ(nexus.ic_state(), state);
}
TEST(MonomorphicStaysMonomorphicAfterGC) {
if (!FLAG_use_ic) return;
if (FLAG_always_opt) return;
ManualGCScope manual_gc_scope;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::HandleScope scope(CcTest::isolate());
FLAG_allow_natives_syntax = true;
CompileRun(
"function loadIC(obj) {"
" return obj.name;"
"}"
"%EnsureFeedbackVectorForFunction(loadIC);"
"function testIC() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" loadIC(obj);"
" loadIC(obj);"
" loadIC(obj);"
" return proto;"
"};");
Handle<JSFunction> loadIC = GetFunctionByName(isolate, "loadIC");
{
v8::HandleScope scope(CcTest::isolate());
CompileRun("(testIC())");
}
CcTest::CollectAllGarbage();
CheckIC(loadIC, 0, MONOMORPHIC);
{
v8::HandleScope scope(CcTest::isolate());
CompileRun("(testIC())");
}
CheckIC(loadIC, 0, MONOMORPHIC);
}
TEST(PolymorphicStaysPolymorphicAfterGC) {
if (!FLAG_use_ic) return;
if (FLAG_always_opt) return;
ManualGCScope manual_gc_scope;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
v8::HandleScope scope(CcTest::isolate());
FLAG_allow_natives_syntax = true;
CompileRun(
"function loadIC(obj) {"
" return obj.name;"
"}"
"%EnsureFeedbackVectorForFunction(loadIC);"
"function testIC() {"
" var proto = {'name' : 'weak'};"
" var obj = Object.create(proto);"
" loadIC(obj);"
" loadIC(obj);"
" loadIC(obj);"
" var poly = Object.create(proto);"
" poly.x = true;"
" loadIC(poly);"
" return proto;"
"};");
Handle<JSFunction> loadIC = GetFunctionByName(isolate, "loadIC");
{
v8::HandleScope scope(CcTest::isolate());
CompileRun("(testIC())");
}
CcTest::CollectAllGarbage();
CheckIC(loadIC, 0, POLYMORPHIC);
{
v8::HandleScope scope(CcTest::isolate());
CompileRun("(testIC())");
}
CheckIC(loadIC, 0, POLYMORPHIC);
}
#ifdef DEBUG
TEST(AddInstructionChangesNewSpacePromotion) {
FLAG_allow_natives_syntax = true;
FLAG_expose_gc = true;
FLAG_stress_compaction = true;
FLAG_gc_interval = 1000;
CcTest::InitializeVM();
if (!FLAG_allocation_site_pretenuring) return;
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
LocalContext env;
CompileRun(
"function add(a, b) {"
" return a + b;"
"}"
"add(1, 2);"
"add(\"a\", \"b\");"
"var oldSpaceObject;"
"gc();"
"function crash(x) {"
" var object = {a: null, b: null};"
" var result = add(1.5, x | 0);"
" object.a = result;"
" oldSpaceObject = object;"
" return object;"
"}"
"%PrepareFunctionForOptimization(crash);"
"crash(1);"
"crash(1);"
"%OptimizeFunctionOnNextCall(crash);"
"crash(1);");
v8::Local<v8::Object> global = CcTest::global();
v8::Local<v8::Function> g = v8::Local<v8::Function>::Cast(
global->Get(env.local(), v8_str("crash")).ToLocalChecked());
v8::Local<v8::Value> args1[] = {v8_num(1)};
heap->DisableInlineAllocation();
heap->set_allocation_timeout(1);
g->Call(env.local(), global, 1, args1).ToLocalChecked();
CcTest::CollectAllGarbage();
}
void OnFatalErrorExpectOOM(const char* location, const char* message) {
// Exit with 0 if the location matches our expectation.
exit(strcmp(location, "CALL_AND_RETRY_LAST"));
}
TEST(CEntryStubOOM) {
FLAG_allow_natives_syntax = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
CcTest::isolate()->SetFatalErrorHandler(OnFatalErrorExpectOOM);
v8::Local<v8::Value> result = CompileRun(
"%SetAllocationTimeout(1, 1);"
"var a = [];"
"a.__proto__ = [];"
"a.unshift(1)");
CHECK(result->IsNumber());
}
#endif // DEBUG
static void InterruptCallback357137(v8::Isolate* isolate, void* data) { }
static void RequestInterrupt(const v8::FunctionCallbackInfo<v8::Value>& args) {
CcTest::isolate()->RequestInterrupt(&InterruptCallback357137, nullptr);
}
HEAP_TEST(Regress538257) {
ManualGCScope manual_gc_scope;
FLAG_manual_evacuation_candidates_selection = true;
v8::Isolate::CreateParams create_params;
// Set heap limits.
create_params.constraints.set_max_young_generation_size_in_bytes(3 * MB);
#ifdef DEBUG
create_params.constraints.set_max_old_generation_size_in_bytes(20 * MB);
#else
create_params.constraints.set_max_old_generation_size_in_bytes(6 * MB);
#endif
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
isolate->Enter();
{
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
Heap* heap = i_isolate->heap();
HandleScope handle_scope(i_isolate);
PagedSpace* old_space = heap->old_space();
const int kMaxObjects = 10000;
const int kFixedArrayLen = 512;
Handle<FixedArray> objects[kMaxObjects];
for (int i = 0; (i < kMaxObjects) &&
heap->CanExpandOldGeneration(old_space->AreaSize());
i++) {
objects[i] = i_isolate->factory()->NewFixedArray(kFixedArrayLen,
AllocationType::kOld);
heap::ForceEvacuationCandidate(Page::FromHeapObject(*objects[i]));
}
heap::SimulateFullSpace(old_space);
CcTest::CollectAllGarbage();
// If we get this far, we've successfully aborted compaction. Any further
// allocations might trigger OOM.
}
isolate->Exit();
isolate->Dispose();
}
TEST(Regress357137) {
CcTest::InitializeVM();
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope hscope(isolate);
v8::Local<v8::ObjectTemplate> global = v8::ObjectTemplate::New(isolate);
global->Set(
v8::String::NewFromUtf8(isolate, "interrupt", v8::NewStringType::kNormal)
.ToLocalChecked(),
v8::FunctionTemplate::New(isolate, RequestInterrupt));
v8::Local<v8::Context> context = v8::Context::New(isolate, nullptr, global);
CHECK(!context.IsEmpty());
v8::Context::Scope cscope(context);
v8::Local<v8::Value> result = CompileRun(
"var locals = '';"
"for (var i = 0; i < 512; i++) locals += 'var v' + i + '= 42;';"
"eval('function f() {' + locals + 'return function() { return v0; }; }');"
"interrupt();" // This triggers a fake stack overflow in f.
"f()()");
CHECK_EQ(42.0, result->ToNumber(context).ToLocalChecked()->Value());
}
TEST(Regress507979) {
const int kFixedArrayLen = 10;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope handle_scope(isolate);
Handle<FixedArray> o1 = isolate->factory()->NewFixedArray(kFixedArrayLen);
Handle<FixedArray> o2 = isolate->factory()->NewFixedArray(kFixedArrayLen);
CHECK(Heap::InYoungGeneration(*o1));
CHECK(Heap::InYoungGeneration(*o2));
HeapIterator it(isolate->heap(), i::HeapIterator::kFilterUnreachable);
// Replace parts of an object placed before a live object with a filler. This
// way the filler object shares the mark bits with the following live object.
o1->Shrink(isolate, kFixedArrayLen - 1);
for (HeapObject obj = it.Next(); !obj.is_null(); obj = it.Next()) {
// Let's not optimize the loop away.
CHECK_NE(obj.address(), kNullAddress);
}
}
TEST(Regress388880) {
if (!FLAG_incremental_marking) return;
FLAG_stress_incremental_marking = false;
FLAG_expose_gc = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
Heap* heap = isolate->heap();
Handle<Map> map1 = Map::Create(isolate, 1);
Handle<String> name = factory->NewStringFromStaticChars("foo");
name = factory->InternalizeString(name);
Handle<Map> map2 =
Map::CopyWithField(isolate, map1, name, FieldType::Any(isolate), NONE,
PropertyConstness::kMutable, Representation::Tagged(),
OMIT_TRANSITION)
.ToHandleChecked();
size_t desired_offset = Page::kPageSize - map1->instance_size();
// Allocate padding objects in old pointer space so, that object allocated
// afterwards would end at the end of the page.
heap::SimulateFullSpace(heap->old_space());
size_t padding_size =
desired_offset - MemoryChunkLayout::ObjectStartOffsetInDataPage();
heap::CreatePadding(heap, static_cast<int>(padding_size),
AllocationType::kOld);
Handle<JSObject> o = factory->NewJSObjectFromMap(map1, AllocationType::kOld);
o->set_raw_properties_or_hash(*factory->empty_fixed_array());
// Ensure that the object allocated where we need it.
Page* page = Page::FromHeapObject(*o);
CHECK_EQ(desired_offset, page->Offset(o->address()));
// Now we have an object right at the end of the page.
// Enable incremental marking to trigger actions in Heap::AdjustLiveBytes()
// that would cause crash.
