9e76247ae8
R=thibaudm@chromium.org, jgruber@chromium.org Bug: v8:10740 Change-Id: Iceb20f00f6f8505885856400a0c0228708ff3979 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2807610 Commit-Queue: Andreas Haas <ahaas@chromium.org> Reviewed-by: Thibaud Michaud <thibaudm@chromium.org> Reviewed-by: Georg Neis <neis@chromium.org> Cr-Commit-Position: refs/heads/master@{#73933}
551 lines
20 KiB
C++
551 lines
20 KiB
C++
// Copyright 2014 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "test/unittests/compiler/backend/instruction-sequence-unittest.h"
|
|
#include "src/base/utils/random-number-generator.h"
|
|
#include "src/compiler/pipeline.h"
|
|
#include "test/unittests/test-utils.h"
|
|
#include "testing/gmock/include/gmock/gmock.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
namespace compiler {
|
|
|
|
namespace {
|
|
constexpr int kMaxNumAllocatable =
|
|
std::max(Register::kNumRegisters, DoubleRegister::kNumRegisters);
|
|
static std::array<int, kMaxNumAllocatable> kAllocatableCodes =
|
|
base::make_array<kMaxNumAllocatable>(
|
|
[](size_t i) { return static_cast<int>(i); });
|
|
}
|
|
|
|
InstructionSequenceTest::InstructionSequenceTest()
|
|
: sequence_(nullptr),
|
|
num_general_registers_(Register::kNumRegisters),
|
|
num_double_registers_(DoubleRegister::kNumRegisters),
|
|
instruction_blocks_(zone()),
|
|
current_block_(nullptr),
|
|
block_returns_(false) {}
|
|
|
|
void InstructionSequenceTest::SetNumRegs(int num_general_registers,
|
|
int num_double_registers) {
|
|
CHECK(!config_);
|
|
CHECK(instructions_.empty());
|
|
CHECK(instruction_blocks_.empty());
|
|
CHECK_GE(Register::kNumRegisters, num_general_registers);
|
|
CHECK_GE(DoubleRegister::kNumRegisters, num_double_registers);
|
|
num_general_registers_ = num_general_registers;
|
|
num_double_registers_ = num_double_registers;
|
|
}
|
|
|
|
int InstructionSequenceTest::GetNumRegs(MachineRepresentation rep) {
|
|
switch (rep) {
|
|
case MachineRepresentation::kFloat32:
|
|
return config()->num_float_registers();
|
|
case MachineRepresentation::kFloat64:
|
|
return config()->num_double_registers();
|
|
case MachineRepresentation::kSimd128:
|
|
return config()->num_simd128_registers();
|
|
default:
|
|
return config()->num_general_registers();
|
|
}
|
|
}
|
|
|
|
int InstructionSequenceTest::GetAllocatableCode(int index,
|
|
MachineRepresentation rep) {
|
|
switch (rep) {
|
|
case MachineRepresentation::kFloat32:
|
|
return config()->GetAllocatableFloatCode(index);
|
|
case MachineRepresentation::kFloat64:
|
|
return config()->GetAllocatableDoubleCode(index);
|
|
case MachineRepresentation::kSimd128:
|
|
return config()->GetAllocatableSimd128Code(index);
|
|
default:
|
|
return config()->GetAllocatableGeneralCode(index);
|
|
}
|
|
}
|
|
|
|
const RegisterConfiguration* InstructionSequenceTest::config() {
|
|
if (!config_) {
|
|
config_.reset(new RegisterConfiguration(
|
|
num_general_registers_, num_double_registers_, num_general_registers_,
|
