91c562ee03
Ensures that there is no concurrent allocation happening. Bug: v8:10315 Change-Id: Ief40cbde9d859e3a2eea66d6e4437d7f0e3840e8 Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2418951 Reviewed-by: Ulan Degenbaev <ulan@chromium.org> Commit-Queue: Dominik Inführ <dinfuehr@chromium.org> Cr-Commit-Position: refs/heads/master@{#69998}
7280 lines
252 KiB
C++
7280 lines
252 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <utility>
|
|
|
|
#include "src/api/api-inl.h"
|
|
#include "src/codegen/assembler-inl.h"
|
|
#include "src/codegen/compilation-cache.h"
|
|
#include "src/codegen/macro-assembler-inl.h"
|
|
#include "src/common/globals.h"
|
|
#include "src/debug/debug.h"
|
|
#include "src/deoptimizer/deoptimizer.h"
|
|
#include "src/execution/execution.h"
|
|
#include "src/handles/global-handles.h"
|
|
#include "src/heap/combined-heap.h"
|
|
#include "src/heap/factory.h"
|
|
#include "src/heap/gc-tracer.h"
|
|
#include "src/heap/heap-inl.h"
|
|
#include "src/heap/incremental-marking.h"
|
|
#include "src/heap/large-spaces.h"
|
|
#include "src/heap/mark-compact.h"
|
|
#include "src/heap/memory-chunk.h"
|
|
#include "src/heap/memory-reducer.h"
|
|
#include "src/heap/remembered-set-inl.h"
|
|
#include "src/heap/safepoint.h"
|
|
#include "src/ic/ic.h"
|
|
#include "src/numbers/hash-seed-inl.h"
|
|
#include "src/objects/elements.h"
|
|
#include "src/objects/field-type.h"
|
|
#include "src/objects/frame-array-inl.h"
|
|
#include "src/objects/heap-number-inl.h"
|
|
#include "src/objects/js-array-inl.h"
|
|
#include "src/objects/js-collection-inl.h"
|
|
#include "src/objects/managed.h"
|
|
#include "src/objects/objects-inl.h"
|
|
#include "src/objects/slots.h"
|
|
#include "src/objects/transitions.h"
|
|
#include "src/regexp/regexp.h"
|
|
#include "src/snapshot/snapshot.h"
|
|
#include "src/utils/ostreams.h"
|
|
#include "test/cctest/cctest.h"
|
|
#include "test/cctest/heap/heap-tester.h"
|
|
#include "test/cctest/heap/heap-utils.h"
|
|
#include "test/cctest/test-feedback-vector.h"
|
|
#include "test/cctest/test-transitions.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
namespace heap {
|
|
|
|
// We only start allocation-site tracking with the second instantiation.
|
|
static const int kPretenureCreationCount =
|
|
AllocationSite::kPretenureMinimumCreated + 1;
|
|
|
|
static void CheckMap(Map map, int type, int instance_size) {
|
|
CHECK(map.IsHeapObject());
|
|
DCHECK(IsValidHeapObject(CcTest::heap(), map));
|
|
CHECK_EQ(ReadOnlyRoots(CcTest::heap()).meta_map(), map.map());
|
|
CHECK_EQ(type, map.instance_type());
|
|
CHECK_EQ(instance_size, map.instance_size());
|
|
}
|
|
|
|
|
|
TEST(HeapMaps) {
|
|
CcTest::InitializeVM();
|
|
ReadOnlyRoots roots(CcTest::heap());
|
|
CheckMap(roots.meta_map(), MAP_TYPE, Map::kSize);
|
|
CheckMap(roots.heap_number_map(), HEAP_NUMBER_TYPE, HeapNumber::kSize);
|
|
CheckMap(roots.fixed_array_map(), FIXED_ARRAY_TYPE, kVariableSizeSentinel);
|
|
CheckMap(roots.hash_table_map(), HASH_TABLE_TYPE, kVariableSizeSentinel);
|
|
CheckMap(roots.string_map(), STRING_TYPE, kVariableSizeSentinel);
|
|
}
|
|
|
|
static void VerifyStoredPrototypeMap(Isolate* isolate,
|
|
int stored_map_context_index,
|
|
int stored_ctor_context_index) {
|
|
Handle<Context> context = isolate->native_context();
|
|
|
|
Handle<Map> this_map(Map::cast(context->get(stored_map_context_index)),
|
|
isolate);
|
|
|
|
Handle<JSFunction> fun(
|
|
JSFunction::cast(context->get(stored_ctor_context_index)), isolate);
|
|
Handle<JSObject> proto(JSObject::cast(fun->initial_map().prototype()),
|
|
isolate);
|
|
Handle<Map> that_map(proto->map(), isolate);
|
|
|
|
CHECK(proto->HasFastProperties());
|
|
CHECK_EQ(*this_map, *that_map);
|
|
}
|
|
|
|
// Checks that critical maps stored on the context (mostly used for fast-path
|
|
// checks) are unchanged after initialization.
|
|
TEST(ContextMaps) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
HandleScope handle_scope(isolate);
|
|
|
|
VerifyStoredPrototypeMap(isolate,
|
|
Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX,
|
|
Context::STRING_FUNCTION_INDEX);
|
|
VerifyStoredPrototypeMap(isolate, Context::REGEXP_PROTOTYPE_MAP_INDEX,
|
|
Context::REGEXP_FUNCTION_INDEX);
|
|
}
|
|
|
|
TEST(InitialObjects) {
|
|
LocalContext env;
|
|
HandleScope scope(CcTest::i_isolate());
|
|
Handle<Context> context = v8::Utils::OpenHandle(*env);
|
|
// Initial ArrayIterator prototype.
|
|
CHECK_EQ(
|
|
context->initial_array_iterator_prototype(),
|
|
*v8::Utils::OpenHandle(*CompileRun("[][Symbol.iterator]().__proto__")));
|
|
// Initial Array prototype.
|
|
CHECK_EQ(context->initial_array_prototype(),
|
|
*v8::Utils::OpenHandle(*CompileRun("Array.prototype")));
|
|
// Initial Generator prototype.
|
|
CHECK_EQ(context->initial_generator_prototype(),
|
|
*v8::Utils::OpenHandle(
|
|
*CompileRun("(function*(){}).__proto__.prototype")));
|
|
// Initial Iterator prototype.
|
|
CHECK_EQ(context->initial_iterator_prototype(),
|
|
*v8::Utils::OpenHandle(
|
|
*CompileRun("[][Symbol.iterator]().__proto__.__proto__")));
|
|
// Initial Object prototype.
|
|
CHECK_EQ(context->initial_object_prototype(),
|
|
*v8::Utils::OpenHandle(*CompileRun("Object.prototype")));
|
|
}
|
|
|
|
static void CheckOddball(Isolate* isolate, Object obj, const char* string) {
|
|
CHECK(obj.IsOddball());
|
|
Handle<Object> handle(obj, isolate);
|
|
Object print_string = *Object::ToString(isolate, handle).ToHandleChecked();
|
|
CHECK(String::cast(print_string).IsOneByteEqualTo(CStrVector(string)));
|
|
}
|
|
|
|
static void CheckSmi(Isolate* isolate, int value, const char* string) {
|
|
Handle<Object> handle(Smi::FromInt(value), isolate);
|
|
Object print_string = *Object::ToString(isolate, handle).ToHandleChecked();
|
|
CHECK(String::cast(print_string).IsOneByteEqualTo(CStrVector(string)));
|
|
}
|
|
|
|
|
|
static void CheckNumber(Isolate* isolate, double value, const char* string) {
|
|
Handle<Object> number = isolate->factory()->NewNumber(value);
|
|
CHECK(number->IsNumber());
|
|
Handle<Object> print_string =
|
|
Object::ToString(isolate, number).ToHandleChecked();
|
|
CHECK(String::cast(*print_string).IsOneByteEqualTo(CStrVector(string)));
|
|
}
|
|
|
|
void CheckEmbeddedObjectsAreEqual(Handle<Code> lhs, Handle<Code> rhs) {
|
|
int mode_mask = RelocInfo::ModeMask(RelocInfo::FULL_EMBEDDED_OBJECT);
|
|
RelocIterator lhs_it(*lhs, mode_mask);
|
|
RelocIterator rhs_it(*rhs, mode_mask);
|
|
while (!lhs_it.done() && !rhs_it.done()) {
|
|
CHECK(lhs_it.rinfo()->target_object() == rhs_it.rinfo()->target_object());
|
|
|
|
lhs_it.next();
|
|
rhs_it.next();
|
|
}
|
|
CHECK(lhs_it.done() == rhs_it.done());
|
|
}
|
|
|
|
HEAP_TEST(TestNewSpaceRefsInCopiedCode) {
|
|
if (FLAG_single_generation) return;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
HandleScope sc(isolate);
|
|
|
|
Handle<HeapNumber> value = factory->NewHeapNumber(1.000123);
|
|
CHECK(Heap::InYoungGeneration(*value));
|
|
|
|
i::byte buffer[i::Assembler::kDefaultBufferSize];
|
|
MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes,
|
|
ExternalAssemblerBuffer(buffer, sizeof(buffer)));
|
|
// Add a new-space reference to the code.
|
|
masm.Push(value);
|
|
|
|
CodeDesc desc;
|
|
masm.GetCode(isolate, &desc);
|
|
Handle<Code> code =
|
|
Factory::CodeBuilder(isolate, desc, CodeKind::STUB).Build();
|
|
|
|
Handle<Code> copy;
|
|
{
|
|
CodeSpaceMemoryModificationScope modification_scope(isolate->heap());
|
|
copy = factory->CopyCode(code);
|
|
}
|
|
|
|
CheckEmbeddedObjectsAreEqual(code, copy);
|
|
CcTest::CollectAllAvailableGarbage();
|
|
CheckEmbeddedObjectsAreEqual(code, copy);
|
|
}
|
|
|
|
static void CheckFindCodeObject(Isolate* isolate) {
|
|
// Test FindCodeObject
|
|
#define __ assm.
|
|
|
|
Assembler assm(AssemblerOptions{});
|
|
|
|
__ nop(); // supported on all architectures
|
|
|
|
CodeDesc desc;
|
|
assm.GetCode(isolate, &desc);
|
|
Handle<Code> code =
|
|
Factory::CodeBuilder(isolate, desc, CodeKind::STUB).Build();
|
|
CHECK(code->IsCode());
|
|
|
|
HeapObject obj = HeapObject::cast(*code);
|
|
Address obj_addr = obj.address();
|
|
|
|
for (int i = 0; i < obj.Size(); i += kTaggedSize) {
|
|
Object found = isolate->FindCodeObject(obj_addr + i);
|
|
CHECK_EQ(*code, found);
|
|
}
|
|
|
|
Handle<Code> copy =
|
|
Factory::CodeBuilder(isolate, desc, CodeKind::STUB).Build();
|
|
HeapObject obj_copy = HeapObject::cast(*copy);
|
|
Object not_right =
|
|
isolate->FindCodeObject(obj_copy.address() + obj_copy.Size() / 2);
|
|
CHECK(not_right != *code);
|
|
}
|
|
|
|
|
|
TEST(HandleNull) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
HandleScope outer_scope(isolate);
|
|
LocalContext context;
|
|
Handle<Object> n(Object(0), isolate);
|
|
CHECK(!n.is_null());
|
|
}
|
|
|
|
|
|
TEST(HeapObjects) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
Heap* heap = isolate->heap();
|
|
|
|
HandleScope sc(isolate);
|
|
Handle<Object> value = factory->NewNumber(1.000123);
|
|
CHECK(value->IsHeapNumber());
|
|
CHECK(value->IsNumber());
|
|
CHECK_EQ(1.000123, value->Number());
|
|
|
|
value = factory->NewNumber(1.0);
|
|
CHECK(value->IsSmi());
|
|
CHECK(value->IsNumber());
|
|
CHECK_EQ(1.0, value->Number());
|
|
|
|
value = factory->NewNumberFromInt(1024);
|
|
CHECK(value->IsSmi());
|
|
CHECK(value->IsNumber());
|
|
CHECK_EQ(1024.0, value->Number());
|
|
|
|
value = factory->NewNumberFromInt(Smi::kMinValue);
|
|
CHECK(value->IsSmi());
|
|
CHECK(value->IsNumber());
|
|
CHECK_EQ(Smi::kMinValue, Handle<Smi>::cast(value)->value());
|
|
|
|
value = factory->NewNumberFromInt(Smi::kMaxValue);
|
|
CHECK(value->IsSmi());
|
|
CHECK(value->IsNumber());
|
|
CHECK_EQ(Smi::kMaxValue, Handle<Smi>::cast(value)->value());
|
|
|
|
#if !defined(V8_TARGET_ARCH_64_BIT)
|
|
// TODO(lrn): We need a NumberFromIntptr function in order to test this.
|
|
value = factory->NewNumberFromInt(Smi::kMinValue - 1);
|
|
CHECK(value->IsHeapNumber());
|
|
CHECK(value->IsNumber());
|
|
CHECK_EQ(static_cast<double>(Smi::kMinValue - 1), value->Number());
|
|
#endif
|
|
|
|
value = factory->NewNumberFromUint(static_cast<uint32_t>(Smi::kMaxValue) + 1);
|
|
CHECK(value->IsHeapNumber());
|
|
CHECK(value->IsNumber());
|
|
CHECK_EQ(static_cast<double>(static_cast<uint32_t>(Smi::kMaxValue) + 1),
|
|
value->Number());
|
|
|
|
value = factory->NewNumberFromUint(static_cast<uint32_t>(1) << 31);
|
|
CHECK(value->IsHeapNumber());
|
|
CHECK(value->IsNumber());
|
|
CHECK_EQ(static_cast<double>(static_cast<uint32_t>(1) << 31),
|
|
value->Number());
|
|
|
|
// nan oddball checks
|
|
CHECK(factory->nan_value()->IsNumber());
|
|
CHECK(std::isnan(factory->nan_value()->Number()));
|
|
|
|
Handle<String> s = factory->NewStringFromStaticChars("fisk hest ");
|
|
CHECK(s->IsString());
|
|
CHECK_EQ(10, s->length());
|
|
|
|
Handle<String> object_string = Handle<String>::cast(factory->Object_string());
|
|
Handle<JSGlobalObject> global(CcTest::i_isolate()->context().global_object(),
|
|
isolate);
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(global, object_string));
|
|
|
|
// Check ToString for oddballs
|
|
ReadOnlyRoots roots(heap);
|
|
CheckOddball(isolate, roots.true_value(), "true");
|
|
CheckOddball(isolate, roots.false_value(), "false");
|
|
CheckOddball(isolate, roots.null_value(), "null");
|
|
CheckOddball(isolate, roots.undefined_value(), "undefined");
|
|
|
|
// Check ToString for Smis
|
|
CheckSmi(isolate, 0, "0");
|
|
CheckSmi(isolate, 42, "42");
|
|
CheckSmi(isolate, -42, "-42");
|
|
|
|
// Check ToString for Numbers
|
|
CheckNumber(isolate, 1.1, "1.1");
|
|
|
|
CheckFindCodeObject(isolate);
|
|
}
|
|
|
|
TEST(Tagging) {
|
|
CcTest::InitializeVM();
|
|
int request = 24;
|
|
CHECK_EQ(request, static_cast<int>(OBJECT_POINTER_ALIGN(request)));
|
|
CHECK(Smi::FromInt(42).IsSmi());
|
|
CHECK(Smi::FromInt(Smi::kMinValue).IsSmi());
|
|
CHECK(Smi::FromInt(Smi::kMaxValue).IsSmi());
|
|
}
|
|
|
|
|
|
TEST(GarbageCollection) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
|
|
HandleScope sc(isolate);
|
|
// Check GC.
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
|
|
Handle<JSGlobalObject> global(CcTest::i_isolate()->context().global_object(),
|
|
isolate);
|
|
Handle<String> name = factory->InternalizeUtf8String("theFunction");
|
|
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
|
|
Handle<String> prop_namex = factory->InternalizeUtf8String("theSlotx");
|
|
Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
|
|
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
|
|
Handle<Smi> twenty_four(Smi::FromInt(24), isolate);
|
|
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
// Allocate a function and keep it in global object's property.
|
|
Handle<JSFunction> function = factory->NewFunctionForTest(name);
|
|
Object::SetProperty(isolate, global, name, function).Check();
|
|
// Allocate an object. Unrooted after leaving the scope.
|
|
Handle<JSObject> obj = factory->NewJSObject(function);
|
|
Object::SetProperty(isolate, obj, prop_name, twenty_three).Check();
|
|
Object::SetProperty(isolate, obj, prop_namex, twenty_four).Check();
|
|
|
|
CHECK_EQ(Smi::FromInt(23),
|
|
*Object::GetProperty(isolate, obj, prop_name).ToHandleChecked());
|
|
CHECK_EQ(Smi::FromInt(24),
|
|
*Object::GetProperty(isolate, obj, prop_namex).ToHandleChecked());
|
|
}
|
|
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
|
|
// Function should be alive.
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(global, name));
|
|
// Check function is retained.
|
|
Handle<Object> func_value =
|
|
Object::GetProperty(isolate, global, name).ToHandleChecked();
|
|
CHECK(func_value->IsJSFunction());
|
|
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
|
|
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
// Allocate another object, make it reachable from global.
|
|
Handle<JSObject> obj = factory->NewJSObject(function);
|
|
Object::SetProperty(isolate, global, obj_name, obj).Check();
|
|
Object::SetProperty(isolate, obj, prop_name, twenty_three).Check();
|
|
}
|
|
|
|
// After gc, it should survive.
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(global, obj_name));
|
|
Handle<Object> obj =
|
|
Object::GetProperty(isolate, global, obj_name).ToHandleChecked();
|
|
CHECK(obj->IsJSObject());
|
|
CHECK_EQ(Smi::FromInt(23),
|
|
*Object::GetProperty(isolate, obj, prop_name).ToHandleChecked());
|
|
}
|
|
|
|
|
|
static void VerifyStringAllocation(Isolate* isolate, const char* string) {
|
|
HandleScope scope(isolate);
|
|
Handle<String> s = isolate->factory()
|
|
->NewStringFromUtf8(CStrVector(string))
|
|
.ToHandleChecked();
|
|
CHECK_EQ(strlen(string), s->length());
|
|
for (int index = 0; index < s->length(); index++) {
|
|
CHECK_EQ(static_cast<uint16_t>(string[index]), s->Get(index));
|
|
}
|
|
}
|
|
|
|
|
|
TEST(String) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = reinterpret_cast<Isolate*>(CcTest::isolate());
|
|
|
|
VerifyStringAllocation(isolate, "a");
|
|
VerifyStringAllocation(isolate, "ab");
|
|
VerifyStringAllocation(isolate, "abc");
|
|
VerifyStringAllocation(isolate, "abcd");
|
|
VerifyStringAllocation(isolate, "fiskerdrengen er paa havet");
|
|
}
|
|
|
|
|
|
TEST(LocalHandles) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
const char* name = "Kasper the spunky";
|
|
Handle<String> string = factory->NewStringFromAsciiChecked(name);
|
|
CHECK_EQ(strlen(name), string->length());
|
|
}
|
|
|
|
|
|
TEST(GlobalHandles) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
GlobalHandles* global_handles = isolate->global_handles();
|
|
|
|
Handle<Object> h1;
|
|
Handle<Object> h2;
|
|
Handle<Object> h3;
|
|
Handle<Object> h4;
|
|
|
|
{
|
|
HandleScope scope(isolate);
|
|
|
|
Handle<Object> i = factory->NewStringFromStaticChars("fisk");
|
|
Handle<Object> u = factory->NewNumber(1.12344);
|
|
|
|
h1 = global_handles->Create(*i);
|
|
h2 = global_handles->Create(*u);
|
|
h3 = global_handles->Create(*i);
|
|
h4 = global_handles->Create(*u);
|
|
}
|
|
|
|
// after gc, it should survive
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
|
|
CHECK((*h1).IsString());
|
|
CHECK((*h2).IsHeapNumber());
|
|
CHECK((*h3).IsString());
|
|
CHECK((*h4).IsHeapNumber());
|
|
|
|
CHECK_EQ(*h3, *h1);
|
|
GlobalHandles::Destroy(h1.location());
|
|
GlobalHandles::Destroy(h3.location());
|
|
|
|
CHECK_EQ(*h4, *h2);
|
|
GlobalHandles::Destroy(h2.location());
|
|
GlobalHandles::Destroy(h4.location());
|
|
}
|
|
|
|
|
|
static bool WeakPointerCleared = false;
|
|
|
|
static void TestWeakGlobalHandleCallback(
|
|
const v8::WeakCallbackInfo<void>& data) {
|
|
std::pair<v8::Persistent<v8::Value>*, int>* p =
|
|
reinterpret_cast<std::pair<v8::Persistent<v8::Value>*, int>*>(
|
|
data.GetParameter());
|
|
if (p->second == 1234) WeakPointerCleared = true;
|
|
p->first->Reset();
|
|
}
|
|
|
|
TEST(WeakGlobalUnmodifiedApiHandlesScavenge) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
LocalContext context;
|
|
Factory* factory = isolate->factory();
|
|
GlobalHandles* global_handles = isolate->global_handles();
|
|
|
|
WeakPointerCleared = false;
|
|
|
|
Handle<Object> h1;
|
|
Handle<Object> h2;
|
|
|
|
{
|
|
HandleScope scope(isolate);
|
|
|
|
// Create an Api object that is unmodified.
|
|
Local<v8::Function> function = FunctionTemplate::New(context->GetIsolate())
|
|
->GetFunction(context.local())
|
|
.ToLocalChecked();
|
|
Local<v8::Object> i =
|
|
function->NewInstance(context.local()).ToLocalChecked();
|
|
Handle<Object> u = factory->NewNumber(1.12344);
|
|
|
|
h1 = global_handles->Create(*u);
|
|
h2 = global_handles->Create(*(reinterpret_cast<internal::Address*>(*i)));
|
|
}
|
|
|
|
std::pair<Handle<Object>*, int> handle_and_id(&h2, 1234);
|
|
GlobalHandles::MakeWeak(
|
|
h2.location(), reinterpret_cast<void*>(&handle_and_id),
|
|
&TestWeakGlobalHandleCallback, v8::WeakCallbackType::kParameter);
|
|
|
|
FLAG_single_generation ? CcTest::CollectGarbage(OLD_SPACE)
|
|
: CcTest::CollectGarbage(NEW_SPACE);
|
|
CHECK((*h1).IsHeapNumber());
|
|
CHECK(WeakPointerCleared);
|
|
GlobalHandles::Destroy(h1.location());
|
|
}
|
|
|
|
TEST(WeakGlobalHandlesMark) {
|
|
FLAG_stress_incremental_marking = false;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
GlobalHandles* global_handles = isolate->global_handles();
|
|
|
|
WeakPointerCleared = false;
|
|
|
|
Handle<Object> h1;
|
|
Handle<Object> h2;
|
|
|
|
{
|
|
HandleScope scope(isolate);
|
|
|
|
Handle<Object> i = factory->NewStringFromStaticChars("fisk");
|
|
Handle<Object> u = factory->NewNumber(1.12344);
|
|
|
|
h1 = global_handles->Create(*i);
|
|
h2 = global_handles->Create(*u);
|
|
}
|
|
|
|
// Make sure the objects are promoted.
