v8/src/scopes.h
rossberg@chromium.org 919d64adce Add type field to AST expression nodes
More importantly, do a bunch of renamings of incidental existing "types" to avoid actual and potential name clashes (and also to improve consistency).

R=svenpanne@chromium.org
BUG=

Review URL: https://codereview.chromium.org/16549002

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14978 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-06-06 13:28:22 +00:00

648 lines
25 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_SCOPES_H_
#define V8_SCOPES_H_
#include "ast.h"
#include "zone.h"
namespace v8 {
namespace internal {
class CompilationInfo;
// A hash map to support fast variable declaration and lookup.
class VariableMap: public ZoneHashMap {
public:
explicit VariableMap(Zone* zone);
virtual ~VariableMap();
Variable* Declare(Scope* scope,
Handle<String> name,
VariableMode mode,
bool is_valid_lhs,
Variable::Kind kind,
InitializationFlag initialization_flag,
Interface* interface = Interface::NewValue());
Variable* Lookup(Handle<String> name);
Zone* zone() const { return zone_; }
private:
Zone* zone_;
};
// The dynamic scope part holds hash maps for the variables that will
// be looked up dynamically from within eval and with scopes. The objects
// are allocated on-demand from Scope::NonLocal to avoid wasting memory
// and setup time for scopes that don't need them.
class DynamicScopePart : public ZoneObject {
public:
explicit DynamicScopePart(Zone* zone) {
for (int i = 0; i < 3; i++)
maps_[i] = new(zone->New(sizeof(VariableMap))) VariableMap(zone);
}
VariableMap* GetMap(VariableMode mode) {
int index = mode - DYNAMIC;
ASSERT(index >= 0 && index < 3);
return maps_[index];
}
private:
VariableMap *maps_[3];
};
// Global invariants after AST construction: Each reference (i.e. identifier)
// to a JavaScript variable (including global properties) is represented by a
// VariableProxy node. Immediately after AST construction and before variable
// allocation, most VariableProxy nodes are "unresolved", i.e. not bound to a
// corresponding variable (though some are bound during parse time). Variable
// allocation binds each unresolved VariableProxy to one Variable and assigns
// a location. Note that many VariableProxy nodes may refer to the same Java-
// Script variable.
class Scope: public ZoneObject {
public:
// ---------------------------------------------------------------------------
// Construction
Scope(Scope* outer_scope, ScopeType scope_type, Zone* zone);
// Compute top scope and allocate variables. For lazy compilation the top
// scope only contains the single lazily compiled function, so this
// doesn't re-allocate variables repeatedly.
static bool Analyze(CompilationInfo* info);
static Scope* DeserializeScopeChain(Context* context, Scope* global_scope,
Zone* zone);
// The scope name is only used for printing/debugging.
void SetScopeName(Handle<String> scope_name) { scope_name_ = scope_name; }
void Initialize();
// Checks if the block scope is redundant, i.e. it does not contain any
// block scoped declarations. In that case it is removed from the scope
// tree and its children are reparented.
Scope* FinalizeBlockScope();
Zone* zone() const { return zone_; }
// ---------------------------------------------------------------------------
// Declarations
// Lookup a variable in this scope. Returns the variable or NULL if not found.
Variable* LocalLookup(Handle<String> name);
// This lookup corresponds to a lookup in the "intermediate" scope sitting
// between this scope and the outer scope. (ECMA-262, 3rd., requires that
// the name of named function literal is kept in an intermediate scope
// in between this scope and the next outer scope.)
Variable* LookupFunctionVar(Handle<String> name,
AstNodeFactory<AstNullVisitor>* factory);
// Lookup a variable in this scope or outer scopes.
// Returns the variable or NULL if not found.
Variable* Lookup(Handle<String> name);
// Declare the function variable for a function literal. This variable
// is in an intermediate scope between this function scope and the the
// outer scope. Only possible for function scopes; at most one variable.
void DeclareFunctionVar(VariableDeclaration* declaration) {
ASSERT(is_function_scope());
function_ = declaration;
}
// Declare a parameter in this scope. When there are duplicated
// parameters the rightmost one 'wins'. However, the implementation
// expects all parameters to be declared and from left to right.
void DeclareParameter(Handle<String> name, VariableMode mode);
// Declare a local variable in this scope. If the variable has been
// declared before, the previously declared variable is returned.