|
num_double_registers_, kAllocatableCodes.data(),
|
|
kAllocatableCodes.data(),
|
|
kSimpleFPAliasing ? RegisterConfiguration::OVERLAP
|
|
: RegisterConfiguration::COMBINE));
|
|
}
|
|
return config_.get();
|
|
}
|
|
|
|
InstructionSequence* InstructionSequenceTest::sequence() {
|
|
if (sequence_ == nullptr) {
|
|
sequence_ = zone()->New<InstructionSequence>(isolate(), zone(),
|
|
&instruction_blocks_);
|
|
sequence_->SetRegisterConfigurationForTesting(
|
|
InstructionSequenceTest::config());
|
|
}
|
|
return sequence_;
|
|
}
|
|
|
|
void InstructionSequenceTest::StartLoop(int loop_blocks) {
|
|
CHECK_NULL(current_block_);
|
|
if (!loop_blocks_.empty()) {
|
|
CHECK(!loop_blocks_.back().loop_header_.IsValid());
|
|
}
|
|
LoopData loop_data = {Rpo::Invalid(), loop_blocks};
|
|
loop_blocks_.push_back(loop_data);
|
|
}
|
|
|
|
void InstructionSequenceTest::EndLoop() {
|
|
CHECK_NULL(current_block_);
|
|
CHECK(!loop_blocks_.empty());
|
|
CHECK_EQ(0, loop_blocks_.back().expected_blocks_);
|
|
loop_blocks_.pop_back();
|
|
}
|
|
|
|
void InstructionSequenceTest::StartBlock(bool deferred) {
|
|
block_returns_ = false;
|
|
NewBlock(deferred);
|
|
}
|
|
|
|
Instruction* InstructionSequenceTest::EndBlock(BlockCompletion completion) {
|
|
Instruction* result = nullptr;
|
|
if (block_returns_) {
|
|
CHECK(completion.type_ == kBlockEnd || completion.type_ == kFallThrough);
|
|
completion.type_ = kBlockEnd;
|
|
}
|
|
switch (completion.type_) {
|
|
case kBlockEnd:
|
|
break;
|
|
case kFallThrough:
|
|
result = EmitJump(completion.op_);
|
|
break;
|
|
case kJump:
|
|
CHECK(!block_returns_);
|
|
result = EmitJump(completion.op_);
|
|
break;
|
|
case kBranch:
|
|
CHECK(!block_returns_);
|
|
result = EmitBranch(completion.op_);
|
|
break;
|
|
}
|
|
completions_.push_back(completion);
|
|
CHECK_NOT_NULL(current_block_);
|
|
int end = static_cast<int>(sequence()->instructions().size());
|
|
if (current_block_->code_start() == end) { // Empty block. Insert a nop.
|
|
sequence()->AddInstruction(Instruction::New(zone(), kArchNop));
|
|
}
|
|
sequence()->EndBlock(current_block_->rpo_number());
|
|
current_block_ = nullptr;
|
|
return result;
|
|
}
|
|
|
|
InstructionSequenceTest::TestOperand InstructionSequenceTest::Imm(int32_t imm) {
|
|
return TestOperand(kImmediate, imm);
|
|
}
|
|
|
|
InstructionSequenceTest::VReg InstructionSequenceTest::Define(
|
|
TestOperand output_op) {
|
|
VReg vreg = NewReg(output_op);
|
|
InstructionOperand outputs[1]{ConvertOutputOp(vreg, output_op)};
|
|
Emit(kArchNop, 1, outputs);
|
|
return vreg;
|
|
}
|
|
|
|
Instruction* InstructionSequenceTest::Return(TestOperand input_op_0) {
|
|
block_returns_ = true;
|
|
InstructionOperand inputs[1]{ConvertInputOp(input_op_0)};
|
|
return Emit(kArchRet, 0, nullptr, 1, inputs);
|
|
}
|
|
|
|
PhiInstruction* InstructionSequenceTest::Phi(VReg incoming_vreg_0,
|
|
VReg incoming_vreg_1,
|
|
VReg incoming_vreg_2,
|
|
VReg incoming_vreg_3) {
|
|