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
CHECK(!Heap::InYoungGeneration(*h1) && !Heap::InYoungGeneration(*h2));
|
|
|
|
std::pair<Handle<Object>*, int> handle_and_id(&h2, 1234);
|
|
GlobalHandles::MakeWeak(
|
|
h2.location(), reinterpret_cast<void*>(&handle_and_id),
|
|
&TestWeakGlobalHandleCallback, v8::WeakCallbackType::kParameter);
|
|
|
|
// Incremental marking potentially marked handles before they turned weak.
|
|
CcTest::CollectAllGarbage();
|
|
CHECK((*h1).IsString());
|
|
CHECK(WeakPointerCleared);
|
|
GlobalHandles::Destroy(h1.location());
|
|
}
|
|
|
|
|
|
TEST(DeleteWeakGlobalHandle) {
|
|
FLAG_stress_compaction = false;
|
|
FLAG_stress_incremental_marking = false;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
GlobalHandles* global_handles = isolate->global_handles();
|
|
|
|
WeakPointerCleared = false;
|
|
Handle<Object> h;
|
|
{
|
|
HandleScope scope(isolate);
|
|
|
|
Handle<Object> i = factory->NewStringFromStaticChars("fisk");
|
|
h = global_handles->Create(*i);
|
|
}
|
|
|
|
std::pair<Handle<Object>*, int> handle_and_id(&h, 1234);
|
|
GlobalHandles::MakeWeak(h.location(), reinterpret_cast<void*>(&handle_and_id),
|
|
&TestWeakGlobalHandleCallback,
|
|
v8::WeakCallbackType::kParameter);
|
|
CHECK(!WeakPointerCleared);
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
CHECK(WeakPointerCleared);
|
|
}
|
|
|
|
TEST(BytecodeArray) {
|
|
if (FLAG_never_compact) return;
|
|
static const uint8_t kRawBytes[] = {0xC3, 0x7E, 0xA5, 0x5A};
|
|
static const int kRawBytesSize = sizeof(kRawBytes);
|
|
static const int32_t kFrameSize = 32;
|
|
static const int32_t kParameterCount = 2;
|
|
|
|
ManualGCScope manual_gc_scope;
|
|
FLAG_manual_evacuation_candidates_selection = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
Factory* factory = isolate->factory();
|
|
HandleScope scope(isolate);
|
|
|
|
heap::SimulateFullSpace(heap->old_space());
|
|
Handle<FixedArray> constant_pool =
|
|
factory->NewFixedArray(5, AllocationType::kOld);
|
|
for (int i = 0; i < 5; i++) {
|
|
Handle<Object> number = factory->NewHeapNumber(i);
|
|
constant_pool->set(i, *number);
|
|
}
|
|
|
|
// Allocate and initialize BytecodeArray
|
|
Handle<BytecodeArray> array = factory->NewBytecodeArray(
|
|
kRawBytesSize, kRawBytes, kFrameSize, kParameterCount, constant_pool);
|
|
|
|
CHECK(array->IsBytecodeArray());
|
|
CHECK_EQ(array->length(), (int)sizeof(kRawBytes));
|
|
CHECK_EQ(array->frame_size(), kFrameSize);
|
|
CHECK_EQ(array->parameter_count(), kParameterCount);
|
|
CHECK_EQ(array->constant_pool(), *constant_pool);
|
|
CHECK_LE(array->address(), array->GetFirstBytecodeAddress());
|
|
CHECK_GE(array->address() + array->BytecodeArraySize(),
|
|
array->GetFirstBytecodeAddress() + array->length());
|
|
for (int i = 0; i < kRawBytesSize; i++) {
|
|
CHECK_EQ(Memory<uint8_t>(array->GetFirstBytecodeAddress() + i),
|
|
kRawBytes[i]);
|
|
CHECK_EQ(array->get(i), kRawBytes[i]);
|
|
}
|
|
|
|
FixedArray old_constant_pool_address = *constant_pool;
|
|
|
|
// Perform a full garbage collection and force the constant pool to be on an
|
|
// evacuation candidate.
|
|
Page* evac_page = Page::FromHeapObject(*constant_pool);
|
|
heap::ForceEvacuationCandidate(evac_page);
|
|
CcTest::CollectAllGarbage();
|
|
|
|
// BytecodeArray should survive.
|
|
CHECK_EQ(array->length(), kRawBytesSize);
|
|
CHECK_EQ(array->frame_size(), kFrameSize);
|
|
for (int i = 0; i < kRawBytesSize; i++) {
|
|
CHECK_EQ(array->get(i), kRawBytes[i]);
|
|
CHECK_EQ(Memory<uint8_t>(array->GetFirstBytecodeAddress() + i),
|
|
kRawBytes[i]);
|
|
}
|
|
|
|
// Constant pool should have been migrated.
|
|
CHECK_EQ(array->constant_pool(), *constant_pool);
|
|
CHECK_NE(array->constant_pool(), old_constant_pool_address);
|
|
}
|
|
|
|
TEST(BytecodeArrayAging) {
|
|
static const uint8_t kRawBytes[] = {0xC3, 0x7E, 0xA5, 0x5A};
|
|
static const int kRawBytesSize = sizeof(kRawBytes);
|
|
static const int32_t kFrameSize = 32;
|
|
static const int32_t kParameterCount = 2;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
HandleScope scope(isolate);
|
|
|
|
Handle<BytecodeArray> array =
|
|
factory->NewBytecodeArray(kRawBytesSize, kRawBytes, kFrameSize,
|
|
kParameterCount, factory->empty_fixed_array());
|
|
|
|
CHECK_EQ(BytecodeArray::kFirstBytecodeAge, array->bytecode_age());
|
|
array->MakeOlder();
|
|
CHECK_EQ(BytecodeArray::kQuadragenarianBytecodeAge, array->bytecode_age());
|
|
array->set_bytecode_age(BytecodeArray::kLastBytecodeAge);
|
|
array->MakeOlder();
|
|
CHECK_EQ(BytecodeArray::kLastBytecodeAge, array->bytecode_age());
|
|
}
|
|
|
|
static const char* not_so_random_string_table[] = {
|
|
"abstract", "boolean", "break", "byte", "case",
|
|
"catch", "char", "class", "const", "continue",
|
|
"debugger", "default", "delete", "do", "double",
|
|
"else", "enum", "export", "extends", "false",
|
|
"final", "finally", "float", "for", "function",
|
|
"goto", "if", "implements", "import", "in",
|
|
"instanceof", "int", "interface", "long", "native",
|
|
"new", "null", "package", "private", "protected",
|
|
"public", "return", "short", "static", "super",
|
|
"switch", "synchronized", "this", "throw", "throws",
|
|
"transient", "true", "try", "typeof", "var",
|
|
"void", "volatile", "while", "with", nullptr};
|
|
|
|
static void CheckInternalizedStrings(const char** strings) {
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
for (const char* string = *strings; *strings != nullptr;
|
|
string = *strings++) {
|
|
HandleScope scope(isolate);
|
|
Handle<String> a =
|
|
isolate->factory()->InternalizeUtf8String(CStrVector(string));
|
|
// InternalizeUtf8String may return a failure if a GC is needed.
|
|
CHECK(a->IsInternalizedString());
|
|
Handle<String> b = factory->InternalizeUtf8String(string);
|
|
CHECK_EQ(*b, *a);
|
|
CHECK(b->IsOneByteEqualTo(CStrVector(string)));
|
|
b = isolate->factory()->InternalizeUtf8String(CStrVector(string));
|
|
CHECK_EQ(*b, *a);
|
|
CHECK(b->IsOneByteEqualTo(CStrVector(string)));
|
|
}
|
|
}
|
|
|
|
|
|
TEST(StringTable) {
|
|
CcTest::InitializeVM();
|
|
|
|
v8::HandleScope sc(CcTest::isolate());
|
|
CheckInternalizedStrings(not_so_random_string_table);
|
|
CheckInternalizedStrings(not_so_random_string_table);
|
|
}
|
|
|
|
|
|
TEST(FunctionAllocation) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
|
|
v8::HandleScope sc(CcTest::isolate());
|
|
Handle<String> name = factory->InternalizeUtf8String("theFunction");
|
|
Handle<JSFunction> function = factory->NewFunctionForTest(name);
|
|
|
|
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
|
|
Handle<Smi> twenty_four(Smi::FromInt(24), isolate);
|
|
|
|
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
|
|
Handle<JSObject> obj = factory->NewJSObject(function);
|
|
Object::SetProperty(isolate, obj, prop_name, twenty_three).Check();
|
|
CHECK_EQ(Smi::FromInt(23),
|
|
*Object::GetProperty(isolate, obj, prop_name).ToHandleChecked());
|
|
// Check that we can add properties to function objects.
|
|
Object::SetProperty(isolate, function, prop_name, twenty_four).Check();
|
|
CHECK_EQ(
|
|
Smi::FromInt(24),
|
|
*Object::GetProperty(isolate, function, prop_name).ToHandleChecked());
|
|
}
|
|
|
|
|
|
TEST(ObjectProperties) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
|
|
v8::HandleScope sc(CcTest::isolate());
|
|
Handle<String> object_string(
|
|
String::cast(ReadOnlyRoots(CcTest::heap()).Object_string()), isolate);
|
|
Handle<Object> object =
|
|
Object::GetProperty(isolate, CcTest::i_isolate()->global_object(),
|
|
object_string)
|
|
.ToHandleChecked();
|
|
Handle<JSFunction> constructor = Handle<JSFunction>::cast(object);
|
|
Handle<JSObject> obj = factory->NewJSObject(constructor);
|
|
Handle<String> first = factory->InternalizeUtf8String("first");
|
|
Handle<String> second = factory->InternalizeUtf8String("second");
|
|
|
|
Handle<Smi> one(Smi::FromInt(1), isolate);
|
|
Handle<Smi> two(Smi::FromInt(2), isolate);
|
|
|
|
// check for empty
|
|
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first));
|
|
|
|
// add first
|
|
Object::SetProperty(isolate, obj, first, one).Check();
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first));
|
|
|
|
// delete first
|
|
CHECK(Just(true) ==
|
|
JSReceiver::DeleteProperty(obj, first, LanguageMode::kSloppy));
|
|
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first));
|
|
|
|
// add first and then second
|
|
Object::SetProperty(isolate, obj, first, one).Check();
|
|
Object::SetProperty(isolate, obj, second, two).Check();
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first));
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second));
|
|
|
|
// delete first and then second
|
|
CHECK(Just(true) ==
|
|
JSReceiver::DeleteProperty(obj, first, LanguageMode::kSloppy));
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second));
|
|
CHECK(Just(true) ==
|
|
JSReceiver::DeleteProperty(obj, second, LanguageMode::kSloppy));
|
|
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first));
|
|
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, second));
|
|
|
|
// add first and then second
|
|
Object::SetProperty(isolate, obj, first, one).Check();
|
|
Object::SetProperty(isolate, obj, second, two).Check();
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first));
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, second));
|
|
|
|
// delete second and then first
|
|
CHECK(Just(true) ==
|
|
JSReceiver::DeleteProperty(obj, second, LanguageMode::kSloppy));
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, first));
|
|
CHECK(Just(true) ==
|
|
JSReceiver::DeleteProperty(obj, first, LanguageMode::kSloppy));
|
|
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, first));
|
|
CHECK(Just(false) == JSReceiver::HasOwnProperty(obj, second));
|
|
|
|
// check string and internalized string match
|
|
const char* string1 = "fisk";
|
|
Handle<String> s1 = factory->NewStringFromAsciiChecked(string1);
|
|
Object::SetProperty(isolate, obj, s1, one).Check();
|
|
Handle<String> s1_string = factory->InternalizeUtf8String(string1);
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, s1_string));
|
|
|
|
// check internalized string and string match
|
|
const char* string2 = "fugl";
|
|
Handle<String> s2_string = factory->InternalizeUtf8String(string2);
|
|
Object::SetProperty(isolate, obj, s2_string, one).Check();
|
|
Handle<String> s2 = factory->NewStringFromAsciiChecked(string2);
|
|
CHECK(Just(true) == JSReceiver::HasOwnProperty(obj, s2));
|
|
}
|
|
|
|
|
|
TEST(JSObjectMaps) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
|
|
v8::HandleScope sc(CcTest::isolate());
|
|
Handle<String> name = factory->InternalizeUtf8String("theFunction");
|
|
Handle<JSFunction> function = factory->NewFunctionForTest(name);
|
|
|
|
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
|
|
Handle<JSObject> obj = factory->NewJSObject(function);
|
|
Handle<Map> initial_map(function->initial_map(), isolate);
|
|
|
|
// Set a propery
|
|
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
|
|
Object::SetProperty(isolate, obj, prop_name, twenty_three).Check();
|
|
CHECK_EQ(Smi::FromInt(23),
|
|
*Object::GetProperty(isolate, obj, prop_name).ToHandleChecked());
|
|
|
|
// Check the map has changed
|
|
CHECK(*initial_map != obj->map());
|
|
}
|
|
|
|
|
|
TEST(JSArray) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
|
|
v8::HandleScope sc(CcTest::isolate());
|
|
Handle<String> name = factory->InternalizeUtf8String("Array");
|
|
Handle<Object> fun_obj =
|
|
Object::GetProperty(isolate, CcTest::i_isolate()->global_object(), name)
|
|
.ToHandleChecked();
|
|
Handle<JSFunction> function = Handle<JSFunction>::cast(fun_obj);
|
|
|
|
// Allocate the object.
|
|
Handle<Object> element;
|
|
Handle<JSObject> object = factory->NewJSObject(function);
|
|
Handle<JSArray> array = Handle<JSArray>::cast(object);
|
|
// We just initialized the VM, no heap allocation failure yet.
|
|
JSArray::Initialize(array, 0);
|
|
|
|
// Set array length to 0.
|
|
JSArray::SetLength(array, 0);
|
|
CHECK_EQ(Smi::zero(), array->length());
|
|
// Must be in fast mode.
|
|
CHECK(array->HasSmiOrObjectElements());
|
|
|
|
// array[length] = name.
|
|
Object::SetElement(isolate, array, 0, name, ShouldThrow::kDontThrow).Check();
|
|
CHECK_EQ(Smi::FromInt(1), array->length());
|
|
element = i::Object::GetElement(isolate, array, 0).ToHandleChecked();
|
|
CHECK_EQ(*element, *name);
|
|
|
|
// Set array length with larger than smi value.
|
|
JSArray::SetLength(array, static_cast<uint32_t>(Smi::kMaxValue) + 1);
|
|
|
|
uint32_t int_length = 0;
|
|
CHECK(array->length().ToArrayIndex(&int_length));
|
|
CHECK_EQ(static_cast<uint32_t>(Smi::kMaxValue) + 1, int_length);
|
|
CHECK(array->HasDictionaryElements()); // Must be in slow mode.
|
|
|
|
// array[length] = name.
|
|
Object::SetElement(isolate, array, int_length, name, ShouldThrow::kDontThrow)
|
|
.Check();
|
|
uint32_t new_int_length = 0;
|
|
CHECK(array->length().ToArrayIndex(&new_int_length));
|
|
CHECK_EQ(static_cast<double>(int_length), new_int_length - 1);
|
|
element = Object::GetElement(isolate, array, int_length).ToHandleChecked();
|
|
CHECK_EQ(*element, *name);
|
|
element = Object::GetElement(isolate, array, 0).ToHandleChecked();
|
|
CHECK_EQ(*element, *name);
|
|
}
|
|
|
|
|
|
TEST(JSObjectCopy) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
|
|
v8::HandleScope sc(CcTest::isolate());
|
|
Handle<String> object_string(
|
|
String::cast(ReadOnlyRoots(CcTest::heap()).Object_string()), isolate);
|
|
Handle<Object> object =
|
|
Object::GetProperty(isolate, CcTest::i_isolate()->global_object(),
|
|
object_string)
|
|
.ToHandleChecked();
|
|
Handle<JSFunction> constructor = Handle<JSFunction>::cast(object);
|
|
Handle<JSObject> obj = factory->NewJSObject(constructor);
|
|
Handle<String> first = factory->InternalizeUtf8String("first");
|
|
Handle<String> second = factory->InternalizeUtf8String("second");
|
|
|
|
Handle<Smi> one(Smi::FromInt(1), isolate);
|
|
Handle<Smi> two(Smi::FromInt(2), isolate);
|
|
|
|
Object::SetProperty(isolate, obj, first, one).Check();
|
|
Object::SetProperty(isolate, obj, second, two).Check();
|
|
|
|
Object::SetElement(isolate, obj, 0, first, ShouldThrow::kDontThrow).Check();
|
|
Object::SetElement(isolate, obj, 1, second, ShouldThrow::kDontThrow).Check();
|
|
|
|
// Make the clone.
|
|
Handle<Object> value1, value2;
|
|
Handle<JSObject> clone = factory->CopyJSObject(obj);
|
|
CHECK(!clone.is_identical_to(obj));
|
|
|
|
value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked();
|
|
value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked();
|
|
CHECK_EQ(*value1, *value2);
|
|
value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked();
|
|
value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked();
|
|
CHECK_EQ(*value1, *value2);
|
|
|
|
value1 = Object::GetProperty(isolate, obj, first).ToHandleChecked();
|
|
value2 = Object::GetProperty(isolate, clone, first).ToHandleChecked();
|
|
CHECK_EQ(*value1, *value2);
|
|
value1 = Object::GetProperty(isolate, obj, second).ToHandleChecked();
|
|
value2 = Object::GetProperty(isolate, clone, second).ToHandleChecked();
|
|
CHECK_EQ(*value1, *value2);
|
|
|
|
// Flip the values.
|
|
Object::SetProperty(isolate, clone, first, two).Check();
|
|
Object::SetProperty(isolate, clone, second, one).Check();
|
|
|
|
Object::SetElement(isolate, clone, 0, second, ShouldThrow::kDontThrow)
|
|
.Check();
|
|
Object::SetElement(isolate, clone, 1, first, ShouldThrow::kDontThrow).Check();
|
|
|
|
value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked();
|
|
value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked();
|
|
CHECK_EQ(*value1, *value2);
|
|
value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked();
|
|
value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked();
|
|
CHECK_EQ(*value1, *value2);
|
|
|
|
value1 = Object::GetProperty(isolate, obj, second).ToHandleChecked();
|
|
value2 = Object::GetProperty(isolate, clone, first).ToHandleChecked();
|
|
CHECK_EQ(*value1, *value2);
|
|
value1 = Object::GetProperty(isolate, obj, first).ToHandleChecked();
|
|
value2 = Object::GetProperty(isolate, clone, second).ToHandleChecked();
|
|
CHECK_EQ(*value1, *value2);
|
|
}
|
|
|
|
|
|
TEST(StringAllocation) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
|
|
const unsigned char chars[] = {0xE5, 0xA4, 0xA7};
|
|
for (int length = 0; length < 100; length++) {
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
char* non_one_byte = NewArray<char>(3 * length + 1);
|
|
char* one_byte = NewArray<char>(length + 1);
|
|
non_one_byte[3 * length] = 0;
|
|
one_byte[length] = 0;
|
|
for (int i = 0; i < length; i++) {
|
|
one_byte[i] = 'a';
|
|
non_one_byte[3 * i] = chars[0];
|
|
non_one_byte[3 * i + 1] = chars[1];
|
|
non_one_byte[3 * i + 2] = chars[2];
|
|
}
|
|
Handle<String> non_one_byte_sym = factory->InternalizeUtf8String(
|
|
Vector<const char>(non_one_byte, 3 * length));
|
|
CHECK_EQ(length, non_one_byte_sym->length());
|
|
Handle<String> one_byte_sym =
|
|
factory->InternalizeString(OneByteVector(one_byte, length));
|
|
CHECK_EQ(length, one_byte_sym->length());
|
|
Handle<String> non_one_byte_str =
|
|
factory->NewStringFromUtf8(Vector<const char>(non_one_byte, 3 * length))
|
|
.ToHandleChecked();
|
|
non_one_byte_str->Hash();
|
|
CHECK_EQ(length, non_one_byte_str->length());
|
|
Handle<String> one_byte_str =
|
|
factory->NewStringFromUtf8(Vector<const char>(one_byte, length))
|
|
.ToHandleChecked();
|
|
one_byte_str->Hash();
|
|
CHECK_EQ(length, one_byte_str->length());
|
|
DeleteArray(non_one_byte);
|
|
DeleteArray(one_byte);
|
|
}
|
|
}
|
|
|
|
|
|
static int ObjectsFoundInHeap(Heap* heap, Handle<Object> objs[], int size) {
|
|
// Count the number of objects found in the heap.
|
|
int found_count = 0;
|
|
HeapObjectIterator iterator(heap);
|
|
for (HeapObject obj = iterator.Next(); !obj.is_null();
|
|
obj = iterator.Next()) {
|
|
for (int i = 0; i < size; i++) {
|
|
if (*objs[i] == obj) {
|
|
found_count++;
|
|
}
|
|
}
|
|
}
|
|
return found_count;
|
|
}
|
|
|
|
|
|
TEST(Iteration) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Array of objects to scan haep for.
|
|
const int objs_count = 6;
|
|
Handle<Object> objs[objs_count];
|
|
int next_objs_index = 0;
|
|
|
|
// Allocate a JS array to OLD_SPACE and NEW_SPACE
|
|
objs[next_objs_index++] = factory->NewJSArray(10);
|
|
objs[next_objs_index++] =
|
|
factory->NewJSArray(10, HOLEY_ELEMENTS, AllocationType::kOld);
|
|
|
|
// Allocate a small string to OLD_DATA_SPACE and NEW_SPACE
|
|
objs[next_objs_index++] = factory->NewStringFromStaticChars("abcdefghij");
|
|
objs[next_objs_index++] =
|
|
factory->NewStringFromStaticChars("abcdefghij", AllocationType::kOld);
|
|
|
|
// Allocate a large string (for large object space).
|
|
int large_size = kMaxRegularHeapObjectSize + 1;
|
|
char* str = new char[large_size];
|
|
for (int i = 0; i < large_size - 1; ++i) str[i] = 'a';
|
|
str[large_size - 1] = '\0';
|
|
objs[next_objs_index++] =
|
|
factory->NewStringFromAsciiChecked(str, AllocationType::kOld);
|
|
delete[] str;
|
|
|
|
// Add a Map object to look for.
|
|
objs[next_objs_index++] =
|
|
Handle<Map>(HeapObject::cast(*objs[0]).map(), isolate);
|
|
|
|
CHECK_EQ(objs_count, next_objs_index);
|
|
CHECK_EQ(objs_count, ObjectsFoundInHeap(CcTest::heap(), objs, objs_count));
|
|
}
|
|
|
|
TEST(TestBytecodeFlushing) {
|
|
#ifndef V8_LITE_MODE
|
|
FLAG_opt = false;
|
|
FLAG_always_opt = false;
|
|
i::FLAG_optimize_for_size = false;
|
|
#endif // V8_LITE_MODE
|
|
i::FLAG_flush_bytecode = true;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
|
|
CcTest::InitializeVM();
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
Isolate* i_isolate = CcTest::i_isolate();
|
|
Factory* factory = i_isolate->factory();
|
|
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
v8::Context::New(isolate)->Enter();
|
|
const char* source =
|
|
"function foo() {"
|
|
" var x = 42;"
|
|
" var y = 42;"
|
|
" var z = x + y;"
|
|
"};"
|
|
"foo()";
|
|
Handle<String> foo_name = factory->InternalizeUtf8String("foo");
|
|
|
|
// This compile will add the code to the compilation cache.
