v8/test/unittests/compiler/arm/instruction-selector-arm-unittest.cc
2015-01-15 06:31:07 +00:00

2432 lines
89 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits>
#include "test/unittests/compiler/instruction-selector-unittest.h"
namespace v8 {
namespace internal {
namespace compiler {
namespace {
typedef RawMachineAssembler::Label MLabel;
typedef Node* (RawMachineAssembler::*Constructor)(Node*, Node*);
// Data processing instructions.
struct DPI {
Constructor constructor;
const char* constructor_name;
ArchOpcode arch_opcode;
ArchOpcode reverse_arch_opcode;
ArchOpcode test_arch_opcode;
};
std::ostream& operator<<(std::ostream& os, const DPI& dpi) {
return os << dpi.constructor_name;
}
static const DPI kDPIs[] = {
{&RawMachineAssembler::Word32And, "Word32And", kArmAnd, kArmAnd, kArmTst},
{&RawMachineAssembler::Word32Or, "Word32Or", kArmOrr, kArmOrr, kArmOrr},
{&RawMachineAssembler::Word32Xor, "Word32Xor", kArmEor, kArmEor, kArmTeq},
{&RawMachineAssembler::Int32Add, "Int32Add", kArmAdd, kArmAdd, kArmCmn},
{&RawMachineAssembler::Int32Sub, "Int32Sub", kArmSub, kArmRsb, kArmCmp}};
// Data processing instructions with overflow.
struct ODPI {
Constructor constructor;
const char* constructor_name;
ArchOpcode arch_opcode;
ArchOpcode reverse_arch_opcode;
};
std::ostream& operator<<(std::ostream& os, const ODPI& odpi) {
return os << odpi.constructor_name;
}
static const ODPI kODPIs[] = {{&RawMachineAssembler::Int32AddWithOverflow,
"Int32AddWithOverflow", kArmAdd, kArmAdd},
{&RawMachineAssembler::Int32SubWithOverflow,
"Int32SubWithOverflow", kArmSub, kArmRsb}};
// Shifts.
struct Shift {
Constructor constructor;
const char* constructor_name;
int32_t i_low; // lowest possible immediate
int32_t i_high; // highest possible immediate
AddressingMode i_mode; // Operand2_R_<shift>_I
AddressingMode r_mode; // Operand2_R_<shift>_R
};
std::ostream& operator<<(std::ostream& os, const Shift& shift) {
return os << shift.constructor_name;
}
static const Shift kShifts[] = {
{&RawMachineAssembler::Word32Sar, "Word32Sar", 1, 32,
kMode_Operand2_R_ASR_I, kMode_Operand2_R_ASR_R},
{&RawMachineAssembler::Word32Shl, "Word32Shl", 0, 31,
kMode_Operand2_R_LSL_I, kMode_Operand2_R_LSL_R},
{&RawMachineAssembler::Word32Shr, "Word32Shr", 1, 32,
kMode_Operand2_R_LSR_I, kMode_Operand2_R_LSR_R},
{&RawMachineAssembler::Word32Ror, "Word32Ror", 1, 31,
kMode_Operand2_R_ROR_I, kMode_Operand2_R_ROR_R}};
// Immediates (random subset).
static const int32_t kImmediates[] = {
std::numeric_limits<int32_t>::min(), -2147483617, -2147483606, -2113929216,
-2080374784, -1996488704, -1879048192, -1459617792,
-1358954496, -1342177265, -1275068414, -1073741818,
-1073741777, -855638016, -805306368, -402653184,
-268435444, -16777216, 0, 35,
61, 105, 116, 171,
245, 255, 692, 1216,
1248, 1520, 1600, 1888,
3744, 4080, 5888, 8384,
9344, 9472, 9792, 13312,
15040, 15360, 20736, 22272,
23296, 32000, 33536, 37120,
45824, 47872, 56320, 59392,
65280, 72704, 101376, 147456,
161792, 164864, 167936, 173056,
195584, 209920, 212992, 356352,
655360, 704512, 716800, 851968,
901120, 1044480, 1523712, 2572288,
3211264, 3588096, 3833856, 3866624,
4325376, 5177344, 6488064, 7012352,
7471104, 14090240, 16711680, 19398656,
22282240, 28573696, 30408704, 30670848,
43253760, 54525952, 55312384, 56623104,
68157440, 115343360, 131072000, 187695104,
188743680, 195035136, 197132288, 203423744,
218103808, 267386880, 268435470, 285212672,
402653185, 415236096, 595591168, 603979776,
603979778, 629145600, 1073741835, 1073741855,
1073741861, 1073741884, 1157627904, 1476395008,
1476395010, 1610612741, 2030043136, 2080374785,
2097152000};
} // namespace
// -----------------------------------------------------------------------------
// Data processing instructions.
typedef InstructionSelectorTestWithParam<DPI> InstructionSelectorDPITest;
TEST_P(InstructionSelectorDPITest, Parameters) {
const DPI dpi = GetParam();
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return((m.*dpi.constructor)(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_P(InstructionSelectorDPITest, Immediate) {
const DPI dpi = GetParam();
TRACED_FOREACH(int32_t, imm, kImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return((m.*dpi.constructor)(m.Parameter(0), m.Int32Constant(imm)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_I, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
TRACED_FOREACH(int32_t, imm, kImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return((m.*dpi.constructor)(m.Int32Constant(imm), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.reverse_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_I, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
TEST_P(InstructionSelectorDPITest, ShiftByParameter) {
const DPI dpi = GetParam();
TRACED_FOREACH(Shift, shift, kShifts) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32, kMachInt32);
m.Return((m.*dpi.constructor)(
m.Parameter(0),
(m.*shift.constructor)(m.Parameter(1), m.Parameter(2))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.r_mode, s[0]->addressing_mode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TRACED_FOREACH(Shift, shift, kShifts) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32, kMachInt32);
m.Return((m.*dpi.constructor)(
(m.*shift.constructor)(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.reverse_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.r_mode, s[0]->addressing_mode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
TEST_P(InstructionSelectorDPITest, ShiftByImmediate) {
const DPI dpi = GetParam();
TRACED_FOREACH(Shift, shift, kShifts) {
TRACED_FORRANGE(int32_t, imm, shift.i_low, shift.i_high) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return((m.*dpi.constructor)(
m.Parameter(0),
(m.*shift.constructor)(m.Parameter(1), m.Int32Constant(imm))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.i_mode, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(2)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
TRACED_FOREACH(Shift, shift, kShifts) {
TRACED_FORRANGE(int32_t, imm, shift.i_low, shift.i_high) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return((m.*dpi.constructor)(
(m.*shift.constructor)(m.Parameter(0), m.Int32Constant(imm)),
m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.reverse_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.i_mode, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(2)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
}
TEST_P(InstructionSelectorDPITest, BranchWithParameters) {
const DPI dpi = GetParam();
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch((m.*dpi.constructor)(m.Parameter(0), m.Parameter(1)), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.test_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R, s[0]->addressing_mode());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
}
TEST_P(InstructionSelectorDPITest, BranchWithImmediate) {
const DPI dpi = GetParam();
TRACED_FOREACH(int32_t, imm, kImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch((m.*dpi.constructor)(m.Parameter(0), m.Int32Constant(imm)), &a,
&b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.test_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_I, s[0]->addressing_mode());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
}
TRACED_FOREACH(int32_t, imm, kImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch((m.*dpi.constructor)(m.Int32Constant(imm), m.Parameter(0)), &a,
&b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.test_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_I, s[0]->addressing_mode());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
}
}
TEST_P(InstructionSelectorDPITest, BranchWithShiftByParameter) {
const DPI dpi = GetParam();
TRACED_FOREACH(Shift, shift, kShifts) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch((m.*dpi.constructor)(
m.Parameter(0),
(m.*shift.constructor)(m.Parameter(1), m.Parameter(2))),
&a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.test_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.r_mode, s[0]->addressing_mode());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
}
TRACED_FOREACH(Shift, shift, kShifts) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch((m.*dpi.constructor)(
(m.*shift.constructor)(m.Parameter(0), m.Parameter(1)),
m.Parameter(2)),
&a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.test_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.r_mode, s[0]->addressing_mode());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
}
}
TEST_P(InstructionSelectorDPITest, BranchWithShiftByImmediate) {
