v8/src/factory.h
Benedikt Meurer b9ee0657c6 [builtins] Unified C++ implementation of Map and Set iterators.
This is the first step in optimizing Map and Set iterators. This ports
all the base functionality including

 - Set.prototype.entries
 - Set.prototype.values
 - %SetPrototypeIterator%.next
 - Map.prototype.entries
 - Map.prototype.keys
 - Map.prototype.values
 - %MapPrototypeIterator%.next

to C++ and removes all the dead code and the previous half JavaScript
implementation. The next step is to port core parts to CodeStubAssembler
and finally inline the fast-paths into TurboFan directly. The relevant
design document is at:

  https://docs.google.com/document/d/13z1fvRVpe_oEroplXEEX0a3WK94fhXorHjcOMsDmR-8

Most of this work is very similar to how the Array iterator works and we
mostly follow the same process for the implementation.

R=jgruber@chromium.org

Bug: v8:6571
Change-Id: Ieb253d6705ba4077c697a5ff0cb6f87f9c4056ff
Reviewed-on: https://chromium-review.googlesource.com/561138
Reviewed-by: Jakob Gruber <jgruber@chromium.org>
Commit-Queue: Benedikt Meurer <bmeurer@chromium.org>
Cr-Commit-Position: refs/heads/master@{#46441}
2017-07-06 11:55:14 +00:00

867 lines
36 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_FACTORY_H_
#define V8_FACTORY_H_
#include "src/feedback-vector.h"
#include "src/globals.h"
#include "src/isolate.h"
#include "src/messages.h"
#include "src/objects/descriptor-array.h"
#include "src/objects/dictionary.h"
#include "src/objects/scope-info.h"
#include "src/objects/string.h"
#include "src/string-hasher.h"
namespace v8 {
namespace internal {
class AliasedArgumentsEntry;
class BreakPointInfo;
class BoilerplateDescription;
class ConstantElementsPair;
class CoverageInfo;
class DebugInfo;
struct SourceRange;
class PreParsedScopeData;
enum FunctionMode {
// With prototype.
FUNCTION_WITH_WRITEABLE_PROTOTYPE,
FUNCTION_WITH_READONLY_PROTOTYPE,
// Without prototype.
FUNCTION_WITHOUT_PROTOTYPE
};
// Interface for handle based allocation.
class V8_EXPORT_PRIVATE Factory final {
public:
Handle<Oddball> NewOddball(Handle<Map> map, const char* to_string,
Handle<Object> to_number, const char* type_of,
byte kind);
// Allocates a fixed array initialized with undefined values.
Handle<FixedArray> NewFixedArray(int size,
PretenureFlag pretenure = NOT_TENURED);
// Tries allocating a fixed array initialized with undefined values.
// In case of an allocation failure (OOM) an empty handle is returned.
// The caller has to manually signal an
// v8::internal::Heap::FatalProcessOutOfMemory typically by calling
// NewFixedArray as a fallback.
MUST_USE_RESULT
MaybeHandle<FixedArray> TryNewFixedArray(
int size, PretenureFlag pretenure = NOT_TENURED);
// Allocate a new fixed array with non-existing entries (the hole).
Handle<FixedArray> NewFixedArrayWithHoles(
int size,
PretenureFlag pretenure = NOT_TENURED);
// Allocates an uninitialized fixed array. It must be filled by the caller.
Handle<FixedArray> NewUninitializedFixedArray(int size);
// Allocates a fixed array for name-value pairs of boilerplate properties and
// calculates the number of properties we need to store in the backing store.
Handle<BoilerplateDescription> NewBoilerplateDescription(int boilerplate,
int all_properties,
int index_keys,
bool has_seen_proto);
// Allocate a new uninitialized fixed double array.
// The function returns a pre-allocated empty fixed array for capacity = 0,
// so the return type must be the general fixed array class.
Handle<FixedArrayBase> NewFixedDoubleArray(
int size,
PretenureFlag pretenure = NOT_TENURED);
// Allocate a new fixed double array with hole values.