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
CompileRun(source);
|
|
}
|
|
|
|
// Check function is compiled.
|
|
Handle<Object> func_value =
|
|
Object::GetProperty(i_isolate, i_isolate->global_object(), foo_name)
|
|
.ToHandleChecked();
|
|
CHECK(func_value->IsJSFunction());
|
|
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
|
|
CHECK(function->shared().is_compiled());
|
|
|
|
// The code will survive at least two GCs.
|
|
CcTest::CollectAllGarbage();
|
|
CcTest::CollectAllGarbage();
|
|
CHECK(function->shared().is_compiled());
|
|
|
|
// Simulate several GCs that use full marking.
|
|
const int kAgingThreshold = 6;
|
|
for (int i = 0; i < kAgingThreshold; i++) {
|
|
CcTest::CollectAllGarbage();
|
|
}
|
|
|
|
// foo should no longer be in the compilation cache
|
|
CHECK(!function->shared().is_compiled());
|
|
CHECK(!function->is_compiled());
|
|
// Call foo to get it recompiled.
|
|
CompileRun("foo()");
|
|
CHECK(function->shared().is_compiled());
|
|
CHECK(function->is_compiled());
|
|
}
|
|
}
|
|
|
|
HEAP_TEST(Regress10560) {
|
|
i::FLAG_flush_bytecode = true;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
// Disable flags that allocate a feedback vector eagerly.
|
|
i::FLAG_opt = false;
|
|
i::FLAG_always_opt = false;
|
|
i::FLAG_lazy_feedback_allocation = true;
|
|
|
|
ManualGCScope manual_gc_scope;
|
|
CcTest::InitializeVM();
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
Isolate* i_isolate = CcTest::i_isolate();
|
|
Factory* factory = i_isolate->factory();
|
|
Heap* heap = i_isolate->heap();
|
|
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
const char* source =
|
|
"function foo() {"
|
|
" var x = 42;"
|
|
" var y = 42;"
|
|
" var z = x + y;"
|
|
"};"
|
|
"foo()";
|
|
Handle<String> foo_name = factory->InternalizeUtf8String("foo");
|
|
CompileRun(source);
|
|
|
|
// Check function is compiled.
|
|
Handle<Object> func_value =
|
|
Object::GetProperty(i_isolate, i_isolate->global_object(), foo_name)
|
|
.ToHandleChecked();
|
|
CHECK(func_value->IsJSFunction());
|
|
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
|
|
CHECK(function->shared().is_compiled());
|
|
CHECK(!function->has_feedback_vector());
|
|
|
|
// Pre-age bytecode so it will be flushed on next run.
|
|
CHECK(function->shared().HasBytecodeArray());
|
|
const int kAgingThreshold = 6;
|
|
for (int i = 0; i < kAgingThreshold; i++) {
|
|
function->shared().GetBytecodeArray().MakeOlder();
|
|
if (function->shared().GetBytecodeArray().IsOld()) break;
|
|
}
|
|
|
|
CHECK(function->shared().GetBytecodeArray().IsOld());
|
|
|
|
heap::SimulateFullSpace(heap->old_space());
|
|
|
|
// Just check bytecode isn't flushed still
|
|
CHECK(function->shared().GetBytecodeArray().IsOld());
|
|
CHECK(function->shared().is_compiled());
|
|
|
|
heap->set_force_oom(true);
|
|
heap->AddNearHeapLimitCallback(
|
|
[](void* data, size_t current_heap_limit,
|
|
size_t initial_heap_limit) -> size_t {
|
|
Heap* heap = static_cast<Heap*>(data);
|
|
heap->set_force_oom(false);
|
|
return 0;
|
|
},
|
|
heap);
|
|
|
|
// Allocate feedback vector.
|
|
IsCompiledScope is_compiled_scope(
|
|
function->shared().is_compiled_scope(i_isolate));
|
|
JSFunction::EnsureFeedbackVector(function, &is_compiled_scope);
|
|
|
|
CHECK(function->has_feedback_vector());
|
|
CHECK(function->shared().is_compiled());
|
|
CHECK(function->is_compiled());
|
|
}
|
|
}
|
|
|
|
UNINITIALIZED_TEST(Regress10843) {
|
|
FLAG_max_semi_space_size = 2;
|
|
FLAG_min_semi_space_size = 2;
|
|
FLAG_max_old_space_size = 8;
|
|
FLAG_always_compact = true;
|
|
v8::Isolate::CreateParams create_params;
|
|
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
|
|
v8::Isolate* isolate = v8::Isolate::New(create_params);
|
|
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
|
|
Factory* factory = i_isolate->factory();
|
|
Heap* heap = i_isolate->heap();
|
|
bool callback_was_invoked = false;
|
|
|
|
heap->AddNearHeapLimitCallback(
|
|
[](void* data, size_t current_heap_limit,
|
|
size_t initial_heap_limit) -> size_t {
|
|
*reinterpret_cast<bool*>(data) = true;
|
|
return current_heap_limit * 2;
|
|
},
|
|
&callback_was_invoked);
|
|
|
|
{
|
|
HandleScope scope(i_isolate);
|
|
std::vector<Handle<FixedArray>> arrays;
|
|
for (int i = 0; i < 140; i++) {
|
|
arrays.push_back(factory->NewFixedArray(10000));
|
|
}
|
|
CcTest::CollectAllGarbage(i_isolate);
|
|
CcTest::CollectAllGarbage(i_isolate);
|
|
for (int i = 0; i < 40; i++) {
|
|
arrays.push_back(factory->NewFixedArray(10000));
|
|
}
|
|
CcTest::CollectAllGarbage(i_isolate);
|
|
for (int i = 0; i < 100; i++) {
|
|
arrays.push_back(factory->NewFixedArray(10000));
|
|
}
|
|
CHECK(callback_was_invoked);
|
|
}
|
|
isolate->Dispose();
|
|
}
|
|
|
|
// Tests that spill slots from optimized code don't have weak pointers.
|
|
TEST(Regress10774) {
|
|
i::FLAG_allow_natives_syntax = true;
|
|
i::FLAG_dynamic_map_checks = true;
|
|
#ifdef VERIFY_HEAP
|
|
i::FLAG_verify_heap = true;
|
|
#endif
|
|
|
|
ManualGCScope manual_gc_scope;
|
|
CcTest::InitializeVM();
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
Isolate* i_isolate = CcTest::i_isolate();
|
|
Factory* factory = i_isolate->factory();
|
|
Heap* heap = i_isolate->heap();
|
|
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
// We want to generate optimized code with dynamic map check operator that
|
|
// migrates deprecated maps. To force this, we want the IC state to be
|
|
// monomorphic and the map in the feedback should be a migration target.
|
|
const char* source =
|
|
"function f(o) {"
|
|
" return o.b;"
|
|
"}"
|
|
"var o = {a:10, b:20};"
|
|
"var o1 = {a:10, b:20};"
|
|
"var o2 = {a:10, b:20};"
|
|
"%PrepareFunctionForOptimization(f);"
|
|
"f(o);"
|
|
"o1.b = 10.23;" // Deprecate O's map.
|
|
"f(o1);" // Install new map in IC
|
|
"f(o);" // Mark o's map as migration target
|
|
"%OptimizeFunctionOnNextCall(f);"
|
|
"f(o);";
|
|
CompileRun(source);
|
|
|
|
Handle<String> foo_name = factory->InternalizeUtf8String("f");
|
|
Handle<Object> func_value =
|
|
Object::GetProperty(i_isolate, i_isolate->global_object(), foo_name)
|
|
.ToHandleChecked();
|
|
CHECK(func_value->IsJSFunction());
|
|
Handle<JSFunction> fun = Handle<JSFunction>::cast(func_value);
|
|
|
|
Handle<String> obj_name = factory->InternalizeUtf8String("o2");
|
|
Handle<Object> obj_value =
|
|
Object::GetProperty(i_isolate, i_isolate->global_object(), obj_name)
|
|
.ToHandleChecked();
|
|
|
|
heap::SimulateFullSpace(heap->new_space());
|
|
|
|
Handle<JSObject> global(i_isolate->context().global_object(), i_isolate);
|
|
// O2 still has the deprecated map and the optimized code should migrate O2
|
|
// successfully. This shouldn't crash.
|
|
Execution::Call(i_isolate, fun, global, 1, &obj_value).ToHandleChecked();
|
|
}
|
|
}
|
|
|
|
#ifndef V8_LITE_MODE
|
|
|
|
TEST(TestOptimizeAfterBytecodeFlushingCandidate) {
|
|
FLAG_opt = true;
|
|
FLAG_always_opt = false;
|
|
i::FLAG_optimize_for_size = false;
|
|
i::FLAG_incremental_marking = true;
|
|
i::FLAG_flush_bytecode = true;
|
|
i::FLAG_allow_natives_syntax = true;
|
|
ManualGCScope manual_gc_scope;
|
|
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
const char* source =
|
|
"function foo() {"
|
|
" var x = 42;"
|
|
" var y = 42;"
|
|
" var z = x + y;"
|
|
"};"
|
|
"foo()";
|
|
Handle<String> foo_name = factory->InternalizeUtf8String("foo");
|
|
|
|
// This compile will add the code to the compilation cache.
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun(source);
|
|
}
|
|
|
|
// Check function is compiled.
|
|
Handle<Object> func_value =
|
|
Object::GetProperty(isolate, isolate->global_object(), foo_name)
|
|
.ToHandleChecked();
|
|
CHECK(func_value->IsJSFunction());
|
|
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
|
|
CHECK(function->shared().is_compiled());
|
|
|
|
// The code will survive at least two GCs.
|
|
CcTest::CollectAllGarbage();
|
|
CcTest::CollectAllGarbage();
|
|
CHECK(function->shared().is_compiled());
|
|
|
|
// Simulate several GCs that use incremental marking.
|
|
const int kAgingThreshold = 6;
|
|
for (int i = 0; i < kAgingThreshold; i++) {
|
|
heap::SimulateIncrementalMarking(CcTest::heap());
|
|
CcTest::CollectAllGarbage();
|
|
}
|
|
CHECK(!function->shared().is_compiled());
|
|
CHECK(!function->is_compiled());
|
|
|
|
// This compile will compile the function again.
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun("foo();");
|
|
}
|
|
|
|
// Simulate several GCs that use incremental marking but make sure
|
|
// the loop breaks once the function is enqueued as a candidate.
|
|
for (int i = 0; i < kAgingThreshold; i++) {
|
|
heap::SimulateIncrementalMarking(CcTest::heap());
|
|
if (function->shared().GetBytecodeArray().IsOld()) break;
|
|
CcTest::CollectAllGarbage();
|
|
}
|
|
|
|
// Force optimization while incremental marking is active and while
|
|
// the function is enqueued as a candidate.
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun(
|
|
"%PrepareFunctionForOptimization(foo);"
|
|
"%OptimizeFunctionOnNextCall(foo); foo();");
|
|
}
|
|
|
|
// Simulate one final GC and make sure the candidate wasn't flushed.
|
|
CcTest::CollectAllGarbage();
|
|
CHECK(function->shared().is_compiled());
|
|
CHECK(function->is_compiled());
|
|
}
|
|
|
|
#endif // V8_LITE_MODE
|
|
|
|
TEST(TestUseOfIncrementalBarrierOnCompileLazy) {
|
|
if (!FLAG_incremental_marking) return;
|
|
// Turn off always_opt because it interferes with running the built-in for
|
|
// the last call to g().
|
|
FLAG_always_opt = false;
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
Heap* heap = isolate->heap();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
CompileRun(
|
|
"function make_closure(x) {"
|
|
" return function() { return x + 3 };"
|
|
"}"
|
|
"var f = make_closure(5);"
|
|
"%PrepareFunctionForOptimization(f); f();"
|
|
"var g = make_closure(5);");
|
|
|
|
// Check f is compiled.
|
|
Handle<String> f_name = factory->InternalizeUtf8String("f");
|
|
Handle<Object> f_value =
|
|
Object::GetProperty(isolate, isolate->global_object(), f_name)
|
|
.ToHandleChecked();
|
|
Handle<JSFunction> f_function = Handle<JSFunction>::cast(f_value);
|
|
CHECK(f_function->is_compiled());
|
|
|
|
// Check g is not compiled.
|
|
Handle<String> g_name = factory->InternalizeUtf8String("g");
|
|
Handle<Object> g_value =
|
|
Object::GetProperty(isolate, isolate->global_object(), g_name)
|
|
.ToHandleChecked();
|
|
Handle<JSFunction> g_function = Handle<JSFunction>::cast(g_value);
|
|
CHECK(!g_function->is_compiled());
|
|
|
|
heap::SimulateIncrementalMarking(heap);
|
|
CompileRun("%OptimizeFunctionOnNextCall(f); f();");
|
|
|
|
// g should now have available an optimized function, unmarked by gc. The
|
|
// CompileLazy built-in will discover it and install it in the closure, and
|
|
// the incremental write barrier should be used.
|
|
CompileRun("g();");
|
|
CHECK(g_function->is_compiled());
|
|
}
|
|
|
|
TEST(CompilationCacheCachingBehavior) {
|
|
// If we do not have the compilation cache turned off, this test is invalid.
|
|
if (!FLAG_compilation_cache) {
|
|
return;
|
|
}
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
CompilationCache* compilation_cache = isolate->compilation_cache();
|
|
LanguageMode language_mode = construct_language_mode(FLAG_use_strict);
|
|
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
const char* raw_source =
|
|
"function foo() {"
|
|
" var x = 42;"
|
|
" var y = 42;"
|
|
" var z = x + y;"
|
|
"};"
|
|
"foo();";
|
|
Handle<String> source = factory->InternalizeUtf8String(raw_source);
|
|
Handle<Context> native_context = isolate->native_context();
|
|
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun(raw_source);
|
|
}
|
|
|
|
// The script should be in the cache now.
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
MaybeHandle<SharedFunctionInfo> cached_script =
|
|
compilation_cache->LookupScript(source, Handle<Object>(), 0, 0,
|
|
v8::ScriptOriginOptions(true, false),
|
|
native_context, language_mode);
|
|
CHECK(!cached_script.is_null());
|
|
}
|
|
|
|
// Check that the code cache entry survives at least one GC.
|
|
{
|
|
CcTest::CollectAllGarbage();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
MaybeHandle<SharedFunctionInfo> cached_script =
|
|
compilation_cache->LookupScript(source, Handle<Object>(), 0, 0,
|
|
v8::ScriptOriginOptions(true, false),
|
|
native_context, language_mode);
|
|
CHECK(!cached_script.is_null());
|
|
|
|
// Progress code age until it's old and ready for GC.
|
|
Handle<SharedFunctionInfo> shared = cached_script.ToHandleChecked();
|
|
CHECK(shared->HasBytecodeArray());
|
|
const int kAgingThreshold = 6;
|
|
for (int i = 0; i < kAgingThreshold; i++) {
|
|
shared->GetBytecodeArray().MakeOlder();
|
|
}
|
|
}
|
|
|
|
CcTest::CollectAllGarbage();
|
|
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
// Ensure code aging cleared the entry from the cache.
|
|
MaybeHandle<SharedFunctionInfo> cached_script =
|
|
compilation_cache->LookupScript(source, Handle<Object>(), 0, 0,
|
|
v8::ScriptOriginOptions(true, false),
|
|
native_context, language_mode);
|
|
CHECK(cached_script.is_null());
|
|
}
|
|
}
|
|
|
|
|
|
static void OptimizeEmptyFunction(const char* name) {
|
|
HandleScope scope(CcTest::i_isolate());
|
|
EmbeddedVector<char, 256> source;
|
|
SNPrintF(source,
|
|
"function %s() { return 0; }"
|
|
"%%PrepareFunctionForOptimization(%s);"
|
|
"%s(); %s();"
|
|
"%%OptimizeFunctionOnNextCall(%s);"
|
|
"%s();",
|
|
name, name, name, name, name, name);
|
|
CompileRun(source.begin());
|
|
}
|
|
|
|
|
|
// Count the number of native contexts in the weak list of native contexts.
|
|
int CountNativeContexts() {
|
|
int count = 0;
|
|
Object object = CcTest::heap()->native_contexts_list();
|
|
while (!object.IsUndefined(CcTest::i_isolate())) {
|
|
count++;
|
|
object = Context::cast(object).next_context_link();
|
|
}
|
|
return count;
|
|
}
|
|
|
|
TEST(TestInternalWeakLists) {
|
|
FLAG_always_opt = false;
|
|
FLAG_allow_natives_syntax = true;
|
|
v8::V8::Initialize();
|
|
|
|
// Some flags turn Scavenge collections into Mark-sweep collections
|
|
// and hence are incompatible with this test case.
|
|
if (FLAG_gc_global || FLAG_stress_compaction ||
|
|
FLAG_stress_incremental_marking)
|
|
return;
|
|
FLAG_retain_maps_for_n_gc = 0;
|
|
|
|
static const int kNumTestContexts = 10;
|
|
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
HandleScope scope(isolate);
|
|
v8::Local<v8::Context> ctx[kNumTestContexts];
|
|
if (!isolate->use_optimizer()) return;
|
|
|
|
CHECK_EQ(0, CountNativeContexts());
|
|
|
|
// Create a number of global contests which gets linked together.
|
|
for (int i = 0; i < kNumTestContexts; i++) {
|
|
ctx[i] = v8::Context::New(CcTest::isolate());
|
|
|
|
// Collect garbage that might have been created by one of the
|
|
// installed extensions.
|
|
isolate->compilation_cache()->Clear();
|
|
CcTest::CollectAllGarbage();
|
|
|
|
CHECK_EQ(i + 1, CountNativeContexts());
|
|
|
|
ctx[i]->Enter();
|
|
|
|
// Create a handle scope so no function objects get stuck in the outer
|
|
// handle scope.
|
|
HandleScope scope(isolate);
|
|
OptimizeEmptyFunction("f1");
|
|
OptimizeEmptyFunction("f2");
|
|
OptimizeEmptyFunction("f3");
|
|
OptimizeEmptyFunction("f4");
|
|
OptimizeEmptyFunction("f5");
|
|
|
|
// Remove function f1, and
|
|
CompileRun("f1=null");
|
|
|
|
// Scavenge treats these references as strong.
|
|
for (int j = 0; j < 10; j++) {
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
}
|
|
|
|
// Mark compact handles the weak references.
|
|
isolate->compilation_cache()->Clear();
|
|
CcTest::CollectAllGarbage();
|
|
|
|
// Get rid of f3 and f5 in the same way.
|
|
CompileRun("f3=null");
|
|
for (int j = 0; j < 10; j++) {
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
}
|
|
CcTest::CollectAllGarbage();
|
|
CompileRun("f5=null");
|
|
for (int j = 0; j < 10; j++) {
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
}
|
|
CcTest::CollectAllGarbage();
|
|
|
|
ctx[i]->Exit();
|
|
}
|
|
|
|
// Force compilation cache cleanup.
|
|
CcTest::heap()->NotifyContextDisposed(true);
|
|
CcTest::CollectAllGarbage();
|
|
|
|
// Dispose the native contexts one by one.
|
|
for (int i = 0; i < kNumTestContexts; i++) {
|
|
// TODO(dcarney): is there a better way to do this?
|
|
i::Address* unsafe = reinterpret_cast<i::Address*>(*ctx[i]);
|
|
*unsafe = ReadOnlyRoots(CcTest::heap()).undefined_value().ptr();
|
|
ctx[i].Clear();
|
|
|
|
// Scavenge treats these references as strong.
|
|
for (int j = 0; j < 10; j++) {
|
|
CcTest::CollectGarbage(i::NEW_SPACE);
|
|
CHECK_EQ(kNumTestContexts - i, CountNativeContexts());
|
|
}
|
|
|
|
// Mark compact handles the weak references.
|
|
CcTest::CollectAllGarbage();
|
|
CHECK_EQ(kNumTestContexts - i - 1, CountNativeContexts());
|
|
}
|
|
|
|
CHECK_EQ(0, CountNativeContexts());
|
|
}
|
|
|
|
|
|
TEST(TestSizeOfRegExpCode) {
|
|
if (!FLAG_regexp_optimization) return;
|
|
FLAG_stress_concurrent_allocation = false;
|
|
|
|
v8::V8::Initialize();
|
|
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
HandleScope scope(isolate);
|
|
|
|
LocalContext context;
|
|
|
|
// Adjust source below and this check to match
|
|
// RegExp::kRegExpTooLargeToOptimize.
|
|
CHECK_EQ(i::RegExp::kRegExpTooLargeToOptimize, 20 * KB);
|
|
|
|
// Compile a regexp that is much larger if we are using regexp optimizations.
|
|
CompileRun(
|
|
"var reg_exp_source = '(?:a|bc|def|ghij|klmno|pqrstu)';"
|
|
"var half_size_reg_exp;"
|
|
"while (reg_exp_source.length < 20 * 1024) {"
|
|
" half_size_reg_exp = reg_exp_source;"
|
|
" reg_exp_source = reg_exp_source + reg_exp_source;"
|
|
"}"
|
|
// Flatten string.
|
|
"reg_exp_source.match(/f/);");
|
|
|
|
// Get initial heap size after several full GCs, which will stabilize
|
|
// the heap size and return with sweeping finished completely.
|
|
CcTest::CollectAllAvailableGarbage();
|
|
MarkCompactCollector* collector = CcTest::heap()->mark_compact_collector();
|
|
if (collector->sweeping_in_progress()) {
|
|
collector->EnsureSweepingCompleted();
|
|
}
|
|
int initial_size = static_cast<int>(CcTest::heap()->SizeOfObjects());
|
|
|
|
CompileRun("'foo'.match(reg_exp_source);");
|
|
CcTest::CollectAllAvailableGarbage();
|
|
int size_with_regexp = static_cast<int>(CcTest::heap()->SizeOfObjects());
|
|
|
|
CompileRun("'foo'.match(half_size_reg_exp);");
|
|
CcTest::CollectAllAvailableGarbage();
|
|
int size_with_optimized_regexp =
|
|
static_cast<int>(CcTest::heap()->SizeOfObjects());
|
|
|
|
int size_of_regexp_code = size_with_regexp - initial_size;
|
|
|
|
// On some platforms the debug-code flag causes huge amounts of regexp code
|
|
// to be emitted, breaking this test.
|
|
if (!FLAG_debug_code) {
|
|
CHECK_LE(size_of_regexp_code, 1 * MB);
|
|
}
|
|
|
|
// Small regexp is half the size, but compiles to more than twice the code
|
|
// due to the optimization steps.