const DPI dpi = GetParam();
TRACED_FOREACH(Shift, shift, kShifts) {
TRACED_FORRANGE(int32_t, imm, shift.i_low, shift.i_high) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch((m.*dpi.constructor)(m.Parameter(0),
(m.*shift.constructor)(
m.Parameter(1), m.Int32Constant(imm))),
&a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.test_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.i_mode, s[0]->addressing_mode());
ASSERT_EQ(5U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(2)));
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
}
}
TRACED_FOREACH(Shift, shift, kShifts) {
TRACED_FORRANGE(int32_t, imm, shift.i_low, shift.i_high) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch((m.*dpi.constructor)(
(m.*shift.constructor)(m.Parameter(0), m.Int32Constant(imm)),
m.Parameter(1)),
&a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.test_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.i_mode, s[0]->addressing_mode());
ASSERT_EQ(5U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(2)));
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
}
}
}
TEST_P(InstructionSelectorDPITest, BranchIfZeroWithParameters) {
const DPI dpi = GetParam();
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch(m.Word32Equal((m.*dpi.constructor)(m.Parameter(0), m.Parameter(1)),
m.Int32Constant(0)),
&a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.test_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R, s[0]->addressing_mode());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
TEST_P(InstructionSelectorDPITest, BranchIfNotZeroWithParameters) {
const DPI dpi = GetParam();
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch(
m.Word32NotEqual((m.*dpi.constructor)(m.Parameter(0), m.Parameter(1)),
m.Int32Constant(0)),
&a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.test_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R, s[0]->addressing_mode());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
}
TEST_P(InstructionSelectorDPITest, BranchIfZeroWithImmediate) {
const DPI dpi = GetParam();
TRACED_FOREACH(int32_t, imm, kImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch(m.Word32Equal(
(m.*dpi.constructor)(m.Parameter(0), m.Int32Constant(imm)),
m.Int32Constant(0)),
&a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.test_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_I, s[0]->addressing_mode());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
TRACED_FOREACH(int32_t, imm, kImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch(m.Word32Equal(
(m.*dpi.constructor)(m.Int32Constant(imm), m.Parameter(0)),
m.Int32Constant(0)),
&a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.test_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_I, s[0]->addressing_mode());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
}
TEST_P(InstructionSelectorDPITest, BranchIfNotZeroWithImmediate) {
const DPI dpi = GetParam();
TRACED_FOREACH(int32_t, imm, kImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch(m.Word32NotEqual(
(m.*dpi.constructor)(m.Parameter(0), m.Int32Constant(imm)),
m.Int32Constant(0)),
&a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.test_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_I, s[0]->addressing_mode());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
}
TRACED_FOREACH(int32_t, imm, kImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
m.Branch(m.Word32NotEqual(
(m.*dpi.constructor)(m.Int32Constant(imm), m.Parameter(0)),
m.Int32Constant(0)),
&a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(1));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(dpi.test_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_I, s[0]->addressing_mode());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kNotEqual, s[0]->flags_condition());
}
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorDPITest,
::testing::ValuesIn(kDPIs));
// -----------------------------------------------------------------------------
// Data processing instructions with overflow.
typedef InstructionSelectorTestWithParam<ODPI> InstructionSelectorODPITest;
TEST_P(InstructionSelectorODPITest, OvfWithParameters) {
const ODPI odpi = GetParam();
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(
m.Projection(1, (m.*odpi.constructor)(m.Parameter(0), m.Parameter(1))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(odpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
TEST_P(InstructionSelectorODPITest, OvfWithImmediate) {
const ODPI odpi = GetParam();
TRACED_FOREACH(int32_t, imm, kImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Projection(
1, (m.*odpi.constructor)(m.Parameter(0), m.Int32Constant(imm))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(odpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_I, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
TRACED_FOREACH(int32_t, imm, kImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Projection(
1, (m.*odpi.constructor)(m.Int32Constant(imm), m.Parameter(0))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(odpi.reverse_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_I, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
}
TEST_P(InstructionSelectorODPITest, OvfWithShiftByParameter) {
const ODPI odpi = GetParam();
TRACED_FOREACH(Shift, shift, kShifts) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Projection(
1, (m.*odpi.constructor)(
m.Parameter(0),
(m.*shift.constructor)(m.Parameter(1), m.Parameter(2)))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(odpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.r_mode, s[0]->addressing_mode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
TRACED_FOREACH(Shift, shift, kShifts) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Projection(
1, (m.*odpi.constructor)(
(m.*shift.constructor)(m.Parameter(0), m.Parameter(1)),
m.Parameter(0))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(odpi.reverse_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.r_mode, s[0]->addressing_mode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
}
TEST_P(InstructionSelectorODPITest, OvfWithShiftByImmediate) {
const ODPI odpi = GetParam();
TRACED_FOREACH(Shift, shift, kShifts) {
TRACED_FORRANGE(int32_t, imm, shift.i_low, shift.i_high) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Projection(
1, (m.*odpi.constructor)(m.Parameter(0),
(m.*shift.constructor)(
m.Parameter(1), m.Int32Constant(imm)))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(odpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.i_mode, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(2)));
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
}
TRACED_FOREACH(Shift, shift, kShifts) {
TRACED_FORRANGE(int32_t, imm, shift.i_low, shift.i_high) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Projection(
1, (m.*odpi.constructor)(
(m.*shift.constructor)(m.Parameter(1), m.Int32Constant(imm)),
m.Parameter(0))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(odpi.reverse_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.i_mode, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(2)));
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
}
}
TEST_P(InstructionSelectorODPITest, ValWithParameters) {
const ODPI odpi = GetParam();
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(
m.Projection(0, (m.*odpi.constructor)(m.Parameter(0), m.Parameter(1))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(odpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
TEST_P(InstructionSelectorODPITest, ValWithImmediate) {
const ODPI odpi = GetParam();
TRACED_FOREACH(int32_t, imm, kImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Projection(
0, (m.*odpi.constructor)(m.Parameter(0), m.Int32Constant(imm))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(odpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_I, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
TRACED_FOREACH(int32_t, imm, kImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Projection(
0, (m.*odpi.constructor)(m.Int32Constant(imm), m.Parameter(0))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(odpi.reverse_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_I, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
}
TEST_P(InstructionSelectorODPITest, ValWithShiftByParameter) {
const ODPI odpi = GetParam();
TRACED_FOREACH(Shift, shift, kShifts) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Projection(
0, (m.*odpi.constructor)(
m.Parameter(0),