Variable* DeclareLocal(Handle<String> name,
VariableMode mode,
InitializationFlag init_flag,
Interface* interface = Interface::NewValue());
// Declare an implicit global variable in this scope which must be a
// global scope. The variable was introduced (possibly from an inner
// scope) by a reference to an unresolved variable with no intervening
// with statements or eval calls.
Variable* DeclareDynamicGlobal(Handle<String> name);
// Create a new unresolved variable.
template<class Visitor>
VariableProxy* NewUnresolved(AstNodeFactory<Visitor>* factory,
Handle<String> name,
Interface* interface = Interface::NewValue(),
int position = RelocInfo::kNoPosition) {
// Note that we must not share the unresolved variables with
// the same name because they may be removed selectively via
// RemoveUnresolved().
ASSERT(!already_resolved());
VariableProxy* proxy =
factory->NewVariableProxy(name, false, interface, position);
unresolved_.Add(proxy, zone_);
return proxy;
}
// Remove a unresolved variable. During parsing, an unresolved variable
// may have been added optimistically, but then only the variable name
// was used (typically for labels). If the variable was not declared, the
// addition introduced a new unresolved variable which may end up being
// allocated globally as a "ghost" variable. RemoveUnresolved removes
// such a variable again if it was added; otherwise this is a no-op.
void RemoveUnresolved(VariableProxy* var);
// Creates a new internal variable in this scope. The name is only used
// for printing and cannot be used to find the variable. In particular,
// the only way to get hold of the temporary is by keeping the Variable*
// around.
Variable* NewInternal(Handle<String> name);
// Creates a new temporary variable in this scope. The name is only used
// for printing and cannot be used to find the variable. In particular,
// the only way to get hold of the temporary is by keeping the Variable*
// around. The name should not clash with a legitimate variable names.
Variable* NewTemporary(Handle<String> name);
// Adds the specific declaration node to the list of declarations in
// this scope. The declarations are processed as part of entering
// the scope; see codegen.cc:ProcessDeclarations.
void AddDeclaration(Declaration* declaration);
// ---------------------------------------------------------------------------
// Illegal redeclaration support.
// Set an expression node that will be executed when the scope is
// entered. We only keep track of one illegal redeclaration node per
// scope - the first one - so if you try to set it multiple times
// the additional requests will be silently ignored.
void SetIllegalRedeclaration(Expression* expression);
// Visit the illegal redeclaration expression. Do not call if the
// scope doesn't have an illegal redeclaration node.
void VisitIllegalRedeclaration(AstVisitor* visitor);
// Check if the scope has (at least) one illegal redeclaration.
bool HasIllegalRedeclaration() const { return illegal_redecl_ != NULL; }
// For harmony block scoping mode: Check if the scope has conflicting var
// declarations, i.e. a var declaration that has been hoisted from a nested
// scope over a let binding of the same name.
Declaration* CheckConflictingVarDeclarations();
// ---------------------------------------------------------------------------
// Scope-specific info.
// Inform the scope that the corresponding code contains a with statement.
void RecordWithStatement() { scope_contains_with_ = true; }
// Inform the scope that the corresponding code contains an eval call.
void RecordEvalCall() { if (!is_global_scope()) scope_calls_eval_ = true; }
// Set the strict mode flag (unless disabled by a global flag).
void SetLanguageMode(LanguageMode language_mode) {
language_mode_ = language_mode;
}
// Position in the source where this scope begins and ends.
//
// * For the scope of a with statement
// with (obj) stmt
// start position: start position of first token of 'stmt'
// end position: end position of last token of 'stmt'
// * For the scope of a block
// { stmts }
// start position: start position of '{'
// end position: end position of '}'
// * For the scope of a function literal or decalaration
// function fun(a,b) { stmts }
// start position: start position of '('
// end position: end position of '}'
// * For the scope of a catch block
// try { stms } catch(e) { stmts }
// start position: start position of '('
// end position: end position of ')'
// * For the scope of a for-statement
// for (let x ...) stmt
// start position: start position of '('
// end position: end position of last token of 'stmt'
int start_position() const { return start_position_; }
void set_start_position(int statement_pos) {
start_position_ = statement_pos;
}
int end_position() const { return end_position_; }
void set_end_position(int statement_pos) {
end_position_ = statement_pos;
}
// In some cases we want to force context allocation for a whole scope.
void ForceContextAllocation() {
ASSERT(!already_resolved());
force_context_allocation_ = true;
}
bool has_forced_context_allocation() const {
return force_context_allocation_;
}
// ---------------------------------------------------------------------------
// Predicates.