VReg inputs[] = {incoming_vreg_0, incoming_vreg_1, incoming_vreg_2,
|
|
incoming_vreg_3};
|
|
size_t input_count = 0;
|
|
for (; input_count < arraysize(inputs); ++input_count) {
|
|
if (inputs[input_count].value_ == kNoValue) break;
|
|
}
|
|
CHECK_LT(0, input_count);
|
|
auto phi = zone()->New<PhiInstruction>(zone(), NewReg().value_, input_count);
|
|
for (size_t i = 0; i < input_count; ++i) {
|
|
SetInput(phi, i, inputs[i]);
|
|
}
|
|
current_block_->AddPhi(phi);
|
|
return phi;
|
|
}
|
|
|
|
PhiInstruction* InstructionSequenceTest::Phi(VReg incoming_vreg_0,
|
|
size_t input_count) {
|
|
auto phi = zone()->New<PhiInstruction>(zone(), NewReg().value_, input_count);
|
|
SetInput(phi, 0, incoming_vreg_0);
|
|
current_block_->AddPhi(phi);
|
|
return phi;
|
|
}
|
|
|
|
void InstructionSequenceTest::SetInput(PhiInstruction* phi, size_t input,
|
|
VReg vreg) {
|
|
CHECK_NE(kNoValue, vreg.value_);
|
|
phi->SetInput(input, vreg.value_);
|
|
}
|
|
|
|
InstructionSequenceTest::VReg InstructionSequenceTest::DefineConstant(
|
|
int32_t imm) {
|
|
VReg vreg = NewReg();
|
|
sequence()->AddConstant(vreg.value_, Constant(imm));
|
|
InstructionOperand outputs[1]{ConstantOperand(vreg.value_)};
|
|
Emit(kArchNop, 1, outputs);
|
|
return vreg;
|
|
}
|
|
|
|
Instruction* InstructionSequenceTest::EmitNop() { return Emit(kArchNop); }
|
|
|
|
static size_t CountInputs(size_t size,
|
|
InstructionSequenceTest::TestOperand* inputs) {
|
|
size_t i = 0;
|
|
for (; i < size; ++i) {
|
|
if (inputs[i].type_ == InstructionSequenceTest::kInvalid) break;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
Instruction* InstructionSequenceTest::EmitI(size_t input_size,
|
|
TestOperand* inputs) {
|
|
InstructionOperand* mapped_inputs = ConvertInputs(input_size, inputs);
|
|
return Emit(kArchNop, 0, nullptr, input_size, mapped_inputs);
|
|
}
|
|
|
|
Instruction* InstructionSequenceTest::EmitI(TestOperand input_op_0,
|
|
TestOperand input_op_1,
|
|
TestOperand input_op_2,
|
|
TestOperand input_op_3) {
|
|
TestOperand inputs[] = {input_op_0, input_op_1, input_op_2, input_op_3};
|
|
return EmitI(CountInputs(arraysize(inputs), inputs), inputs);
|
|
}
|
|
|
|
InstructionSequenceTest::VReg InstructionSequenceTest::EmitOI(
|
|
TestOperand output_op, size_t input_size, TestOperand* inputs) {
|
|
VReg output_vreg = NewReg(output_op);
|
|
InstructionOperand outputs[1]{ConvertOutputOp(output_vreg, output_op)};
|
|
InstructionOperand* mapped_inputs = ConvertInputs(input_size, inputs);
|
|
Emit(kArchNop, 1, outputs, input_size, mapped_inputs);
|
|
return output_vreg;
|
|
}
|
|
|
|
InstructionSequenceTest::VReg InstructionSequenceTest::EmitOI(
|
|
TestOperand output_op, TestOperand input_op_0, TestOperand input_op_1,
|
|
TestOperand input_op_2, TestOperand input_op_3) {
|
|
TestOperand inputs[] = {input_op_0, input_op_1, input_op_2, input_op_3};
|
|
return EmitOI(output_op, CountInputs(arraysize(inputs), inputs), inputs);
|
|
}
|
|
|
|
InstructionSequenceTest::VRegPair InstructionSequenceTest::EmitOOI(