(m.*shift.constructor)(m.Parameter(1), m.Parameter(2)))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(odpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.r_mode, s[0]->addressing_mode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
TRACED_FOREACH(Shift, shift, kShifts) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Projection(
0, (m.*odpi.constructor)(
(m.*shift.constructor)(m.Parameter(0), m.Parameter(1)),
m.Parameter(0))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(odpi.reverse_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.r_mode, s[0]->addressing_mode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
}
TEST_P(InstructionSelectorODPITest, ValWithShiftByImmediate) {
const ODPI odpi = GetParam();
TRACED_FOREACH(Shift, shift, kShifts) {
TRACED_FORRANGE(int32_t, imm, shift.i_low, shift.i_high) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Projection(
0, (m.*odpi.constructor)(m.Parameter(0),
(m.*shift.constructor)(
m.Parameter(1), m.Int32Constant(imm)))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(odpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.i_mode, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(2)));
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
}
TRACED_FOREACH(Shift, shift, kShifts) {
TRACED_FORRANGE(int32_t, imm, shift.i_low, shift.i_high) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Projection(
0, (m.*odpi.constructor)(
(m.*shift.constructor)(m.Parameter(1), m.Int32Constant(imm)),
m.Parameter(0))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(odpi.reverse_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.i_mode, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(2)));
EXPECT_LE(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_none, s[0]->flags_mode());
}
}
}
TEST_P(InstructionSelectorODPITest, BothWithParameters) {
const ODPI odpi = GetParam();
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* n = (m.*odpi.constructor)(m.Parameter(0), m.Parameter(1));
m.Return(m.Word32Equal(m.Projection(0, n), m.Projection(1, n)));
Stream s = m.Build();
ASSERT_LE(1U, s.size());
EXPECT_EQ(odpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(2U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
TEST_P(InstructionSelectorODPITest, BothWithImmediate) {
const ODPI odpi = GetParam();
TRACED_FOREACH(int32_t, imm, kImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
Node* n = (m.*odpi.constructor)(m.Parameter(0), m.Int32Constant(imm));
m.Return(m.Word32Equal(m.Projection(0, n), m.Projection(1, n)));
Stream s = m.Build();
ASSERT_LE(1U, s.size());
EXPECT_EQ(odpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_I, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(2U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
TRACED_FOREACH(int32_t, imm, kImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
Node* n = (m.*odpi.constructor)(m.Int32Constant(imm), m.Parameter(0));
m.Return(m.Word32Equal(m.Projection(0, n), m.Projection(1, n)));
Stream s = m.Build();
ASSERT_LE(1U, s.size());
EXPECT_EQ(odpi.reverse_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_I, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(2U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
}
TEST_P(InstructionSelectorODPITest, BothWithShiftByParameter) {
const ODPI odpi = GetParam();
TRACED_FOREACH(Shift, shift, kShifts) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32, kMachInt32);
Node* n = (m.*odpi.constructor)(
m.Parameter(0), (m.*shift.constructor)(m.Parameter(1), m.Parameter(2)));
m.Return(m.Word32Equal(m.Projection(0, n), m.Projection(1, n)));
Stream s = m.Build();
ASSERT_LE(1U, s.size());
EXPECT_EQ(odpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.r_mode, s[0]->addressing_mode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(2U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
TRACED_FOREACH(Shift, shift, kShifts) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32, kMachInt32);
Node* n = (m.*odpi.constructor)(
(m.*shift.constructor)(m.Parameter(0), m.Parameter(1)), m.Parameter(2));
m.Return(m.Word32Equal(m.Projection(0, n), m.Projection(1, n)));
Stream s = m.Build();
ASSERT_LE(1U, s.size());
EXPECT_EQ(odpi.reverse_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.r_mode, s[0]->addressing_mode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(2U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
}
TEST_P(InstructionSelectorODPITest, BothWithShiftByImmediate) {
const ODPI odpi = GetParam();
TRACED_FOREACH(Shift, shift, kShifts) {
TRACED_FORRANGE(int32_t, imm, shift.i_low, shift.i_high) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* n = (m.*odpi.constructor)(
m.Parameter(0),
(m.*shift.constructor)(m.Parameter(1), m.Int32Constant(imm)));
m.Return(m.Word32Equal(m.Projection(0, n), m.Projection(1, n)));
Stream s = m.Build();
ASSERT_LE(1U, s.size());
EXPECT_EQ(odpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.i_mode, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(2)));
EXPECT_EQ(2U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
}
TRACED_FOREACH(Shift, shift, kShifts) {
TRACED_FORRANGE(int32_t, imm, shift.i_low, shift.i_high) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* n = (m.*odpi.constructor)(
(m.*shift.constructor)(m.Parameter(0), m.Int32Constant(imm)),
m.Parameter(1));
m.Return(m.Word32Equal(m.Projection(0, n), m.Projection(1, n)));
Stream s = m.Build();
ASSERT_LE(1U, s.size());
EXPECT_EQ(odpi.reverse_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(shift.i_mode, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(2)));
EXPECT_EQ(2U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
}
}
TEST_P(InstructionSelectorODPITest, BranchWithParameters) {
const ODPI odpi = GetParam();
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
MLabel a, b;
Node* n = (m.*odpi.constructor)(m.Parameter(0), m.Parameter(1));
m.Branch(m.Projection(1, n), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(0));
m.Bind(&b);
m.Return(m.Projection(0, n));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(odpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R, s[0]->addressing_mode());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
TEST_P(InstructionSelectorODPITest, BranchWithImmediate) {
const ODPI odpi = GetParam();
TRACED_FOREACH(int32_t, imm, kImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
Node* n = (m.*odpi.constructor)(m.Parameter(0), m.Int32Constant(imm));
m.Branch(m.Projection(1, n), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(0));
m.Bind(&b);
m.Return(m.Projection(0, n));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(odpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_I, s[0]->addressing_mode());
ASSERT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
TRACED_FOREACH(int32_t, imm, kImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
MLabel a, b;
Node* n = (m.*odpi.constructor)(m.Int32Constant(imm), m.Parameter(0));
m.Branch(m.Projection(1, n), &a, &b);
m.Bind(&a);
m.Return(m.Int32Constant(0));
m.Bind(&b);
m.Return(m.Projection(0, n));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(odpi.reverse_arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_I, s[0]->addressing_mode());
ASSERT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
}
TEST_P(InstructionSelectorODPITest, BranchIfZeroWithParameters) {
const ODPI odpi = GetParam();
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
MLabel a, b;
Node* n = (m.*odpi.constructor)(m.Parameter(0), m.Parameter(1));
m.Branch(m.Word32Equal(m.Projection(1, n), m.Int32Constant(0)), &a, &b);
m.Bind(&a);
m.Return(m.Projection(0, n));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(odpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R, s[0]->addressing_mode());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kNotOverflow, s[0]->flags_condition());
}
TEST_P(InstructionSelectorODPITest, BranchIfNotZeroWithParameters) {
const ODPI odpi = GetParam();
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
MLabel a, b;
Node* n = (m.*odpi.constructor)(m.Parameter(0), m.Parameter(1));
m.Branch(m.Word32NotEqual(m.Projection(1, n), m.Int32Constant(0)), &a, &b);
m.Bind(&a);
m.Return(m.Projection(0, n));
m.Bind(&b);
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(odpi.arch_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R, s[0]->addressing_mode());
EXPECT_EQ(4U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_branch, s[0]->flags_mode());
EXPECT_EQ(kOverflow, s[0]->flags_condition());
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorODPITest,
::testing::ValuesIn(kODPIs));
// -----------------------------------------------------------------------------
// Shifts.