|
|
CHECK_GE(size_with_optimized_regexp,
|
|
size_with_regexp + size_of_regexp_code * 2);
|
|
}
|
|
|
|
|
|
HEAP_TEST(TestSizeOfObjects) {
|
|
v8::V8::Initialize();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = CcTest::heap();
|
|
// Disable LAB, such that calculations with SizeOfObjects() and object size
|
|
// are correct.
|
|
heap->DisableInlineAllocation();
|
|
MarkCompactCollector* collector = heap->mark_compact_collector();
|
|
|
|
// Get initial heap size after several full GCs, which will stabilize
|
|
// the heap size and return with sweeping finished completely.
|
|
CcTest::CollectAllAvailableGarbage();
|
|
if (collector->sweeping_in_progress()) {
|
|
collector->EnsureSweepingCompleted();
|
|
}
|
|
int initial_size = static_cast<int>(heap->SizeOfObjects());
|
|
|
|
{
|
|
HandleScope scope(isolate);
|
|
// Allocate objects on several different old-space pages so that
|
|
// concurrent sweeper threads will be busy sweeping the old space on
|
|
// subsequent GC runs.
|
|
AlwaysAllocateScopeForTesting always_allocate(heap);
|
|
int filler_size = static_cast<int>(FixedArray::SizeFor(8192));
|
|
for (int i = 1; i <= 100; i++) {
|
|
isolate->factory()->NewFixedArray(8192, AllocationType::kOld);
|
|
CHECK_EQ(initial_size + i * filler_size,
|
|
static_cast<int>(heap->SizeOfObjects()));
|
|
}
|
|
}
|
|
|
|
// The heap size should go back to initial size after a full GC, even
|
|
// though sweeping didn't finish yet.
|
|
CcTest::CollectAllGarbage();
|
|
// Normally sweeping would not be complete here, but no guarantees.
|
|
CHECK_EQ(initial_size, static_cast<int>(heap->SizeOfObjects()));
|
|
// Waiting for sweeper threads should not change heap size.
|
|
if (collector->sweeping_in_progress()) {
|
|
collector->EnsureSweepingCompleted();
|
|
}
|
|
CHECK_EQ(initial_size, static_cast<int>(heap->SizeOfObjects()));
|
|
}
|
|
|
|
|
|
TEST(TestAlignmentCalculations) {
|
|
// Maximum fill amounts are consistent.
|
|
int maximum_double_misalignment = kDoubleSize - kTaggedSize;
|
|
int max_word_fill = Heap::GetMaximumFillToAlign(kWordAligned);
|
|
CHECK_EQ(0, max_word_fill);
|
|
int max_double_fill = Heap::GetMaximumFillToAlign(kDoubleAligned);
|
|
CHECK_EQ(maximum_double_misalignment, max_double_fill);
|
|
int max_double_unaligned_fill = Heap::GetMaximumFillToAlign(kDoubleUnaligned);
|
|
CHECK_EQ(maximum_double_misalignment, max_double_unaligned_fill);
|
|
|
|
Address base = kNullAddress;
|
|
int fill = 0;
|
|
|
|
// Word alignment never requires fill.
|
|
fill = Heap::GetFillToAlign(base, kWordAligned);
|
|
CHECK_EQ(0, fill);
|
|
fill = Heap::GetFillToAlign(base + kTaggedSize, kWordAligned);
|
|
CHECK_EQ(0, fill);
|
|
|
|
// No fill is required when address is double aligned.
|
|
fill = Heap::GetFillToAlign(base, kDoubleAligned);
|
|
CHECK_EQ(0, fill);
|
|
// Fill is required if address is not double aligned.
|
|
fill = Heap::GetFillToAlign(base + kTaggedSize, kDoubleAligned);
|
|
CHECK_EQ(maximum_double_misalignment, fill);
|
|
// kDoubleUnaligned has the opposite fill amounts.
|
|
fill = Heap::GetFillToAlign(base, kDoubleUnaligned);
|
|
CHECK_EQ(maximum_double_misalignment, fill);
|
|
fill = Heap::GetFillToAlign(base + kTaggedSize, kDoubleUnaligned);
|
|
CHECK_EQ(0, fill);
|
|
}
|
|
|
|
static HeapObject NewSpaceAllocateAligned(int size,
|
|
AllocationAlignment alignment) {
|
|
Heap* heap = CcTest::heap();
|
|
AllocationResult allocation = heap->new_space()->AllocateRaw(size, alignment);
|
|
HeapObject obj;
|
|
allocation.To(&obj);
|
|
heap->CreateFillerObjectAt(obj.address(), size, ClearRecordedSlots::kNo);
|
|
return obj;
|
|
}
|
|
|
|
// Get new space allocation into the desired alignment.
|
|
static Address AlignNewSpace(AllocationAlignment alignment, int offset) {
|
|
Address* top_addr = CcTest::heap()->new_space()->allocation_top_address();
|
|
int fill = Heap::GetFillToAlign(*top_addr, alignment);
|
|
int allocation = fill + offset;
|
|
if (allocation) {
|
|
NewSpaceAllocateAligned(allocation, kWordAligned);
|
|
}
|
|
return *top_addr;
|
|
}
|
|
|
|
|
|
TEST(TestAlignedAllocation) {
|
|
// Double misalignment is 4 on 32-bit platforms or when pointer compression
|
|
// is enabled, 0 on 64-bit ones when pointer compression is disabled.
|
|
const intptr_t double_misalignment = kDoubleSize - kTaggedSize;
|
|
Address* top_addr = CcTest::heap()->new_space()->allocation_top_address();
|
|
Address start;
|
|
HeapObject obj;
|
|
HeapObject filler;
|
|
if (double_misalignment) {
|
|
// Allocate a pointer sized object that must be double aligned at an
|
|
// aligned address.
|
|
start = AlignNewSpace(kDoubleAligned, 0);
|
|
obj = NewSpaceAllocateAligned(kTaggedSize, kDoubleAligned);
|
|
CHECK(IsAligned(obj.address(), kDoubleAlignment));
|
|
// There is no filler.
|
|
CHECK_EQ(kTaggedSize, *top_addr - start);
|
|
|
|
// Allocate a second pointer sized object that must be double aligned at an
|
|
// unaligned address.
|
|
start = AlignNewSpace(kDoubleAligned, kTaggedSize);
|
|
obj = NewSpaceAllocateAligned(kTaggedSize, kDoubleAligned);
|
|
CHECK(IsAligned(obj.address(), kDoubleAlignment));
|
|
// There is a filler object before the object.
|
|
filler = HeapObject::FromAddress(start);
|
|
CHECK(obj != filler && filler.IsFreeSpaceOrFiller() &&
|
|
filler.Size() == kTaggedSize);
|
|
CHECK_EQ(kTaggedSize + double_misalignment, *top_addr - start);
|
|
|
|
// Similarly for kDoubleUnaligned.
|
|
start = AlignNewSpace(kDoubleUnaligned, 0);
|
|
obj = NewSpaceAllocateAligned(kTaggedSize, kDoubleUnaligned);
|
|
CHECK(IsAligned(obj.address() + kTaggedSize, kDoubleAlignment));
|
|
CHECK_EQ(kTaggedSize, *top_addr - start);
|
|
start = AlignNewSpace(kDoubleUnaligned, kTaggedSize);
|
|
obj = NewSpaceAllocateAligned(kTaggedSize, kDoubleUnaligned);
|
|
CHECK(IsAligned(obj.address() + kTaggedSize, kDoubleAlignment));
|
|
// There is a filler object before the object.
|
|
filler = HeapObject::FromAddress(start);
|
|
CHECK(obj != filler && filler.IsFreeSpaceOrFiller() &&
|
|
filler.Size() == kTaggedSize);
|
|
CHECK_EQ(kTaggedSize + double_misalignment, *top_addr - start);
|
|
}
|
|
}
|
|
|
|
static HeapObject OldSpaceAllocateAligned(int size,
|
|
AllocationAlignment alignment) {
|
|
Heap* heap = CcTest::heap();
|
|
AllocationResult allocation =
|
|
heap->old_space()->AllocateRawAligned(size, alignment);
|
|
HeapObject obj;
|
|
allocation.To(&obj);
|
|
heap->CreateFillerObjectAt(obj.address(), size, ClearRecordedSlots::kNo);
|
|
return obj;
|
|
}
|
|
|
|
// Get old space allocation into the desired alignment.
|
|
static Address AlignOldSpace(AllocationAlignment alignment, int offset) {
|
|
Address* top_addr = CcTest::heap()->old_space()->allocation_top_address();
|
|
int fill = Heap::GetFillToAlign(*top_addr, alignment);
|
|
int allocation = fill + offset;
|
|
if (allocation) {
|
|
OldSpaceAllocateAligned(allocation, kWordAligned);
|
|
}
|
|
Address top = *top_addr;
|
|
// Now force the remaining allocation onto the free list.
|
|
CcTest::heap()->old_space()->FreeLinearAllocationArea();
|
|
return top;
|
|
}
|
|
|
|
|
|
// Test the case where allocation must be done from the free list, so filler
|
|
// may precede or follow the object.
|
|
TEST(TestAlignedOverAllocation) {
|
|
if (FLAG_stress_concurrent_allocation) return;
|
|
ManualGCScope manual_gc_scope;
|
|
Heap* heap = CcTest::heap();
|
|
// Test checks for fillers before and behind objects and requires a fresh
|
|
// page and empty free list.
|
|
heap::AbandonCurrentlyFreeMemory(heap->old_space());
|
|
// Allocate a dummy object to properly set up the linear allocation info.
|
|
AllocationResult dummy = heap->old_space()->AllocateRawUnaligned(kTaggedSize);
|
|
CHECK(!dummy.IsRetry());
|
|
heap->CreateFillerObjectAt(dummy.ToObjectChecked().address(), kTaggedSize,
|
|
ClearRecordedSlots::kNo);
|
|
|
|
// Double misalignment is 4 on 32-bit platforms or when pointer compression
|
|
// is enabled, 0 on 64-bit ones when pointer compression is disabled.
|
|
const intptr_t double_misalignment = kDoubleSize - kTaggedSize;
|
|
Address start;
|
|
HeapObject obj;
|
|
HeapObject filler;
|
|
if (double_misalignment) {
|
|
start = AlignOldSpace(kDoubleAligned, 0);
|
|
obj = OldSpaceAllocateAligned(kTaggedSize, kDoubleAligned);
|
|
// The object is aligned.
|
|
CHECK(IsAligned(obj.address(), kDoubleAlignment));
|
|
// Try the opposite alignment case.
|
|
start = AlignOldSpace(kDoubleAligned, kTaggedSize);
|
|
obj = OldSpaceAllocateAligned(kTaggedSize, kDoubleAligned);
|
|
CHECK(IsAligned(obj.address(), kDoubleAlignment));
|
|
filler = HeapObject::FromAddress(start);
|
|
CHECK(obj != filler);
|
|
CHECK(filler.IsFreeSpaceOrFiller());
|
|
CHECK_EQ(kTaggedSize, filler.Size());
|
|
CHECK(obj != filler && filler.IsFreeSpaceOrFiller() &&
|
|
filler.Size() == kTaggedSize);
|
|
|
|
// Similarly for kDoubleUnaligned.
|
|
start = AlignOldSpace(kDoubleUnaligned, 0);
|
|
obj = OldSpaceAllocateAligned(kTaggedSize, kDoubleUnaligned);
|
|
// The object is aligned.
|
|
CHECK(IsAligned(obj.address() + kTaggedSize, kDoubleAlignment));
|
|
// Try the opposite alignment case.
|
|
start = AlignOldSpace(kDoubleUnaligned, kTaggedSize);
|
|
obj = OldSpaceAllocateAligned(kTaggedSize, kDoubleUnaligned);
|
|
CHECK(IsAligned(obj.address() + kTaggedSize, kDoubleAlignment));
|
|
filler = HeapObject::FromAddress(start);
|
|
CHECK(obj != filler && filler.IsFreeSpaceOrFiller() &&
|
|
filler.Size() == kTaggedSize);
|
|
}
|
|
}
|
|
|
|
TEST(HeapNumberAlignment) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
Heap* heap = isolate->heap();
|
|
HandleScope sc(isolate);
|
|
|
|
const auto required_alignment =
|
|
HeapObject::RequiredAlignment(*factory->heap_number_map());
|
|
const int maximum_misalignment =
|
|
Heap::GetMaximumFillToAlign(required_alignment);
|
|
|
|
for (int offset = 0; offset <= maximum_misalignment; offset += kTaggedSize) {
|
|
if (!FLAG_single_generation) {
|
|
AlignNewSpace(required_alignment, offset);
|
|
Handle<Object> number_new = factory->NewNumber(1.000123);
|
|
CHECK(number_new->IsHeapNumber());
|
|
CHECK(Heap::InYoungGeneration(*number_new));
|
|
CHECK_EQ(0, Heap::GetFillToAlign(HeapObject::cast(*number_new).address(),
|
|
required_alignment));
|
|
}
|
|
|
|
AlignOldSpace(required_alignment, offset);
|
|
Handle<Object> number_old =
|
|
factory->NewNumber<AllocationType::kOld>(1.000321);
|
|
CHECK(number_old->IsHeapNumber());
|
|
CHECK(heap->InOldSpace(*number_old));
|
|
CHECK_EQ(0, Heap::GetFillToAlign(HeapObject::cast(*number_old).address(),
|
|
required_alignment));
|
|
}
|
|
}
|
|
|
|
TEST(TestSizeOfObjectsVsHeapObjectIteratorPrecision) {
|
|
CcTest::InitializeVM();
|
|
// Disable LAB, such that calculations with SizeOfObjects() and object size
|
|
// are correct.
|
|
CcTest::heap()->DisableInlineAllocation();
|
|
HeapObjectIterator iterator(CcTest::heap());
|
|
intptr_t size_of_objects_1 = CcTest::heap()->SizeOfObjects();
|
|
intptr_t size_of_objects_2 = 0;
|
|
for (HeapObject obj = iterator.Next(); !obj.is_null();
|
|
obj = iterator.Next()) {
|
|
if (!obj.IsFreeSpace()) {
|
|
size_of_objects_2 += obj.Size();
|
|
}
|
|
}
|
|
// Delta must be within 5% of the larger result.
|
|
// TODO(gc): Tighten this up by distinguishing between byte
|
|
// arrays that are real and those that merely mark free space
|
|
// on the heap.
|
|
if (size_of_objects_1 > size_of_objects_2) {
|
|
intptr_t delta = size_of_objects_1 - size_of_objects_2;
|
|
PrintF("Heap::SizeOfObjects: %" V8PRIdPTR
|
|
", "
|
|
"Iterator: %" V8PRIdPTR
|
|
", "
|
|
"delta: %" V8PRIdPTR "\n",
|
|
size_of_objects_1, size_of_objects_2, delta);
|
|
CHECK_GT(size_of_objects_1 / 20, delta);
|
|
} else {
|
|
intptr_t delta = size_of_objects_2 - size_of_objects_1;
|
|
PrintF("Heap::SizeOfObjects: %" V8PRIdPTR
|
|
", "
|
|
"Iterator: %" V8PRIdPTR
|
|
", "
|
|
"delta: %" V8PRIdPTR "\n",
|
|
size_of_objects_1, size_of_objects_2, delta);
|
|
CHECK_GT(size_of_objects_2 / 20, delta);
|
|
}
|
|
}
|
|
|
|
TEST(GrowAndShrinkNewSpace) {
|
|
if (FLAG_single_generation) return;
|
|
// Avoid shrinking new space in GC epilogue. This can happen if allocation
|
|
// throughput samples have been taken while executing the benchmark.
|
|
FLAG_predictable = true;
|
|
FLAG_stress_concurrent_allocation = false; // For SimulateFullSpace.
|
|
CcTest::InitializeVM();
|
|
Heap* heap = CcTest::heap();
|
|
NewSpace* new_space = heap->new_space();
|
|
|
|
if (heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) {
|
|
return;
|
|
}
|
|
|
|
// Make sure we're in a consistent state to start out.
|
|
CcTest::CollectAllGarbage();
|
|
CcTest::CollectAllGarbage();
|
|
new_space->Shrink();
|
|
|
|
// Explicitly growing should double the space capacity.
|
|
size_t old_capacity, new_capacity;
|
|
old_capacity = new_space->TotalCapacity();
|
|
new_space->Grow();
|
|
new_capacity = new_space->TotalCapacity();
|
|
CHECK_EQ(2 * old_capacity, new_capacity);
|
|
|
|
old_capacity = new_space->TotalCapacity();
|
|
{
|
|
v8::HandleScope temporary_scope(CcTest::isolate());
|
|
heap::SimulateFullSpace(new_space);
|
|
}
|
|
new_capacity = new_space->TotalCapacity();
|
|
CHECK_EQ(old_capacity, new_capacity);
|
|
|
|
// Explicitly shrinking should not affect space capacity.
|
|
old_capacity = new_space->TotalCapacity();
|
|
new_space->Shrink();
|
|
new_capacity = new_space->TotalCapacity();
|
|
CHECK_EQ(old_capacity, new_capacity);
|
|
|
|
// Let the scavenger empty the new space.
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
CHECK_LE(new_space->Size(), old_capacity);
|
|
|
|
// Explicitly shrinking should halve the space capacity.
|
|
old_capacity = new_space->TotalCapacity();
|
|
new_space->Shrink();
|
|
new_capacity = new_space->TotalCapacity();
|
|
CHECK_EQ(old_capacity, 2 * new_capacity);
|
|
|
|
// Consecutive shrinking should not affect space capacity.
|
|
old_capacity = new_space->TotalCapacity();
|
|
new_space->Shrink();
|
|
new_space->Shrink();
|
|
new_space->Shrink();
|
|
new_capacity = new_space->TotalCapacity();
|
|
CHECK_EQ(old_capacity, new_capacity);
|
|
}
|
|
|
|
TEST(CollectingAllAvailableGarbageShrinksNewSpace) {
|
|
if (FLAG_single_generation) return;
|
|
FLAG_stress_concurrent_allocation = false; // For SimulateFullSpace.
|
|
CcTest::InitializeVM();
|
|
Heap* heap = CcTest::heap();
|
|
if (heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) {
|
|
return;
|
|
}
|
|
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
NewSpace* new_space = heap->new_space();
|
|
size_t old_capacity, new_capacity;
|
|
old_capacity = new_space->TotalCapacity();
|
|
new_space->Grow();
|
|
new_capacity = new_space->TotalCapacity();
|
|
CHECK_EQ(2 * old_capacity, new_capacity);
|
|
{
|
|
v8::HandleScope temporary_scope(CcTest::isolate());
|
|
heap::SimulateFullSpace(new_space);
|
|
}
|
|
CcTest::CollectAllAvailableGarbage();
|
|
new_capacity = new_space->TotalCapacity();
|
|
CHECK_EQ(old_capacity, new_capacity);
|
|
}
|
|
|
|
static int NumberOfGlobalObjects() {
|
|
int count = 0;
|
|
HeapObjectIterator iterator(CcTest::heap());
|
|
for (HeapObject obj = iterator.Next(); !obj.is_null();
|
|
obj = iterator.Next()) {
|
|
if (obj.IsJSGlobalObject()) count++;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
|
|
// Test that we don't embed maps from foreign contexts into
|
|
// optimized code.
|
|
TEST(LeakNativeContextViaMap) {
|
|
FLAG_allow_natives_syntax = true;
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
v8::HandleScope outer_scope(isolate);
|
|
v8::Persistent<v8::Context> ctx1p;
|
|
v8::Persistent<v8::Context> ctx2p;
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
ctx1p.Reset(isolate, v8::Context::New(isolate));
|
|
ctx2p.Reset(isolate, v8::Context::New(isolate));
|
|
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
|
|
}
|
|
|
|
CcTest::CollectAllAvailableGarbage();
|
|
CHECK_EQ(2, NumberOfGlobalObjects());
|
|
|
|
{
|
|
v8::HandleScope inner_scope(isolate);
|
|
CompileRun("var v = {x: 42}");
|
|
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
|
|
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
|
|
v8::Local<v8::Value> v =
|
|
ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked();
|
|
ctx2->Enter();
|
|
CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust());
|
|
v8::Local<v8::Value> res = CompileRun(
|
|
"function f() { return o.x; }"
|
|
"%PrepareFunctionForOptimization(f);"
|
|
"for (var i = 0; i < 10; ++i) f();"
|
|
"%OptimizeFunctionOnNextCall(f);"
|
|
"f();");
|
|
CHECK_EQ(42, res->Int32Value(ctx2).FromJust());
|
|
CHECK(ctx2->Global()
|
|
->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0))
|
|
.FromJust());
|
|
ctx2->Exit();
|
|
v8::Local<v8::Context>::New(isolate, ctx1)->Exit();
|
|
ctx1p.Reset();
|
|
isolate->ContextDisposedNotification();
|
|
}
|
|
CcTest::CollectAllAvailableGarbage();
|
|
CHECK_EQ(1, NumberOfGlobalObjects());
|
|
ctx2p.Reset();
|
|
CcTest::CollectAllAvailableGarbage();
|
|
CHECK_EQ(0, NumberOfGlobalObjects());
|
|
}
|
|
|
|
|
|
// Test that we don't embed functions from foreign contexts into
|
|
// optimized code.