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
marking->Stop();
CcTest::heap()->StartIncrementalMarking(i::Heap::kNoGCFlags,
i::GarbageCollectionReason::kTesting);
CHECK(marking->IsMarking());
// Now everything is set up for crashing in JSObject::MigrateFastToFast()
// when it calls heap->AdjustLiveBytes(...).
JSObject::MigrateToMap(isolate, o, map2);
}
TEST(Regress3631) {
if (!FLAG_incremental_marking) return;
FLAG_expose_gc = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
v8::Local<v8::Value> result = CompileRun(
"var weak_map = new WeakMap();"
"var future_keys = [];"
"for (var i = 0; i < 50; i++) {"
" var key = {'k' : i + 0.1};"
" weak_map.set(key, 1);"
" future_keys.push({'x' : i + 0.2});"
"}"
"weak_map");
if (marking->IsStopped()) {
CcTest::heap()->StartIncrementalMarking(
i::Heap::kNoGCFlags, i::GarbageCollectionReason::kTesting);
}
// Incrementally mark the backing store.
Handle<JSReceiver> obj =
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(result));
Handle<JSWeakCollection> weak_map(JSWeakCollection::cast(*obj), isolate);
SimulateIncrementalMarking(heap);
// Stash the backing store in a handle.
Handle<Object> save(weak_map->table(), isolate);
// The following line will update the backing store.
CompileRun(
"for (var i = 0; i < 50; i++) {"
" weak_map.set(future_keys[i], i);"
"}");
heap->incremental_marking()->set_should_hurry(true);
CcTest::CollectGarbage(OLD_SPACE);
}
TEST(Regress442710) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope sc(isolate);
Handle<JSGlobalObject> global(CcTest::i_isolate()->context().global_object(),
isolate);
Handle<JSArray> array = factory->NewJSArray(2);
Handle<String> name = factory->InternalizeUtf8String("testArray");
Object::SetProperty(isolate, global, name, array).Check();
CompileRun("testArray[0] = 1; testArray[1] = 2; testArray.shift();");
CcTest::CollectGarbage(OLD_SPACE);
}
HEAP_TEST(NumberStringCacheSize) {
// Test that the number-string cache has not been resized in the snapshot.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
if (!isolate->snapshot_available()) return;
Heap* heap = isolate->heap();
CHECK_EQ(Heap::kInitialNumberStringCacheSize * 2,
heap->number_string_cache().length());
}
TEST(Regress3877) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
CompileRun("function cls() { this.x = 10; }");
Handle<WeakFixedArray> weak_prototype_holder = factory->NewWeakFixedArray(1);
{
HandleScope inner_scope(isolate);
v8::Local<v8::Value> result = CompileRun("cls.prototype");
Handle<JSReceiver> proto =
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(result));
weak_prototype_holder->Set(0, HeapObjectReference::Weak(*proto));
}
CHECK(!weak_prototype_holder->Get(0)->IsCleared());
CompileRun(
"var a = { };"
"a.x = new cls();"
"cls.prototype = null;");
for (int i = 0; i < 4; i++) {
CcTest::CollectAllGarbage();
}
// The map of a.x keeps prototype alive
CHECK(!weak_prototype_holder->Get(0)->IsCleared());
// Change the map of a.x and make the previous map garbage collectable.
CompileRun("a.x.__proto__ = {};");
for (int i = 0; i < 4; i++) {
CcTest::CollectAllGarbage();
}
CHECK(weak_prototype_holder->Get(0)->IsCleared());
}
Handle<WeakFixedArray> AddRetainedMap(Isolate* isolate, Heap* heap) {
HandleScope inner_scope(isolate);
Handle<Map> map = Map::Create(isolate, 1);
v8::Local<v8::Value> result =
CompileRun("(function () { return {x : 10}; })();");
Handle<JSReceiver> proto =
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(result));
Map::SetPrototype(isolate, map, proto);
heap->AddRetainedMap(map);
Handle<WeakFixedArray> array = isolate->factory()->NewWeakFixedArray(1);
array->Set(0, HeapObjectReference::Weak(*map));
return inner_scope.CloseAndEscape(array);
}
void CheckMapRetainingFor(int n) {
FLAG_retain_maps_for_n_gc = n;
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
Handle<WeakFixedArray> array_with_map = AddRetainedMap(isolate, heap);
CHECK(array_with_map->Get(0)->IsWeak());
for (int i = 0; i < n; i++) {
heap::SimulateIncrementalMarking(heap);
CcTest::CollectGarbage(OLD_SPACE);
}
CHECK(array_with_map->Get(0)->IsWeak());
heap::SimulateIncrementalMarking(heap);
CcTest::CollectGarbage(OLD_SPACE);
CHECK(array_with_map->Get(0)->IsCleared());
}
TEST(MapRetaining) {
if (!FLAG_incremental_marking) return;
ManualGCScope manual_gc_scope;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
CheckMapRetainingFor(FLAG_retain_maps_for_n_gc);
CheckMapRetainingFor(0);
CheckMapRetainingFor(1);
CheckMapRetainingFor(7);
}
TEST(PreprocessStackTrace) {
// Do not automatically trigger early GC.
FLAG_gc_interval = -1;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
v8::TryCatch try_catch(CcTest::isolate());
CompileRun("throw new Error();");
CHECK(try_catch.HasCaught());
Isolate* isolate = CcTest::i_isolate();
Handle<Object> exception = v8::Utils::OpenHandle(*try_catch.Exception());
Handle<Name> key = isolate->factory()->stack_trace_symbol();
Handle<Object> stack_trace =
Object::GetProperty(isolate, exception, key).ToHandleChecked();
Handle<Object> code =
Object::GetElement(isolate, stack_trace, 3).ToHandleChecked();
CHECK(code->IsCode());
CcTest::CollectAllAvailableGarbage();
Handle<Object> pos =
Object::GetElement(isolate, stack_trace, 3).ToHandleChecked();
CHECK(pos->IsSmi());
Handle<FrameArray> frame_array = Handle<FrameArray>::cast(stack_trace);
int array_length = frame_array->FrameCount();
for (int i = 0; i < array_length; i++) {
Handle<Object> element =
Object::GetElement(isolate, stack_trace, i).ToHandleChecked();
CHECK(!element->IsCode());
}
}
void AllocateInSpace(Isolate* isolate, size_t bytes, AllocationSpace space) {
CHECK_LE(FixedArray::kHeaderSize, bytes);
CHECK(IsAligned(bytes, kTaggedSize));
Factory* factory = isolate->factory();
HandleScope scope(isolate);
AlwaysAllocateScope always_allocate(isolate);
int elements =
static_cast<int>((bytes - FixedArray::kHeaderSize) / kTaggedSize);
Handle<FixedArray> array = factory->NewFixedArray(
elements,
space == NEW_SPACE ? AllocationType::kYoung : AllocationType::kOld);
CHECK((space == NEW_SPACE) == Heap::InYoungGeneration(*array));
CHECK_EQ(bytes, static_cast<size_t>(array->Size()));
}
TEST(NewSpaceAllocationCounter) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
size_t counter1 = heap->NewSpaceAllocationCounter();
CcTest::CollectGarbage(NEW_SPACE);
CcTest::CollectGarbage(NEW_SPACE); // Ensure new space is empty.
const size_t kSize = 1024;
AllocateInSpace(isolate, kSize, NEW_SPACE);
size_t counter2 = heap->NewSpaceAllocationCounter();
CHECK_EQ(kSize, counter2 - counter1);
CcTest::CollectGarbage(NEW_SPACE);
size_t counter3 = heap->NewSpaceAllocationCounter();
CHECK_EQ(0U, counter3 - counter2);
// Test counter overflow.
size_t max_counter = static_cast<size_t>(-1);
heap->set_new_space_allocation_counter(max_counter - 10 * kSize);
size_t start = heap->NewSpaceAllocationCounter();
for (int i = 0; i < 20; i++) {
AllocateInSpace(isolate, kSize, NEW_SPACE);
size_t counter = heap->NewSpaceAllocationCounter();
CHECK_EQ(kSize, counter - start);
start = counter;
}
}
TEST(OldSpaceAllocationCounter) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
size_t counter1 = heap->OldGenerationAllocationCounter();
CcTest::CollectGarbage(NEW_SPACE);
CcTest::CollectGarbage(NEW_SPACE);
const size_t kSize = 1024;
AllocateInSpace(isolate, kSize, OLD_SPACE);
size_t counter2 = heap->OldGenerationAllocationCounter();
// TODO(ulan): replace all CHECK_LE with CHECK_EQ after v8:4148 is fixed.