Handle<FixedArrayBase> NewFixedDoubleArrayWithHoles(
int size,
PretenureFlag pretenure = NOT_TENURED);
Handle<FrameArray> NewFrameArray(int number_of_frames,
PretenureFlag pretenure = NOT_TENURED);
Handle<OrderedHashSet> NewOrderedHashSet();
Handle<OrderedHashMap> NewOrderedHashMap();
Handle<SmallOrderedHashSet> NewSmallOrderedHashSet(
int size = SmallOrderedHashSet::kMinCapacity,
PretenureFlag pretenure = NOT_TENURED);
Handle<SmallOrderedHashMap> NewSmallOrderedHashMap(
int size = SmallOrderedHashMap::kMinCapacity,
PretenureFlag pretenure = NOT_TENURED);
// Create a new PrototypeInfo struct.
Handle<PrototypeInfo> NewPrototypeInfo();
// Create a new Tuple2 struct.
Handle<Tuple2> NewTuple2(Handle<Object> value1, Handle<Object> value2);
// Create a new Tuple3 struct.
Handle<Tuple3> NewTuple3(Handle<Object> value1, Handle<Object> value2,
Handle<Object> value3);
// Create a new ContextExtension struct.
Handle<ContextExtension> NewContextExtension(Handle<ScopeInfo> scope_info,
Handle<Object> extension);
// Create a new ConstantElementsPair struct.
Handle<ConstantElementsPair> NewConstantElementsPair(
ElementsKind elements_kind, Handle<FixedArrayBase> constant_values);
// Create a pre-tenured empty AccessorPair.
Handle<AccessorPair> NewAccessorPair();
// Create an empty TypeFeedbackInfo.
Handle<TypeFeedbackInfo> NewTypeFeedbackInfo();
// Finds the internalized copy for string in the string table.
// If not found, a new string is added to the table and returned.
Handle<String> InternalizeUtf8String(Vector<const char> str);
Handle<String> InternalizeUtf8String(const char* str) {
return InternalizeUtf8String(CStrVector(str));
}
Handle<String> InternalizeOneByteString(Vector<const uint8_t> str);
Handle<String> InternalizeOneByteString(
Handle<SeqOneByteString>, int from, int length);
Handle<String> InternalizeTwoByteString(Vector<const uc16> str);
template<class StringTableKey>
Handle<String> InternalizeStringWithKey(StringTableKey* key);
// Internalized strings are created in the old generation (data space).
Handle<String> InternalizeString(Handle<String> string) {
if (string->IsInternalizedString()) return string;
return StringTable::LookupString(isolate(), string);
}
Handle<Name> InternalizeName(Handle<Name> name) {
if (name->IsUniqueName()) return name;
return StringTable::LookupString(isolate(), Handle<String>::cast(name));
}
// String creation functions. Most of the string creation functions take
// a Heap::PretenureFlag argument to optionally request that they be
// allocated in the old generation. The pretenure flag defaults to
// DONT_TENURE.
//
// Creates a new String object. There are two String encodings: one-byte and
// two-byte. One should choose between the three string factory functions
// based on the encoding of the string buffer that the string is
// initialized from.
// - ...FromOneByte initializes the string from a buffer that is Latin1
// encoded (it does not check that the buffer is Latin1 encoded) and
// the result will be Latin1 encoded.
// - ...FromUtf8 initializes the string from a buffer that is UTF-8
// encoded. If the characters are all ASCII characters, the result
// will be Latin1 encoded, otherwise it will converted to two-byte.
// - ...FromTwoByte initializes the string from a buffer that is two-byte
// encoded. If the characters are all Latin1 characters, the result
// will be converted to Latin1, otherwise it will be left as two-byte.
//
// One-byte strings are pretenured when used as keys in the SourceCodeCache.
MUST_USE_RESULT MaybeHandle<String> NewStringFromOneByte(
Vector<const uint8_t> str, PretenureFlag pretenure = NOT_TENURED);
template <size_t N>
inline Handle<String> NewStringFromStaticChars(
const char (&str)[N], PretenureFlag pretenure = NOT_TENURED) {
DCHECK(N == StrLength(str) + 1);
return NewStringFromOneByte(STATIC_CHAR_VECTOR(str), pretenure)
.ToHandleChecked();
}
inline Handle<String> NewStringFromAsciiChecked(
const char* str,
PretenureFlag pretenure = NOT_TENURED) {
return NewStringFromOneByte(
OneByteVector(str), pretenure).ToHandleChecked();
}
// UTF8 strings are pretenured when used for regexp literal patterns and
// flags in the parser.