|
|
TEST(LeakNativeContextViaFunction) {
|
|
FLAG_allow_natives_syntax = true;
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
v8::HandleScope outer_scope(isolate);
|
|
v8::Persistent<v8::Context> ctx1p;
|
|
v8::Persistent<v8::Context> ctx2p;
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
ctx1p.Reset(isolate, v8::Context::New(isolate));
|
|
ctx2p.Reset(isolate, v8::Context::New(isolate));
|
|
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
|
|
}
|
|
|
|
CcTest::CollectAllAvailableGarbage();
|
|
CHECK_EQ(2, NumberOfGlobalObjects());
|
|
|
|
{
|
|
v8::HandleScope inner_scope(isolate);
|
|
CompileRun("var v = function() { return 42; }");
|
|
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
|
|
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
|
|
v8::Local<v8::Value> v =
|
|
ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked();
|
|
ctx2->Enter();
|
|
CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust());
|
|
v8::Local<v8::Value> res = CompileRun(
|
|
"function f(x) { return x(); }"
|
|
"%PrepareFunctionForOptimization(f);"
|
|
"for (var i = 0; i < 10; ++i) f(o);"
|
|
"%OptimizeFunctionOnNextCall(f);"
|
|
"f(o);");
|
|
CHECK_EQ(42, res->Int32Value(ctx2).FromJust());
|
|
CHECK(ctx2->Global()
|
|
->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0))
|
|
.FromJust());
|
|
ctx2->Exit();
|
|
ctx1->Exit();
|
|
ctx1p.Reset();
|
|
isolate->ContextDisposedNotification();
|
|
}
|
|
CcTest::CollectAllAvailableGarbage();
|
|
CHECK_EQ(1, NumberOfGlobalObjects());
|
|
ctx2p.Reset();
|
|
CcTest::CollectAllAvailableGarbage();
|
|
CHECK_EQ(0, NumberOfGlobalObjects());
|
|
}
|
|
|
|
|
|
TEST(LeakNativeContextViaMapKeyed) {
|
|
FLAG_allow_natives_syntax = true;
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
v8::HandleScope outer_scope(isolate);
|
|
v8::Persistent<v8::Context> ctx1p;
|
|
v8::Persistent<v8::Context> ctx2p;
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
ctx1p.Reset(isolate, v8::Context::New(isolate));
|
|
ctx2p.Reset(isolate, v8::Context::New(isolate));
|
|
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
|
|
}
|
|
|
|
CcTest::CollectAllAvailableGarbage();
|
|
CHECK_EQ(2, NumberOfGlobalObjects());
|
|
|
|
{
|
|
v8::HandleScope inner_scope(isolate);
|
|
CompileRun("var v = [42, 43]");
|
|
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
|
|
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
|
|
v8::Local<v8::Value> v =
|
|
ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked();
|
|
ctx2->Enter();
|
|
CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust());
|
|
v8::Local<v8::Value> res = CompileRun(
|
|
"function f() { return o[0]; }"
|
|
"%PrepareFunctionForOptimization(f);"
|
|
"for (var i = 0; i < 10; ++i) f();"
|
|
"%OptimizeFunctionOnNextCall(f);"
|
|
"f();");
|
|
CHECK_EQ(42, res->Int32Value(ctx2).FromJust());
|
|
CHECK(ctx2->Global()
|
|
->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0))
|
|
.FromJust());
|
|
ctx2->Exit();
|
|
ctx1->Exit();
|
|
ctx1p.Reset();
|
|
isolate->ContextDisposedNotification();
|
|
}
|
|
CcTest::CollectAllAvailableGarbage();
|
|
CHECK_EQ(1, NumberOfGlobalObjects());
|
|
ctx2p.Reset();
|
|
CcTest::CollectAllAvailableGarbage();
|
|
CHECK_EQ(0, NumberOfGlobalObjects());
|
|
}
|
|
|
|
|
|
TEST(LeakNativeContextViaMapProto) {
|
|
FLAG_allow_natives_syntax = true;
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
v8::HandleScope outer_scope(isolate);
|
|
v8::Persistent<v8::Context> ctx1p;
|
|
v8::Persistent<v8::Context> ctx2p;
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
ctx1p.Reset(isolate, v8::Context::New(isolate));
|
|
ctx2p.Reset(isolate, v8::Context::New(isolate));
|
|
v8::Local<v8::Context>::New(isolate, ctx1p)->Enter();
|
|
}
|
|
|
|
CcTest::CollectAllAvailableGarbage();
|
|
CHECK_EQ(2, NumberOfGlobalObjects());
|
|
|
|
{
|
|
v8::HandleScope inner_scope(isolate);
|
|
CompileRun("var v = { y: 42}");
|
|
v8::Local<v8::Context> ctx1 = v8::Local<v8::Context>::New(isolate, ctx1p);
|
|
v8::Local<v8::Context> ctx2 = v8::Local<v8::Context>::New(isolate, ctx2p);
|
|
v8::Local<v8::Value> v =
|
|
ctx1->Global()->Get(ctx1, v8_str("v")).ToLocalChecked();
|
|
ctx2->Enter();
|
|
CHECK(ctx2->Global()->Set(ctx2, v8_str("o"), v).FromJust());
|
|
v8::Local<v8::Value> res = CompileRun(
|
|
"function f() {"
|
|
" var p = {x: 42};"
|
|
" p.__proto__ = o;"
|
|
" return p.x;"
|
|
"}"
|
|
"%PrepareFunctionForOptimization(f);"
|
|
"for (var i = 0; i < 10; ++i) f();"
|
|
"%OptimizeFunctionOnNextCall(f);"
|
|
"f();");
|
|
CHECK_EQ(42, res->Int32Value(ctx2).FromJust());
|
|
CHECK(ctx2->Global()
|
|
->Set(ctx2, v8_str("o"), v8::Int32::New(isolate, 0))
|
|
.FromJust());
|
|
ctx2->Exit();
|
|
ctx1->Exit();
|
|
ctx1p.Reset();
|
|
isolate->ContextDisposedNotification();
|
|
}
|
|
CcTest::CollectAllAvailableGarbage();
|
|
CHECK_EQ(1, NumberOfGlobalObjects());
|
|
ctx2p.Reset();
|
|
CcTest::CollectAllAvailableGarbage();
|
|
CHECK_EQ(0, NumberOfGlobalObjects());
|
|
}
|
|
|
|
|
|
TEST(InstanceOfStubWriteBarrier) {
|
|
if (!FLAG_incremental_marking) return;
|
|
ManualGCScope manual_gc_scope;
|
|
FLAG_allow_natives_syntax = true;
|
|
#ifdef VERIFY_HEAP
|
|
FLAG_verify_heap = true;
|
|
#endif
|
|
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_optimizer()) return;
|
|
if (FLAG_force_marking_deque_overflows) return;
|
|
v8::HandleScope outer_scope(CcTest::isolate());
|
|
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
|
|
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun(
|
|
"function foo () { }"
|
|
"function mkbar () { return new (new Function(\"\")) (); }"
|
|
"function f (x) { return (x instanceof foo); }"
|
|
"function g () { f(mkbar()); }"
|
|
"%PrepareFunctionForOptimization(f);"
|
|
"f(new foo()); f(new foo());"
|
|
"%OptimizeFunctionOnNextCall(f);"
|
|
"f(new foo()); g();");
|
|
}
|
|
|
|
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
|
|
marking->Stop();
|
|
CcTest::heap()->StartIncrementalMarking(i::Heap::kNoGCFlags,
|
|
i::GarbageCollectionReason::kTesting);
|
|
|
|
i::Handle<JSFunction> f = i::Handle<JSFunction>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
|
|
CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked())));
|
|
|
|
CHECK(f->HasAttachedOptimizedCode());
|
|
|
|
IncrementalMarking::MarkingState* marking_state = marking->marking_state();
|
|
|
|
const double kStepSizeInMs = 100;
|
|
while (!marking_state->IsBlack(f->code()) && !marking->IsStopped()) {
|
|
// Discard any pending GC requests otherwise we will get GC when we enter
|
|
// code below.
|
|
marking->Step(kStepSizeInMs, IncrementalMarking::NO_GC_VIA_STACK_GUARD,
|
|
StepOrigin::kV8);
|
|
}
|
|
|
|
CHECK(marking->IsMarking());
|
|
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::Local<v8::Object> global = CcTest::global();
|
|
v8::Local<v8::Function> g = v8::Local<v8::Function>::Cast(
|
|
global->Get(ctx, v8_str("g")).ToLocalChecked());
|
|
g->Call(ctx, global, 0, nullptr).ToLocalChecked();
|
|
}
|
|
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
}
|
|
|
|
HEAP_TEST(GCFlags) {
|
|
if (!FLAG_incremental_marking) return;
|
|
CcTest::InitializeVM();
|
|
Heap* heap = CcTest::heap();
|
|
|
|
heap->set_current_gc_flags(Heap::kNoGCFlags);
|
|
CHECK_EQ(Heap::kNoGCFlags, heap->current_gc_flags_);
|
|
|
|
// Check whether we appropriately reset flags after GC.
|
|
CcTest::heap()->CollectAllGarbage(Heap::kReduceMemoryFootprintMask,
|
|
GarbageCollectionReason::kTesting);
|
|
CHECK_EQ(Heap::kNoGCFlags, heap->current_gc_flags_);
|
|
|
|
MarkCompactCollector* collector = heap->mark_compact_collector();
|
|
if (collector->sweeping_in_progress()) {
|
|
collector->EnsureSweepingCompleted();
|
|
}
|
|
|
|
IncrementalMarking* marking = heap->incremental_marking();
|
|
marking->Stop();
|
|
heap->StartIncrementalMarking(Heap::kReduceMemoryFootprintMask,
|
|
i::GarbageCollectionReason::kTesting);
|
|
CHECK_NE(0, heap->current_gc_flags_ & Heap::kReduceMemoryFootprintMask);
|
|
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
// NewSpace scavenges should not overwrite the flags.
|
|
CHECK_NE(0, heap->current_gc_flags_ & Heap::kReduceMemoryFootprintMask);
|
|
|
|
CcTest::CollectAllGarbage();
|
|
CHECK_EQ(Heap::kNoGCFlags, heap->current_gc_flags_);
|
|
}
|
|
|
|
HEAP_TEST(Regress845060) {
|
|
if (FLAG_single_generation) return;
|
|
// Regression test for crbug.com/845060, where a raw pointer to a string's
|
|
// data was kept across an allocation. If the allocation causes GC and
|
|
// moves the string, such raw pointers become invalid.
|
|
FLAG_allow_natives_syntax = true;
|
|
FLAG_stress_incremental_marking = false;
|
|
FLAG_stress_compaction = false;
|
|
CcTest::InitializeVM();
|
|
LocalContext context;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
|
|
// Preparation: create a string in new space.
|
|
Local<Value> str = CompileRun("var str = (new Array(10000)).join('x'); str");
|
|
CHECK(Heap::InYoungGeneration(*v8::Utils::OpenHandle(*str)));
|
|
|
|
// Idle incremental marking sets the "kReduceMemoryFootprint" flag, which
|
|
// causes from_space to be unmapped after scavenging.
|
|
heap->StartIdleIncrementalMarking(GarbageCollectionReason::kTesting);
|
|
CHECK(heap->ShouldReduceMemory());
|
|
|
|
// Run the test (which allocates results) until the original string was
|
|
// promoted to old space. Unmapping of from_space causes accesses to any
|
|
// stale raw pointers to crash.
|
|
CompileRun("while (%InYoungGeneration(str)) { str.split(''); }");
|
|
CHECK(!Heap::InYoungGeneration(*v8::Utils::OpenHandle(*str)));
|
|
}
|
|
|
|
TEST(IdleNotificationFinishMarking) {
|
|
if (!FLAG_incremental_marking) return;
|
|
ManualGCScope manual_gc_scope;
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
const int initial_gc_count = CcTest::heap()->gc_count();
|
|
heap::SimulateFullSpace(CcTest::heap()->old_space());
|
|
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
|
|
marking->Stop();
|
|
CcTest::heap()->StartIncrementalMarking(i::Heap::kNoGCFlags,
|
|
i::GarbageCollectionReason::kTesting);
|
|
|
|
CHECK_EQ(CcTest::heap()->gc_count(), initial_gc_count);
|
|
|
|
const double kStepSizeInMs = 100;
|
|
do {
|
|
marking->Step(kStepSizeInMs, IncrementalMarking::NO_GC_VIA_STACK_GUARD,
|
|
StepOrigin::kV8);
|
|
} while (!CcTest::heap()
|
|
->mark_compact_collector()
|
|
->local_marking_worklists()
|
|
->IsEmpty());
|
|
|
|
marking->SetWeakClosureWasOverApproximatedForTesting(true);
|
|
|
|
// The next idle notification has to finish incremental marking.
|
|
const double kLongIdleTime = 1000.0;
|
|
CcTest::isolate()->IdleNotificationDeadline(
|
|
(v8::base::TimeTicks::HighResolutionNow().ToInternalValue() /
|
|
static_cast<double>(v8::base::Time::kMicrosecondsPerSecond)) +
|
|
kLongIdleTime);
|
|
CHECK_EQ(CcTest::heap()->gc_count(), initial_gc_count + 1);
|
|
}
|
|
|
|
|
|
// Test that HAllocateObject will always return an object in new-space.
|
|
TEST(OptimizedAllocationAlwaysInNewSpace) {
|
|
if (FLAG_single_generation) return;
|
|
FLAG_allow_natives_syntax = true;
|
|
FLAG_stress_concurrent_allocation = false; // For SimulateFullSpace.
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
|
|
if (FLAG_gc_global || FLAG_stress_compaction ||
|
|
FLAG_stress_incremental_marking)
|
|
return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
|
|
heap::SimulateFullSpace(CcTest::heap()->new_space());
|
|
AlwaysAllocateScopeForTesting always_allocate(CcTest::heap());
|
|
v8::Local<v8::Value> res = CompileRun(
|
|
"function c(x) {"
|
|
" this.x = x;"
|
|
" for (var i = 0; i < 32; i++) {"
|
|
" this['x' + i] = x;"
|
|
" }"
|
|
"}"
|
|
"function f(x) { return new c(x); };"
|
|
"%PrepareFunctionForOptimization(f);"
|
|
"f(1); f(2); f(3);"
|
|
"%OptimizeFunctionOnNextCall(f);"
|
|
"f(4);");
|
|
|
|
CHECK_EQ(4, res.As<v8::Object>()
|
|
->GetRealNamedProperty(ctx, v8_str("x"))
|
|
.ToLocalChecked()
|
|
->Int32Value(ctx)
|
|
.FromJust());
|
|
|
|
i::Handle<JSReceiver> o =
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res));
|
|
|
|
CHECK(Heap::InYoungGeneration(*o));
|
|
}
|
|
|
|
|
|
TEST(OptimizedPretenuringAllocationFolding) {
|
|
FLAG_allow_natives_syntax = true;
|
|
FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
|
|
if (FLAG_gc_global || FLAG_stress_compaction ||
|
|
FLAG_stress_incremental_marking)
|
|
return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
|
|
// Grow new space unitl maximum capacity reached.
|
|
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
|
|
CcTest::heap()->new_space()->Grow();
|
|
}
|
|
|
|
i::ScopedVector<char> source(1024);
|
|
i::SNPrintF(source,
|
|
"var number_elements = %d;"
|
|
"var elements = new Array();"
|
|
"function f() {"
|
|
" for (var i = 0; i < number_elements; i++) {"
|
|
" elements[i] = [[{}], [1.1]];"
|
|
" }"
|
|
" return elements[number_elements-1]"
|
|
"};"
|
|
"%%PrepareFunctionForOptimization(f);"
|
|
"f(); gc();"
|
|
"f(); f();"
|
|
"%%OptimizeFunctionOnNextCall(f);"
|
|
"f();",
|
|
kPretenureCreationCount);
|
|
|
|
v8::Local<v8::Value> res = CompileRun(source.begin());
|
|
|
|
v8::Local<v8::Value> int_array =
|
|
v8::Object::Cast(*res)->Get(ctx, v8_str("0")).ToLocalChecked();
|
|
i::Handle<JSObject> int_array_handle = i::Handle<JSObject>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(int_array)));
|
|
v8::Local<v8::Value> double_array =
|
|
v8::Object::Cast(*res)->Get(ctx, v8_str("1")).ToLocalChecked();
|
|
i::Handle<JSObject> double_array_handle = i::Handle<JSObject>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(double_array)));
|
|
|
|
i::Handle<JSReceiver> o =
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res));
|
|
CHECK(CcTest::heap()->InOldSpace(*o));
|
|
CHECK(CcTest::heap()->InOldSpace(*int_array_handle));
|
|
CHECK(CcTest::heap()->InOldSpace(int_array_handle->elements()));
|
|
CHECK(CcTest::heap()->InOldSpace(*double_array_handle));
|
|
CHECK(CcTest::heap()->InOldSpace(double_array_handle->elements()));
|
|
}
|
|
|
|
|
|
TEST(OptimizedPretenuringObjectArrayLiterals) {
|
|
FLAG_allow_natives_syntax = true;
|
|
FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
|
|
if (FLAG_gc_global || FLAG_stress_compaction ||
|
|
FLAG_stress_incremental_marking) {
|
|
return;
|
|
}
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Grow new space unitl maximum capacity reached.
|
|
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
|
|
CcTest::heap()->new_space()->Grow();
|
|
}
|
|
|
|
i::ScopedVector<char> source(1024);
|
|
i::SNPrintF(source,
|
|
"var number_elements = %d;"
|
|
"var elements = new Array(number_elements);"
|
|
"function f() {"
|
|
" for (var i = 0; i < number_elements; i++) {"
|
|
" elements[i] = [{}, {}, {}];"
|
|
" }"
|
|
" return elements[number_elements - 1];"
|
|
"};"
|
|
"%%PrepareFunctionForOptimization(f);"
|
|
"f(); gc();"
|
|
"f(); f();"
|
|
"%%OptimizeFunctionOnNextCall(f);"
|
|
"f();",
|
|
kPretenureCreationCount);
|
|
|
|
v8::Local<v8::Value> res = CompileRun(source.begin());
|
|
|
|
i::Handle<JSObject> o = Handle<JSObject>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)));
|
|
|
|
CHECK(CcTest::heap()->InOldSpace(o->elements()));
|
|
CHECK(CcTest::heap()->InOldSpace(*o));
|
|
}
|
|
|
|
TEST(OptimizedPretenuringNestedInObjectProperties) {
|
|
FLAG_allow_natives_syntax = true;
|
|
FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
|
|
if (FLAG_gc_global || FLAG_stress_compaction ||
|
|
FLAG_stress_incremental_marking || FLAG_single_generation) {
|
|
return;
|
|
}
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Grow new space until maximum capacity reached.
|
|
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
|
|
CcTest::heap()->new_space()->Grow();
|
|
}
|
|
|
|
// Keep the nested literal alive while its root is freed
|
|
i::ScopedVector<char> source(1024);
|
|
i::SNPrintF(source,
|
|
"let number_elements = %d;"
|
|
"let elements = new Array(number_elements);"
|
|
"function f() {"
|
|
" for (let i = 0; i < number_elements; i++) {"
|
|
" let l = {a: {c: 2.2, d: {e: 3.3}}, b: 1.1}; "
|
|
" elements[i] = l.a;"
|
|
" }"
|
|
" return elements[number_elements-1];"
|
|
"};"
|
|
"%%PrepareFunctionForOptimization(f);"
|
|
"f(); gc(); gc();"
|
|
"f(); f();"
|
|
"%%OptimizeFunctionOnNextCall(f);"
|
|
"f();",
|
|
kPretenureCreationCount);
|
|
|
|
v8::Local<v8::Value> res = CompileRun(source.begin());
|
|
|
|
i::Handle<JSObject> o = Handle<JSObject>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)));
|
|
|
|
// Nested literal sites are only pretenured if the top level
|
|
// literal is pretenured
|
|
CHECK(Heap::InYoungGeneration(*o));
|
|
}
|
|
|
|
TEST(OptimizedPretenuringMixedInObjectProperties) {
|
|
FLAG_allow_natives_syntax = true;
|
|
FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
|
|
if (FLAG_gc_global || FLAG_stress_compaction ||
|
|
FLAG_stress_incremental_marking)
|
|
return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Grow new space unitl maximum capacity reached.
|
|
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
|
|
CcTest::heap()->new_space()->Grow();
|
|
}
|
|
|
|
|
|
i::ScopedVector<char> source(1024);
|
|
i::SNPrintF(source,
|
|
"var number_elements = %d;"
|
|
"var elements = new Array(number_elements);"
|
|
"function f() {"
|
|
" for (var i = 0; i < number_elements; i++) {"
|
|
" elements[i] = {a: {c: 2.2, d: {}}, b: 1.1};"
|
|
" }"
|
|
" return elements[number_elements - 1];"
|
|
"};"
|
|
"%%PrepareFunctionForOptimization(f);"
|
|
"f(); gc();"
|
|
"f(); f();"
|
|
"%%OptimizeFunctionOnNextCall(f);"
|
|
"f();",
|
|
kPretenureCreationCount);
|
|
|
|
v8::Local<v8::Value> res = CompileRun(source.begin());
|
|
|
|
i::Handle<JSObject> o = Handle<JSObject>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)));
|
|
|
|
CHECK(CcTest::heap()->InOldSpace(*o));
|
|
FieldIndex idx1 = FieldIndex::ForPropertyIndex(o->map(), 0);
|
|
FieldIndex idx2 = FieldIndex::ForPropertyIndex(o->map(), 1);
|
|
CHECK(CcTest::heap()->InOldSpace(o->RawFastPropertyAt(idx1)));
|
|
if (!o->IsUnboxedDoubleField(idx2)) {
|
|
CHECK(CcTest::heap()->InOldSpace(o->RawFastPropertyAt(idx2)));
|
|
} else {
|
|
CHECK_EQ(1.1, o->RawFastDoublePropertyAt(idx2));
|
|
}
|
|
|
|
JSObject inner_object = JSObject::cast(o->RawFastPropertyAt(idx1));
|
|
CHECK(CcTest::heap()->InOldSpace(inner_object));
|
|
if (!inner_object.IsUnboxedDoubleField(idx1)) {
|
|
CHECK(CcTest::heap()->InOldSpace(inner_object.RawFastPropertyAt(idx1)));
|
|
} else {
|
|
CHECK_EQ(2.2, inner_object.RawFastDoublePropertyAt(idx1));
|
|
}
|
|
CHECK(CcTest::heap()->InOldSpace(inner_object.RawFastPropertyAt(idx2)));
|
|
}
|
|
|
|
|
|
TEST(OptimizedPretenuringDoubleArrayProperties) {
|
|
FLAG_allow_natives_syntax = true;
|
|
FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
|
|
if (FLAG_gc_global || FLAG_stress_compaction ||
|
|
FLAG_stress_incremental_marking)
|
|
return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Grow new space until maximum capacity reached.
|
|
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
|
|
CcTest::heap()->new_space()->Grow();
|
|
}
|
|
|
|
i::ScopedVector<char> source(1024);
|
|
i::SNPrintF(source,
|
|
"var number_elements = %d;"
|
|
"var elements = new Array(number_elements);"
|
|
"function f() {"
|
|
" for (var i = 0; i < number_elements; i++) {"
|
|
" elements[i] = {a: 1.1, b: 2.2};"
|
|
" }"
|
|
" return elements[i - 1];"
|
|
"};"
|
|
"%%PrepareFunctionForOptimization(f);"
|
|
"f(); gc();"
|
|
"f(); f();"
|
|
"%%OptimizeFunctionOnNextCall(f);"
|
|
"f();",
|
|
kPretenureCreationCount);
|
|
|
|
v8::Local<v8::Value> res = CompileRun(source.begin());
|
|
|
|
i::Handle<JSObject> o = Handle<JSObject>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)));
|
|
|
|
CHECK(CcTest::heap()->InOldSpace(*o));
|
|
CHECK_EQ(o->property_array(),
|
|
ReadOnlyRoots(CcTest::heap()).empty_property_array());
|
|
}
|
|
|
|
TEST(OptimizedPretenuringDoubleArrayLiterals) {
|
|
FLAG_allow_natives_syntax = true;
|
|
FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
|
|
if (FLAG_gc_global || FLAG_stress_compaction ||
|
|
FLAG_stress_incremental_marking)
|
|
return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Grow new space until maximum capacity reached.