CHECK_LE(kSize, counter2 - counter1);
CcTest::CollectGarbage(NEW_SPACE);
size_t counter3 = heap->OldGenerationAllocationCounter();
CHECK_EQ(0u, counter3 - counter2);
AllocateInSpace(isolate, kSize, OLD_SPACE);
CcTest::CollectGarbage(OLD_SPACE);
size_t counter4 = heap->OldGenerationAllocationCounter();
CHECK_LE(kSize, counter4 - counter3);
// Test counter overflow.
size_t max_counter = static_cast<size_t>(-1);
heap->set_old_generation_allocation_counter_at_last_gc(max_counter -
10 * kSize);
size_t start = heap->OldGenerationAllocationCounter();
for (int i = 0; i < 20; i++) {
AllocateInSpace(isolate, kSize, OLD_SPACE);
size_t counter = heap->OldGenerationAllocationCounter();
CHECK_LE(kSize, counter - start);
start = counter;
}
}
static void CheckLeak(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = CcTest::i_isolate();
Object message(
*reinterpret_cast<Address*>(isolate->pending_message_obj_address()));
CHECK(message.IsTheHole(isolate));
}
TEST(MessageObjectLeak) {
CcTest::InitializeVM();
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope scope(isolate);
v8::Local<v8::ObjectTemplate> global = v8::ObjectTemplate::New(isolate);
global->Set(
v8::String::NewFromUtf8(isolate, "check", v8::NewStringType::kNormal)
.ToLocalChecked(),
v8::FunctionTemplate::New(isolate, CheckLeak));
v8::Local<v8::Context> context = v8::Context::New(isolate, nullptr, global);
v8::Context::Scope cscope(context);
const char* test =
"try {"
" throw 'message 1';"
"} catch (e) {"
"}"
"check();"
"L: try {"
" throw 'message 2';"
"} finally {"
" break L;"
"}"
"check();";
CompileRun(test);
const char* flag = "--turbo-filter=*";
FlagList::SetFlagsFromString(flag, strlen(flag));
FLAG_always_opt = true;
CompileRun(test);
}
static void CheckEqualSharedFunctionInfos(
const v8::FunctionCallbackInfo<v8::Value>& args) {
Handle<Object> obj1 = v8::Utils::OpenHandle(*args[0]);
Handle<Object> obj2 = v8::Utils::OpenHandle(*args[1]);
Handle<JSFunction> fun1 = Handle<JSFunction>::cast(obj1);
Handle<JSFunction> fun2 = Handle<JSFunction>::cast(obj2);
CHECK(fun1->shared() == fun2->shared());
}
static void RemoveCodeAndGC(const v8::FunctionCallbackInfo<v8::Value>& args) {
Isolate* isolate = CcTest::i_isolate();
Handle<Object> obj = v8::Utils::OpenHandle(*args[0]);
Handle<JSFunction> fun = Handle<JSFunction>::cast(obj);
// Bytecode is code too.
SharedFunctionInfo::DiscardCompiled(isolate, handle(fun->shared(), isolate));
fun->set_code(*BUILTIN_CODE(isolate, CompileLazy));
CcTest::CollectAllAvailableGarbage();
}
TEST(CanonicalSharedFunctionInfo) {
CcTest::InitializeVM();
v8::Isolate* isolate = CcTest::isolate();
v8::HandleScope scope(isolate);
v8::Local<v8::ObjectTemplate> global = v8::ObjectTemplate::New(isolate);
global->Set(isolate, "check", v8::FunctionTemplate::New(
isolate, CheckEqualSharedFunctionInfos));
global->Set(isolate, "remove",
v8::FunctionTemplate::New(isolate, RemoveCodeAndGC));
v8::Local<v8::Context> context = v8::Context::New(isolate, nullptr, global);
v8::Context::Scope cscope(context);
CompileRun(
"function f() { return function g() {}; }"
"var g1 = f();"
"remove(f);"
"var g2 = f();"
"check(g1, g2);");
CompileRun(
"function f() { return (function() { return function g() {}; })(); }"
"var g1 = f();"
"remove(f);"
"var g2 = f();"
"check(g1, g2);");
}
TEST(ScriptIterator) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Heap* heap = CcTest::heap();
LocalContext context;
CcTest::CollectAllGarbage();
int script_count = 0;
{
HeapIterator it(heap);
for (HeapObject obj = it.Next(); !obj.is_null(); obj = it.Next()) {
if (obj.IsScript()) script_count++;
}
}
{
Script::Iterator iterator(isolate);
for (Script script = iterator.Next(); !script.is_null();
script = iterator.Next()) {
script_count--;
}
}
CHECK_EQ(0, script_count);
}
TEST(SharedFunctionInfoIterator) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Isolate* isolate = CcTest::i_isolate();
Heap* heap = CcTest::heap();
LocalContext context;
CcTest::CollectAllGarbage();
CcTest::CollectAllGarbage();
int sfi_count = 0;
{
HeapIterator it(heap);
for (HeapObject obj = it.Next(); !obj.is_null(); obj = it.Next()) {
if (!obj.IsSharedFunctionInfo()) continue;
sfi_count++;
}
}
{
SharedFunctionInfo::GlobalIterator iterator(isolate);
while (!iterator.Next().is_null()) sfi_count--;
}
CHECK_EQ(0, sfi_count);
}
// This is the same as Factory::NewByteArray, except it doesn't retry on
// allocation failure.
AllocationResult HeapTester::AllocateByteArrayForTest(
Heap* heap, int length, AllocationType allocation_type) {
DCHECK(length >= 0 && length <= ByteArray::kMaxLength);
int size = ByteArray::SizeFor(length);
HeapObject result;
{
AllocationResult allocation = heap->AllocateRaw(size, allocation_type);
if (!allocation.To(&result)) return allocation;
}
result.set_map_after_allocation(ReadOnlyRoots(heap).byte_array_map(),
SKIP_WRITE_BARRIER);
ByteArray::cast(result).set_length(length);
ByteArray::cast(result).clear_padding();
return result;
}
HEAP_TEST(Regress587004) {
ManualGCScope manual_gc_scope;
#ifdef VERIFY_HEAP
FLAG_verify_heap = false;
#endif
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
const int N =
(kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) / kTaggedSize;
Handle<FixedArray> array = factory->NewFixedArray(N, AllocationType::kOld);
CHECK(heap->old_space()->Contains(*array));
Handle<Object> number = factory->NewHeapNumber(1.0);
CHECK(Heap::InYoungGeneration(*number));
for (int i = 0; i < N; i++) {
array->set(i, *number);
}
CcTest::CollectGarbage(OLD_SPACE);
heap::SimulateFullSpace(heap->old_space());
heap->RightTrimFixedArray(*array, N - 1);
heap->mark_compact_collector()->EnsureSweepingCompleted();
ByteArray byte_array;
const int M = 256;
// Don't allow old space expansion. The test works without this flag too,
// but becomes very slow.
heap->set_force_oom(true);
while (
AllocateByteArrayForTest(heap, M, AllocationType::kOld).To(&byte_array)) {
for (int j = 0; j < M; j++) {
byte_array.set(j, 0x31);
}
}
// Re-enable old space expansion to avoid OOM crash.
heap->set_force_oom(false);
CcTest::CollectGarbage(NEW_SPACE);
}
HEAP_TEST(Regress589413) {
if (!FLAG_incremental_marking) return;
FLAG_stress_compaction = true;
FLAG_manual_evacuation_candidates_selection = true;
FLAG_parallel_compaction = false;
ManualGCScope manual_gc_scope;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
// Get the heap in clean state.
CcTest::CollectGarbage(OLD_SPACE);
CcTest::CollectGarbage(OLD_SPACE);
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
// Fill the new space with byte arrays with elements looking like pointers.
const int M = 256;
ByteArray byte_array;
while (AllocateByteArrayForTest(heap, M, AllocationType::kYoung)
.To(&byte_array)) {
for (int j = 0; j < M; j++) {
byte_array.set(j, 0x31);
}
// Add the array in root set.
handle(byte_array, isolate);
}
// Make sure the byte arrays will be promoted on the next GC.
CcTest::CollectGarbage(NEW_SPACE);
// This number is close to large free list category threshold.
const int N = 0x3EEE;
{
std::vector<FixedArray> arrays;
std::set<Page*> pages;
FixedArray array;
// Fill all pages with fixed arrays.
heap->set_force_oom(true);
while (
AllocateFixedArrayForTest(heap, N, AllocationType::kOld).To(&array)) {
arrays.push_back(array);
pages.insert(Page::FromHeapObject(array));
// Add the array in root set.
handle(array, isolate);
}
// Expand and full one complete page with fixed arrays.
heap->set_force_oom(false);
while (
AllocateFixedArrayForTest(heap, N, AllocationType::kOld).To(&array)) {
arrays.push_back(array);
pages.insert(Page::FromHeapObject(array));
// Add the array in root set.
handle(array, isolate);
// Do not expand anymore.
heap->set_force_oom(true);
}
// Expand and mark the new page as evacuation candidate.
heap->set_force_oom(false);
{
AlwaysAllocateScope always_allocate(isolate);
Handle<HeapObject> ec_obj =
factory->NewFixedArray(5000, AllocationType::kOld);
Page* ec_page = Page::FromHeapObject(*ec_obj);
heap::ForceEvacuationCandidate(ec_page);
// Make all arrays point to evacuation candidate so that
// slots are recorded for them.
for (size_t j = 0; j < arrays.size(); j++) {
array = arrays[j];
for (int i = 0; i < N; i++) {
array.set(i, *ec_obj);
}
}
}
heap::SimulateIncrementalMarking(heap);
for (size_t j = 0; j < arrays.size(); j++) {
heap->RightTrimFixedArray(arrays[j], N - 1);
}
}
// Force allocation from the free list.
heap->set_force_oom(true);
CcTest::CollectGarbage(OLD_SPACE);
}
TEST(Regress598319) {
if (!FLAG_incremental_marking) return;
ManualGCScope manual_gc_scope;
// This test ensures that no white objects can cross the progress bar of large
// objects during incremental marking. It checks this by using Shift() during
// incremental marking.