typedef InstructionSelectorTestWithParam<Shift> InstructionSelectorShiftTest;
TEST_P(InstructionSelectorShiftTest, Parameters) {
const Shift shift = GetParam();
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return((m.*shift.constructor)(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmMov, s[0]->arch_opcode());
EXPECT_EQ(shift.r_mode, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_P(InstructionSelectorShiftTest, Immediate) {
const Shift shift = GetParam();
TRACED_FORRANGE(int32_t, imm, shift.i_low, shift.i_high) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return((m.*shift.constructor)(m.Parameter(0), m.Int32Constant(imm)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmMov, s[0]->arch_opcode());
EXPECT_EQ(shift.i_mode, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
TEST_P(InstructionSelectorShiftTest, Word32EqualWithParameter) {
const Shift shift = GetParam();
{
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32, kMachInt32);
m.Return(
m.Word32Equal(m.Parameter(0),
(m.*shift.constructor)(m.Parameter(1), m.Parameter(2))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmCmp, s[0]->arch_opcode());
EXPECT_EQ(shift.r_mode, s[0]->addressing_mode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
{
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32, kMachInt32);
m.Return(
m.Word32Equal((m.*shift.constructor)(m.Parameter(1), m.Parameter(2)),
m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmCmp, s[0]->arch_opcode());
EXPECT_EQ(shift.r_mode, s[0]->addressing_mode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
}
TEST_P(InstructionSelectorShiftTest, Word32EqualWithParameterAndImmediate) {
const Shift shift = GetParam();
TRACED_FORRANGE(int32_t, imm, shift.i_low, shift.i_high) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Word32Equal(
(m.*shift.constructor)(m.Parameter(1), m.Int32Constant(imm)),
m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmCmp, s[0]->arch_opcode());
EXPECT_EQ(shift.i_mode, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(2)));
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
TRACED_FORRANGE(int32_t, imm, shift.i_low, shift.i_high) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Word32Equal(
m.Parameter(0),
(m.*shift.constructor)(m.Parameter(1), m.Int32Constant(imm))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmCmp, s[0]->arch_opcode());
EXPECT_EQ(shift.i_mode, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(2)));
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
}
TEST_P(InstructionSelectorShiftTest, Word32EqualToZeroWithParameters) {
const Shift shift = GetParam();
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(
m.Word32Equal(m.Int32Constant(0),
(m.*shift.constructor)(m.Parameter(0), m.Parameter(1))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmMov, s[0]->arch_opcode());
EXPECT_EQ(shift.r_mode, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(2U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
TEST_P(InstructionSelectorShiftTest, Word32EqualToZeroWithImmediate) {
const Shift shift = GetParam();
TRACED_FORRANGE(int32_t, imm, shift.i_low, shift.i_high) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Word32Equal(
m.Int32Constant(0),
(m.*shift.constructor)(m.Parameter(0), m.Int32Constant(imm))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmMov, s[0]->arch_opcode());
EXPECT_EQ(shift.i_mode, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(2U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
}
TEST_P(InstructionSelectorShiftTest, Word32NotWithParameters) {
const Shift shift = GetParam();
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Word32Not((m.*shift.constructor)(m.Parameter(0), m.Parameter(1))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmMvn, s[0]->arch_opcode());
EXPECT_EQ(shift.r_mode, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_P(InstructionSelectorShiftTest, Word32NotWithImmediate) {
const Shift shift = GetParam();
TRACED_FORRANGE(int32_t, imm, shift.i_low, shift.i_high) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32Not(
(m.*shift.constructor)(m.Parameter(0), m.Int32Constant(imm))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmMvn, s[0]->arch_opcode());
EXPECT_EQ(shift.i_mode, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
TEST_P(InstructionSelectorShiftTest, Word32AndWithWord32NotWithParameters) {
const Shift shift = GetParam();
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Word32And(m.Parameter(0), m.Word32Not((m.*shift.constructor)(
m.Parameter(1), m.Parameter(2)))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmBic, s[0]->arch_opcode());
EXPECT_EQ(shift.r_mode, s[0]->addressing_mode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_P(InstructionSelectorShiftTest, Word32AndWithWord32NotWithImmediate) {
const Shift shift = GetParam();
TRACED_FORRANGE(int32_t, imm, shift.i_low, shift.i_high) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Word32And(m.Parameter(0),
m.Word32Not((m.*shift.constructor)(
m.Parameter(1), m.Int32Constant(imm)))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmBic, s[0]->arch_opcode());
EXPECT_EQ(shift.i_mode, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(2)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorShiftTest,
::testing::ValuesIn(kShifts));
// -----------------------------------------------------------------------------
// Memory access instructions.