MUST_USE_RESULT MaybeHandle<String> NewStringFromUtf8(
Vector<const char> str, PretenureFlag pretenure = NOT_TENURED);
MUST_USE_RESULT MaybeHandle<String> NewStringFromUtf8SubString(
Handle<SeqOneByteString> str, int begin, int end,
PretenureFlag pretenure = NOT_TENURED);
MUST_USE_RESULT MaybeHandle<String> NewStringFromTwoByte(
Vector<const uc16> str, PretenureFlag pretenure = NOT_TENURED);
MUST_USE_RESULT MaybeHandle<String> NewStringFromTwoByte(
const ZoneVector<uc16>* str, PretenureFlag pretenure = NOT_TENURED);
Handle<JSStringIterator> NewJSStringIterator(Handle<String> string);
// Allocates an internalized string in old space based on the character
// stream.
Handle<String> NewInternalizedStringFromUtf8(Vector<const char> str,
int chars, uint32_t hash_field);
Handle<String> NewOneByteInternalizedString(Vector<const uint8_t> str,
uint32_t hash_field);
Handle<String> NewOneByteInternalizedSubString(
Handle<SeqOneByteString> string, int offset, int length,
uint32_t hash_field);
Handle<String> NewTwoByteInternalizedString(Vector<const uc16> str,
uint32_t hash_field);
Handle<String> NewInternalizedStringImpl(Handle<String> string, int chars,
uint32_t hash_field);
// Compute the matching internalized string map for a string if possible.
// Empty handle is returned if string is in new space or not flattened.
MUST_USE_RESULT MaybeHandle<Map> InternalizedStringMapForString(
Handle<String> string);
// Creates an internalized copy of an external string. |string| must be
// of type StringClass.
template <class StringClass>
Handle<StringClass> InternalizeExternalString(Handle<String> string);
// Allocates and partially initializes an one-byte or two-byte String. The
// characters of the string are uninitialized. Currently used in regexp code
// only, where they are pretenured.
MUST_USE_RESULT MaybeHandle<SeqOneByteString> NewRawOneByteString(
int length,
PretenureFlag pretenure = NOT_TENURED);
MUST_USE_RESULT MaybeHandle<SeqTwoByteString> NewRawTwoByteString(
int length,
PretenureFlag pretenure = NOT_TENURED);
// Creates a single character string where the character has given code.
// A cache is used for Latin1 codes.
Handle<String> LookupSingleCharacterStringFromCode(uint32_t code);
// Create a new cons string object which consists of a pair of strings.
MUST_USE_RESULT MaybeHandle<String> NewConsString(Handle<String> left,
Handle<String> right);
MUST_USE_RESULT Handle<String> NewConsString(Handle<String> left,
Handle<String> right, int length,
bool one_byte);
// Create or lookup a single characters tring made up of a utf16 surrogate
// pair.
Handle<String> NewSurrogatePairString(uint16_t lead, uint16_t trail);
// Create a new string object which holds a proper substring of a string.
Handle<String> NewProperSubString(Handle<String> str,
int begin,
int end);
// Create a new string object which holds a substring of a string.
Handle<String> NewSubString(Handle<String> str, int begin, int end) {
if (begin == 0 && end == str->length()) return str;
return NewProperSubString(str, begin, end);
}
// Creates a new external String object. There are two String encodings
// in the system: one-byte and two-byte. Unlike other String types, it does
// not make sense to have a UTF-8 factory function for external strings,
// because we cannot change the underlying buffer. Note that these strings
// are backed by a string resource that resides outside the V8 heap.
MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromOneByte(
const ExternalOneByteString::Resource* resource);
MUST_USE_RESULT MaybeHandle<String> NewExternalStringFromTwoByte(
const ExternalTwoByteString::Resource* resource);
// Create a new external string object for one-byte encoded native script.
// It does not cache the resource data pointer.
Handle<ExternalOneByteString> NewNativeSourceString(
const ExternalOneByteString::Resource* resource);
// Create a symbol.
Handle<Symbol> NewSymbol();
Handle<Symbol> NewPrivateSymbol();
// Create a global (but otherwise uninitialized) context.
Handle<Context> NewNativeContext();
// Create a script context.
Handle<Context> NewScriptContext(Handle<JSFunction> function,
Handle<ScopeInfo> scope_info);
// Create an empty script context table.
Handle<ScriptContextTable> NewScriptContextTable();
// Create a module context.
Handle<Context> NewModuleContext(Handle<Module> module,
Handle<JSFunction> function,
Handle<ScopeInfo> scope_info);
// Create a function or eval context.
Handle<Context> NewFunctionContext(int length, Handle<JSFunction> function,
ScopeType scope_type);
// Create a catch context.