// Specific scope types.
bool is_eval_scope() const { return scope_type_ == EVAL_SCOPE; }
bool is_function_scope() const { return scope_type_ == FUNCTION_SCOPE; }
bool is_module_scope() const { return scope_type_ == MODULE_SCOPE; }
bool is_global_scope() const { return scope_type_ == GLOBAL_SCOPE; }
bool is_catch_scope() const { return scope_type_ == CATCH_SCOPE; }
bool is_block_scope() const { return scope_type_ == BLOCK_SCOPE; }
bool is_with_scope() const { return scope_type_ == WITH_SCOPE; }
bool is_declaration_scope() const {
return is_eval_scope() || is_function_scope() ||
is_module_scope() || is_global_scope();
}
bool is_classic_mode() const {
return language_mode() == CLASSIC_MODE;
}
bool is_extended_mode() const {
return language_mode() == EXTENDED_MODE;
}
bool is_strict_or_extended_eval_scope() const {
return is_eval_scope() && !is_classic_mode();
}
// Information about which scopes calls eval.
bool calls_eval() const { return scope_calls_eval_; }
bool calls_non_strict_eval() {
return scope_calls_eval_ && is_classic_mode();
}
bool outer_scope_calls_non_strict_eval() const {
return outer_scope_calls_non_strict_eval_;
}
// Is this scope inside a with statement.
bool inside_with() const { return scope_inside_with_; }
// Does this scope contain a with statement.
bool contains_with() const { return scope_contains_with_; }
// ---------------------------------------------------------------------------
// Accessors.
// The type of this scope.
ScopeType scope_type() const { return scope_type_; }
// The language mode of this scope.
LanguageMode language_mode() const { return language_mode_; }
// The variable corresponding the 'this' value.
Variable* receiver() { return receiver_; }
// The variable holding the function literal for named function
// literals, or NULL. Only valid for function scopes.
VariableDeclaration* function() const {
ASSERT(is_function_scope());
return function_;
}
// Parameters. The left-most parameter has index 0.
// Only valid for function scopes.
Variable* parameter(int index) const {
ASSERT(is_function_scope());
return params_[index];
}
int num_parameters() const { return params_.length(); }
// The local variable 'arguments' if we need to allocate it; NULL otherwise.
Variable* arguments() const { return arguments_; }
// Declarations list.
ZoneList<Declaration*>* declarations() { return &decls_; }
// Inner scope list.
ZoneList<Scope*>* inner_scopes() { return &inner_scopes_; }
// The scope immediately surrounding this scope, or NULL.
Scope* outer_scope() const { return outer_scope_; }
// The interface as inferred so far; only for module scopes.
Interface* interface() const { return interface_; }
// ---------------------------------------------------------------------------
// Variable allocation.
// Collect stack and context allocated local variables in this scope. Note
// that the function variable - if present - is not collected and should be
// handled separately.
void CollectStackAndContextLocals(ZoneList<Variable*>* stack_locals,
ZoneList<Variable*>* context_locals);
// Current number of var or const locals.
int num_var_or_const() { return num_var_or_const_; }
// Result of variable allocation.
int num_stack_slots() const { return num_stack_slots_; }
int num_heap_slots() const { return num_heap_slots_; }
int StackLocalCount() const;
int ContextLocalCount() const;
// For global scopes, the number of module literals (including nested ones).
int num_modules() const { return num_modules_; }
// For module scopes, the host scope's internal variable binding this module.
Variable* module_var() const { return module_var_; }
// Make sure this scope and all outer scopes are eagerly compiled.
void ForceEagerCompilation() { force_eager_compilation_ = true; }
// Determine if we can use lazy compilation for this scope.
bool AllowsLazyCompilation() const;
// Determine if we can use lazy compilation for this scope without a context.
bool AllowsLazyCompilationWithoutContext() const;
// True if the outer context of this scope is always the native context.
bool HasTrivialOuterContext() const;
// True if the outer context allows lazy compilation of this scope.
bool HasLazyCompilableOuterContext() const;
// The number of contexts between this and scope; zero if this == scope.
int ContextChainLength(Scope* scope);
// Find the innermost global scope.