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
Isolate* isolate = heap->isolate();
// The size of the array should be larger than kProgressBarScanningChunk.
const int kNumberOfObjects = Max(FixedArray::kMaxRegularLength + 1, 128 * KB);
struct Arr {
Arr(Isolate* isolate, int number_of_objects) {
root = isolate->factory()->NewFixedArray(1, AllocationType::kOld);
{
// Temporary scope to avoid getting any other objects into the root set.
v8::HandleScope scope(CcTest::isolate());
Handle<FixedArray> tmp = isolate->factory()->NewFixedArray(
number_of_objects, AllocationType::kOld);
root->set(0, *tmp);
for (int i = 0; i < get().length(); i++) {
tmp = isolate->factory()->NewFixedArray(100, AllocationType::kOld);
get().set(i, *tmp);
}
}
}
FixedArray get() { return FixedArray::cast(root->get(0)); }
Handle<FixedArray> root;
} arr(isolate, kNumberOfObjects);
CHECK_EQ(arr.get().length(), kNumberOfObjects);
CHECK(heap->lo_space()->Contains(arr.get()));
LargePage* page = LargePage::FromHeapObject(arr.get());
CHECK_NOT_NULL(page);
// GC to cleanup state
CcTest::CollectGarbage(OLD_SPACE);
MarkCompactCollector* collector = heap->mark_compact_collector();
if (collector->sweeping_in_progress()) {
collector->EnsureSweepingCompleted();
}
CHECK(heap->lo_space()->Contains(arr.get()));
IncrementalMarking* marking = heap->incremental_marking();
IncrementalMarking::MarkingState* marking_state = marking->marking_state();
CHECK(marking_state->IsWhite(arr.get()));
for (int i = 0; i < arr.get().length(); i++) {
HeapObject arr_value = HeapObject::cast(arr.get().get(i));
CHECK(marking_state->IsWhite(arr_value));
}
// Start incremental marking.
CHECK(marking->IsMarking() || marking->IsStopped());
if (marking->IsStopped()) {
heap->StartIncrementalMarking(i::Heap::kNoGCFlags,
i::GarbageCollectionReason::kTesting);
}
CHECK(marking->IsMarking());
// Check that we have not marked the interesting array during root scanning.
for (int i = 0; i < arr.get().length(); i++) {
HeapObject arr_value = HeapObject::cast(arr.get().get(i));
CHECK(marking_state->IsWhite(arr_value));
}
// Now we search for a state where we are in incremental marking and have
// only partially marked the large object.
const double kSmallStepSizeInMs = 0.1;
while (!marking->IsComplete()) {
marking->V8Step(kSmallStepSizeInMs,
i::IncrementalMarking::NO_GC_VIA_STACK_GUARD,
StepOrigin::kV8);
if (page->IsFlagSet(Page::HAS_PROGRESS_BAR) && page->ProgressBar() > 0) {
CHECK_NE(page->ProgressBar(), arr.get().Size());
{
// Shift by 1, effectively moving one white object across the progress
// bar, meaning that we will miss marking it.
v8::HandleScope scope(CcTest::isolate());
Handle<JSArray> js_array = isolate->factory()->NewJSArrayWithElements(
Handle<FixedArray>(arr.get(), isolate));
js_array->GetElementsAccessor()->Shift(js_array);
}
break;
}
}
// Finish marking with bigger steps to speed up test.
const double kLargeStepSizeInMs = 1000;
while (!marking->IsComplete()) {
marking->V8Step(kLargeStepSizeInMs,
i::IncrementalMarking::NO_GC_VIA_STACK_GUARD,
StepOrigin::kV8);
if (marking->IsReadyToOverApproximateWeakClosure()) {
marking->FinalizeIncrementally();
}
}
CHECK(marking->IsComplete());
// All objects need to be black after marking. If a white object crossed the
// progress bar, we would fail here.
for (int i = 0; i < arr.get().length(); i++) {
HeapObject arr_value = HeapObject::cast(arr.get().get(i));
CHECK(marking_state->IsBlack(arr_value));
}
}
Handle<FixedArray> ShrinkArrayAndCheckSize(Heap* heap, int length) {
// Make sure there is no garbage and the compilation cache is empty.
for (int i = 0; i < 5; i++) {
CcTest::CollectAllGarbage();
}
heap->mark_compact_collector()->EnsureSweepingCompleted();
size_t size_before_allocation = heap->SizeOfObjects();
Handle<FixedArray> array =
heap->isolate()->factory()->NewFixedArray(length, AllocationType::kOld);
size_t size_after_allocation = heap->SizeOfObjects();
CHECK_EQ(size_after_allocation, size_before_allocation + array->Size());
array->Shrink(heap->isolate(), 1);
size_t size_after_shrinking = heap->SizeOfObjects();
// Shrinking does not change the space size immediately.
CHECK_EQ(size_after_allocation, size_after_shrinking);
// GC and sweeping updates the size to acccount for shrinking.
CcTest::CollectAllGarbage();
heap->mark_compact_collector()->EnsureSweepingCompleted();
intptr_t size_after_gc = heap->SizeOfObjects();
CHECK_EQ(size_after_gc, size_before_allocation + array->Size());
return array;
}
TEST(Regress609761) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
int length = kMaxRegularHeapObjectSize / kTaggedSize + 1;
Handle<FixedArray> array = ShrinkArrayAndCheckSize(heap, length);
CHECK(heap->lo_space()->Contains(*array));
}
TEST(LiveBytes) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
Handle<FixedArray> array = ShrinkArrayAndCheckSize(heap, 2000);
CHECK(heap->old_space()->Contains(*array));
}
TEST(Regress615489) {
if (!FLAG_incremental_marking) return;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
Isolate* isolate = heap->isolate();
CcTest::CollectAllGarbage();
i::MarkCompactCollector* collector = heap->mark_compact_collector();
i::IncrementalMarking* marking = heap->incremental_marking();
if (collector->sweeping_in_progress()) {
collector->EnsureSweepingCompleted();
}
CHECK(marking->IsMarking() || marking->IsStopped());
if (marking->IsStopped()) {
heap->StartIncrementalMarking(i::Heap::kNoGCFlags,
i::GarbageCollectionReason::kTesting);
}
CHECK(marking->IsMarking());
marking->StartBlackAllocationForTesting();
{
AlwaysAllocateScope always_allocate(CcTest::i_isolate());
v8::HandleScope inner(CcTest::isolate());
isolate->factory()->NewFixedArray(500, AllocationType::kOld)->Size();
}
const double kStepSizeInMs = 100;
while (!marking->IsComplete()) {
marking->V8Step(kStepSizeInMs, i::IncrementalMarking::NO_GC_VIA_STACK_GUARD,
StepOrigin::kV8);
if (marking->IsReadyToOverApproximateWeakClosure()) {
marking->FinalizeIncrementally();
}
}
CHECK(marking->IsComplete());
intptr_t size_before = heap->SizeOfObjects();
CcTest::CollectAllGarbage();
intptr_t size_after = heap->SizeOfObjects();
// Live size does not increase after garbage collection.
CHECK_LE(size_after, size_before);
}
class StaticOneByteResource : public v8::String::ExternalOneByteStringResource {
public:
explicit StaticOneByteResource(const char* data) : data_(data) {}
~StaticOneByteResource() override = default;
const char* data() const override { return data_; }
size_t length() const override { return strlen(data_); }
private:
const char* data_;
};
TEST(Regress631969) {
if (!FLAG_incremental_marking) return;
FLAG_manual_evacuation_candidates_selection = true;
FLAG_parallel_compaction = false;
ManualGCScope manual_gc_scope;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
// Get the heap in clean state.
CcTest::CollectGarbage(OLD_SPACE);
CcTest::CollectGarbage(OLD_SPACE);
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
// Allocate two strings in a fresh page and mark the page as evacuation
// candidate.
heap::SimulateFullSpace(heap->old_space());
Handle<String> s1 =
factory->NewStringFromStaticChars("123456789", AllocationType::kOld);
Handle<String> s2 =
factory->NewStringFromStaticChars("01234", AllocationType::kOld);
heap::ForceEvacuationCandidate(Page::FromHeapObject(*s1));
heap::SimulateIncrementalMarking(heap, false);
// Allocate a cons string and promote it to a fresh page in the old space.
heap::SimulateFullSpace(heap->old_space());
Handle<String> s3;
factory->NewConsString(s1, s2).ToHandle(&s3);
CcTest::CollectGarbage(NEW_SPACE);
CcTest::CollectGarbage(NEW_SPACE);
// Finish incremental marking.
const double kStepSizeInMs = 100;
IncrementalMarking* marking = heap->incremental_marking();
while (!marking->IsComplete()) {
marking->V8Step(kStepSizeInMs, i::IncrementalMarking::NO_GC_VIA_STACK_GUARD,
StepOrigin::kV8);
if (marking->IsReadyToOverApproximateWeakClosure()) {
marking->FinalizeIncrementally();
}
}
{
StaticOneByteResource external_string("12345678901234");
s3->MakeExternal(&external_string);
CcTest::CollectGarbage(OLD_SPACE);
// This avoids the GC from trying to free stack allocated resources.