Handle<Context> NewCatchContext(Handle<JSFunction> function,
Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<String> name,
Handle<Object> thrown_object);
// Create a 'with' context.
Handle<Context> NewWithContext(Handle<JSFunction> function,
Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<JSReceiver> extension);
Handle<Context> NewDebugEvaluateContext(Handle<Context> previous,
Handle<ScopeInfo> scope_info,
Handle<JSReceiver> extension,
Handle<Context> wrapped,
Handle<StringSet> whitelist);
// Create a block context.
Handle<Context> NewBlockContext(Handle<JSFunction> function,
Handle<Context> previous,
Handle<ScopeInfo> scope_info);
// Allocate a new struct. The struct is pretenured (allocated directly in
// the old generation).
Handle<Struct> NewStruct(InstanceType type);
Handle<AliasedArgumentsEntry> NewAliasedArgumentsEntry(
int aliased_context_slot);
Handle<AccessorInfo> NewAccessorInfo();
Handle<Script> NewScript(Handle<String> source);
Handle<BreakPointInfo> NewBreakPointInfo(int source_position);
Handle<StackFrameInfo> NewStackFrameInfo();
Handle<SourcePositionTableWithFrameCache>
NewSourcePositionTableWithFrameCache(
Handle<ByteArray> source_position_table,
Handle<UnseededNumberDictionary> stack_frame_cache);
// Foreign objects are pretenured when allocated by the bootstrapper.
Handle<Foreign> NewForeign(Address addr,
PretenureFlag pretenure = NOT_TENURED);
// Allocate a new foreign object. The foreign is pretenured (allocated
// directly in the old generation).
Handle<Foreign> NewForeign(const AccessorDescriptor* foreign);
Handle<ByteArray> NewByteArray(int length,
PretenureFlag pretenure = NOT_TENURED);
Handle<BytecodeArray> NewBytecodeArray(int length, const byte* raw_bytecodes,
int frame_size, int parameter_count,
Handle<FixedArray> constant_pool);
Handle<FixedTypedArrayBase> NewFixedTypedArrayWithExternalPointer(
int length, ExternalArrayType array_type, void* external_pointer,
PretenureFlag pretenure = NOT_TENURED);
Handle<FixedTypedArrayBase> NewFixedTypedArray(
int length, ExternalArrayType array_type, bool initialize,
PretenureFlag pretenure = NOT_TENURED);
Handle<Cell> NewCell(Handle<Object> value);
Handle<PropertyCell> NewPropertyCell(Handle<Name> name);
Handle<WeakCell> NewWeakCell(Handle<HeapObject> value);
Handle<Cell> NewNoClosuresCell(Handle<Object> value);
Handle<Cell> NewOneClosureCell(Handle<Object> value);
Handle<Cell> NewManyClosuresCell(Handle<Object> value);
Handle<TransitionArray> NewTransitionArray(int capacity);
// Allocate a tenured AllocationSite. It's payload is null.
Handle<AllocationSite> NewAllocationSite();
Handle<Map> NewMap(InstanceType type, int instance_size,
ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
Handle<HeapObject> NewFillerObject(int size,
bool double_align,
AllocationSpace space);
Handle<JSObject> NewFunctionPrototype(Handle<JSFunction> function);
Handle<JSObject> CopyJSObject(Handle<JSObject> object);
Handle<JSObject> CopyJSObjectWithAllocationSite(Handle<JSObject> object,
Handle<AllocationSite> site);
Handle<FixedArray> CopyFixedArrayWithMap(Handle<FixedArray> array,
Handle<Map> map);
Handle<FixedArray> CopyFixedArrayAndGrow(
Handle<FixedArray> array, int grow_by,
PretenureFlag pretenure = NOT_TENURED);
Handle<FixedArray> CopyFixedArrayUpTo(Handle<FixedArray> array, int new_len,
PretenureFlag pretenure = NOT_TENURED);
Handle<FixedArray> CopyFixedArray(Handle<FixedArray> array);
// This method expects a COW array in new space, and creates a copy
// of it in old space.
Handle<FixedArray> CopyAndTenureFixedCOWArray(Handle<FixedArray> array);
Handle<FixedDoubleArray> CopyFixedDoubleArray(
Handle<FixedDoubleArray> array);
// Numbers (e.g. literals) are pretenured by the parser.
// The return value may be a smi or a heap number.