namespace {
struct MemoryAccess {
MachineType type;
ArchOpcode ldr_opcode;
ArchOpcode str_opcode;
bool (InstructionSelectorTest::Stream::*val_predicate)(
const InstructionOperand*) const;
const int32_t immediates[40];
};
std::ostream& operator<<(std::ostream& os, const MemoryAccess& memacc) {
return os << memacc.type;
}
static const MemoryAccess kMemoryAccesses[] = {
{kMachInt8,
kArmLdrsb,
kArmStrb,
&InstructionSelectorTest::Stream::IsInteger,
{-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89,
-87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109,
115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}},
{kMachUint8,
kArmLdrb,
kArmStrb,
&InstructionSelectorTest::Stream::IsInteger,
{-4095, -3914, -3536, -3234, -3185, -3169, -1073, -990, -859, -720, -434,
-127, -124, -122, -105, -91, -86, -64, -55, -53, -30, -10, -3, 0, 20, 28,
39, 58, 64, 73, 75, 100, 108, 121, 686, 963, 1363, 2759, 3449, 4095}},
{kMachInt16,
kArmLdrsh,
kArmStrh,
&InstructionSelectorTest::Stream::IsInteger,
{-255, -251, -232, -220, -144, -138, -130, -126, -116, -115, -102, -101,
-98, -69, -59, -56, -39, -35, -23, -19, -7, 0, 22, 26, 37, 68, 83, 87, 98,
102, 108, 111, 117, 171, 195, 203, 204, 245, 246, 255}},
{kMachUint16,
kArmLdrh,
kArmStrh,
&InstructionSelectorTest::Stream::IsInteger,
{-255, -230, -201, -172, -125, -119, -118, -105, -98, -79, -54, -42, -41,
-32, -12, -11, -5, -4, 0, 5, 9, 25, 28, 51, 58, 60, 89, 104, 108, 109,
114, 116, 120, 138, 150, 161, 166, 172, 228, 255}},
{kMachInt32,
kArmLdr,
kArmStr,
&InstructionSelectorTest::Stream::IsInteger,
{-4095, -1898, -1685, -1562, -1408, -1313, -344, -128, -116, -100, -92,
-80, -72, -71, -56, -25, -21, -11, -9, 0, 3, 5, 27, 28, 42, 52, 63, 88,
93, 97, 125, 846, 1037, 2102, 2403, 2597, 2632, 2997, 3935, 4095}},
{kMachFloat32,
kArmVldrF32,
kArmVstrF32,
&InstructionSelectorTest::Stream::IsDouble,
{-1020, -928, -896, -772, -728, -680, -660, -488, -372, -112, -100, -92,
-84, -80, -72, -64, -60, -56, -52, -48, -36, -32, -20, -8, -4, 0, 8, 20,
24, 40, 64, 112, 204, 388, 516, 852, 856, 976, 988, 1020}},
{kMachFloat64,
kArmVldrF64,
kArmVstrF64,
&InstructionSelectorTest::Stream::IsDouble,
{-1020, -948, -796, -696, -612, -364, -320, -308, -128, -112, -108, -104,
-96, -84, -80, -56, -48, -40, -20, 0, 24, 28, 36, 48, 64, 84, 96, 100,
108, 116, 120, 140, 156, 408, 432, 444, 772, 832, 940, 1020}}};
} // namespace
typedef InstructionSelectorTestWithParam<MemoryAccess>
InstructionSelectorMemoryAccessTest;
TEST_P(InstructionSelectorMemoryAccessTest, LoadWithParameters) {
const MemoryAccess memacc = GetParam();
StreamBuilder m(this, memacc.type, kMachPtr, kMachInt32);
m.Return(m.Load(memacc.type, m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.ldr_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Offset_RR, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE((s.*memacc.val_predicate)(s[0]->Output()));
}
TEST_P(InstructionSelectorMemoryAccessTest, LoadWithImmediateIndex) {
const MemoryAccess memacc = GetParam();
TRACED_FOREACH(int32_t, index, memacc.immediates) {
StreamBuilder m(this, memacc.type, kMachPtr);
m.Return(m.Load(memacc.type, m.Parameter(0), m.Int32Constant(index)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.ldr_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Offset_RI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(index, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE((s.*memacc.val_predicate)(s[0]->Output()));
}
}
TEST_P(InstructionSelectorMemoryAccessTest, StoreWithParameters) {
const MemoryAccess memacc = GetParam();
StreamBuilder m(this, kMachInt32, kMachPtr, kMachInt32, memacc.type);
m.Store(memacc.type, m.Parameter(0), m.Parameter(1), m.Parameter(2));
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.str_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Offset_RR, s[0]->addressing_mode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(0U, s[0]->OutputCount());
}
TEST_P(InstructionSelectorMemoryAccessTest, StoreWithImmediateIndex) {
const MemoryAccess memacc = GetParam();
TRACED_FOREACH(int32_t, index, memacc.immediates) {
StreamBuilder m(this, kMachInt32, kMachPtr, memacc.type);
m.Store(memacc.type, m.Parameter(0), m.Int32Constant(index),
m.Parameter(1));
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.str_opcode, s[0]->arch_opcode());
EXPECT_EQ(kMode_Offset_RI, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(index, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(0U, s[0]->OutputCount());
}
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest,
InstructionSelectorMemoryAccessTest,
::testing::ValuesIn(kMemoryAccesses));
// -----------------------------------------------------------------------------
// Conversions.
TEST_F(InstructionSelectorTest, ChangeFloat32ToFloat64WithParameter) {
StreamBuilder m(this, kMachFloat64, kMachFloat32);
m.Return(m.ChangeFloat32ToFloat64(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmVcvtF64F32, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_F(InstructionSelectorTest, TruncateFloat64ToFloat32WithParameter) {
StreamBuilder m(this, kMachFloat32, kMachFloat64);
m.Return(m.TruncateFloat64ToFloat32(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmVcvtF32F64, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
// -----------------------------------------------------------------------------
// Comparisons.
namespace {
struct Comparison {
Constructor constructor;
const char* constructor_name;
FlagsCondition flags_condition;
FlagsCondition negated_flags_condition;
};
std::ostream& operator<<(std::ostream& os, const Comparison& cmp) {
return os << cmp.constructor_name;
}
const Comparison kComparisons[] = {
{&RawMachineAssembler::Word32Equal, "Word32Equal", kEqual, kNotEqual},
{&RawMachineAssembler::Int32LessThan, "Int32LessThan", kSignedLessThan,
kSignedGreaterThanOrEqual},
{&RawMachineAssembler::Int32LessThanOrEqual, "Int32LessThanOrEqual",
kSignedLessThanOrEqual, kSignedGreaterThan},
{&RawMachineAssembler::Uint32LessThan, "Uint32LessThan", kUnsignedLessThan,
kUnsignedGreaterThanOrEqual},
{&RawMachineAssembler::Uint32LessThanOrEqual, "Uint32LessThanOrEqual",
kUnsignedLessThanOrEqual, kUnsignedGreaterThan}};
} // namespace
typedef InstructionSelectorTestWithParam<Comparison>
InstructionSelectorComparisonTest;
TEST_P(InstructionSelectorComparisonTest, Parameters) {
const Comparison& cmp = GetParam();
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const r = (m.*cmp.constructor)(p0, p1);
m.Return(r);
Stream const s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmCmp, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->OutputAt(0)));
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(cmp.flags_condition, s[0]->flags_condition());
}
TEST_P(InstructionSelectorComparisonTest, Word32EqualWithZero) {
{
const Comparison& cmp = GetParam();
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const r =
m.Word32Equal((m.*cmp.constructor)(p0, p1), m.Int32Constant(0));
m.Return(r);
Stream const s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmCmp, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->OutputAt(0)));
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(cmp.negated_flags_condition, s[0]->flags_condition());
}
{
const Comparison& cmp = GetParam();
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const r =
m.Word32Equal(m.Int32Constant(0), (m.*cmp.constructor)(p0, p1));
m.Return(r);
Stream const s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmCmp, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->OutputAt(0)));
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(cmp.negated_flags_condition, s[0]->flags_condition());
}
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest,
InstructionSelectorComparisonTest,
::testing::ValuesIn(kComparisons));
// -----------------------------------------------------------------------------
// Floating point comparisons.