|
|
TestOperand output_op_0, TestOperand output_op_1, size_t input_size,
|
|
TestOperand* inputs) {
|
|
VRegPair output_vregs =
|
|
std::make_pair(NewReg(output_op_0), NewReg(output_op_1));
|
|
InstructionOperand outputs[2]{
|
|
ConvertOutputOp(output_vregs.first, output_op_0),
|
|
ConvertOutputOp(output_vregs.second, output_op_1)};
|
|
InstructionOperand* mapped_inputs = ConvertInputs(input_size, inputs);
|
|
Emit(kArchNop, 2, outputs, input_size, mapped_inputs);
|
|
return output_vregs;
|
|
}
|
|
|
|
InstructionSequenceTest::VRegPair InstructionSequenceTest::EmitOOI(
|
|
TestOperand output_op_0, TestOperand output_op_1, TestOperand input_op_0,
|
|
TestOperand input_op_1, TestOperand input_op_2, TestOperand input_op_3) {
|
|
TestOperand inputs[] = {input_op_0, input_op_1, input_op_2, input_op_3};
|
|
return EmitOOI(output_op_0, output_op_1,
|
|
CountInputs(arraysize(inputs), inputs), inputs);
|
|
}
|
|
|
|
InstructionSequenceTest::VReg InstructionSequenceTest::EmitCall(
|
|
TestOperand output_op, size_t input_size, TestOperand* inputs) {
|
|
VReg output_vreg = NewReg(output_op);
|
|
InstructionOperand outputs[1]{ConvertOutputOp(output_vreg, output_op)};
|
|
CHECK(UnallocatedOperand::cast(outputs[0]).HasFixedPolicy());
|
|
InstructionOperand* mapped_inputs = ConvertInputs(input_size, inputs);
|
|
Emit(kArchCallCodeObject, 1, outputs, input_size, mapped_inputs, 0, nullptr,
|
|
true);
|
|
return output_vreg;
|
|
}
|
|
|
|
InstructionSequenceTest::VReg InstructionSequenceTest::EmitCall(
|
|
TestOperand output_op, TestOperand input_op_0, TestOperand input_op_1,
|
|
TestOperand input_op_2, TestOperand input_op_3) {
|
|
TestOperand inputs[] = {input_op_0, input_op_1, input_op_2, input_op_3};
|
|
return EmitCall(output_op, CountInputs(arraysize(inputs), inputs), inputs);
|
|
}
|
|
|
|
Instruction* InstructionSequenceTest::EmitBranch(TestOperand input_op) {
|
|
InstructionOperand inputs[4]{ConvertInputOp(input_op), ConvertInputOp(Imm()),
|
|
ConvertInputOp(Imm()), ConvertInputOp(Imm())};
|
|
InstructionCode opcode = kArchJmp | FlagsModeField::encode(kFlags_branch) |
|
|
FlagsConditionField::encode(kEqual);
|
|
auto instruction = NewInstruction(opcode, 0, nullptr, 4, inputs);
|
|
return AddInstruction(instruction);
|
|
}
|
|
|
|
Instruction* InstructionSequenceTest::EmitFallThrough() {
|
|
auto instruction = NewInstruction(kArchNop, 0, nullptr);
|
|
return AddInstruction(instruction);
|
|
}
|
|
|
|
Instruction* InstructionSequenceTest::EmitJump(TestOperand input_op) {
|
|
InstructionOperand inputs[1]{ConvertInputOp(input_op)};
|
|
auto instruction = NewInstruction(kArchJmp, 0, nullptr, 1, inputs);
|
|
return AddInstruction(instruction);
|
|
}
|
|
|
|
Instruction* InstructionSequenceTest::NewInstruction(
|
|
InstructionCode code, size_t outputs_size, InstructionOperand* outputs,
|
|
size_t inputs_size, InstructionOperand* inputs, size_t temps_size,
|
|
InstructionOperand* temps) {
|
|
CHECK(current_block_);
|
|