i::Handle<i::ExternalOneByteString>::cast(s3)->SetResource(isolate,
nullptr);
}
}
TEST(LeftTrimFixedArrayInBlackArea) {
if (!FLAG_incremental_marking) return;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
Isolate* isolate = heap->isolate();
CcTest::CollectAllGarbage();
i::MarkCompactCollector* collector = heap->mark_compact_collector();
i::IncrementalMarking* marking = heap->incremental_marking();
if (collector->sweeping_in_progress()) {
collector->EnsureSweepingCompleted();
}
CHECK(marking->IsMarking() || marking->IsStopped());
if (marking->IsStopped()) {
heap->StartIncrementalMarking(i::Heap::kNoGCFlags,
i::GarbageCollectionReason::kTesting);
}
CHECK(marking->IsMarking());
marking->StartBlackAllocationForTesting();
// Ensure that we allocate a new page, set up a bump pointer area, and
// perform the allocation in a black area.
heap::SimulateFullSpace(heap->old_space());
isolate->factory()->NewFixedArray(4, AllocationType::kOld);
Handle<FixedArray> array =
isolate->factory()->NewFixedArray(50, AllocationType::kOld);
CHECK(heap->old_space()->Contains(*array));
IncrementalMarking::MarkingState* marking_state = marking->marking_state();
CHECK(marking_state->IsBlack(*array));
// Now left trim the allocated black area. A filler has to be installed
// for the trimmed area and all mark bits of the trimmed area have to be
// cleared.
FixedArrayBase trimmed = heap->LeftTrimFixedArray(*array, 10);
CHECK(marking_state->IsBlack(trimmed));
heap::GcAndSweep(heap, OLD_SPACE);
}
TEST(ContinuousLeftTrimFixedArrayInBlackArea) {
if (!FLAG_incremental_marking) return;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
Isolate* isolate = heap->isolate();
CcTest::CollectAllGarbage();
i::MarkCompactCollector* collector = heap->mark_compact_collector();
i::IncrementalMarking* marking = heap->incremental_marking();
if (collector->sweeping_in_progress()) {
collector->EnsureSweepingCompleted();
}
CHECK(marking->IsMarking() || marking->IsStopped());
if (marking->IsStopped()) {
heap->StartIncrementalMarking(i::Heap::kNoGCFlags,
i::GarbageCollectionReason::kTesting);
}
CHECK(marking->IsMarking());
marking->StartBlackAllocationForTesting();
// Ensure that we allocate a new page, set up a bump pointer area, and
// perform the allocation in a black area.
heap::SimulateFullSpace(heap->old_space());
isolate->factory()->NewFixedArray(10, AllocationType::kOld);
// Allocate the fixed array that will be trimmed later.
Handle<FixedArray> array =
isolate->factory()->NewFixedArray(100, AllocationType::kOld);
Address start_address = array->address();
Address end_address = start_address + array->Size();
Page* page = Page::FromAddress(start_address);
IncrementalMarking::NonAtomicMarkingState* marking_state =
marking->non_atomic_marking_state();
CHECK(marking_state->IsBlack(*array));
CHECK(marking_state->bitmap(page)->AllBitsSetInRange(
page->AddressToMarkbitIndex(start_address),
page->AddressToMarkbitIndex(end_address)));
CHECK(heap->old_space()->Contains(*array));
FixedArrayBase previous = *array;
FixedArrayBase trimmed;
// First trim in one word steps.
for (int i = 0; i < 10; i++) {
trimmed = heap->LeftTrimFixedArray(previous, 1);
HeapObject filler = HeapObject::FromAddress(previous.address());
CHECK(filler.IsFiller());
CHECK(marking_state->IsBlack(trimmed));
CHECK(marking_state->IsBlack(previous));
previous = trimmed;
}
// Then trim in two and three word steps.
for (int i = 2; i <= 3; i++) {
for (int j = 0; j < 10; j++) {
trimmed = heap->LeftTrimFixedArray(previous, i);
HeapObject filler = HeapObject::FromAddress(previous.address());
CHECK(filler.IsFiller());
CHECK(marking_state->IsBlack(trimmed));
CHECK(marking_state->IsBlack(previous));
previous = trimmed;
}
}
heap::GcAndSweep(heap, OLD_SPACE);
}
TEST(ContinuousRightTrimFixedArrayInBlackArea) {
if (!FLAG_incremental_marking) return;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
Isolate* isolate = CcTest::i_isolate();
CcTest::CollectAllGarbage();
i::MarkCompactCollector* collector = heap->mark_compact_collector();
i::IncrementalMarking* marking = heap->incremental_marking();
if (collector->sweeping_in_progress()) {
collector->EnsureSweepingCompleted();
}
CHECK(marking->IsMarking() || marking->IsStopped());
if (marking->IsStopped()) {
heap->StartIncrementalMarking(i::Heap::kNoGCFlags,
i::GarbageCollectionReason::kTesting);
}
CHECK(marking->IsMarking());
marking->StartBlackAllocationForTesting();
// Ensure that we allocate a new page, set up a bump pointer area, and
// perform the allocation in a black area.
heap::SimulateFullSpace(heap->old_space());
isolate->factory()->NewFixedArray(10, AllocationType::kOld);
// Allocate the fixed array that will be trimmed later.
Handle<FixedArray> array =
CcTest::i_isolate()->factory()->NewFixedArray(100, AllocationType::kOld);
Address start_address = array->address();
Address end_address = start_address + array->Size();
Page* page = Page::FromAddress(start_address);
IncrementalMarking::NonAtomicMarkingState* marking_state =
marking->non_atomic_marking_state();
CHECK(marking_state->IsBlack(*array));
CHECK(marking_state->bitmap(page)->AllBitsSetInRange(
page->AddressToMarkbitIndex(start_address),
page->AddressToMarkbitIndex(end_address)));
CHECK(heap->old_space()->Contains(*array));
// Trim it once by one word to make checking for white marking color uniform.
Address previous = end_address - kTaggedSize;
isolate->heap()->RightTrimFixedArray(*array, 1);
HeapObject filler = HeapObject::FromAddress(previous);
CHECK(filler.IsFiller());
CHECK(marking_state->IsImpossible(filler));
// Trim 10 times by one, two, and three word.
for (int i = 1; i <= 3; i++) {
for (int j = 0; j < 10; j++) {
previous -= kTaggedSize * i;
isolate->heap()->RightTrimFixedArray(*array, i);
HeapObject filler = HeapObject::FromAddress(previous);
CHECK(filler.IsFiller());
CHECK(marking_state->IsWhite(filler));
}
}
heap::GcAndSweep(heap, OLD_SPACE);
}
TEST(Regress618958) {
if (!FLAG_incremental_marking) return;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
bool isolate_is_locked = true;
CcTest::isolate()->AdjustAmountOfExternalAllocatedMemory(100 * MB);
int mark_sweep_count_before = heap->ms_count();
heap->MemoryPressureNotification(MemoryPressureLevel::kCritical,
isolate_is_locked);
int mark_sweep_count_after = heap->ms_count();
int mark_sweeps_performed = mark_sweep_count_after - mark_sweep_count_before;
// The memory pressuer handler either performed two GCs or performed one and
// started incremental marking.
CHECK(mark_sweeps_performed == 2 ||
(mark_sweeps_performed == 1 &&
!heap->incremental_marking()->IsStopped()));
}
TEST(YoungGenerationLargeObjectAllocationScavenge) {
if (FLAG_minor_mc) return;
FLAG_young_generation_large_objects = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
Isolate* isolate = heap->isolate();
if (!isolate->serializer_enabled()) return;
// TODO(hpayer): Update the test as soon as we have a tenure limit for LO.
Handle<FixedArray> array_small = isolate->factory()->NewFixedArray(200000);
MemoryChunk* chunk = MemoryChunk::FromHeapObject(*array_small);
CHECK_EQ(NEW_LO_SPACE, chunk->owner_identity());
CHECK(chunk->IsFlagSet(MemoryChunk::LARGE_PAGE));
CHECK(chunk->IsFlagSet(MemoryChunk::TO_PAGE));
Handle<Object> number = isolate->factory()->NewHeapNumber(123.456);
array_small->set(0, *number);
CcTest::CollectGarbage(NEW_SPACE);
// After the first young generation GC array_small will be in the old
// generation large object space.
chunk = MemoryChunk::FromHeapObject(*array_small);
CHECK_EQ(LO_SPACE, chunk->owner_identity());
CHECK(!chunk->InYoungGeneration());
CcTest::CollectAllAvailableGarbage();
}
TEST(YoungGenerationLargeObjectAllocationMarkCompact) {
if (FLAG_minor_mc) return;
FLAG_young_generation_large_objects = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
Isolate* isolate = heap->isolate();
if (!isolate->serializer_enabled()) return;
// TODO(hpayer): Update the test as soon as we have a tenure limit for LO.