Handle<Object> NewNumber(double value,
PretenureFlag pretenure = NOT_TENURED);
Handle<Object> NewNumberFromInt(int32_t value,
PretenureFlag pretenure = NOT_TENURED);
Handle<Object> NewNumberFromUint(uint32_t value,
PretenureFlag pretenure = NOT_TENURED);
Handle<Object> NewNumberFromSize(size_t value,
PretenureFlag pretenure = NOT_TENURED) {
// We can't use Smi::IsValid() here because that operates on a signed
// intptr_t, and casting from size_t could create a bogus sign bit.
if (value <= static_cast<size_t>(Smi::kMaxValue)) {
return Handle<Object>(Smi::FromIntptr(static_cast<intptr_t>(value)),
isolate());
}
return NewNumber(static_cast<double>(value), pretenure);
}
Handle<Object> NewNumberFromInt64(int64_t value,
PretenureFlag pretenure = NOT_TENURED) {
if (value <= std::numeric_limits<int32_t>::max() &&
value >= std::numeric_limits<int32_t>::min() &&
Smi::IsValid(static_cast<int32_t>(value))) {
return Handle<Object>(Smi::FromInt(static_cast<int32_t>(value)),
isolate());
}
return NewNumber(static_cast<double>(value), pretenure);
}
Handle<HeapNumber> NewHeapNumber(double value, MutableMode mode = IMMUTABLE,
PretenureFlag pretenure = NOT_TENURED) {
Handle<HeapNumber> heap_number = NewHeapNumber(mode, pretenure);
heap_number->set_value(value);
return heap_number;
}
Handle<HeapNumber> NewHeapNumberFromBits(
uint64_t bits, MutableMode mode = IMMUTABLE,
PretenureFlag pretenure = NOT_TENURED) {
Handle<HeapNumber> heap_number = NewHeapNumber(mode, pretenure);
heap_number->set_value_as_bits(bits);
return heap_number;
}
// Creates mutable heap number object with value field set to hole NaN.
Handle<HeapNumber> NewMutableHeapNumber(
PretenureFlag pretenure = NOT_TENURED) {
return NewHeapNumberFromBits(kHoleNanInt64, MUTABLE, pretenure);
}
// Creates heap number object with not yet set value field.
Handle<HeapNumber> NewHeapNumber(MutableMode mode,
PretenureFlag pretenure = NOT_TENURED);
Handle<JSWeakMap> NewJSWeakMap();
Handle<JSObject> NewArgumentsObject(Handle<JSFunction> callee, int length);
// JS objects are pretenured when allocated by the bootstrapper and
// runtime.
Handle<JSObject> NewJSObject(Handle<JSFunction> constructor,
PretenureFlag pretenure = NOT_TENURED);
// JSObject without a prototype.
Handle<JSObject> NewJSObjectWithNullProto(
PretenureFlag pretenure = NOT_TENURED);
// Global objects are pretenured and initialized based on a constructor.
Handle<JSGlobalObject> NewJSGlobalObject(Handle<JSFunction> constructor);
// JS objects are pretenured when allocated by the bootstrapper and
// runtime.
Handle<JSObject> NewJSObjectFromMap(
Handle<Map> map,
PretenureFlag pretenure = NOT_TENURED,
Handle<AllocationSite> allocation_site = Handle<AllocationSite>::null());
Handle<JSObject> NewSlowJSObjectFromMap(
Handle<Map> map,
int number_of_slow_properties = NameDictionary::kInitialCapacity,
PretenureFlag pretenure = NOT_TENURED);
// JS arrays are pretenured when allocated by the parser.
// Create a JSArray with a specified length and elements initialized
// according to the specified mode.
Handle<JSArray> NewJSArray(
ElementsKind elements_kind, int length, int capacity,
ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS,
PretenureFlag pretenure = NOT_TENURED);
Handle<JSArray> NewJSArray(
int capacity, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
PretenureFlag pretenure = NOT_TENURED) {
if (capacity != 0) {
elements_kind = GetHoleyElementsKind(elements_kind);
}
return NewJSArray(elements_kind, 0, capacity,
INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE, pretenure);
}
// Create a JSArray with the given elements.