const Comparison kFPComparisons[] = {
{&RawMachineAssembler::Float64Equal, "Float64Equal", kEqual, kNotEqual},
{&RawMachineAssembler::Float64LessThan, "Float64LessThan",
kUnsignedLessThan, kUnsignedGreaterThanOrEqual},
{&RawMachineAssembler::Float64LessThanOrEqual, "Float64LessThanOrEqual",
kUnsignedLessThanOrEqual, kUnsignedGreaterThan}};
typedef InstructionSelectorTestWithParam<Comparison>
InstructionSelectorFPComparisonTest;
TEST_P(InstructionSelectorFPComparisonTest, WithParameters) {
const Comparison& cmp = GetParam();
StreamBuilder m(this, kMachInt32, kMachFloat64, kMachFloat64);
m.Return((m.*cmp.constructor)(m.Parameter(0), m.Parameter(1)));
Stream const s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmVcmpF64, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(cmp.flags_condition, s[0]->flags_condition());
}
TEST_P(InstructionSelectorFPComparisonTest, NegatedWithParameters) {
const Comparison& cmp = GetParam();
StreamBuilder m(this, kMachInt32, kMachFloat64, kMachFloat64);
m.Return(
m.WordBinaryNot((m.*cmp.constructor)(m.Parameter(0), m.Parameter(1))));
Stream const s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmVcmpF64, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(cmp.negated_flags_condition, s[0]->flags_condition());
}
TEST_P(InstructionSelectorFPComparisonTest, WithImmediateZeroOnRight) {
const Comparison& cmp = GetParam();
StreamBuilder m(this, kMachInt32, kMachFloat64);
m.Return((m.*cmp.constructor)(m.Parameter(0), m.Float64Constant(0.0)));
Stream const s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmVcmpF64, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(cmp.flags_condition, s[0]->flags_condition());
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest,
InstructionSelectorFPComparisonTest,
::testing::ValuesIn(kFPComparisons));
TEST_F(InstructionSelectorTest, Float64EqualWithImmediateZeroOnLeft) {
StreamBuilder m(this, kMachInt32, kMachFloat64);
m.Return(m.Float64Equal(m.Float64Constant(0.0), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmVcmpF64, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
// -----------------------------------------------------------------------------
// Miscellaneous.
TEST_F(InstructionSelectorTest, Float64SubWithMinusZero) {
StreamBuilder m(this, kMachFloat64, kMachFloat64);
Node* const p0 = m.Parameter(0);
Node* const n = m.Float64Sub(m.Float64Constant(-0.0), p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmVnegF64, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
TEST_F(InstructionSelectorTest, Int32AddWithInt32Mul) {
{
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const p2 = m.Parameter(2);
Node* const n = m.Int32Add(p0, m.Int32Mul(p1, p2));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmMla, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(2)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const p2 = m.Parameter(2);
Node* const n = m.Int32Add(m.Int32Mul(p1, p2), p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmMla, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(2)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Int32AddWithInt32MulHigh) {
{
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const p2 = m.Parameter(2);
Node* const n = m.Int32Add(p0, m.Int32MulHigh(p1, p2));
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmSmmla, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(2)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const p2 = m.Parameter(2);
Node* const n = m.Int32Add(m.Int32MulHigh(p1, p2), p0);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmSmmla, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p2), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(2)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Int32AddWithWord32And) {
{
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const r = m.Int32Add(m.Word32And(p0, m.Int32Constant(0xff)), p1);
m.Return(r);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmUxtab, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(0, s.ToInt32(s[0]->InputAt(2)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const r = m.Int32Add(p1, m.Word32And(p0, m.Int32Constant(0xff)));
m.Return(r);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmUxtab, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(0, s.ToInt32(s[0]->InputAt(2)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const r = m.Int32Add(m.Word32And(p0, m.Int32Constant(0xffff)), p1);
m.Return(r);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmUxtah, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(0, s.ToInt32(s[0]->InputAt(2)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const r = m.Int32Add(p1, m.Word32And(p0, m.Int32Constant(0xffff)));
m.Return(r);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmUxtah, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(0, s.ToInt32(s[0]->InputAt(2)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Int32AddWithWord32SarWithWord32Shl) {
{
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const r = m.Int32Add(
m.Word32Sar(m.Word32Shl(p0, m.Int32Constant(24)), m.Int32Constant(24)),
p1);
m.Return(r);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmSxtab, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(0, s.ToInt32(s[0]->InputAt(2)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const r = m.Int32Add(
p1,
m.Word32Sar(m.Word32Shl(p0, m.Int32Constant(24)), m.Int32Constant(24)));
m.Return(r);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmSxtab, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(0, s.ToInt32(s[0]->InputAt(2)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const r = m.Int32Add(
m.Word32Sar(m.Word32Shl(p0, m.Int32Constant(16)), m.Int32Constant(16)),
p1);
m.Return(r);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmSxtah, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(0, s.ToInt32(s[0]->InputAt(2)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const r = m.Int32Add(
p1,
m.Word32Sar(m.Word32Shl(p0, m.Int32Constant(16)), m.Int32Constant(16)));
m.Return(r);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmSxtah, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(0, s.ToInt32(s[0]->InputAt(2)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Int32SubWithInt32Mul) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32, kMachInt32);
m.Return(
m.Int32Sub(m.Parameter(0), m.Int32Mul(m.Parameter(1), m.Parameter(2))));
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kArmMul, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kArmSub, s[1]->arch_opcode());
ASSERT_EQ(2U, s[1]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->Output()), s.ToVreg(s[1]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32SubWithInt32MulForMLS) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32, kMachInt32);
m.Return(
m.Int32Sub(m.Parameter(0), m.Int32Mul(m.Parameter(1), m.Parameter(2))));
Stream s = m.Build(MLS);
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmMls, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(3U, s[0]->InputCount());
}
TEST_F(InstructionSelectorTest, Int32DivWithParameters) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Int32Div(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(4U, s.size());
EXPECT_EQ(kArmVcvtF64S32, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kArmVcvtF64S32, s[1]->arch_opcode());
ASSERT_EQ(1U, s[1]->OutputCount());
EXPECT_EQ(kArmVdivF64, s[2]->arch_opcode());
ASSERT_EQ(2U, s[2]->InputCount());
ASSERT_EQ(1U, s[2]->OutputCount());
EXPECT_EQ(s.ToVreg(s[0]->Output()), s.ToVreg(s[2]->InputAt(0)));
EXPECT_EQ(s.ToVreg(s[1]->Output()), s.ToVreg(s[2]->InputAt(1)));
EXPECT_EQ(kArmVcvtS32F64, s[3]->arch_opcode());
ASSERT_EQ(1U, s[3]->InputCount());
EXPECT_EQ(s.ToVreg(s[2]->Output()), s.ToVreg(s[3]->InputAt(0)));
}
TEST_F(InstructionSelectorTest, Int32DivWithParametersForSUDIV) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Int32Div(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build(SUDIV);
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmSdiv, s[0]->arch_opcode());
}
TEST_F(InstructionSelectorTest, Int32ModWithParameters) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Int32Mod(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(6U, s.size());
EXPECT_EQ(kArmVcvtF64S32, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kArmVcvtF64S32, s[1]->arch_opcode());
ASSERT_EQ(1U, s[1]->OutputCount());