return Instruction::New(zone(), code, outputs_size, outputs, inputs_size,
|
|
inputs, temps_size, temps);
|
|
}
|
|
|
|
InstructionOperand InstructionSequenceTest::Unallocated(
|
|
TestOperand op, UnallocatedOperand::ExtendedPolicy policy) {
|
|
return UnallocatedOperand(policy, op.vreg_.value_);
|
|
}
|
|
|
|
InstructionOperand InstructionSequenceTest::Unallocated(
|
|
TestOperand op, UnallocatedOperand::ExtendedPolicy policy,
|
|
UnallocatedOperand::Lifetime lifetime) {
|
|
return UnallocatedOperand(policy, lifetime, op.vreg_.value_);
|
|
}
|
|
|
|
InstructionOperand InstructionSequenceTest::Unallocated(
|
|
TestOperand op, UnallocatedOperand::ExtendedPolicy policy, int index) {
|
|
return UnallocatedOperand(policy, index, op.vreg_.value_);
|
|
}
|
|
|
|
InstructionOperand InstructionSequenceTest::Unallocated(
|
|
TestOperand op, UnallocatedOperand::BasicPolicy policy, int index) {
|
|
return UnallocatedOperand(policy, index, op.vreg_.value_);
|
|
}
|
|
|
|
InstructionOperand* InstructionSequenceTest::ConvertInputs(
|
|
size_t input_size, TestOperand* inputs) {
|
|
InstructionOperand* mapped_inputs =
|
|
zone()->NewArray<InstructionOperand>(static_cast<int>(input_size));
|
|
for (size_t i = 0; i < input_size; ++i) {
|
|
mapped_inputs[i] = ConvertInputOp(inputs[i]);
|
|
}
|
|
return mapped_inputs;
|
|
}
|
|
|
|
InstructionOperand InstructionSequenceTest::ConvertInputOp(TestOperand op) {
|
|
if (op.type_ == kImmediate) {
|
|
CHECK_EQ(op.vreg_.value_, kNoValue);
|
|
return ImmediateOperand(ImmediateOperand::INLINE_INT32, op.value_);
|
|
}
|
|
CHECK_NE(op.vreg_.value_, kNoValue);
|
|
switch (op.type_) {
|
|
case kNone:
|
|
return Unallocated(op, UnallocatedOperand::NONE,
|
|
UnallocatedOperand::USED_AT_START);
|
|
case kUnique:
|
|
return Unallocated(op, UnallocatedOperand::NONE);
|
|
case kUniqueRegister:
|
|
return Unallocated(op, UnallocatedOperand::MUST_HAVE_REGISTER);
|
|
case kRegister:
|
|
return Unallocated(op, UnallocatedOperand::MUST_HAVE_REGISTER,
|
|
UnallocatedOperand::USED_AT_START);
|
|
case kSlot:
|
|
return Unallocated(op, UnallocatedOperand::MUST_HAVE_SLOT,
|
|
UnallocatedOperand::USED_AT_START);
|
|
case kDeoptArg:
|
|
return Unallocated(op, UnallocatedOperand::REGISTER_OR_SLOT,
|
|
UnallocatedOperand::USED_AT_END);
|
|
case kFixedRegister: {
|
|
MachineRepresentation rep = GetCanonicalRep(op);
|
|
CHECK(0 <= op.value_ && op.value_ < GetNumRegs(rep));
|
|
if (DoesRegisterAllocation()) {
|
|
auto extended_policy = IsFloatingPoint(rep)
|
|
? UnallocatedOperand::FIXED_FP_REGISTER
|
|
: UnallocatedOperand::FIXED_REGISTER;
|
|
return Unallocated(op, extended_policy, op.value_);
|
|
} else {
|
|
return AllocatedOperand(LocationOperand::REGISTER, rep, op.value_);
|
|
}
|
|
}
|
|
case kFixedSlot:
|
|
if (DoesRegisterAllocation()) {
|
|
return Unallocated(op, UnallocatedOperand::FIXED_SLOT, op.value_);
|
|
} else {
|
|
return AllocatedOperand(LocationOperand::STACK_SLOT,
|
|
GetCanonicalRep(op), op.value_);