Handle<JSArray> NewJSArrayWithElements(Handle<FixedArrayBase> elements,
ElementsKind elements_kind, int length,
PretenureFlag pretenure = NOT_TENURED);
Handle<JSArray> NewJSArrayWithElements(
Handle<FixedArrayBase> elements,
ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
PretenureFlag pretenure = NOT_TENURED) {
return NewJSArrayWithElements(elements, elements_kind, elements->length(),
pretenure);
}
void NewJSArrayStorage(
Handle<JSArray> array,
int length,
int capacity,
ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS);
Handle<JSGeneratorObject> NewJSGeneratorObject(Handle<JSFunction> function);
Handle<JSModuleNamespace> NewJSModuleNamespace();
Handle<Module> NewModule(Handle<SharedFunctionInfo> code);
Handle<JSArrayBuffer> NewJSArrayBuffer(
SharedFlag shared = SharedFlag::kNotShared,
PretenureFlag pretenure = NOT_TENURED);
ExternalArrayType GetArrayTypeFromElementsKind(ElementsKind kind);
size_t GetExternalArrayElementSize(ExternalArrayType type);
Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type,
PretenureFlag pretenure = NOT_TENURED);
Handle<JSTypedArray> NewJSTypedArray(ElementsKind elements_kind,
PretenureFlag pretenure = NOT_TENURED);
// Creates a new JSTypedArray with the specified buffer.
Handle<JSTypedArray> NewJSTypedArray(ExternalArrayType type,
Handle<JSArrayBuffer> buffer,
size_t byte_offset, size_t length,
PretenureFlag pretenure = NOT_TENURED);
// Creates a new on-heap JSTypedArray.
Handle<JSTypedArray> NewJSTypedArray(ElementsKind elements_kind,
size_t number_of_elements,
PretenureFlag pretenure = NOT_TENURED);
Handle<JSDataView> NewJSDataView();
Handle<JSDataView> NewJSDataView(Handle<JSArrayBuffer> buffer,
size_t byte_offset, size_t byte_length);
Handle<JSIteratorResult> NewJSIteratorResult(Handle<Object> value, bool done);
Handle<JSAsyncFromSyncIterator> NewJSAsyncFromSyncIterator(
Handle<JSReceiver> sync_iterator);
Handle<JSMap> NewJSMap();
Handle<JSSet> NewJSSet();
Handle<JSMapIterator> NewJSMapIterator(Handle<OrderedHashMap> table,
int index, JSMapIterator::Kind kind);
Handle<JSSetIterator> NewJSSetIterator(Handle<OrderedHashSet> table,
int index, JSSetIterator::Kind kind);
// Allocates a bound function.
MaybeHandle<JSBoundFunction> NewJSBoundFunction(
Handle<JSReceiver> target_function, Handle<Object> bound_this,
Vector<Handle<Object>> bound_args);
// Allocates a Harmony proxy.
Handle<JSProxy> NewJSProxy(Handle<JSReceiver> target,
Handle<JSReceiver> handler);
// Reinitialize an JSGlobalProxy based on a constructor. The object
// must have the same size as objects allocated using the
// constructor. The object is reinitialized and behaves as an
// object that has been freshly allocated using the constructor.
void ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> global,
Handle<JSFunction> constructor);
Handle<JSGlobalProxy> NewUninitializedJSGlobalProxy(int size);
Handle<JSFunction> NewFunction(Handle<Map> map,
Handle<SharedFunctionInfo> info,
Handle<Object> context_or_undefined,
PretenureFlag pretenure = TENURED);
Handle<JSFunction> NewFunction(Handle<String> name, Handle<Code> code,
Handle<Object> prototype,
LanguageMode language_mode = SLOPPY);
Handle<JSFunction> NewFunction(Handle<String> name);
Handle<JSFunction> NewFunctionWithoutPrototype(
Handle<String> name, Handle<Code> code,
LanguageMode language_mode = SLOPPY);
Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
Handle<Map> initial_map, Handle<SharedFunctionInfo> function_info,
Handle<Object> context_or_undefined, Handle<Cell> vector,
PretenureFlag pretenure = TENURED);
Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
Handle<SharedFunctionInfo> function_info, Handle<Context> context,
Handle<Cell> vector, PretenureFlag pretenure = TENURED);
Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
Handle<Map> initial_map, Handle<SharedFunctionInfo> function_info,
Handle<Object> context_or_undefined, PretenureFlag pretenure = TENURED);
Handle<JSFunction> NewFunctionFromSharedFunctionInfo(
Handle<SharedFunctionInfo> function_info, Handle<Context> context,
PretenureFlag pretenure = TENURED);
Handle<JSFunction> NewFunction(Handle<String> name, Handle<Code> code,
Handle<Object> prototype, InstanceType type,
int instance_size,
LanguageMode language_mode = SLOPPY);
Handle<JSFunction> NewFunction(Handle<String> name,
Handle<Code> code,
InstanceType type,
int instance_size);
Handle<JSFunction> NewFunction(Handle<Map> map, Handle<String> name,
MaybeHandle<Code> maybe_code);
// Create a serialized scope info.