Handle<FixedArray> array_small = isolate->factory()->NewFixedArray(200000);
MemoryChunk* chunk = MemoryChunk::FromHeapObject(*array_small);
CHECK_EQ(NEW_LO_SPACE, chunk->owner_identity());
CHECK(chunk->IsFlagSet(MemoryChunk::LARGE_PAGE));
CHECK(chunk->IsFlagSet(MemoryChunk::TO_PAGE));
Handle<Object> number = isolate->factory()->NewHeapNumber(123.456);
array_small->set(0, *number);
CcTest::CollectGarbage(OLD_SPACE);
// After the first full GC array_small will be in the old generation
// large object space.
chunk = MemoryChunk::FromHeapObject(*array_small);
CHECK_EQ(LO_SPACE, chunk->owner_identity());
CHECK(!chunk->InYoungGeneration());
CcTest::CollectAllAvailableGarbage();
}
TEST(YoungGenerationLargeObjectAllocationReleaseScavenger) {
if (FLAG_minor_mc) return;
FLAG_young_generation_large_objects = true;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
Isolate* isolate = heap->isolate();
if (!isolate->serializer_enabled()) return;
{
HandleScope scope(isolate);
for (int i = 0; i < 10; i++) {
Handle<FixedArray> array_small = isolate->factory()->NewFixedArray(20000);
MemoryChunk* chunk = MemoryChunk::FromHeapObject(*array_small);
CHECK_EQ(NEW_LO_SPACE, chunk->owner_identity());
CHECK(chunk->IsFlagSet(MemoryChunk::TO_PAGE));
}
}
CcTest::CollectGarbage(NEW_SPACE);
CHECK(isolate->heap()->new_lo_space()->IsEmpty());
CHECK_EQ(0, isolate->heap()->new_lo_space()->Size());
CHECK_EQ(0, isolate->heap()->new_lo_space()->SizeOfObjects());
CHECK(isolate->heap()->lo_space()->IsEmpty());
CHECK_EQ(0, isolate->heap()->lo_space()->Size());
CHECK_EQ(0, isolate->heap()->lo_space()->SizeOfObjects());
}
TEST(UncommitUnusedLargeObjectMemory) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
Isolate* isolate = heap->isolate();
Handle<FixedArray> array =
isolate->factory()->NewFixedArray(200000, AllocationType::kOld);
MemoryChunk* chunk = MemoryChunk::FromHeapObject(*array);
CHECK(chunk->owner_identity() == LO_SPACE);
intptr_t size_before = array->Size();
size_t committed_memory_before = chunk->CommittedPhysicalMemory();
array->Shrink(isolate, 1);
CHECK(array->Size() < size_before);
CcTest::CollectAllGarbage();
CHECK(chunk->CommittedPhysicalMemory() < committed_memory_before);
size_t shrinked_size = RoundUp(
(array->address() - chunk->address()) + array->Size(), CommitPageSize());
CHECK_EQ(shrinked_size, chunk->CommittedPhysicalMemory());
}
TEST(RememberedSetRemoveRange) {
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
Isolate* isolate = heap->isolate();
Handle<FixedArray> array = isolate->factory()->NewFixedArray(
Page::kPageSize / kTaggedSize, AllocationType::kOld);
MemoryChunk* chunk = MemoryChunk::FromHeapObject(*array);
CHECK(chunk->owner_identity() == LO_SPACE);
Address start = array->address();
// Maps slot to boolean indicator of whether the slot should be in the set.
std::map<Address, bool> slots;
slots[start + 0] = true;
slots[start + kTaggedSize] = true;
slots[start + Page::kPageSize - kTaggedSize] = true;
slots[start + Page::kPageSize] = true;
slots[start + Page::kPageSize + kTaggedSize] = true;
slots[chunk->area_end() - kTaggedSize] = true;
for (auto x : slots) {
RememberedSet<OLD_TO_NEW>::Insert(chunk, x.first);
}
RememberedSet<OLD_TO_NEW>::Iterate(chunk,
[&slots](MaybeObjectSlot slot) {
CHECK(slots[slot.address()]);
return KEEP_SLOT;
},
SlotSet::PREFREE_EMPTY_BUCKETS);
RememberedSet<OLD_TO_NEW>::RemoveRange(chunk, start, start + kTaggedSize,
SlotSet::FREE_EMPTY_BUCKETS);
slots[start] = false;
RememberedSet<OLD_TO_NEW>::Iterate(chunk,
[&slots](MaybeObjectSlot slot) {
CHECK(slots[slot.address()]);
return KEEP_SLOT;
},
SlotSet::PREFREE_EMPTY_BUCKETS);
RememberedSet<OLD_TO_NEW>::RemoveRange(chunk, start + kTaggedSize,
start + Page::kPageSize,
SlotSet::FREE_EMPTY_BUCKETS);
slots[start + kTaggedSize] = false;
slots[start + Page::kPageSize - kTaggedSize] = false;
RememberedSet<OLD_TO_NEW>::Iterate(chunk,
[&slots](MaybeObjectSlot slot) {
CHECK(slots[slot.address()]);
return KEEP_SLOT;
},
SlotSet::PREFREE_EMPTY_BUCKETS);
RememberedSet<OLD_TO_NEW>::RemoveRange(chunk, start,
start + Page::kPageSize + kTaggedSize,
SlotSet::FREE_EMPTY_BUCKETS);
slots[start + Page::kPageSize] = false;
RememberedSet<OLD_TO_NEW>::Iterate(chunk,
[&slots](MaybeObjectSlot slot) {
CHECK(slots[slot.address()]);
return KEEP_SLOT;
},
SlotSet::PREFREE_EMPTY_BUCKETS);
RememberedSet<OLD_TO_NEW>::RemoveRange(chunk, chunk->area_end() - kTaggedSize,
chunk->area_end(),
SlotSet::FREE_EMPTY_BUCKETS);
slots[chunk->area_end() - kTaggedSize] = false;
RememberedSet<OLD_TO_NEW>::Iterate(chunk,
[&slots](MaybeObjectSlot slot) {
CHECK(slots[slot.address()]);
return KEEP_SLOT;
},
SlotSet::PREFREE_EMPTY_BUCKETS);
}
HEAP_TEST(Regress670675) {
if (!FLAG_incremental_marking) return;
FLAG_stress_incremental_marking = false;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
Isolate* isolate = heap->isolate();
i::MarkCompactCollector* collector = heap->mark_compact_collector();
CcTest::CollectAllGarbage();
if (collector->sweeping_in_progress()) {
collector->EnsureSweepingCompleted();
}
i::IncrementalMarking* marking = CcTest::heap()->incremental_marking();
if (marking->IsStopped()) {
marking->Start(i::GarbageCollectionReason::kTesting);
}
size_t array_length = 128 * KB;
size_t n = heap->OldGenerationSpaceAvailable() / array_length;
for (size_t i = 0; i < n + 40; i++) {
{
HandleScope inner_scope(isolate);
isolate->factory()->NewFixedArray(static_cast<int>(array_length),
AllocationType::kOld);
}
if (marking->IsStopped()) break;
double deadline = heap->MonotonicallyIncreasingTimeInMs() + 1;
marking->AdvanceWithDeadline(
deadline, IncrementalMarking::GC_VIA_STACK_GUARD, StepOrigin::kV8);
}
DCHECK(marking->IsStopped());
}
namespace {
Handle<Code> GenerateDummyImmovableCode(Isolate* isolate) {
Assembler assm(AssemblerOptions{});
const int kNumberOfNops = 1 << 10;
for (int i = 0; i < kNumberOfNops; i++) {
assm.nop(); // supported on all architectures
}
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, Code::STUB).set_immovable().Build();
CHECK(code->IsCode());
return code;
}
} // namespace
HEAP_TEST(Regress5831) {
CcTest::InitializeVM();
Heap* heap = CcTest::heap();
Isolate* isolate = CcTest::i_isolate();
HandleScope handle_scope(isolate);
// Used to ensure that the generated code is not collected.
const int kInitialSize = 32;
Handle<FixedArray> array = isolate->factory()->NewFixedArray(kInitialSize);
// Ensure that all immovable code space pages are full and we overflow into
// LO_SPACE.
const int kMaxIterations = 1 << 16;
bool overflowed_into_lospace = false;
for (int i = 0; i < kMaxIterations; i++) {
Handle<Code> code = GenerateDummyImmovableCode(isolate);
array = FixedArray::SetAndGrow(isolate, array, i, code);
CHECK(heap->code_space()->Contains(code->address()) ||
heap->code_lo_space()->Contains(*code));
if (heap->code_lo_space()->Contains(*code)) {
overflowed_into_lospace = true;
break;
}
}
CHECK(overflowed_into_lospace);
// Fake a serializer run.
isolate->serializer_enabled_ = true;
// Generate the code.
Handle<Code> code = GenerateDummyImmovableCode(isolate);
CHECK_GE(i::kMaxRegularHeapObjectSize, code->Size());
CHECK(!heap->code_space()->first_page()->Contains(code->address()));
// Ensure it's not in large object space.