Scope* GlobalScope();
// Find the first function, global, or eval scope. This is the scope
// where var declarations will be hoisted to in the implementation.
Scope* DeclarationScope();
Handle<ScopeInfo> GetScopeInfo();
// Get the chain of nested scopes within this scope for the source statement
// position. The scopes will be added to the list from the outermost scope to
// the innermost scope. Only nested block, catch or with scopes are tracked
// and will be returned, but no inner function scopes.
void GetNestedScopeChain(List<Handle<ScopeInfo> >* chain,
int statement_position);
// ---------------------------------------------------------------------------
// Strict mode support.
bool IsDeclared(Handle<String> name) {
// During formal parameter list parsing the scope only contains
// two variables inserted at initialization: "this" and "arguments".
// "this" is an invalid parameter name and "arguments" is invalid parameter
// name in strict mode. Therefore looking up with the map which includes
// "this" and "arguments" in addition to all formal parameters is safe.
return variables_.Lookup(name) != NULL;
}
// ---------------------------------------------------------------------------
// Debugging.
#ifdef DEBUG
void Print(int n = 0); // n = indentation; n < 0 => don't print recursively
#endif
// ---------------------------------------------------------------------------
// Implementation.
protected:
friend class ParserFactory;
Isolate* const isolate_;
// Scope tree.
Scope* outer_scope_; // the immediately enclosing outer scope, or NULL
ZoneList<Scope*> inner_scopes_; // the immediately enclosed inner scopes
// The scope type.
ScopeType scope_type_;
// Debugging support.
Handle<String> scope_name_;
// The variables declared in this scope:
//
// All user-declared variables (incl. parameters). For global scopes
// variables may be implicitly 'declared' by being used (possibly in
// an inner scope) with no intervening with statements or eval calls.
VariableMap variables_;
// Compiler-allocated (user-invisible) internals.
ZoneList<Variable*> internals_;
// Compiler-allocated (user-invisible) temporaries.
ZoneList<Variable*> temps_;
// Parameter list in source order.
ZoneList<Variable*> params_;
// Variables that must be looked up dynamically.
DynamicScopePart* dynamics_;
// Unresolved variables referred to from this scope.
ZoneList<VariableProxy*> unresolved_;
// Declarations.
ZoneList<Declaration*> decls_;
// Convenience variable.
Variable* receiver_;
// Function variable, if any; function scopes only.
VariableDeclaration* function_;
// Convenience variable; function scopes only.
Variable* arguments_;
// Interface; module scopes only.
Interface* interface_;
// Illegal redeclaration.
Expression* illegal_redecl_;
// Scope-specific information computed during parsing.
//
// This scope is inside a 'with' of some outer scope.
bool scope_inside_with_;
// This scope contains a 'with' statement.
bool scope_contains_with_;
// This scope or a nested catch scope or with scope contain an 'eval' call. At
// the 'eval' call site this scope is the declaration scope.
bool scope_calls_eval_;
// The language mode of this scope.
LanguageMode language_mode_;
// Source positions.
int start_position_;
int end_position_;
// Computed via PropagateScopeInfo.
bool outer_scope_calls_non_strict_eval_;
bool inner_scope_calls_eval_;
bool force_eager_compilation_;
bool force_context_allocation_;
// True if it doesn't need scope resolution (e.g., if the scope was
// constructed based on a serialized scope info or a catch context).
bool already_resolved_;
// Computed as variables are declared.
int num_var_or_const_;
// Computed via AllocateVariables; function, block and catch scopes only.
int num_stack_slots_;
int num_heap_slots_;
// The number of modules (including nested ones).
int num_modules_;
// For module scopes, the host scope's internal variable binding this module.
Variable* module_var_;
// Serialized scope info support.
Handle<ScopeInfo> scope_info_;
bool already_resolved() { return already_resolved_; }
// Create a non-local variable with a given name.
// These variables are looked up dynamically at runtime.
Variable* NonLocal(Handle<String> name, VariableMode mode);
// Variable resolution.