Handle<ScopeInfo> NewScopeInfo(int length);
Handle<ModuleInfoEntry> NewModuleInfoEntry();
Handle<ModuleInfo> NewModuleInfo();
Handle<PreParsedScopeData> NewPreParsedScopeData();
// Create an External object for V8's external API.
Handle<JSObject> NewExternal(void* value);
// The reference to the Code object is stored in self_reference.
// This allows generated code to reference its own Code object
// by containing this handle.
Handle<Code> NewCode(const CodeDesc& desc,
Code::Flags flags,
Handle<Object> self_reference,
bool immovable = false,
bool crankshafted = false,
int prologue_offset = Code::kPrologueOffsetNotSet,
bool is_debug = false);
Handle<Code> CopyCode(Handle<Code> code);
Handle<BytecodeArray> CopyBytecodeArray(Handle<BytecodeArray>);
// Interface for creating error objects.
Handle<Object> NewError(Handle<JSFunction> constructor,
Handle<String> message);
Handle<Object> NewInvalidStringLengthError();
Handle<Object> NewURIError() {
return NewError(isolate()->uri_error_function(),
MessageTemplate::kURIMalformed);
}
Handle<Object> NewError(Handle<JSFunction> constructor,
MessageTemplate::Template template_index,
Handle<Object> arg0 = Handle<Object>(),
Handle<Object> arg1 = Handle<Object>(),
Handle<Object> arg2 = Handle<Object>());
#define DECLARE_ERROR(NAME) \
Handle<Object> New##NAME(MessageTemplate::Template template_index, \
Handle<Object> arg0 = Handle<Object>(), \
Handle<Object> arg1 = Handle<Object>(), \
Handle<Object> arg2 = Handle<Object>());
DECLARE_ERROR(Error)
DECLARE_ERROR(EvalError)
DECLARE_ERROR(RangeError)
DECLARE_ERROR(ReferenceError)
DECLARE_ERROR(SyntaxError)
DECLARE_ERROR(TypeError)
DECLARE_ERROR(WasmCompileError)
DECLARE_ERROR(WasmLinkError)
DECLARE_ERROR(WasmRuntimeError)
#undef DECLARE_ERROR
Handle<String> NumberToString(Handle<Object> number,
bool check_number_string_cache = true);
Handle<String> Uint32ToString(uint32_t value) {
Handle<String> result = NumberToString(NewNumberFromUint(value));
if (result->length() <= String::kMaxArrayIndexSize) {
uint32_t field =
StringHasher::MakeArrayIndexHash(value, result->length());
result->set_hash_field(field);
}
return result;
}
Handle<JSFunction> InstallMembers(Handle<JSFunction> function);
#define ROOT_ACCESSOR(type, name, camel_name) \
inline Handle<type> name() { \
return Handle<type>(bit_cast<type**>( \
&isolate()->heap()->roots_[Heap::k##camel_name##RootIndex])); \
}
ROOT_LIST(ROOT_ACCESSOR)
#undef ROOT_ACCESSOR
#define STRUCT_MAP_ACCESSOR(NAME, Name, name) \
inline Handle<Map> name##_map() { \
return Handle<Map>(bit_cast<Map**>( \
&isolate()->heap()->roots_[Heap::k##Name##MapRootIndex])); \
}
STRUCT_LIST(STRUCT_MAP_ACCESSOR)
#undef STRUCT_MAP_ACCESSOR
#define STRING_ACCESSOR(name, str) \
inline Handle<String> name() { \
return Handle<String>(bit_cast<String**>( \
&isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
}
INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
#undef STRING_ACCESSOR
#define SYMBOL_ACCESSOR(name) \
inline Handle<Symbol> name() { \
return Handle<Symbol>(bit_cast<Symbol**>( \
&isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
}
PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
#undef SYMBOL_ACCESSOR
#define SYMBOL_ACCESSOR(name, description) \
inline Handle<Symbol> name() { \
return Handle<Symbol>(bit_cast<Symbol**>( \
&isolate()->heap()->roots_[Heap::k##name##RootIndex])); \
}
PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR)
WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR)
#undef SYMBOL_ACCESSOR
// Allocates a new SharedFunctionInfo object.