MemoryChunk* chunk = MemoryChunk::FromHeapObject(*code);
CHECK(chunk->owner_identity() != LO_SPACE);
CHECK(chunk->NeverEvacuate());
}
TEST(Regress6800) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope handle_scope(isolate);
const int kRootLength = 1000;
Handle<FixedArray> root =
isolate->factory()->NewFixedArray(kRootLength, AllocationType::kOld);
{
HandleScope inner_scope(isolate);
Handle<FixedArray> new_space_array = isolate->factory()->NewFixedArray(1);
for (int i = 0; i < kRootLength; i++) {
root->set(i, *new_space_array);
}
for (int i = 0; i < kRootLength; i++) {
root->set(i, ReadOnlyRoots(CcTest::heap()).undefined_value());
}
}
CcTest::CollectGarbage(NEW_SPACE);
CHECK_EQ(0, RememberedSet<OLD_TO_NEW>::NumberOfPreFreedEmptyBuckets(
MemoryChunk::FromHeapObject(*root)));
}
TEST(Regress6800LargeObject) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope handle_scope(isolate);
const int kRootLength = i::kMaxRegularHeapObjectSize / kTaggedSize;
Handle<FixedArray> root =
isolate->factory()->NewFixedArray(kRootLength, AllocationType::kOld);
CcTest::heap()->lo_space()->Contains(*root);
{
HandleScope inner_scope(isolate);
Handle<FixedArray> new_space_array = isolate->factory()->NewFixedArray(1);
for (int i = 0; i < kRootLength; i++) {
root->set(i, *new_space_array);
}
for (int i = 0; i < kRootLength; i++) {
root->set(i, ReadOnlyRoots(CcTest::heap()).undefined_value());
}
}
CcTest::CollectGarbage(OLD_SPACE);
CHECK_EQ(0, RememberedSet<OLD_TO_NEW>::NumberOfPreFreedEmptyBuckets(
MemoryChunk::FromHeapObject(*root)));
}
HEAP_TEST(RegressMissingWriteBarrierInAllocate) {
if (!FLAG_incremental_marking) return;
ManualGCScope manual_gc_scope;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
Isolate* isolate = heap->isolate();
CcTest::CollectAllGarbage();
heap::SimulateIncrementalMarking(heap, false);
Handle<Map> map;
{
AlwaysAllocateScope always_allocate(isolate);
map = isolate->factory()->NewMap(HEAP_NUMBER_TYPE, HeapNumber::kSize);
}
heap->incremental_marking()->StartBlackAllocationForTesting();
Handle<HeapObject> object;
{
AlwaysAllocateScope always_allocate(isolate);
object = handle(isolate->factory()->NewForTest(map, AllocationType::kOld),
isolate);
}
// The object is black. If Factory::New sets the map without write-barrier,
// then the map is white and will be freed prematurely.
heap::SimulateIncrementalMarking(heap, true);
CcTest::CollectAllGarbage();
MarkCompactCollector* collector = heap->mark_compact_collector();
if (collector->sweeping_in_progress()) {
collector->EnsureSweepingCompleted();
}
CHECK(object->map().IsMap());
}
HEAP_TEST(MarkCompactEpochCounter) {
ManualGCScope manual_gc_scope;
CcTest::InitializeVM();
v8::HandleScope scope(CcTest::isolate());
Heap* heap = CcTest::heap();
unsigned epoch0 = heap->mark_compact_collector()->epoch();
CcTest::CollectGarbage(OLD_SPACE);
unsigned epoch1 = heap->mark_compact_collector()->epoch();
CHECK_EQ(epoch0 + 1, epoch1);
heap::SimulateIncrementalMarking(heap, true);
CcTest::CollectGarbage(OLD_SPACE);
unsigned epoch2 = heap->mark_compact_collector()->epoch();
CHECK_EQ(epoch1 + 1, epoch2);
CcTest::CollectGarbage(NEW_SPACE);
unsigned epoch3 = heap->mark_compact_collector()->epoch();
CHECK_EQ(epoch2, epoch3);
}
UNINITIALIZED_TEST(ReinitializeStringHashSeed) {
// Enable rehashing and create an isolate and context.
i::FLAG_rehash_snapshot = true;
for (int i = 1; i < 3; i++) {
i::FLAG_hash_seed = 1337 * i;
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
{
v8::Isolate::Scope isolate_scope(isolate);
CHECK_EQ(static_cast<uint64_t>(1337 * i),
HashSeed(reinterpret_cast<i::Isolate*>(isolate)));
v8::HandleScope handle_scope(isolate);
v8::Local<v8::Context> context = v8::Context::New(isolate);
CHECK(!context.IsEmpty());
v8::Context::Scope context_scope(context);
}
isolate->Dispose();
ReadOnlyHeap::ClearSharedHeapForTest();
}
}
const int kHeapLimit = 100 * MB;
Isolate* oom_isolate = nullptr;
void OOMCallback(const char* location, bool is_heap_oom) {
Heap* heap = oom_isolate->heap();
size_t kSlack = heap->new_space()->Capacity();
CHECK_LE(heap->OldGenerationCapacity(), kHeapLimit + kSlack);
CHECK_LE(heap->memory_allocator()->Size(), heap->MaxReserved() + kSlack);
base::OS::ExitProcess(0);
}
UNINITIALIZED_TEST(OutOfMemory) {
if (FLAG_stress_incremental_marking) return;
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) return;
#endif
FLAG_max_old_space_size = kHeapLimit / MB;
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
oom_isolate = i_isolate;
isolate->SetOOMErrorHandler(OOMCallback);
{
Factory* factory = i_isolate->factory();
HandleScope handle_scope(i_isolate);
while (true) {
factory->NewFixedArray(100);
}
}
}
UNINITIALIZED_TEST(OutOfMemoryIneffectiveGC) {
if (!FLAG_detect_ineffective_gcs_near_heap_limit) return;
if (FLAG_stress_incremental_marking) return;
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) return;
#endif
FLAG_max_old_space_size = kHeapLimit / MB;
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
v8::Isolate* isolate = v8::Isolate::New(create_params);
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
oom_isolate = i_isolate;
isolate->SetOOMErrorHandler(OOMCallback);
Factory* factory = i_isolate->factory();
Heap* heap = i_isolate->heap();
heap->CollectAllGarbage(Heap::kNoGCFlags, GarbageCollectionReason::kTesting);
{
HandleScope scope(i_isolate);
while (heap->OldGenerationSizeOfObjects() <
heap->MaxOldGenerationSize() * 0.9) {
factory->NewFixedArray(100, AllocationType::kOld);
}
{
int initial_ms_count = heap->ms_count();
int ineffective_ms_start = initial_ms_count;
while (heap->ms_count() < initial_ms_count + 10) {
HandleScope inner_scope(i_isolate);
factory->NewFixedArray(30000, AllocationType::kOld);
if (heap->tracer()->AverageMarkCompactMutatorUtilization() >= 0.3) {
ineffective_ms_start = heap->ms_count() + 1;
}
}
int consecutive_ineffective_ms = heap->ms_count() - ineffective_ms_start;
CHECK_IMPLIES(
consecutive_ineffective_ms >= 4,
heap->tracer()->AverageMarkCompactMutatorUtilization() >= 0.3);
}
}
isolate->Dispose();
}
HEAP_TEST(Regress779503) {
// The following regression test ensures that the Scavenger does not allocate
// over invalid slots. More specific, the Scavenger should not sweep a page
// that it currently processes because it might allocate over the currently
// processed slot.
const int kArraySize = 2048;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Heap* heap = CcTest::heap();
heap::SealCurrentObjects(heap);
{
HandleScope handle_scope(isolate);
// The byte array filled with kHeapObjectTag ensures that we cannot read
// from the slot again and interpret it as heap value. Doing so will crash.
Handle<ByteArray> byte_array = isolate->factory()->NewByteArray(kArraySize);
CHECK(Heap::InYoungGeneration(*byte_array));
for (int i = 0; i < kArraySize; i++) {
byte_array->set(i, kHeapObjectTag);
}
{
HandleScope handle_scope(isolate);
// The FixedArray in old space serves as space for slots.
Handle<FixedArray> fixed_array =
isolate->factory()->NewFixedArray(kArraySize, AllocationType::kOld);
CHECK(!Heap::InYoungGeneration(*fixed_array));
for (int i = 0; i < kArraySize; i++) {
fixed_array->set(i, *byte_array);
}
}
// Delay sweeper tasks to allow the scavenger to sweep the page it is
// currently scavenging.
heap->delay_sweeper_tasks_for_testing_ = true;
CcTest::CollectGarbage(OLD_SPACE);
CHECK(Heap::InYoungGeneration(*byte_array));
}
// Scavenging and sweeping the same page will crash as slots will be
// overridden.