EXPECT_EQ(kArmVdivF64, s[2]->arch_opcode());
ASSERT_EQ(2U, s[2]->InputCount());
ASSERT_EQ(1U, s[2]->OutputCount());
EXPECT_EQ(s.ToVreg(s[0]->Output()), s.ToVreg(s[2]->InputAt(0)));
EXPECT_EQ(s.ToVreg(s[1]->Output()), s.ToVreg(s[2]->InputAt(1)));
EXPECT_EQ(kArmVcvtS32F64, s[3]->arch_opcode());
ASSERT_EQ(1U, s[3]->InputCount());
EXPECT_EQ(s.ToVreg(s[2]->Output()), s.ToVreg(s[3]->InputAt(0)));
EXPECT_EQ(kArmMul, s[4]->arch_opcode());
ASSERT_EQ(1U, s[4]->OutputCount());
ASSERT_EQ(2U, s[4]->InputCount());
EXPECT_EQ(s.ToVreg(s[3]->Output()), s.ToVreg(s[4]->InputAt(0)));
EXPECT_EQ(s.ToVreg(s[1]->InputAt(0)), s.ToVreg(s[4]->InputAt(1)));
EXPECT_EQ(kArmSub, s[5]->arch_opcode());
ASSERT_EQ(1U, s[5]->OutputCount());
ASSERT_EQ(2U, s[5]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->InputAt(0)), s.ToVreg(s[5]->InputAt(0)));
EXPECT_EQ(s.ToVreg(s[4]->Output()), s.ToVreg(s[5]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32ModWithParametersForSUDIV) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Int32Mod(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build(SUDIV);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kArmSdiv, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(kArmMul, s[1]->arch_opcode());
ASSERT_EQ(1U, s[1]->OutputCount());
ASSERT_EQ(2U, s[1]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->Output()), s.ToVreg(s[1]->InputAt(0)));
EXPECT_EQ(s.ToVreg(s[0]->InputAt(1)), s.ToVreg(s[1]->InputAt(1)));
EXPECT_EQ(kArmSub, s[2]->arch_opcode());
ASSERT_EQ(1U, s[2]->OutputCount());
ASSERT_EQ(2U, s[2]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->InputAt(0)), s.ToVreg(s[2]->InputAt(0)));
EXPECT_EQ(s.ToVreg(s[1]->Output()), s.ToVreg(s[2]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32ModWithParametersForSUDIVAndMLS) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Int32Mod(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build(MLS, SUDIV);
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kArmSdiv, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(kArmMls, s[1]->arch_opcode());
ASSERT_EQ(1U, s[1]->OutputCount());
ASSERT_EQ(3U, s[1]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->Output()), s.ToVreg(s[1]->InputAt(0)));
EXPECT_EQ(s.ToVreg(s[0]->InputAt(1)), s.ToVreg(s[1]->InputAt(1)));
EXPECT_EQ(s.ToVreg(s[0]->InputAt(0)), s.ToVreg(s[1]->InputAt(2)));
}
TEST_F(InstructionSelectorTest, Int32MulWithParameters) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Int32Mul(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmMul, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_F(InstructionSelectorTest, Int32MulWithImmediate) {
// x * (2^k + 1) -> x + (x >> k)
TRACED_FORRANGE(int32_t, k, 1, 30) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Int32Mul(m.Parameter(0), m.Int32Constant((1 << k) + 1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmAdd, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R_LSL_I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->InputAt(0)), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(k, s.ToInt32(s[0]->InputAt(2)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
// x * (2^k - 1) -> -x + (x >> k)
TRACED_FORRANGE(int32_t, k, 3, 30) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Int32Mul(m.Parameter(0), m.Int32Constant((1 << k) - 1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmRsb, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R_LSL_I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->InputAt(0)), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(k, s.ToInt32(s[0]->InputAt(2)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
// (2^k + 1) * x -> x + (x >> k)
TRACED_FORRANGE(int32_t, k, 1, 30) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Int32Mul(m.Int32Constant((1 << k) + 1), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmAdd, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R_LSL_I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->InputAt(0)), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(k, s.ToInt32(s[0]->InputAt(2)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
// x * (2^k - 1) -> -x + (x >> k)
TRACED_FORRANGE(int32_t, k, 3, 30) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Int32Mul(m.Int32Constant((1 << k) - 1), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmRsb, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R_LSL_I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->InputAt(0)), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(k, s.ToInt32(s[0]->InputAt(2)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
TEST_F(InstructionSelectorTest, Int32MulHighWithParameters) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const n = m.Int32MulHigh(p0, p1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmSmmul, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output()));
}
TEST_F(InstructionSelectorTest, Uint32MulHighWithParameters) {
StreamBuilder m(this, kMachUint32, kMachUint32, kMachUint32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const n = m.Uint32MulHigh(p0, p1);
m.Return(n);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmUmull, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
ASSERT_EQ(2U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->OutputAt(1)));
}
TEST_F(InstructionSelectorTest, Uint32DivWithParameters) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Uint32Div(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(4U, s.size());
EXPECT_EQ(kArmVcvtF64U32, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kArmVcvtF64U32, s[1]->arch_opcode());
ASSERT_EQ(1U, s[1]->OutputCount());
EXPECT_EQ(kArmVdivF64, s[2]->arch_opcode());
ASSERT_EQ(2U, s[2]->InputCount());
ASSERT_EQ(1U, s[2]->OutputCount());
EXPECT_EQ(s.ToVreg(s[0]->Output()), s.ToVreg(s[2]->InputAt(0)));
EXPECT_EQ(s.ToVreg(s[1]->Output()), s.ToVreg(s[2]->InputAt(1)));
EXPECT_EQ(kArmVcvtU32F64, s[3]->arch_opcode());
ASSERT_EQ(1U, s[3]->InputCount());
EXPECT_EQ(s.ToVreg(s[2]->Output()), s.ToVreg(s[3]->InputAt(0)));
}
TEST_F(InstructionSelectorTest, Uint32DivWithParametersForSUDIV) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Uint32Div(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build(SUDIV);
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmUdiv, s[0]->arch_opcode());
}
TEST_F(InstructionSelectorTest, Uint32ModWithParameters) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Uint32Mod(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(6U, s.size());
EXPECT_EQ(kArmVcvtF64U32, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kArmVcvtF64U32, s[1]->arch_opcode());
ASSERT_EQ(1U, s[1]->OutputCount());
EXPECT_EQ(kArmVdivF64, s[2]->arch_opcode());
ASSERT_EQ(2U, s[2]->InputCount());
ASSERT_EQ(1U, s[2]->OutputCount());
EXPECT_EQ(s.ToVreg(s[0]->Output()), s.ToVreg(s[2]->InputAt(0)));
EXPECT_EQ(s.ToVreg(s[1]->Output()), s.ToVreg(s[2]->InputAt(1)));
EXPECT_EQ(kArmVcvtU32F64, s[3]->arch_opcode());
ASSERT_EQ(1U, s[3]->InputCount());
EXPECT_EQ(s.ToVreg(s[2]->Output()), s.ToVreg(s[3]->InputAt(0)));
EXPECT_EQ(kArmMul, s[4]->arch_opcode());
ASSERT_EQ(1U, s[4]->OutputCount());
ASSERT_EQ(2U, s[4]->InputCount());
EXPECT_EQ(s.ToVreg(s[3]->Output()), s.ToVreg(s[4]->InputAt(0)));
EXPECT_EQ(s.ToVreg(s[1]->InputAt(0)), s.ToVreg(s[4]->InputAt(1)));
EXPECT_EQ(kArmSub, s[5]->arch_opcode());
ASSERT_EQ(1U, s[5]->OutputCount());
ASSERT_EQ(2U, s[5]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->InputAt(0)), s.ToVreg(s[5]->InputAt(0)));
EXPECT_EQ(s.ToVreg(s[4]->Output()), s.ToVreg(s[5]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Uint32ModWithParametersForSUDIV) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Uint32Mod(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build(SUDIV);
ASSERT_EQ(3U, s.size());
EXPECT_EQ(kArmUdiv, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(kArmMul, s[1]->arch_opcode());
ASSERT_EQ(1U, s[1]->OutputCount());
ASSERT_EQ(2U, s[1]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->Output()), s.ToVreg(s[1]->InputAt(0)));
EXPECT_EQ(s.ToVreg(s[0]->InputAt(1)), s.ToVreg(s[1]->InputAt(1)));
EXPECT_EQ(kArmSub, s[2]->arch_opcode());
ASSERT_EQ(1U, s[2]->OutputCount());
ASSERT_EQ(2U, s[2]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->InputAt(0)), s.ToVreg(s[2]->InputAt(0)));
EXPECT_EQ(s.ToVreg(s[1]->Output()), s.ToVreg(s[2]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Uint32ModWithParametersForSUDIVAndMLS) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Uint32Mod(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build(MLS, SUDIV);