|
|
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
|
|
CcTest::heap()->new_space()->Grow();
|
|
}
|
|
|
|
i::ScopedVector<char> source(1024);
|
|
i::SNPrintF(source,
|
|
"var number_elements = %d;"
|
|
"var elements = new Array(number_elements);"
|
|
"function f() {"
|
|
" for (var i = 0; i < number_elements; i++) {"
|
|
" elements[i] = [1.1, 2.2, 3.3];"
|
|
" }"
|
|
" return elements[number_elements - 1];"
|
|
"};"
|
|
"%%PrepareFunctionForOptimization(f);"
|
|
"f(); gc();"
|
|
"f(); f();"
|
|
"%%OptimizeFunctionOnNextCall(f);"
|
|
"f();",
|
|
kPretenureCreationCount);
|
|
|
|
v8::Local<v8::Value> res = CompileRun(source.begin());
|
|
|
|
i::Handle<JSObject> o = Handle<JSObject>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)));
|
|
|
|
CHECK(CcTest::heap()->InOldSpace(o->elements()));
|
|
CHECK(CcTest::heap()->InOldSpace(*o));
|
|
}
|
|
|
|
TEST(OptimizedPretenuringNestedMixedArrayLiterals) {
|
|
FLAG_allow_natives_syntax = true;
|
|
FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
|
|
if (FLAG_gc_global || FLAG_stress_compaction ||
|
|
FLAG_stress_incremental_marking)
|
|
return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
|
|
// Grow new space unitl maximum capacity reached.
|
|
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
|
|
CcTest::heap()->new_space()->Grow();
|
|
}
|
|
|
|
i::ScopedVector<char> source(1024);
|
|
i::SNPrintF(source,
|
|
"var number_elements = %d;"
|
|
"var elements = new Array(number_elements);"
|
|
"function f() {"
|
|
" for (var i = 0; i < number_elements; i++) {"
|
|
" elements[i] = [[{}, {}, {}], [1.1, 2.2, 3.3]];"
|
|
" }"
|
|
" return elements[number_elements - 1];"
|
|
"};"
|
|
"%%PrepareFunctionForOptimization(f);"
|
|
"f(); gc();"
|
|
"f(); f();"
|
|
"%%OptimizeFunctionOnNextCall(f);"
|
|
"f();",
|
|
kPretenureCreationCount);
|
|
|
|
v8::Local<v8::Value> res = CompileRun(source.begin());
|
|
|
|
v8::Local<v8::Value> int_array =
|
|
v8::Object::Cast(*res)->Get(ctx, v8_str("0")).ToLocalChecked();
|
|
i::Handle<JSObject> int_array_handle = i::Handle<JSObject>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(int_array)));
|
|
v8::Local<v8::Value> double_array =
|
|
v8::Object::Cast(*res)->Get(ctx, v8_str("1")).ToLocalChecked();
|
|
i::Handle<JSObject> double_array_handle = i::Handle<JSObject>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(double_array)));
|
|
|
|
Handle<JSObject> o = Handle<JSObject>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)));
|
|
CHECK(CcTest::heap()->InOldSpace(*o));
|
|
CHECK(CcTest::heap()->InOldSpace(*int_array_handle));
|
|
CHECK(CcTest::heap()->InOldSpace(int_array_handle->elements()));
|
|
CHECK(CcTest::heap()->InOldSpace(*double_array_handle));
|
|
CHECK(CcTest::heap()->InOldSpace(double_array_handle->elements()));
|
|
}
|
|
|
|
|
|
TEST(OptimizedPretenuringNestedObjectLiterals) {
|
|
FLAG_allow_natives_syntax = true;
|
|
FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
|
|
if (FLAG_gc_global || FLAG_stress_compaction ||
|
|
FLAG_stress_incremental_marking)
|
|
return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
|
|
// Grow new space unitl maximum capacity reached.
|
|
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
|
|
CcTest::heap()->new_space()->Grow();
|
|
}
|
|
|
|
i::ScopedVector<char> source(1024);
|
|
i::SNPrintF(source,
|
|
"var number_elements = %d;"
|
|
"var elements = new Array(number_elements);"
|
|
"function f() {"
|
|
" for (var i = 0; i < number_elements; i++) {"
|
|
" elements[i] = [[{}, {}, {}],[{}, {}, {}]];"
|
|
" }"
|
|
" return elements[number_elements - 1];"
|
|
"};"
|
|
"%%PrepareFunctionForOptimization(f);"
|
|
"f(); gc();"
|
|
"f(); f();"
|
|
"%%OptimizeFunctionOnNextCall(f);"
|
|
"f();",
|
|
kPretenureCreationCount);
|
|
|
|
v8::Local<v8::Value> res = CompileRun(source.begin());
|
|
|
|
v8::Local<v8::Value> int_array_1 =
|
|
v8::Object::Cast(*res)->Get(ctx, v8_str("0")).ToLocalChecked();
|
|
Handle<JSObject> int_array_handle_1 = Handle<JSObject>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(int_array_1)));
|
|
v8::Local<v8::Value> int_array_2 =
|
|
v8::Object::Cast(*res)->Get(ctx, v8_str("1")).ToLocalChecked();
|
|
Handle<JSObject> int_array_handle_2 = Handle<JSObject>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(int_array_2)));
|
|
|
|
Handle<JSObject> o = Handle<JSObject>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)));
|
|
CHECK(CcTest::heap()->InOldSpace(*o));
|
|
CHECK(CcTest::heap()->InOldSpace(*int_array_handle_1));
|
|
CHECK(CcTest::heap()->InOldSpace(int_array_handle_1->elements()));
|
|
CHECK(CcTest::heap()->InOldSpace(*int_array_handle_2));
|
|
CHECK(CcTest::heap()->InOldSpace(int_array_handle_2->elements()));
|
|
}
|
|
|
|
|
|
TEST(OptimizedPretenuringNestedDoubleLiterals) {
|
|
FLAG_allow_natives_syntax = true;
|
|
FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
|
|
if (FLAG_gc_global || FLAG_stress_compaction ||
|
|
FLAG_stress_incremental_marking)
|
|
return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
|
|
// Grow new space unitl maximum capacity reached.
|
|
while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) {
|
|
CcTest::heap()->new_space()->Grow();
|
|
}
|
|
|
|
i::ScopedVector<char> source(1024);
|
|
i::SNPrintF(source,
|
|
"var number_elements = %d;"
|
|
"var elements = new Array(number_elements);"
|
|
"function f() {"
|
|
" for (var i = 0; i < number_elements; i++) {"
|
|
" elements[i] = [[1.1, 1.2, 1.3],[2.1, 2.2, 2.3]];"
|
|
" }"
|
|
" return elements[number_elements - 1];"
|
|
"};"
|
|
"%%PrepareFunctionForOptimization(f);"
|
|
"f(); gc();"
|
|
"f(); f();"
|
|
"%%OptimizeFunctionOnNextCall(f);"
|
|
"f();",
|
|
kPretenureCreationCount);
|
|
|
|
v8::Local<v8::Value> res = CompileRun(source.begin());
|
|
|
|
v8::Local<v8::Value> double_array_1 =
|
|
v8::Object::Cast(*res)->Get(ctx, v8_str("0")).ToLocalChecked();
|
|
i::Handle<JSObject> double_array_handle_1 = i::Handle<JSObject>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(double_array_1)));
|
|
v8::Local<v8::Value> double_array_2 =
|
|
v8::Object::Cast(*res)->Get(ctx, v8_str("1")).ToLocalChecked();
|
|
i::Handle<JSObject> double_array_handle_2 = Handle<JSObject>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(double_array_2)));
|
|
|
|
i::Handle<JSObject> o = Handle<JSObject>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)));
|
|
CHECK(CcTest::heap()->InOldSpace(*o));
|
|
CHECK(CcTest::heap()->InOldSpace(*double_array_handle_1));
|
|
CHECK(CcTest::heap()->InOldSpace(double_array_handle_1->elements()));
|
|
CHECK(CcTest::heap()->InOldSpace(*double_array_handle_2));
|
|
CHECK(CcTest::heap()->InOldSpace(double_array_handle_2->elements()));
|
|
}
|
|
|
|
|
|
// Test regular array literals allocation.
|
|
TEST(OptimizedAllocationArrayLiterals) {
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
if (!CcTest::i_isolate()->use_optimizer() || FLAG_always_opt) return;
|
|
if (FLAG_gc_global || FLAG_stress_compaction ||
|
|
FLAG_stress_incremental_marking)
|
|
return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
|
|
v8::Local<v8::Value> res = CompileRun(
|
|
"function f() {"
|
|
" var numbers = new Array(1, 2, 3);"
|
|
" numbers[0] = 3.14;"
|
|
" return numbers;"
|
|
"};"
|
|
"%PrepareFunctionForOptimization(f);"
|
|
"f(); f(); f();"
|
|
"%OptimizeFunctionOnNextCall(f);"
|
|
"f();");
|
|
CHECK_EQ(static_cast<int>(3.14), v8::Object::Cast(*res)
|
|
->Get(ctx, v8_str("0"))
|
|
.ToLocalChecked()
|
|
->Int32Value(ctx)
|
|
.FromJust());
|
|
|
|
i::Handle<JSObject> o = Handle<JSObject>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res)));
|
|
|
|
CHECK(InCorrectGeneration(o->elements()));
|
|
}
|
|
|
|
static int CountMapTransitions(i::Isolate* isolate, Map map) {
|
|
DisallowHeapAllocation no_gc;
|
|
return TransitionsAccessor(isolate, map, &no_gc).NumberOfTransitions();
|
|
}
|
|
|
|
|
|
// Test that map transitions are cleared and maps are collected with
|
|
// incremental marking as well.
|
|
TEST(Regress1465) {
|
|
if (!FLAG_incremental_marking) return;
|
|
FLAG_stress_compaction = false;
|
|
FLAG_stress_incremental_marking = false;
|
|
FLAG_allow_natives_syntax = true;
|
|
FLAG_trace_incremental_marking = true;
|
|
FLAG_retain_maps_for_n_gc = 0;
|
|
CcTest::InitializeVM();
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
i::Isolate* i_isolate = CcTest::i_isolate();
|
|
v8::HandleScope scope(isolate);
|
|
v8::Local<v8::Context> ctx = isolate->GetCurrentContext();
|
|
static const int transitions_count = 256;
|
|
|
|
CompileRun("function F() {}");
|
|
{
|
|
AlwaysAllocateScopeForTesting always_allocate(CcTest::i_isolate()->heap());
|
|
for (int i = 0; i < transitions_count; i++) {
|
|
EmbeddedVector<char, 64> buffer;
|
|
SNPrintF(buffer, "var o = new F; o.prop%d = %d;", i, i);
|
|
CompileRun(buffer.begin());
|
|
}
|
|
CompileRun("var root = new F;");
|
|
}
|
|
|
|
i::Handle<JSReceiver> root =
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(
|
|
CcTest::global()->Get(ctx, v8_str("root")).ToLocalChecked()));
|
|
|
|
// Count number of live transitions before marking.
|
|
int transitions_before = CountMapTransitions(i_isolate, root->map());
|
|
CompileRun("%DebugPrint(root);");
|
|
CHECK_EQ(transitions_count, transitions_before);
|
|
|
|
heap::SimulateIncrementalMarking(CcTest::heap());
|
|
CcTest::CollectAllGarbage();
|
|
|
|
// Count number of live transitions after marking. Note that one transition
|
|
// is left, because 'o' still holds an instance of one transition target.
|
|
int transitions_after = CountMapTransitions(i_isolate, root->map());
|
|
CompileRun("%DebugPrint(root);");
|
|
CHECK_EQ(1, transitions_after);
|
|
}
|
|
|
|
static i::Handle<JSObject> GetByName(const char* name) {
|
|
return i::Handle<JSObject>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(
|
|
CcTest::global()
|
|
->Get(CcTest::isolate()->GetCurrentContext(), v8_str(name))
|
|
.ToLocalChecked())));
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
static void AddTransitions(int transitions_count) {
|
|
AlwaysAllocateScopeForTesting always_allocate(CcTest::i_isolate()->heap());
|
|
for (int i = 0; i < transitions_count; i++) {
|
|
EmbeddedVector<char, 64> buffer;
|
|
SNPrintF(buffer, "var o = new F; o.prop%d = %d;", i, i);
|
|
CompileRun(buffer.begin());
|
|
}
|
|
}
|
|
|
|
static void AddPropertyTo(int gc_count, Handle<JSObject> object,
|
|
const char* property_name) {
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
Handle<String> prop_name = factory->InternalizeUtf8String(property_name);
|
|
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
|
|
FLAG_gc_interval = gc_count;
|
|
FLAG_gc_global = true;
|
|
FLAG_retain_maps_for_n_gc = 0;
|
|
CcTest::heap()->set_allocation_timeout(gc_count);
|
|
Object::SetProperty(isolate, object, prop_name, twenty_three).Check();
|
|
}
|
|
|
|
TEST(TransitionArrayShrinksDuringAllocToZero) {
|
|
FLAG_stress_compaction = false;
|
|
FLAG_stress_incremental_marking = false;
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
i::Isolate* i_isolate = CcTest::i_isolate();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
static const int transitions_count = 10;
|
|
CompileRun("function F() { }");
|
|
AddTransitions(transitions_count);
|
|
CompileRun("var root = new F;");
|
|
Handle<JSObject> root = GetByName("root");
|
|
|
|
// Count number of live transitions before marking.
|
|
int transitions_before = CountMapTransitions(i_isolate, root->map());
|
|
CHECK_EQ(transitions_count, transitions_before);
|
|
|
|
// Get rid of o
|
|
CompileRun(
|
|
"o = new F;"
|
|
"root = new F");
|
|
root = GetByName("root");
|
|
AddPropertyTo(2, root, "funny");
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
|
|
// Count number of live transitions after marking. Note that one transition
|
|
// is left, because 'o' still holds an instance of one transition target.
|
|
int transitions_after =
|
|
CountMapTransitions(i_isolate, Map::cast(root->map().GetBackPointer()));
|
|
CHECK_EQ(1, transitions_after);
|
|
}
|
|
|
|
|
|
TEST(TransitionArrayShrinksDuringAllocToOne) {
|
|
FLAG_stress_compaction = false;
|
|
FLAG_stress_incremental_marking = false;
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
i::Isolate* i_isolate = CcTest::i_isolate();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
static const int transitions_count = 10;
|
|
CompileRun("function F() {}");
|
|
AddTransitions(transitions_count);
|
|
CompileRun("var root = new F;");
|
|
Handle<JSObject> root = GetByName("root");
|
|
|
|
// Count number of live transitions before marking.
|
|
int transitions_before = CountMapTransitions(i_isolate, root->map());
|
|
CHECK_EQ(transitions_count, transitions_before);
|
|
|
|
root = GetByName("root");
|
|
AddPropertyTo(2, root, "funny");
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
|
|
// Count number of live transitions after marking. Note that one transition
|
|
// is left, because 'o' still holds an instance of one transition target.
|
|
int transitions_after =
|
|
CountMapTransitions(i_isolate, Map::cast(root->map().GetBackPointer()));
|
|
CHECK_EQ(2, transitions_after);
|
|
}
|
|
|
|
|
|
TEST(TransitionArrayShrinksDuringAllocToOnePropertyFound) {
|
|
FLAG_stress_compaction = false;
|
|
FLAG_stress_incremental_marking = false;
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
i::Isolate* i_isolate = CcTest::i_isolate();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
static const int transitions_count = 10;
|
|
CompileRun("function F() {}");
|
|
AddTransitions(transitions_count);
|
|
CompileRun("var root = new F;");
|
|
Handle<JSObject> root = GetByName("root");
|
|
|
|
// Count number of live transitions before marking.
|
|
int transitions_before = CountMapTransitions(i_isolate, root->map());
|
|
CHECK_EQ(transitions_count, transitions_before);
|
|
|
|
root = GetByName("root");
|
|
AddPropertyTo(0, root, "prop9");
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
|
|
// Count number of live transitions after marking. Note that one transition
|
|
// is left, because 'o' still holds an instance of one transition target.
|
|
int transitions_after =
|
|
CountMapTransitions(i_isolate, Map::cast(root->map().GetBackPointer()));
|
|
CHECK_EQ(1, transitions_after);
|
|
}
|
|
#endif // DEBUG
|
|
|
|
|
|
TEST(ReleaseOverReservedPages) {
|
|
if (FLAG_never_compact) return;
|
|
FLAG_trace_gc = true;
|
|
// The optimizer can allocate stuff, messing up the test.
|
|
#ifndef V8_LITE_MODE
|
|
FLAG_opt = false;
|
|
FLAG_always_opt = false;
|
|
#endif // V8_LITE_MODE
|
|
// - Parallel compaction increases fragmentation, depending on how existing
|
|
// memory is distributed. Since this is non-deterministic because of
|
|
// concurrent sweeping, we disable it for this test.
|
|
// - Concurrent sweeping adds non determinism, depending on when memory is
|
|
// available for further reuse.
|
|
// - Fast evacuation of pages may result in a different page count in old
|
|
// space.
|
|
ManualGCScope manual_gc_scope;
|
|
FLAG_page_promotion = false;
|
|
FLAG_parallel_compaction = false;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
// If there's snapshot available, we don't know whether 20 small arrays will
|
|
// fit on the initial pages.
|
|
if (!isolate->snapshot_available()) return;
|
|
Factory* factory = isolate->factory();
|
|
Heap* heap = isolate->heap();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
// Ensure that the young generation is empty.
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
static const int number_of_test_pages = 20;
|
|
|
|
// Prepare many pages with low live-bytes count.
|
|
PagedSpace* old_space = heap->old_space();
|
|
const int initial_page_count = old_space->CountTotalPages();
|
|
const int overall_page_count = number_of_test_pages + initial_page_count;
|
|
for (int i = 0; i < number_of_test_pages; i++) {
|
|
AlwaysAllocateScopeForTesting always_allocate(heap);
|
|
heap::SimulateFullSpace(old_space);
|
|
factory->NewFixedArray(1, AllocationType::kOld);
|
|
}
|
|
CHECK_EQ(overall_page_count, old_space->CountTotalPages());
|
|
|
|
// Triggering one GC will cause a lot of garbage to be discovered but
|
|
// even spread across all allocated pages.
|
|
CcTest::CollectAllGarbage();
|
|
CHECK_GE(overall_page_count, old_space->CountTotalPages());
|
|
|
|
// Triggering subsequent GCs should cause at least half of the pages
|
|
// to be released to the OS after at most two cycles.
|
|
CcTest::CollectAllGarbage();
|
|
CHECK_GE(overall_page_count, old_space->CountTotalPages());
|
|
CcTest::CollectAllGarbage();
|
|
CHECK_GE(overall_page_count, old_space->CountTotalPages() * 2);
|
|
|
|
// Triggering a last-resort GC should cause all pages to be released to the
|
|
// OS so that other processes can seize the memory. If we get a failure here
|
|
// where there are 2 pages left instead of 1, then we should increase the
|
|
// size of the first page a little in SizeOfFirstPage in spaces.cc. The
|
|
// first page should be small in order to reduce memory used when the VM
|
|
// boots, but if the 20 small arrays don't fit on the first page then that's
|
|
// an indication that it is too small.
|
|
CcTest::CollectAllAvailableGarbage();
|
|
CHECK_GE(initial_page_count, old_space->CountTotalPages());
|
|
}
|
|
|
|
static int forced_gc_counter = 0;
|
|
|
|
void MockUseCounterCallback(v8::Isolate* isolate,
|
|
v8::Isolate::UseCounterFeature feature) {
|
|
isolate->GetCurrentContext();
|
|
if (feature == v8::Isolate::kForcedGC) {
|
|
forced_gc_counter++;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(CountForcedGC) {
|
|
FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
isolate->SetUseCounterCallback(MockUseCounterCallback);
|
|
|
|
forced_gc_counter = 0;
|
|
const char* source = "gc();";
|
|
CompileRun(source);
|
|
CHECK_GT(forced_gc_counter, 0);
|
|
}
|
|
|
|
|
|
#ifdef OBJECT_PRINT
|
|
TEST(PrintSharedFunctionInfo) {
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
|
|
const char* source =
|
|
"f = function() { return 987654321; }\n"
|
|
"g = function() { return 123456789; }\n";
|
|
CompileRun(source);
|
|
i::Handle<JSFunction> g = i::Handle<JSFunction>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
|
|
CcTest::global()->Get(ctx, v8_str("g")).ToLocalChecked())));
|
|
|
|
StdoutStream os;
|
|
g->shared().Print(os);
|
|
os << std::endl;
|
|
}
|
|
#endif // OBJECT_PRINT
|
|
|
|
|
|
TEST(IncrementalMarkingPreservesMonomorphicCallIC) {
|
|
if (!FLAG_use_ic) return;
|
|
if (!FLAG_incremental_marking) return;
|
|
if (FLAG_always_opt) return;
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::Local<v8::Value> fun1, fun2;
|
|
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
|
|
{
|
|
CompileRun("function fun() {};");
|
|
fun1 = CcTest::global()->Get(ctx, v8_str("fun")).ToLocalChecked();
|
|
}
|
|
|
|
{
|
|
CompileRun("function fun() {};");
|
|
fun2 = CcTest::global()->Get(ctx, v8_str("fun")).ToLocalChecked();
|
|
}
|
|
|
|
// Prepare function f that contains type feedback for the two closures.
|
|
CHECK(CcTest::global()->Set(ctx, v8_str("fun1"), fun1).FromJust());
|
|
CHECK(CcTest::global()->Set(ctx, v8_str("fun2"), fun2).FromJust());
|
|
CompileRun(
|
|
"function f(a, b) { a(); b(); } %EnsureFeedbackVectorForFunction(f); "
|
|
"f(fun1, fun2);");
|
|
|
|
Handle<JSFunction> f = Handle<JSFunction>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
|
|
CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked())));
|
|
|
|
Handle<FeedbackVector> feedback_vector(f->feedback_vector(), f->GetIsolate());
|
|
FeedbackVectorHelper feedback_helper(feedback_vector);
|
|
|
|
int expected_slots = 2;
|
|
CHECK_EQ(expected_slots, feedback_helper.slot_count());
|
|
int slot1 = 0;
|
|
int slot2 = 1;
|
|
CHECK(feedback_vector->Get(feedback_helper.slot(slot1))->IsWeak());
|
|
CHECK(feedback_vector->Get(feedback_helper.slot(slot2))->IsWeak());
|
|
|
|
heap::SimulateIncrementalMarking(CcTest::heap());
|
|
CcTest::CollectAllGarbage();
|
|
|
|
CHECK(feedback_vector->Get(feedback_helper.slot(slot1))->IsWeak());
|
|
CHECK(feedback_vector->Get(feedback_helper.slot(slot2))->IsWeak());
|
|
}
|
|
|
|
|
|
static void CheckVectorIC(Handle<JSFunction> f, int slot_index,
|
|
InlineCacheState desired_state) {
|
|
Handle<FeedbackVector> vector =
|
|
Handle<FeedbackVector>(f->feedback_vector(), f->GetIsolate());
|
|
FeedbackVectorHelper helper(vector);
|
|
FeedbackSlot slot = helper.slot(slot_index);
|
|
FeedbackNexus nexus(vector, slot);
|
|
CHECK(nexus.ic_state() == desired_state);
|
|
}
|
|
|
|
TEST(IncrementalMarkingPreservesMonomorphicConstructor) {
|
|
if (!FLAG_incremental_marking) return;
|
|
if (FLAG_always_opt) return;
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
|
|
// Prepare function f that contains a monomorphic IC for object
|
|
// originating from the same native context.