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
InstructionOperand InstructionSequenceTest::ConvertOutputOp(VReg vreg,
|
|
TestOperand op) {
|
|
CHECK_EQ(op.vreg_.value_, kNoValue);
|
|
op.vreg_ = vreg;
|
|
switch (op.type_) {
|
|
case kSameAsInput:
|
|
return Unallocated(op, UnallocatedOperand::SAME_AS_INPUT);
|
|
case kRegister:
|
|
return Unallocated(op, UnallocatedOperand::MUST_HAVE_REGISTER);
|
|
case kFixedSlot:
|
|
if (DoesRegisterAllocation()) {
|
|
return Unallocated(op, UnallocatedOperand::FIXED_SLOT, op.value_);
|
|
} else {
|
|
return AllocatedOperand(LocationOperand::STACK_SLOT,
|
|
GetCanonicalRep(op), op.value_);
|
|
}
|
|
case kFixedRegister: {
|
|
MachineRepresentation rep = GetCanonicalRep(op);
|
|
CHECK(0 <= op.value_ && op.value_ < GetNumRegs(rep));
|
|
if (DoesRegisterAllocation()) {
|
|
auto extended_policy = IsFloatingPoint(rep)
|
|
? UnallocatedOperand::FIXED_FP_REGISTER
|
|
: UnallocatedOperand::FIXED_REGISTER;
|
|
return Unallocated(op, extended_policy, op.value_);
|
|
} else {
|
|
return AllocatedOperand(LocationOperand::REGISTER, rep, op.value_);
|
|
}
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
InstructionBlock* InstructionSequenceTest::NewBlock(bool deferred) {
|
|
CHECK_NULL(current_block_);
|
|
Rpo rpo = Rpo::FromInt(static_cast<int>(instruction_blocks_.size()));
|
|
Rpo loop_header = Rpo::Invalid();
|
|
Rpo loop_end = Rpo::Invalid();
|
|
if (!loop_blocks_.empty()) {
|
|
auto& loop_data = loop_blocks_.back();
|
|
// This is a loop header.
|
|
if (!loop_data.loop_header_.IsValid()) {
|
|
loop_end = Rpo::FromInt(rpo.ToInt() + loop_data.expected_blocks_);
|
|
loop_data.expected_blocks_--;
|
|
loop_data.loop_header_ = rpo;
|
|
} else {
|
|
// This is a loop body.
|
|
CHECK_NE(0, loop_data.expected_blocks_);
|
|
// TODO(dcarney): handle nested loops.
|
|
loop_data.expected_blocks_--;
|
|
loop_header = loop_data.loop_header_;
|
|
}
|
|
}
|
|
// Construct instruction block.
|
|
auto instruction_block = zone()->New<InstructionBlock>(
|
|
zone(), rpo, loop_header, loop_end, Rpo::Invalid(), deferred, false);
|
|
instruction_blocks_.push_back(instruction_block);
|
|
current_block_ = instruction_block;
|
|
sequence()->StartBlock(rpo);
|
|
return instruction_block;
|
|
}
|
|
|
|
void InstructionSequenceTest::WireBlocks() {
|
|
CHECK(!current_block());
|
|
CHECK(instruction_blocks_.size() == completions_.size());
|
|
CHECK(loop_blocks_.empty());
|
|
// Wire in end block to look like a scheduler produced cfg.
|
|
auto end_block = NewBlock();
|
|
Emit(kArchNop);
|
|
current_block_ = nullptr;
|
|
sequence()->EndBlock(end_block->rpo_number());
|
|
size_t offset = 0;
|
|
for (const auto& completion : completions_) {
|
|
switch (completion.type_) {
|
|
case kBlockEnd: {
|
|
auto block = instruction_blocks_[offset];
|
|
block->successors().push_back(end_block->rpo_number());
|
|
end_block->predecessors().push_back(block->rpo_number());
|
|
break;
|
|
}
|
|
case kFallThrough: // Fallthrough.