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kArmUdiv, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(kArmMls, s[1]->arch_opcode());
ASSERT_EQ(1U, s[1]->OutputCount());
ASSERT_EQ(3U, s[1]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->Output()), s.ToVreg(s[1]->InputAt(0)));
EXPECT_EQ(s.ToVreg(s[0]->InputAt(1)), s.ToVreg(s[1]->InputAt(1)));
EXPECT_EQ(s.ToVreg(s[0]->InputAt(0)), s.ToVreg(s[1]->InputAt(2)));
}
TEST_F(InstructionSelectorTest, Word32AndWithUbfxImmediateForARMv7) {
TRACED_FORRANGE(int32_t, width, 1, 32) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32And(m.Parameter(0),
m.Int32Constant(0xffffffffu >> (32 - width))));
Stream s = m.Build(ARMv7);
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmUbfx, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(0, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2)));
}
TRACED_FORRANGE(int32_t, width, 1, 32) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32And(m.Int32Constant(0xffffffffu >> (32 - width)),
m.Parameter(0)));
Stream s = m.Build(ARMv7);
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmUbfx, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(0, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2)));
}
}
TEST_F(InstructionSelectorTest, Word32AndWithBfcImmediateForARMv7) {
TRACED_FORRANGE(int32_t, lsb, 0, 31) {
TRACED_FORRANGE(int32_t, width, 9, (32 - lsb) - 1) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32And(
m.Parameter(0),
m.Int32Constant(~((0xffffffffu >> (32 - width)) << lsb))));
Stream s = m.Build(ARMv7);
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmBfc, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(
UnallocatedOperand::cast(s[0]->Output())->HasSameAsInputPolicy());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2)));
}
}
TRACED_FORRANGE(int32_t, lsb, 0, 31) {
TRACED_FORRANGE(int32_t, width, 9, (32 - lsb) - 1) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(
m.Word32And(m.Int32Constant(~((0xffffffffu >> (32 - width)) << lsb)),
m.Parameter(0)));
Stream s = m.Build(ARMv7);
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmBfc, s[0]->arch_opcode());
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_TRUE(
UnallocatedOperand::cast(s[0]->Output())->HasSameAsInputPolicy());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2)));
}
}
}
TEST_F(InstructionSelectorTest, Word32AndWith0xffff) {
{
StreamBuilder m(this, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const r = m.Word32And(p0, m.Int32Constant(0xffff));
m.Return(r);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmUxth, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(0, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const r = m.Word32And(m.Int32Constant(0xffff), p0);
m.Return(r);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmUxth, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(0, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Word32SarWithWord32Shl) {
{
StreamBuilder m(this, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const r =
m.Word32Sar(m.Word32Shl(p0, m.Int32Constant(24)), m.Int32Constant(24));
m.Return(r);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmSxtb, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(0, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output()));
}
{
StreamBuilder m(this, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const r =
m.Word32Sar(m.Word32Shl(p0, m.Int32Constant(16)), m.Int32Constant(16));
m.Return(r);
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmSxth, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(0, s.ToInt32(s[0]->InputAt(1)));
ASSERT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output()));
}
}
TEST_F(InstructionSelectorTest, Word32ShrWithWord32AndWithImmediateForARMv7) {
TRACED_FORRANGE(int32_t, lsb, 0, 31) {
TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) {
uint32_t max = 1 << lsb;
if (max > static_cast<uint32_t>(kMaxInt)) max -= 1;
uint32_t jnk = rng()->NextInt(max);
uint32_t msk = ((0xffffffffu >> (32 - width)) << lsb) | jnk;
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32Shr(m.Word32And(m.Parameter(0), m.Int32Constant(msk)),
m.Int32Constant(lsb)));
Stream s = m.Build(ARMv7);
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmUbfx, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2)));
}
}
TRACED_FORRANGE(int32_t, lsb, 0, 31) {
TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) {
uint32_t max = 1 << lsb;
if (max > static_cast<uint32_t>(kMaxInt)) max -= 1;
uint32_t jnk = rng()->NextInt(max);
uint32_t msk = ((0xffffffffu >> (32 - width)) << lsb) | jnk;
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32Shr(m.Word32And(m.Int32Constant(msk), m.Parameter(0)),
m.Int32Constant(lsb)));
Stream s = m.Build(ARMv7);
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmUbfx, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2)));
}
}
}
TEST_F(InstructionSelectorTest, Word32AndWithWord32Not) {
{
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Word32And(m.Parameter(0), m.Word32Not(m.Parameter(1))));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmBic, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
{
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Word32And(m.Word32Not(m.Parameter(0)), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmBic, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
TEST_F(InstructionSelectorTest, Word32EqualWithParameters) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Word32Equal(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmCmp, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R, s[0]->addressing_mode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
TEST_F(InstructionSelectorTest, Word32EqualWithImmediate) {
TRACED_FOREACH(int32_t, imm, kImmediates) {
if (imm == 0) continue;
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32Equal(m.Parameter(0), m.Int32Constant(imm)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmCmp, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_I, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
TRACED_FOREACH(int32_t, imm, kImmediates) {
if (imm == 0) continue;
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32Equal(m.Int32Constant(imm), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmCmp, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_I, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
}
TEST_F(InstructionSelectorTest, Word32EqualWithZero) {
{
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32Equal(m.Parameter(0), m.Int32Constant(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmTst, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->InputAt(0)), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
{
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32Equal(m.Int32Constant(0), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmTst, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(s[0]->InputAt(0)), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
EXPECT_EQ(kFlags_set, s[0]->flags_mode());
EXPECT_EQ(kEqual, s[0]->flags_condition());
}
}
TEST_F(InstructionSelectorTest, Word32NotWithParameter) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32Not(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmMvn, s[0]->arch_opcode());
EXPECT_EQ(kMode_Operand2_R, s[0]->addressing_mode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_F(InstructionSelectorTest, Word32AndWithWord32ShrWithImmediateForARMv7) {
TRACED_FORRANGE(int32_t, lsb, 0, 31) {
TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32And(m.Word32Shr(m.Parameter(0), m.Int32Constant(lsb)),
m.Int32Constant(0xffffffffu >> (32 - width))));
Stream s = m.Build(ARMv7);
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmUbfx, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2)));
}
}
TRACED_FORRANGE(int32_t, lsb, 0, 31) {
TRACED_FORRANGE(int32_t, width, 1, 32 - lsb) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Word32And(m.Int32Constant(0xffffffffu >> (32 - width)),
m.Word32Shr(m.Parameter(0), m.Int32Constant(lsb))));
Stream s = m.Build(ARMv7);
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kArmUbfx, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(lsb, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(width, s.ToInt32(s[0]->InputAt(2)));
}
}
}
} // namespace compiler
} // namespace internal
} // namespace v8