|
|
CompileRun(
|
|
"function fun() { this.x = 1; };"
|
|
"function f(o) { return new o(); }"
|
|
"%EnsureFeedbackVectorForFunction(f);"
|
|
"f(fun); f(fun);");
|
|
Handle<JSFunction> f = Handle<JSFunction>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
|
|
CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked())));
|
|
|
|
Handle<FeedbackVector> vector(f->feedback_vector(), f->GetIsolate());
|
|
CHECK(vector->Get(FeedbackSlot(0))->IsWeakOrCleared());
|
|
|
|
heap::SimulateIncrementalMarking(CcTest::heap());
|
|
CcTest::CollectAllGarbage();
|
|
|
|
CHECK(vector->Get(FeedbackSlot(0))->IsWeakOrCleared());
|
|
}
|
|
|
|
TEST(IncrementalMarkingPreservesMonomorphicIC) {
|
|
if (!FLAG_use_ic) return;
|
|
if (!FLAG_incremental_marking) return;
|
|
if (FLAG_always_opt) return;
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
|
|
// Prepare function f that contains a monomorphic IC for object
|
|
// originating from the same native context.
|
|
CompileRun(
|
|
"function fun() { this.x = 1; }; var obj = new fun();"
|
|
"%EnsureFeedbackVectorForFunction(f);"
|
|
"function f(o) { return o.x; } f(obj); f(obj);");
|
|
Handle<JSFunction> f = Handle<JSFunction>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
|
|
CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked())));
|
|
|
|
CheckVectorIC(f, 0, MONOMORPHIC);
|
|
|
|
heap::SimulateIncrementalMarking(CcTest::heap());
|
|
CcTest::CollectAllGarbage();
|
|
|
|
CheckVectorIC(f, 0, MONOMORPHIC);
|
|
}
|
|
|
|
TEST(IncrementalMarkingPreservesPolymorphicIC) {
|
|
if (!FLAG_use_ic) return;
|
|
if (!FLAG_incremental_marking) return;
|
|
if (FLAG_always_opt) return;
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::Local<v8::Value> obj1, obj2;
|
|
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
|
|
|
|
{
|
|
LocalContext env;
|
|
CompileRun("function fun() { this.x = 1; }; var obj = new fun();");
|
|
obj1 = env->Global()->Get(env.local(), v8_str("obj")).ToLocalChecked();
|
|
}
|
|
|
|
{
|
|
LocalContext env;
|
|
CompileRun("function fun() { this.x = 2; }; var obj = new fun();");
|
|
obj2 = env->Global()->Get(env.local(), v8_str("obj")).ToLocalChecked();
|
|
}
|
|
|
|
// Prepare function f that contains a polymorphic IC for objects
|
|
// originating from two different native contexts.
|
|
CHECK(CcTest::global()->Set(ctx, v8_str("obj1"), obj1).FromJust());
|
|
CHECK(CcTest::global()->Set(ctx, v8_str("obj2"), obj2).FromJust());
|
|
CompileRun(
|
|
"function f(o) { return o.x; }; "
|
|
"%EnsureFeedbackVectorForFunction(f);"
|
|
"f(obj1); f(obj1); f(obj2);");
|
|
Handle<JSFunction> f = Handle<JSFunction>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
|
|
CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked())));
|
|
|
|
CheckVectorIC(f, 0, POLYMORPHIC);
|
|
|
|
// Fire context dispose notification.
|
|
heap::SimulateIncrementalMarking(CcTest::heap());
|
|
CcTest::CollectAllGarbage();
|
|
|
|
CheckVectorIC(f, 0, POLYMORPHIC);
|
|
}
|
|
|
|
TEST(ContextDisposeDoesntClearPolymorphicIC) {
|
|
if (!FLAG_use_ic) return;
|
|
if (!FLAG_incremental_marking) return;
|
|
if (FLAG_always_opt) return;
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::Local<v8::Value> obj1, obj2;
|
|
v8::Local<v8::Context> ctx = CcTest::isolate()->GetCurrentContext();
|
|
|
|
{
|
|
LocalContext env;
|
|
CompileRun("function fun() { this.x = 1; }; var obj = new fun();");
|
|
obj1 = env->Global()->Get(env.local(), v8_str("obj")).ToLocalChecked();
|
|
}
|
|
|
|
{
|
|
LocalContext env;
|
|
CompileRun("function fun() { this.x = 2; }; var obj = new fun();");
|
|
obj2 = env->Global()->Get(env.local(), v8_str("obj")).ToLocalChecked();
|
|
}
|
|
|
|
// Prepare function f that contains a polymorphic IC for objects
|
|
// originating from two different native contexts.
|
|
CHECK(CcTest::global()->Set(ctx, v8_str("obj1"), obj1).FromJust());
|
|
CHECK(CcTest::global()->Set(ctx, v8_str("obj2"), obj2).FromJust());
|
|
CompileRun(
|
|
"function f(o) { return o.x; }; "
|
|
"%EnsureFeedbackVectorForFunction(f);"
|
|
"f(obj1); f(obj1); f(obj2);");
|
|
Handle<JSFunction> f = Handle<JSFunction>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
|
|
CcTest::global()->Get(ctx, v8_str("f")).ToLocalChecked())));
|
|
|
|
CheckVectorIC(f, 0, POLYMORPHIC);
|
|
|
|
// Fire context dispose notification.
|
|
CcTest::isolate()->ContextDisposedNotification();
|
|
heap::SimulateIncrementalMarking(CcTest::heap());
|
|
CcTest::CollectAllGarbage();
|
|
|
|
CheckVectorIC(f, 0, POLYMORPHIC);
|
|
}
|
|
|
|
|
|
class SourceResource : public v8::String::ExternalOneByteStringResource {
|
|
public:
|
|
explicit SourceResource(const char* data)
|
|
: data_(data), length_(strlen(data)) { }
|
|
|
|
void Dispose() override {
|
|
i::DeleteArray(data_);
|
|
data_ = nullptr;
|
|
}
|
|
|
|
const char* data() const override { return data_; }
|
|
|
|
size_t length() const override { return length_; }
|
|
|
|
bool IsDisposed() { return data_ == nullptr; }
|
|
|
|
private:
|
|
const char* data_;
|
|
size_t length_;
|
|
};
|
|
|
|
|
|
void ReleaseStackTraceDataTest(v8::Isolate* isolate, const char* source,
|
|
const char* accessor) {
|
|
// Test that the data retained by the Error.stack accessor is released
|
|
// after the first time the accessor is fired. We use external string
|
|
// to check whether the data is being released since the external string
|
|
// resource's callback is fired when the external string is GC'ed.
|
|
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
|
|
v8::HandleScope scope(isolate);
|
|
SourceResource* resource = new SourceResource(i::StrDup(source));
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
v8::Local<v8::Context> ctx = isolate->GetCurrentContext();
|
|
v8::Local<v8::String> source_string =
|
|
v8::String::NewExternalOneByte(isolate, resource).ToLocalChecked();
|
|
i_isolate->heap()->CollectAllAvailableGarbage(
|
|
i::GarbageCollectionReason::kTesting);
|
|
v8::Script::Compile(ctx, source_string)
|
|
.ToLocalChecked()
|
|
->Run(ctx)
|
|
.ToLocalChecked();
|
|
CHECK(!resource->IsDisposed());
|
|
}
|
|
// i_isolate->heap()->CollectAllAvailableGarbage();
|
|
CHECK(!resource->IsDisposed());
|
|
|
|
CompileRun(accessor);
|
|
i_isolate->heap()->CollectAllAvailableGarbage(
|
|
i::GarbageCollectionReason::kTesting);
|
|
|
|
// External source has been released.
|
|
CHECK(resource->IsDisposed());
|
|
delete resource;
|
|
}
|
|
|
|
|
|
UNINITIALIZED_TEST(ReleaseStackTraceData) {
|
|
if (FLAG_always_opt) {
|
|
// TODO(ulan): Remove this once the memory leak via code_next_link is fixed.
|
|
// See: https://codereview.chromium.org/181833004/
|
|
return;
|
|
}
|
|
#ifndef V8_LITE_MODE
|
|
// ICs retain objects.
|
|
FLAG_use_ic = false;
|
|
#endif // V8_LITE_MODE
|
|
FLAG_concurrent_recompilation = false;
|
|
v8::Isolate::CreateParams create_params;
|
|
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
|
|
v8::Isolate* isolate = v8::Isolate::New(create_params);
|
|
{
|
|
v8::Isolate::Scope isolate_scope(isolate);
|
|
v8::HandleScope handle_scope(isolate);
|
|
v8::Context::New(isolate)->Enter();
|
|
static const char* source1 =
|
|
"var error = null; "
|
|
/* Normal Error */
|
|
"try { "
|
|
" throw new Error(); "
|
|
"} catch (e) { "
|
|
" error = e; "
|
|
"} ";
|
|
static const char* source2 =
|
|
"var error = null; "
|
|
/* Stack overflow */
|
|
"try { "
|
|
" (function f() { f(); })(); "
|
|
"} catch (e) { "
|
|
" error = e; "
|
|
"} ";
|
|
static const char* source3 =
|
|
"var error = null; "
|
|
/* Normal Error */
|
|
"try { "
|
|
/* as prototype */
|
|
" throw new Error(); "
|
|
"} catch (e) { "
|
|
" error = {}; "
|
|
" error.__proto__ = e; "
|
|
"} ";
|
|
static const char* source4 =
|
|
"var error = null; "
|
|
/* Stack overflow */
|
|
"try { "
|
|
/* as prototype */
|
|
" (function f() { f(); })(); "
|
|
"} catch (e) { "
|
|
" error = {}; "
|
|
" error.__proto__ = e; "
|
|
"} ";
|
|
static const char* getter = "error.stack";
|
|
static const char* setter = "error.stack = 0";
|
|
|
|
ReleaseStackTraceDataTest(isolate, source1, setter);
|
|
ReleaseStackTraceDataTest(isolate, source2, setter);
|
|
// We do not test source3 and source4 with setter, since the setter is
|
|
// supposed to (untypically) write to the receiver, not the holder. This is
|
|
// to emulate the behavior of a data property.
|
|
|
|
ReleaseStackTraceDataTest(isolate, source1, getter);
|
|
ReleaseStackTraceDataTest(isolate, source2, getter);
|
|
ReleaseStackTraceDataTest(isolate, source3, getter);
|
|
ReleaseStackTraceDataTest(isolate, source4, getter);
|
|
}
|
|
isolate->Dispose();
|
|
}
|
|
|
|
// TODO(mmarchini) also write tests for async/await and Promise.all
|
|
void DetailedErrorStackTraceTest(const char* src,
|
|
std::function<void(Handle<FrameArray>)> test) {
|
|
FLAG_detailed_error_stack_trace = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
v8::TryCatch try_catch(CcTest::isolate());
|
|
CompileRun(src);
|
|
|
|
CHECK(try_catch.HasCaught());
|
|
Handle<Object> exception = v8::Utils::OpenHandle(*try_catch.Exception());
|
|
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Handle<Name> key = isolate->factory()->stack_trace_symbol();
|
|
|
|
Handle<FixedArray> stack_trace(Handle<FixedArray>::cast(
|
|
Object::GetProperty(isolate, exception, key).ToHandleChecked()));
|
|
|
|
test(GetFrameArrayFromStackTrace(isolate, stack_trace));
|
|
}
|
|
|
|
// * Test interpreted function error
|
|
TEST(DetailedErrorStackTrace) {
|
|
static const char* source =
|
|
"function func1(arg1) { "
|
|
" let err = new Error(); "
|
|
" throw err; "
|
|
"} "
|
|
"function func2(arg1, arg2) { "
|
|
" func1(42); "
|
|
"} "
|
|
"class Foo {}; "
|
|
"function main(arg1, arg2) { "
|
|
" func2(arg1, false); "
|
|
"} "
|
|
"var foo = new Foo(); "
|
|
"main(foo); ";
|
|
|
|
DetailedErrorStackTraceTest(source, [](Handle<FrameArray> stack_trace) {
|
|
FixedArray foo_parameters = stack_trace->Parameters(0);
|
|
CHECK_EQ(foo_parameters.length(), 1);
|
|
CHECK(foo_parameters.get(0).IsSmi());
|
|
CHECK_EQ(Smi::ToInt(foo_parameters.get(0)), 42);
|
|
|
|
FixedArray bar_parameters = stack_trace->Parameters(1);
|
|
CHECK_EQ(bar_parameters.length(), 2);
|
|
CHECK(bar_parameters.get(0).IsJSObject());
|
|
CHECK(bar_parameters.get(1).IsBoolean());
|
|
Handle<Object> foo = Handle<Object>::cast(GetByName("foo"));
|
|
CHECK_EQ(bar_parameters.get(0), *foo);
|
|
CHECK(!bar_parameters.get(1).BooleanValue(CcTest::i_isolate()));
|
|
|
|
FixedArray main_parameters = stack_trace->Parameters(2);
|
|
CHECK_EQ(main_parameters.length(), 2);
|
|
CHECK(main_parameters.get(0).IsJSObject());
|
|
CHECK(main_parameters.get(1).IsUndefined());
|
|
CHECK_EQ(main_parameters.get(0), *foo);
|
|
});
|
|
}
|
|
|
|
// * Test optimized function with inline frame error
|
|
TEST(DetailedErrorStackTraceInline) {
|
|
FLAG_allow_natives_syntax = true;
|
|
static const char* source =
|
|
"function add(x) { "
|
|
" if (x == 42) "
|
|
" throw new Error(); "
|
|
" return x + x; "
|
|
"} "
|
|
"add(0); "
|
|
"add(1); "
|
|
"function foo(x) { "
|
|
" return add(x + 1) "
|
|
"} "
|
|
"%PrepareFunctionForOptimization(foo); "
|
|
"foo(40); "
|
|
"%OptimizeFunctionOnNextCall(foo); "
|
|
"foo(41); ";
|
|
|
|
DetailedErrorStackTraceTest(source, [](Handle<FrameArray> stack_trace) {
|
|
FixedArray parameters_add = stack_trace->Parameters(0);
|
|
CHECK_EQ(parameters_add.length(), 1);
|
|
CHECK(parameters_add.get(0).IsSmi());
|
|
CHECK_EQ(Smi::ToInt(parameters_add.get(0)), 42);
|
|
|
|
FixedArray parameters_foo = stack_trace->Parameters(1);
|
|
CHECK_EQ(parameters_foo.length(), 1);
|
|
CHECK(parameters_foo.get(0).IsSmi());
|
|
CHECK_EQ(Smi::ToInt(parameters_foo.get(0)), 41);
|
|
});
|
|
}
|
|
|
|
// * Test builtin exit error
|
|
TEST(DetailedErrorStackTraceBuiltinExit) {
|
|
static const char* source =
|
|
"function test(arg1) { "
|
|
" (new Number()).toFixed(arg1); "
|
|
"} "
|
|
"test(9999); ";
|
|
|
|
DetailedErrorStackTraceTest(source, [](Handle<FrameArray> stack_trace) {
|
|
FixedArray parameters = stack_trace->Parameters(0);
|
|
|
|
CHECK_EQ(parameters.length(), 2);
|
|
#ifdef V8_REVERSE_JSARGS
|
|
CHECK(parameters.get(1).IsSmi());
|
|
CHECK_EQ(Smi::ToInt(parameters.get(1)), 9999);
|
|
#else
|
|
CHECK(parameters.get(0).IsSmi());
|
|
CHECK_EQ(Smi::ToInt(parameters.get(0)), 9999);
|
|
#endif
|
|
});
|
|
}
|
|
|
|
TEST(Regress169928) {
|
|
FLAG_allow_natives_syntax = true;
|
|
#ifndef V8_LITE_MODE
|
|
FLAG_opt = false;
|
|
#endif // V8_LITE_MODE
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
LocalContext env;
|
|
Factory* factory = isolate->factory();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
|
|
// Some flags turn Scavenge collections into Mark-sweep collections
|
|
// and hence are incompatible with this test case.
|
|
if (FLAG_gc_global || FLAG_stress_compaction ||
|
|
FLAG_stress_incremental_marking || FLAG_single_generation)
|
|
return;
|
|
|
|
// Prepare the environment
|
|
CompileRun(
|
|
"function fastliteralcase(literal, value) {"
|
|
" literal[0] = value;"
|
|
" return literal;"
|
|
"}"
|
|
"function get_standard_literal() {"
|
|
" var literal = [1, 2, 3];"
|
|
" return literal;"
|
|
"}"
|
|
"obj = fastliteralcase(get_standard_literal(), 1);"
|
|
"obj = fastliteralcase(get_standard_literal(), 1.5);"
|
|
"obj = fastliteralcase(get_standard_literal(), 2);");
|
|
|
|
// prepare the heap
|
|
v8::Local<v8::String> mote_code_string =
|
|
v8_str("fastliteralcase(mote, 2.5);");
|
|
|
|
v8::Local<v8::String> array_name = v8_str("mote");
|
|
CHECK(CcTest::global()
|
|
->Set(env.local(), array_name, v8::Int32::New(CcTest::isolate(), 0))
|
|
.FromJust());
|
|
|
|
// First make sure we flip spaces
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
|
|
// Allocate the object.
|
|
Handle<FixedArray> array_data =
|
|
factory->NewFixedArray(2, AllocationType::kYoung);
|
|
array_data->set(0, Smi::FromInt(1));
|
|
array_data->set(1, Smi::FromInt(2));
|
|
|
|
heap::FillCurrentPageButNBytes(
|
|
CcTest::heap()->new_space(),
|
|
JSArray::kHeaderSize + AllocationMemento::kSize + kTaggedSize);
|
|
|
|
Handle<JSArray> array =
|
|
factory->NewJSArrayWithElements(array_data, PACKED_SMI_ELEMENTS);
|
|
|
|
CHECK_EQ(Smi::FromInt(2), array->length());
|
|
CHECK(array->HasSmiOrObjectElements());
|
|
|
|
// We need filler the size of AllocationMemento object, plus an extra
|
|
// fill pointer value.
|
|
HeapObject obj;
|
|
AllocationResult allocation = CcTest::heap()->new_space()->AllocateRaw(
|
|
AllocationMemento::kSize + kTaggedSize,
|
|
AllocationAlignment::kWordAligned);
|
|
CHECK(allocation.To(&obj));
|
|
Address addr_obj = obj.address();
|
|
CcTest::heap()->CreateFillerObjectAt(addr_obj,
|
|
AllocationMemento::kSize + kTaggedSize,
|
|
ClearRecordedSlots::kNo);
|
|
|
|
// Give the array a name, making sure not to allocate strings.
|
|
v8::Local<v8::Object> array_obj = v8::Utils::ToLocal(array);
|
|
CHECK(CcTest::global()->Set(env.local(), array_name, array_obj).FromJust());
|
|
|
|
// This should crash with a protection violation if we are running a build
|
|
// with the bug.
|
|
AlwaysAllocateScopeForTesting aa_scope(isolate->heap());
|
|
v8::Script::Compile(env.local(), mote_code_string)
|
|
.ToLocalChecked()
|
|
->Run(env.local())
|
|
.ToLocalChecked();
|
|
}
|
|
|
|
TEST(LargeObjectSlotRecording) {
|
|
if (!FLAG_incremental_marking) return;
|
|
if (FLAG_never_compact) return;
|
|
ManualGCScope manual_gc_scope;
|
|
FLAG_manual_evacuation_candidates_selection = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
HandleScope scope(isolate);
|
|
|
|
// Create an object on an evacuation candidate.
|
|
heap::SimulateFullSpace(heap->old_space());
|
|
Handle<FixedArray> lit =
|
|
isolate->factory()->NewFixedArray(4, AllocationType::kOld);
|
|
Page* evac_page = Page::FromHeapObject(*lit);
|
|
heap::ForceEvacuationCandidate(evac_page);
|
|
FixedArray old_location = *lit;
|
|
|
|
// Allocate a large object.
|
|
int size = Max(1000000, kMaxRegularHeapObjectSize + KB);
|
|
CHECK_LT(kMaxRegularHeapObjectSize, size);
|
|
Handle<FixedArray> lo =
|
|
isolate->factory()->NewFixedArray(size, AllocationType::kOld);
|
|
CHECK(heap->lo_space()->Contains(*lo));
|
|
|
|
// Start incremental marking to active write barrier.
|
|
heap::SimulateIncrementalMarking(heap, false);
|
|
|
|
// Create references from the large object to the object on the evacuation
|
|
// candidate.
|
|
const int kStep = size / 10;
|
|
for (int i = 0; i < size; i += kStep) {
|
|
lo->set(i, *lit);
|
|
CHECK(lo->get(i) == old_location);
|
|
}
|
|
|
|
heap::SimulateIncrementalMarking(heap, true);
|
|
|
|
// Move the evaucation candidate object.
|
|
CcTest::CollectAllGarbage();
|
|
|
|
// Verify that the pointers in the large object got updated.
|
|
for (int i = 0; i < size; i += kStep) {
|
|
CHECK_EQ(lo->get(i), *lit);
|
|
CHECK(lo->get(i) != old_location);
|
|
}
|
|
}
|
|
|
|
class DummyVisitor : public RootVisitor {
|
|
public:
|
|
void VisitRootPointers(Root root, const char* description,
|
|
FullObjectSlot start, FullObjectSlot end) override {}
|
|
};
|
|
|
|
TEST(PersistentHandles) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
v8::HandleScope scope(reinterpret_cast<v8::Isolate*>(isolate));
|
|
HandleScopeData* data = isolate->handle_scope_data();
|
|
Handle<Object> init(ReadOnlyRoots(heap).empty_string(), isolate);
|
|
while (data->next < data->limit) {
|
|
Handle<Object> obj(ReadOnlyRoots(heap).empty_string(), isolate);
|
|
}
|
|
// An entire block of handles has been filled.
|
|
// Next handle would require a new block.
|
|
CHECK(data->next == data->limit);
|
|
|
|
PersistentHandlesScope persistent(isolate);
|
|
DummyVisitor visitor;
|
|
isolate->handle_scope_implementer()->Iterate(&visitor);
|
|
persistent.Detach();
|
|
}
|
|
|
|
static void TestFillersFromPersistentHandles(bool promote) {
|
|
// We assume that the fillers can only arise when left-trimming arrays.
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
v8::HandleScope scope(reinterpret_cast<v8::Isolate*>(isolate));
|
|
|
|
const size_t n = 10;
|
|
Handle<FixedArray> array = isolate->factory()->NewFixedArray(n);
|
|
|
|
if (promote) {
|
|
// Age the array so it's ready for promotion on next GC.
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
}
|
|
CHECK(Heap::InYoungGeneration(*array));
|
|
|
|
PersistentHandlesScope persistent_scope(isolate);
|
|
|
|
// Trim the array three times to different sizes so all kinds of fillers are
|
|
// created and tracked by the persistent handles.
|
|
Handle<FixedArrayBase> filler_1 = Handle<FixedArrayBase>(*array, isolate);
|
|
Handle<FixedArrayBase> filler_2 =
|
|
Handle<FixedArrayBase>(heap->LeftTrimFixedArray(*filler_1, 1), isolate);
|
|
Handle<FixedArrayBase> filler_3 =
|
|
Handle<FixedArrayBase>(heap->LeftTrimFixedArray(*filler_2, 2), isolate);
|
|
Handle<FixedArrayBase> tail =
|
|
Handle<FixedArrayBase>(heap->LeftTrimFixedArray(*filler_3, 3), isolate);
|
|
|
|
std::unique_ptr<PersistentHandles> persistent_handles(
|
|
persistent_scope.Detach());
|
|
|
|
// GC should retain the trimmed array but drop all of the three fillers.