|
|
case kJump:
|
|
WireBlock(offset, completion.offset_0_);
|
|
break;
|
|
case kBranch:
|
|
WireBlock(offset, completion.offset_0_);
|
|
WireBlock(offset, completion.offset_1_);
|
|
break;
|
|
}
|
|
++offset;
|
|
}
|
|
CalculateDominators();
|
|
}
|
|
|
|
void InstructionSequenceTest::WireBlock(size_t block_offset, int jump_offset) {
|
|
size_t target_block_offset = block_offset + static_cast<size_t>(jump_offset);
|
|
CHECK(block_offset < instruction_blocks_.size());
|
|
CHECK(target_block_offset < instruction_blocks_.size());
|
|
auto block = instruction_blocks_[block_offset];
|
|
auto target = instruction_blocks_[target_block_offset];
|
|
block->successors().push_back(target->rpo_number());
|
|
target->predecessors().push_back(block->rpo_number());
|
|
}
|
|
|
|
void InstructionSequenceTest::CalculateDominators() {
|
|
CHECK_GT(instruction_blocks_.size(), 0);
|
|
ZoneVector<int> dominator_depth(instruction_blocks_.size(), -1, zone());
|
|
|
|
CHECK_EQ(instruction_blocks_[0]->rpo_number(), RpoNumber::FromInt(0));
|
|
dominator_depth[0] = 0;
|
|
instruction_blocks_[0]->set_dominator(RpoNumber::FromInt(0));
|
|
|
|
for (size_t i = 1; i < instruction_blocks_.size(); i++) {
|
|
InstructionBlock* block = instruction_blocks_[i];
|
|
auto pred = block->predecessors().begin();
|
|
auto end = block->predecessors().end();
|
|
DCHECK(pred != end); // All blocks except start have predecessors.
|
|
RpoNumber dominator = *pred;
|
|
// For multiple predecessors, walk up the dominator tree until a common
|
|
// dominator is found. Visitation order guarantees that all predecessors
|
|
// except for backwards edges have been visited.
|
|
for (++pred; pred != end; ++pred) {
|
|
// Don't examine backwards edges.
|
|
if (dominator_depth[pred->ToInt()] < 0) continue;
|
|
|
|
RpoNumber other = *pred;
|
|
while (dominator != other) {
|
|
if (dominator_depth[dominator.ToInt()] <
|
|
dominator_depth[other.ToInt()]) {
|
|
other = instruction_blocks_[other.ToInt()]->dominator();
|
|
} else {
|
|
dominator = instruction_blocks_[dominator.ToInt()]->dominator();
|
|
}
|
|
}
|
|
}
|
|
block->set_dominator(dominator);
|
|
dominator_depth[i] = dominator_depth[dominator.ToInt()] + 1;
|
|
}
|
|
}
|
|
|
|
Instruction* InstructionSequenceTest::Emit(
|
|
InstructionCode code, size_t outputs_size, InstructionOperand* outputs,
|
|
size_t inputs_size, InstructionOperand* inputs, size_t temps_size,
|
|
InstructionOperand* temps, bool is_call) {
|
|
auto instruction = NewInstruction(code, outputs_size, outputs, inputs_size,
|
|
inputs, temps_size, temps);
|
|
if (is_call) instruction->MarkAsCall();
|
|
return AddInstruction(instruction);
|
|
}
|
|
|
|
Instruction* InstructionSequenceTest::AddInstruction(Instruction* instruction) {
|
|
sequence()->AddInstruction(instruction);
|
|
return instruction;
|
|
}
|
|
|
|
} // namespace compiler
|
|
} // namespace internal
|
|
} // namespace v8
|