// Possible results of a recursive variable lookup telling if and how a
// variable is bound. These are returned in the output parameter *binding_kind
// of the LookupRecursive function.
enum BindingKind {
// The variable reference could be statically resolved to a variable binding
// which is returned. There is no 'with' statement between the reference and
// the binding and no scope between the reference scope (inclusive) and
// binding scope (exclusive) makes a non-strict 'eval' call.
BOUND,
// The variable reference could be statically resolved to a variable binding
// which is returned. There is no 'with' statement between the reference and
// the binding, but some scope between the reference scope (inclusive) and
// binding scope (exclusive) makes a non-strict 'eval' call, that might
// possibly introduce variable bindings shadowing the found one. Thus the
// found variable binding is just a guess.
BOUND_EVAL_SHADOWED,
// The variable reference could not be statically resolved to any binding
// and thus should be considered referencing a global variable. NULL is
// returned. The variable reference is not inside any 'with' statement and
// no scope between the reference scope (inclusive) and global scope
// (exclusive) makes a non-strict 'eval' call.
UNBOUND,
// The variable reference could not be statically resolved to any binding
// NULL is returned. The variable reference is not inside any 'with'
// statement, but some scope between the reference scope (inclusive) and
// global scope (exclusive) makes a non-strict 'eval' call, that might
// possibly introduce a variable binding. Thus the reference should be
// considered referencing a global variable unless it is shadowed by an
// 'eval' introduced binding.
UNBOUND_EVAL_SHADOWED,
// The variable could not be statically resolved and needs to be looked up
// dynamically. NULL is returned. There are two possible reasons:
// * A 'with' statement has been encountered and there is no variable
// binding for the name between the variable reference and the 'with'.
// The variable potentially references a property of the 'with' object.
// * The code is being executed as part of a call to 'eval' and the calling
// context chain contains either a variable binding for the name or it
// contains a 'with' context.
DYNAMIC_LOOKUP
};
// Lookup a variable reference given by name recursively starting with this
// scope. If the code is executed because of a call to 'eval', the context
// parameter should be set to the calling context of 'eval'.
Variable* LookupRecursive(Handle<String> name,
BindingKind* binding_kind,
AstNodeFactory<AstNullVisitor>* factory);
MUST_USE_RESULT
bool ResolveVariable(CompilationInfo* info,
VariableProxy* proxy,
AstNodeFactory<AstNullVisitor>* factory);
MUST_USE_RESULT
bool ResolveVariablesRecursively(CompilationInfo* info,
AstNodeFactory<AstNullVisitor>* factory);
// Scope analysis.
bool PropagateScopeInfo(bool outer_scope_calls_non_strict_eval);
bool HasTrivialContext() const;
// Predicates.
bool MustAllocate(Variable* var);
bool MustAllocateInContext(Variable* var);
bool HasArgumentsParameter();
// Variable allocation.
void AllocateStackSlot(Variable* var);
void AllocateHeapSlot(Variable* var);
void AllocateParameterLocals();
void AllocateNonParameterLocal(Variable* var);
void AllocateNonParameterLocals();
void AllocateVariablesRecursively();
void AllocateModulesRecursively(Scope* host_scope);
// Resolve and fill in the allocation information for all variables
// in this scopes. Must be called *after* all scopes have been
// processed (parsed) to ensure that unresolved variables can be
// resolved properly.
//
// In the case of code compiled and run using 'eval', the context
// parameter is the context in which eval was called. In all other
// cases the context parameter is an empty handle.
MUST_USE_RESULT
bool AllocateVariables(CompilationInfo* info,
AstNodeFactory<AstNullVisitor>* factory);
private:
// Construct a scope based on the scope info.
Scope(Scope* inner_scope, ScopeType type, Handle<ScopeInfo> scope_info,
Zone* zone);
// Construct a catch scope with a binding for the name.
Scope(Scope* inner_scope, Handle<String> catch_variable_name, Zone* zone);
void AddInnerScope(Scope* inner_scope) {
if (inner_scope != NULL) {
inner_scopes_.Add(inner_scope, zone_);
inner_scope->outer_scope_ = this;
}
}
void SetDefaults(ScopeType type,
Scope* outer_scope,
Handle<ScopeInfo> scope_info);
Zone* zone_;
};
} } // namespace v8::internal
#endif // V8_SCOPES_H_