Handle<SharedFunctionInfo> NewSharedFunctionInfo(
MaybeHandle<String> name, FunctionKind kind, Handle<Code> code,
Handle<ScopeInfo> scope_info);
Handle<SharedFunctionInfo> NewSharedFunctionInfo(MaybeHandle<String> name,
MaybeHandle<Code> code,
bool is_constructor);
Handle<SharedFunctionInfo> NewSharedFunctionInfoForLiteral(
FunctionLiteral* literal, Handle<Script> script);
static bool IsFunctionModeWithPrototype(FunctionMode function_mode) {
return (function_mode == FUNCTION_WITH_WRITEABLE_PROTOTYPE ||
function_mode == FUNCTION_WITH_READONLY_PROTOTYPE);
}
Handle<Map> CreateSloppyFunctionMap(FunctionMode function_mode);
Handle<Map> CreateStrictFunctionMap(FunctionMode function_mode,
Handle<JSFunction> empty_function);
Handle<Map> CreateClassFunctionMap(Handle<JSFunction> empty_function);
// Allocates a new JSMessageObject object.
Handle<JSMessageObject> NewJSMessageObject(MessageTemplate::Template message,
Handle<Object> argument,
int start_position,
int end_position,
Handle<Object> script,
Handle<Object> stack_frames);
Handle<DebugInfo> NewDebugInfo(Handle<SharedFunctionInfo> shared);
Handle<CoverageInfo> NewCoverageInfo(const ZoneVector<SourceRange>& slots);
// Return a map for given number of properties using the map cache in the
// native context.
Handle<Map> ObjectLiteralMapFromCache(Handle<Context> native_context,
int number_of_properties);
Handle<RegExpMatchInfo> NewRegExpMatchInfo();
// Creates a new FixedArray that holds the data associated with the
// atom regexp and stores it in the regexp.
void SetRegExpAtomData(Handle<JSRegExp> regexp,
JSRegExp::Type type,
Handle<String> source,
JSRegExp::Flags flags,
Handle<Object> match_pattern);
// Creates a new FixedArray that holds the data associated with the
// irregexp regexp and stores it in the regexp.
void SetRegExpIrregexpData(Handle<JSRegExp> regexp,
JSRegExp::Type type,
Handle<String> source,
JSRegExp::Flags flags,
int capture_count);
// Returns the value for a known global constant (a property of the global
// object which is neither configurable nor writable) like 'undefined'.
// Returns a null handle when the given name is unknown.
Handle<Object> GlobalConstantFor(Handle<Name> name);
// Converts the given boolean condition to JavaScript boolean value.
Handle<Object> ToBoolean(bool value);
// Converts the given ToPrimitive hint to it's string representation.
Handle<String> ToPrimitiveHintString(ToPrimitiveHint hint);
private:
Isolate* isolate() { return reinterpret_cast<Isolate*>(this); }
// Creates a heap object based on the map. The fields of the heap object are
// not initialized by New<>() functions. It's the responsibility of the caller
// to do that.
template<typename T>
Handle<T> New(Handle<Map> map, AllocationSpace space);
template<typename T>
Handle<T> New(Handle<Map> map,
AllocationSpace space,
Handle<AllocationSite> allocation_site);
MaybeHandle<String> NewStringFromTwoByte(const uc16* string, int length,
PretenureFlag pretenure);
// Creates a code object that is not yet fully initialized yet.
inline Handle<Code> NewCodeRaw(int object_size, bool immovable);
// Attempt to find the number in a small cache. If we finds it, return
// the string representation of the number. Otherwise return undefined.
Handle<Object> GetNumberStringCache(Handle<Object> number);
// Update the cache with a new number-string pair.
void SetNumberStringCache(Handle<Object> number, Handle<String> string);
// Create a JSArray with no elements and no length.
Handle<JSArray> NewJSArray(ElementsKind elements_kind,
PretenureFlag pretenure = NOT_TENURED);
void SetFunctionInstanceDescriptor(Handle<Map> map,
FunctionMode function_mode);
void SetStrictFunctionInstanceDescriptor(Handle<Map> map,
FunctionMode function_mode);
void SetClassFunctionInstanceDescriptor(Handle<Map> map);
};
} // namespace internal
} // namespace v8
#endif // V8_FACTORY_H_