CcTest::CollectGarbage(NEW_SPACE);
heap->delay_sweeper_tasks_for_testing_ = false;
}
struct OutOfMemoryState {
Heap* heap;
bool oom_triggered;
size_t old_generation_capacity_at_oom;
size_t memory_allocator_size_at_oom;
size_t new_space_capacity_at_oom;
size_t new_lo_space_size_at_oom;
size_t current_heap_limit;
size_t initial_heap_limit;
};
size_t NearHeapLimitCallback(void* raw_state, size_t current_heap_limit,
size_t initial_heap_limit) {
OutOfMemoryState* state = static_cast<OutOfMemoryState*>(raw_state);
Heap* heap = state->heap;
state->oom_triggered = true;
state->old_generation_capacity_at_oom = heap->OldGenerationCapacity();
state->memory_allocator_size_at_oom = heap->memory_allocator()->Size();
state->new_space_capacity_at_oom = heap->new_space()->Capacity();
state->new_lo_space_size_at_oom = heap->new_lo_space()->Size();
state->current_heap_limit = current_heap_limit;
state->initial_heap_limit = initial_heap_limit;
return initial_heap_limit + 100 * MB;
}
size_t MemoryAllocatorSizeFromHeapCapacity(size_t capacity) {
// Size to capacity factor.
double factor =
Page::kPageSize * 1.0 / MemoryChunkLayout::AllocatableMemoryInDataPage();
// Some tables (e.g. deoptimization table) are allocated directly with the
// memory allocator. Allow some slack to account for them.
size_t slack = 5 * MB;
return static_cast<size_t>(capacity * factor) + slack;
}
UNINITIALIZED_TEST(OutOfMemorySmallObjects) {
if (FLAG_stress_incremental_marking) return;
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) return;
#endif
const size_t kOldGenerationLimit = 300 * MB;
FLAG_max_old_space_size = kOldGenerationLimit / MB;
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
Isolate* isolate =
reinterpret_cast<Isolate*>(v8::Isolate::New(create_params));
Heap* heap = isolate->heap();
Factory* factory = isolate->factory();
OutOfMemoryState state;
state.heap = heap;
state.oom_triggered = false;
heap->AddNearHeapLimitCallback(NearHeapLimitCallback, &state);
{
HandleScope handle_scope(isolate);
while (!state.oom_triggered) {
factory->NewFixedArray(100);
}
}
CHECK_LE(state.old_generation_capacity_at_oom,
kOldGenerationLimit + state.new_space_capacity_at_oom);
CHECK_LE(kOldGenerationLimit, state.old_generation_capacity_at_oom +
state.new_space_capacity_at_oom);
CHECK_LE(
state.memory_allocator_size_at_oom,
MemoryAllocatorSizeFromHeapCapacity(state.old_generation_capacity_at_oom +
2 * state.new_space_capacity_at_oom));
reinterpret_cast<v8::Isolate*>(isolate)->Dispose();
}
UNINITIALIZED_TEST(OutOfMemoryLargeObjects) {
if (FLAG_stress_incremental_marking) return;
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) return;
#endif
const size_t kOldGenerationLimit = 300 * MB;
FLAG_max_old_space_size = kOldGenerationLimit / MB;
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
Isolate* isolate =
reinterpret_cast<Isolate*>(v8::Isolate::New(create_params));
Heap* heap = isolate->heap();
Factory* factory = isolate->factory();
OutOfMemoryState state;
state.heap = heap;
state.oom_triggered = false;
heap->AddNearHeapLimitCallback(NearHeapLimitCallback, &state);
const int kFixedArrayLength = 1000000;
{
HandleScope handle_scope(isolate);
while (!state.oom_triggered) {
factory->NewFixedArray(kFixedArrayLength);
}
}
CHECK_LE(state.old_generation_capacity_at_oom, kOldGenerationLimit);
CHECK_LE(kOldGenerationLimit, state.old_generation_capacity_at_oom +
state.new_space_capacity_at_oom +
state.new_lo_space_size_at_oom +
FixedArray::SizeFor(kFixedArrayLength));
CHECK_LE(
state.memory_allocator_size_at_oom,
MemoryAllocatorSizeFromHeapCapacity(state.old_generation_capacity_at_oom +
2 * state.new_space_capacity_at_oom +
state.new_lo_space_size_at_oom));
reinterpret_cast<v8::Isolate*>(isolate)->Dispose();
}
UNINITIALIZED_TEST(RestoreHeapLimit) {
if (FLAG_stress_incremental_marking) return;
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) return;
#endif
ManualGCScope manual_gc_scope;
const size_t kOldGenerationLimit = 300 * MB;
FLAG_max_old_space_size = kOldGenerationLimit / MB;
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
Isolate* isolate =
reinterpret_cast<Isolate*>(v8::Isolate::New(create_params));
Heap* heap = isolate->heap();
Factory* factory = isolate->factory();
OutOfMemoryState state;
state.heap = heap;
state.oom_triggered = false;
heap->AddNearHeapLimitCallback(NearHeapLimitCallback, &state);
heap->AutomaticallyRestoreInitialHeapLimit(0.5);
const int kFixedArrayLength = 1000000;
{
HandleScope handle_scope(isolate);
while (!state.oom_triggered) {
factory->NewFixedArray(kFixedArrayLength);
}
}
heap->MemoryPressureNotification(MemoryPressureLevel::kCritical, true);
state.oom_triggered = false;
{
HandleScope handle_scope(isolate);
while (!state.oom_triggered) {
factory->NewFixedArray(kFixedArrayLength);
}
}
CHECK_EQ(state.current_heap_limit, state.initial_heap_limit);
reinterpret_cast<v8::Isolate*>(isolate)->Dispose();
}
void HeapTester::UncommitFromSpace(Heap* heap) {
heap->UncommitFromSpace();
heap->memory_allocator()->unmapper()->EnsureUnmappingCompleted();
}
class DeleteNative {
public:
static void Deleter(void* arg) {
delete reinterpret_cast<DeleteNative*>(arg);
}
};
TEST(Regress8014) {
Isolate* isolate = CcTest::InitIsolateOnce();
Heap* heap = isolate->heap();
{
HandleScope scope(isolate);
for (int i = 0; i < 10000; i++) {
auto handle = Managed<DeleteNative>::FromRawPtr(isolate, 1000000,
new DeleteNative());
USE(handle);
}
}
int ms_count = heap->ms_count();
heap->MemoryPressureNotification(MemoryPressureLevel::kCritical, true);
// Several GCs can be triggred by the above call.
// The bad case triggers 10000 GCs.
CHECK_LE(heap->ms_count(), ms_count + 10);
}
TEST(Regress8617) {
ManualGCScope manual_gc_scope;
FLAG_manual_evacuation_candidates_selection = true;
LocalContext env;
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
heap::SimulateFullSpace(heap->old_space());
// Step 1. Create a function and ensure that it is in the old space.
Handle<Object> foo =
v8::Utils::OpenHandle(*CompileRun("function foo() { return 42; };"
"foo;"));
if (heap->InYoungGeneration(*foo)) {
CcTest::CollectGarbage(NEW_SPACE);
CcTest::CollectGarbage(NEW_SPACE);
}
// Step 2. Create an object with a reference to foo in the descriptor array.
CompileRun(
"var obj = {};"
"obj.method = foo;"
"obj;");
// Step 3. Make sure that foo moves during Mark-Compact.
Page* ec_page = Page::FromAddress(foo->ptr());
heap::ForceEvacuationCandidate(ec_page);
// Step 4. Start incremental marking.
heap::SimulateIncrementalMarking(heap, false);
CHECK(ec_page->IsEvacuationCandidate());
// Step 5. Install a new descriptor array on the map of the object.
// This runs the marking barrier for the descriptor array.
// In the bad case it sets the number of marked descriptors but does not
// change the color of the descriptor array.
CompileRun("obj.bar = 10;");
// Step 6. Promote the descriptor array to old space. During promotion
// the Scavenger will not record the slot of foo in the descriptor array.
CcTest::CollectGarbage(NEW_SPACE);
CcTest::CollectGarbage(NEW_SPACE);
// Step 7. Complete the Mark-Compact.
CcTest::CollectAllGarbage();
// Step 8. Use the descriptor for foo, which contains a stale pointer.
CompileRun("obj.method()");
}
HEAP_TEST(MemoryReducerActivationForSmallHeaps) {
ManualGCScope manual_gc_scope;
LocalContext env;
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
CHECK_EQ(heap->memory_reducer()->state_.action, MemoryReducer::Action::kDone);
HandleScope scope(isolate);
const size_t kActivationThreshold = 1 * MB;
size_t initial_capacity = heap->OldGenerationCapacity();
while (heap->OldGenerationCapacity() <
initial_capacity + kActivationThreshold) {
isolate->factory()->NewFixedArray(1 * KB, AllocationType::kOld);
}
CHECK_EQ(heap->memory_reducer()->state_.action, MemoryReducer::Action::kWait);
}
TEST(CodeObjectRegistry) {
// We turn off compaction to ensure that code is not moving.
FLAG_never_compact = true;
Isolate* isolate = CcTest::i_isolate();
Heap* heap = isolate->heap();
Handle<Code> code1;
HandleScope outer_scope(heap->isolate());
Address code2_address;
{
code1 = DummyOptimizedCode(isolate);
Handle<Code> code2 = DummyOptimizedCode(isolate);
code2_address = code2->address();
// If this check breaks, change the allocation to ensure that both code
// objects are on the same page.
CHECK_EQ(MemoryChunk::FromHeapObject(*code1),
MemoryChunk::FromHeapObject(*code2));
CHECK(MemoryChunk::FromHeapObject(*code1)->Contains(code1->address()));
CHECK(MemoryChunk::FromHeapObject(*code2)->Contains(code2->address()));
}
CcTest::CollectAllAvailableGarbage();
CHECK(MemoryChunk::FromHeapObject(*code1)->Contains(code1->address()));
CHECK(MemoryChunk::FromAddress(code2_address)->Contains(code2_address));
}
} // namespace heap
} // namespace internal
} // namespace v8
#undef __