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
if (promote) {
|
|
CHECK(heap->InOldSpace(*tail));
|
|
} else {
|
|
CHECK(Heap::InYoungGeneration(*tail));
|
|
}
|
|
CHECK_EQ(n - 6, (*tail).length());
|
|
CHECK(!filler_1->IsHeapObject());
|
|
CHECK(!filler_2->IsHeapObject());
|
|
CHECK(!filler_3->IsHeapObject());
|
|
}
|
|
|
|
TEST(DoNotEvacuateFillersFromPersistentHandles) {
|
|
if (FLAG_single_generation) return;
|
|
TestFillersFromPersistentHandles(false /*promote*/);
|
|
}
|
|
|
|
TEST(DoNotPromoteFillersFromPersistentHandles) {
|
|
if (FLAG_single_generation) return;
|
|
TestFillersFromPersistentHandles(true /*promote*/);
|
|
}
|
|
|
|
TEST(IncrementalMarkingStepMakesBigProgressWithLargeObjects) {
|
|
if (!FLAG_incremental_marking) return;
|
|
ManualGCScope manual_gc_scope;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun(
|
|
"function f(n) {"
|
|
" var a = new Array(n);"
|
|
" for (var i = 0; i < n; i += 100) a[i] = i;"
|
|
"};"
|
|
"f(10 * 1024 * 1024);");
|
|
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
|
|
if (marking->IsStopped()) {
|
|
CcTest::heap()->StartIncrementalMarking(
|
|
i::Heap::kNoGCFlags, i::GarbageCollectionReason::kTesting);
|
|
}
|
|
heap::SimulateIncrementalMarking(CcTest::heap());
|
|
CHECK(marking->IsComplete() ||
|
|
marking->IsReadyToOverApproximateWeakClosure());
|
|
}
|
|
|
|
|
|
TEST(DisableInlineAllocation) {
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun(
|
|
"function test() {"
|
|
" var x = [];"
|
|
" for (var i = 0; i < 10; i++) {"
|
|
" x[i] = [ {}, [1,2,3], [1,x,3] ];"
|
|
" }"
|
|
"}"
|
|
"function run() {"
|
|
" %PrepareFunctionForOptimization(test);"
|
|
" %OptimizeFunctionOnNextCall(test);"
|
|
" test();"
|
|
" %DeoptimizeFunction(test);"
|
|
"}");
|
|
|
|
// Warm-up with inline allocation enabled.
|
|
CompileRun("test(); test(); run();");
|
|
|
|
// Run test with inline allocation disabled.
|
|
CcTest::heap()->DisableInlineAllocation();
|
|
CompileRun("run()");
|
|
|
|
// Run test with inline allocation re-enabled.
|
|
CcTest::heap()->EnableInlineAllocation();
|
|
CompileRun("run()");
|
|
}
|
|
|
|
|
|
static int AllocationSitesCount(Heap* heap) {
|
|
int count = 0;
|
|
for (Object site = heap->allocation_sites_list(); site.IsAllocationSite();) {
|
|
AllocationSite cur = AllocationSite::cast(site);
|
|
CHECK(cur.HasWeakNext());
|
|
site = cur.weak_next();
|
|
count++;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int SlimAllocationSiteCount(Heap* heap) {
|
|
int count = 0;
|
|
for (Object weak_list = heap->allocation_sites_list();
|
|
weak_list.IsAllocationSite();) {
|
|
AllocationSite weak_cur = AllocationSite::cast(weak_list);
|
|
for (Object site = weak_cur.nested_site(); site.IsAllocationSite();) {
|
|
AllocationSite cur = AllocationSite::cast(site);
|
|
CHECK(!cur.HasWeakNext());
|
|
site = cur.nested_site();
|
|
count++;
|
|
}
|
|
weak_list = weak_cur.weak_next();
|
|
}
|
|
return count;
|
|
}
|
|
|
|
TEST(EnsureAllocationSiteDependentCodesProcessed) {
|
|
if (FLAG_always_opt || !FLAG_opt) return;
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
v8::internal::Heap* heap = CcTest::heap();
|
|
GlobalHandles* global_handles = isolate->global_handles();
|
|
|
|
if (!isolate->use_optimizer()) return;
|
|
|
|
// The allocation site at the head of the list is ours.
|
|
Handle<AllocationSite> site;
|
|
{
|
|
LocalContext context;
|
|
v8::HandleScope scope(context->GetIsolate());
|
|
|
|
int count = AllocationSitesCount(heap);
|
|
CompileRun(
|
|
"var bar = function() { return (new Array()); };"
|
|
"%PrepareFunctionForOptimization(bar);"
|
|
"var a = bar();"
|
|
"bar();"
|
|
"bar();");
|
|
|
|
// One allocation site should have been created.
|
|
int new_count = AllocationSitesCount(heap);
|
|
CHECK_EQ(new_count, (count + 1));
|
|
site = Handle<AllocationSite>::cast(global_handles->Create(
|
|
AllocationSite::cast(heap->allocation_sites_list())));
|
|
|
|
CompileRun("%OptimizeFunctionOnNextCall(bar); bar();");
|
|
|
|
Handle<JSFunction> bar_handle = Handle<JSFunction>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
|
|
CcTest::global()
|
|
->Get(context.local(), v8_str("bar"))
|
|
.ToLocalChecked())));
|
|
|
|
int dependency_group_count = 0;
|
|
DependentCode dependency = site->dependent_code();
|
|
while (dependency != ReadOnlyRoots(heap).empty_weak_fixed_array()) {
|
|
CHECK(dependency.group() ==
|
|
DependentCode::kAllocationSiteTransitionChangedGroup ||
|
|
dependency.group() ==
|
|
DependentCode::kAllocationSiteTenuringChangedGroup);
|
|
CHECK_EQ(1, dependency.count());
|
|
CHECK(dependency.object_at(0)->IsWeak());
|
|
Code function_bar =
|
|
Code::cast(dependency.object_at(0)->GetHeapObjectAssumeWeak());
|
|
CHECK_EQ(bar_handle->code(), function_bar);
|
|
dependency = dependency.next_link();
|
|
dependency_group_count++;
|
|
}
|
|
// Expect a dependent code object for transitioning and pretenuring.
|
|
CHECK_EQ(2, dependency_group_count);
|
|
}
|
|
|
|
// Now make sure that a gc should get rid of the function, even though we
|
|
// still have the allocation site alive.
|
|
for (int i = 0; i < 4; i++) {
|
|
CcTest::CollectAllGarbage();
|
|
}
|
|
|
|
// The site still exists because of our global handle, but the code is no
|
|
// longer referred to by dependent_code().
|
|
CHECK(site->dependent_code().object_at(0)->IsCleared());
|
|
}
|
|
|
|
void CheckNumberOfAllocations(Heap* heap, const char* source,
|
|
int expected_full_alloc,
|
|
int expected_slim_alloc) {
|
|
int prev_fat_alloc_count = AllocationSitesCount(heap);
|
|
int prev_slim_alloc_count = SlimAllocationSiteCount(heap);
|
|
|
|
CompileRun(source);
|
|
|
|
int fat_alloc_sites = AllocationSitesCount(heap) - prev_fat_alloc_count;
|
|
int slim_alloc_sites = SlimAllocationSiteCount(heap) - prev_slim_alloc_count;
|
|
|
|
CHECK_EQ(expected_full_alloc, fat_alloc_sites);
|
|
CHECK_EQ(expected_slim_alloc, slim_alloc_sites);
|
|
}
|
|
|
|
TEST(AllocationSiteCreation) {
|
|
FLAG_always_opt = false;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
HandleScope scope(isolate);
|
|
i::FLAG_allow_natives_syntax = true;
|
|
|
|
// Array literals.
|
|
CheckNumberOfAllocations(heap,
|
|
"function f1() {"
|
|
" return []; "
|
|
"};"
|
|
"%EnsureFeedbackVectorForFunction(f1); f1();",
|
|
1, 0);
|
|
CheckNumberOfAllocations(heap,
|
|
"function f2() {"
|
|
" return [1, 2];"
|
|
"};"
|
|
"%EnsureFeedbackVectorForFunction(f2); f2();",
|
|
1, 0);
|
|
CheckNumberOfAllocations(heap,
|
|
"function f3() {"
|
|
" return [[1], [2]];"
|
|
"};"
|
|
"%EnsureFeedbackVectorForFunction(f3); f3();",
|
|
1, 2);
|
|
CheckNumberOfAllocations(heap,
|
|
"function f4() { "
|
|
"return [0, [1, 1.1, 1.2, "
|
|
"], 1.5, [2.1, 2.2], 3];"
|
|
"};"
|
|
"%EnsureFeedbackVectorForFunction(f4); f4();",
|
|
1, 2);
|
|
|
|
// Object literals have lazy AllocationSites
|
|
CheckNumberOfAllocations(heap,
|
|
"function f5() {"
|
|
" return {};"
|
|
"};"
|
|
"%EnsureFeedbackVectorForFunction(f5); f5();",
|
|
0, 0);
|
|
|
|
// No AllocationSites are created for the empty object literal.
|
|
for (int i = 0; i < 5; i++) {
|
|
CheckNumberOfAllocations(heap, "f5(); ", 0, 0);
|
|
}
|
|
|
|
CheckNumberOfAllocations(heap,
|
|
"function f6() {"
|
|
" return {a:1};"
|
|
"};"
|
|
"%EnsureFeedbackVectorForFunction(f6); f6();",
|
|
0, 0);
|
|
|
|
CheckNumberOfAllocations(heap, "f6(); ", 1, 0);
|
|
|
|
CheckNumberOfAllocations(heap,
|
|
"function f7() {"
|
|
" return {a:1, b:2};"
|
|
"};"
|
|
"%EnsureFeedbackVectorForFunction(f7); f7(); ",
|
|
0, 0);
|
|
CheckNumberOfAllocations(heap, "f7(); ", 1, 0);
|
|
|
|
// No Allocation sites are created for object subliterals
|
|
CheckNumberOfAllocations(heap,
|
|
"function f8() {"
|
|
"return {a:{}, b:{ a:2, c:{ d:{f:{}}} } }; "
|
|
"};"
|
|
"%EnsureFeedbackVectorForFunction(f8); f8();",
|
|
0, 0);
|
|
CheckNumberOfAllocations(heap, "f8(); ", 1, 0);
|
|
|
|
// We currently eagerly create allocation sites if there are sub-arrays.
|
|
// Allocation sites are created only for array subliterals
|
|
CheckNumberOfAllocations(heap,
|
|
"function f9() {"
|
|
"return {a:[1, 2, 3], b:{ a:2, c:{ d:{f:[]} } }}; "
|
|
"};"
|
|
"%EnsureFeedbackVectorForFunction(f9); f9(); ",
|
|
1, 2);
|
|
|
|
// No new AllocationSites created on the second invocation.
|
|
CheckNumberOfAllocations(heap, "f9(); ", 0, 0);
|
|
}
|
|
|
|
TEST(AllocationSiteCreationForIIFE) {
|
|
// No feedback vectors and hence no allocation sites.
|
|
// TODO(mythria): Once lazy feedback allocation is enabled by default
|
|
// re-evaluate if we need any of these tests.
|
|
if (FLAG_lite_mode || FLAG_lazy_feedback_allocation) return;
|
|
FLAG_always_opt = false;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
HandleScope scope(isolate);
|
|
i::FLAG_enable_one_shot_optimization = true;
|
|
|
|
// No allocation sites within IIFE/top-level
|
|
CheckNumberOfAllocations(heap,
|
|
R"(
|
|
(function f4() {
|
|
return [ 0, [ 1, 1.1, 1.2,], 1.5, [2.1, 2.2], 3 ];
|
|
})();
|
|
)",
|
|
0, 0);
|
|
|
|
CheckNumberOfAllocations(heap,
|
|
R"(
|
|
l = [ 1, 2, 3, 4];
|
|
)",
|
|
0, 0);
|
|
|
|
CheckNumberOfAllocations(heap,
|
|
R"(
|
|
a = [];
|
|
)",
|
|
0, 0);
|
|
|
|
CheckNumberOfAllocations(heap,
|
|
R"(
|
|
(function f4() {
|
|
return [];
|
|
})();
|
|
)",
|
|
0, 0);
|
|
|
|
// No allocation sites for literals in an iife/top level code even if it has
|
|
// array subliterals
|
|
CheckNumberOfAllocations(heap,
|
|
R"(
|
|
(function f10() {
|
|
return {a: [1], b: [2]};
|
|
})();
|
|
)",
|
|
0, 0);
|
|
|
|
CheckNumberOfAllocations(heap,
|
|
R"(
|
|
l = {
|
|
a: 1,
|
|
b: {
|
|
c: [5],
|
|
}
|
|
};
|
|
)",
|
|
0, 0);
|
|
|
|
// Eagerly create allocation sites for literals within a loop of iife or
|
|
// top-level code
|
|
CheckNumberOfAllocations(heap,
|
|
R"(
|
|
(function f11() {
|
|
while(true) {
|
|
return {a: [1], b: [2]};
|
|
}
|
|
})();
|
|
)",
|
|
1, 2);
|
|
|
|
CheckNumberOfAllocations(heap,
|
|
R"(
|
|
for (i = 0; i < 1; ++i) {
|
|
l = {
|
|
a: 1,
|
|
b: {
|
|
c: [5],
|
|
}
|
|
};
|
|
}
|
|
)",
|
|
1, 1);
|
|
}
|
|
|
|
TEST(CellsInOptimizedCodeAreWeak) {
|
|
if (FLAG_always_opt || !FLAG_opt) return;
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
v8::internal::Heap* heap = CcTest::heap();
|
|
|
|
if (!isolate->use_optimizer()) return;
|
|
HandleScope outer_scope(heap->isolate());
|
|
Handle<Code> code;
|
|
{
|
|
LocalContext context;
|
|
HandleScope scope(heap->isolate());
|
|
|
|
CompileRun(
|
|
"bar = (function() {"
|
|
" function bar() {"
|
|
" return foo(1);"
|
|
" };"
|
|
" %PrepareFunctionForOptimization(bar);"
|
|
" var foo = function(x) { with (x) { return 1 + x; } };"
|
|
" %NeverOptimizeFunction(foo);"
|
|
" bar(foo);"
|
|
" bar(foo);"
|
|
" bar(foo);"
|
|
" %OptimizeFunctionOnNextCall(bar);"
|
|
" bar(foo);"
|
|
" return bar;})();");
|
|
|
|
Handle<JSFunction> bar = Handle<JSFunction>::cast(v8::Utils::OpenHandle(
|
|
*v8::Local<v8::Function>::Cast(CcTest::global()
|
|
->Get(context.local(), v8_str("bar"))
|
|
.ToLocalChecked())));
|
|
code = scope.CloseAndEscape(Handle<Code>(bar->code(), isolate));
|
|
}
|
|
|
|
// Now make sure that a gc should get rid of the function
|
|
for (int i = 0; i < 4; i++) {
|
|
CcTest::CollectAllGarbage();
|
|
}
|
|
|
|
CHECK(code->marked_for_deoptimization());
|
|
CHECK(code->embedded_objects_cleared());
|
|
}
|
|
|
|
|
|
TEST(ObjectsInOptimizedCodeAreWeak) {
|
|
if (FLAG_always_opt || !FLAG_opt) return;
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
v8::internal::Heap* heap = CcTest::heap();
|
|
|
|
if (!isolate->use_optimizer()) return;
|
|
HandleScope outer_scope(heap->isolate());
|
|
Handle<Code> code;
|
|
{
|
|
LocalContext context;
|
|
HandleScope scope(heap->isolate());
|
|
|
|
CompileRun(
|
|
"function bar() {"
|
|
" return foo(1);"
|
|
"};"
|
|
"%PrepareFunctionForOptimization(bar);"
|
|
"function foo(x) { with (x) { return 1 + x; } };"
|
|
"%NeverOptimizeFunction(foo);"
|
|
"bar();"
|
|
"bar();"
|
|
"bar();"
|
|
"%OptimizeFunctionOnNextCall(bar);"
|
|
"bar();");
|
|
|
|
Handle<JSFunction> bar = Handle<JSFunction>::cast(v8::Utils::OpenHandle(
|
|
*v8::Local<v8::Function>::Cast(CcTest::global()
|
|
->Get(context.local(), v8_str("bar"))
|
|
.ToLocalChecked())));
|
|
code = scope.CloseAndEscape(Handle<Code>(bar->code(), isolate));
|
|
}
|
|
|
|
// Now make sure that a gc should get rid of the function
|
|
for (int i = 0; i < 4; i++) {
|
|
CcTest::CollectAllGarbage();
|
|
}
|
|
|
|
CHECK(code->marked_for_deoptimization());
|
|
CHECK(code->embedded_objects_cleared());
|
|
}
|
|
|
|
TEST(NewSpaceObjectsInOptimizedCode) {
|
|
if (FLAG_always_opt || !FLAG_opt || FLAG_single_generation) return;
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
|
|
if (!isolate->use_optimizer()) return;
|
|
HandleScope outer_scope(isolate);
|
|
Handle<Code> code;
|
|
{
|
|
LocalContext context;
|
|
HandleScope scope(isolate);
|
|
|
|
CompileRun(
|
|
"var foo;"
|
|
"var bar;"
|
|
"(function() {"
|
|
" function foo_func(x) { with (x) { return 1 + x; } };"
|
|
" %NeverOptimizeFunction(foo_func);"
|
|
" function bar_func() {"
|
|
" return foo(1);"
|
|
" };"
|
|
" %PrepareFunctionForOptimization(bar_func);"
|
|
" bar = bar_func;"
|
|
" foo = foo_func;"
|
|
" bar_func();"
|
|
" bar_func();"
|
|
" bar_func();"
|
|
" %OptimizeFunctionOnNextCall(bar_func);"
|
|
" bar_func();"
|
|
"})();");
|
|
|
|
Handle<JSFunction> bar = Handle<JSFunction>::cast(v8::Utils::OpenHandle(
|
|
*v8::Local<v8::Function>::Cast(CcTest::global()
|
|
->Get(context.local(), v8_str("bar"))
|
|
.ToLocalChecked())));
|
|
|
|
Handle<JSFunction> foo = Handle<JSFunction>::cast(v8::Utils::OpenHandle(
|
|
*v8::Local<v8::Function>::Cast(CcTest::global()
|
|
->Get(context.local(), v8_str("foo"))
|
|
.ToLocalChecked())));
|
|
|
|
CHECK(Heap::InYoungGeneration(*foo));
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
CHECK(!Heap::InYoungGeneration(*foo));
|
|
#ifdef VERIFY_HEAP
|
|
CcTest::heap()->Verify();
|
|
#endif
|
|
CHECK(!bar->code().marked_for_deoptimization());
|
|
code = scope.CloseAndEscape(Handle<Code>(bar->code(), isolate));
|
|
}
|
|
|
|
// Now make sure that a gc should get rid of the function
|
|
for (int i = 0; i < 4; i++) {
|
|
CcTest::CollectAllGarbage();
|
|
}
|
|
|
|
CHECK(code->marked_for_deoptimization());
|
|
CHECK(code->embedded_objects_cleared());
|
|
}
|
|
|
|
TEST(ObjectsInEagerlyDeoptimizedCodeAreWeak) {
|
|
if (FLAG_always_opt || !FLAG_opt) return;
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
v8::internal::Heap* heap = CcTest::heap();
|
|
|
|
if (!isolate->use_optimizer()) return;
|
|
HandleScope outer_scope(heap->isolate());
|
|
Handle<Code> code;
|
|
{
|
|
LocalContext context;
|
|
HandleScope scope(heap->isolate());
|
|
|
|
CompileRun(
|
|
"function bar() {"
|
|
" return foo(1);"
|
|
"};"
|
|
"function foo(x) { with (x) { return 1 + x; } };"
|
|
"%NeverOptimizeFunction(foo);"
|
|
"%PrepareFunctionForOptimization(bar);"
|
|
"bar();"
|
|
"bar();"
|
|
"bar();"
|
|
"%OptimizeFunctionOnNextCall(bar);"
|
|
"bar();"
|
|
"%DeoptimizeFunction(bar);");
|
|
|
|
Handle<JSFunction> bar = Handle<JSFunction>::cast(v8::Utils::OpenHandle(
|
|
*v8::Local<v8::Function>::Cast(CcTest::global()
|
|
->Get(context.local(), v8_str("bar"))
|
|
.ToLocalChecked())));
|
|
code = scope.CloseAndEscape(Handle<Code>(bar->code(), isolate));
|
|
}
|
|
|
|
CHECK(code->marked_for_deoptimization());
|
|
|
|
// Now make sure that a gc should get rid of the function
|
|
for (int i = 0; i < 4; i++) {
|
|
CcTest::CollectAllGarbage();
|
|
}
|
|
|
|
CHECK(code->marked_for_deoptimization());
|
|
CHECK(code->embedded_objects_cleared());
|
|
}
|
|
|
|
static Handle<JSFunction> OptimizeDummyFunction(v8::Isolate* isolate,
|
|
const char* name) {
|
|
EmbeddedVector<char, 256> source;
|
|
SNPrintF(source,
|
|
"function %s() { return 0; }"
|
|
"%%PrepareFunctionForOptimization(%s);"
|
|
"%s(); %s();"
|
|
"%%OptimizeFunctionOnNextCall(%s);"
|
|
"%s();",
|
|
name, name, name, name, name, name);
|
|
CompileRun(source.begin());
|
|
i::Handle<JSFunction> fun = Handle<JSFunction>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
|
|
CcTest::global()
|
|
->Get(isolate->GetCurrentContext(), v8_str(name))
|
|
.ToLocalChecked())));
|
|
return fun;
|
|
}
|
|
|
|
static int GetCodeChainLength(Code code) {
|
|
int result = 0;
|
|
while (code.next_code_link().IsCode()) {
|
|
result++;
|
|
code = Code::cast(code.next_code_link());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
TEST(NextCodeLinkIsWeak) {
|
|
FLAG_always_opt = false;
|
|
FLAG_allow_natives_syntax = true;
|
|
FLAG_turbo_nci = false; // Additional compile tasks muck with test logic.
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
v8::internal::Heap* heap = CcTest::heap();
|
|
|
|
if (!isolate->use_optimizer()) return;
|
|
HandleScope outer_scope(heap->isolate());
|
|
Handle<Code> code;
|
|
CcTest::CollectAllAvailableGarbage();
|
|
int code_chain_length_before, code_chain_length_after;
|
|
{
|
|
HandleScope scope(heap->isolate());
|
|
Handle<JSFunction> mortal =
|
|
OptimizeDummyFunction(CcTest::isolate(), "mortal");
|
|
Handle<JSFunction> immortal =
|
|
OptimizeDummyFunction(CcTest::isolate(), "immortal");
|
|
CHECK_EQ(immortal->code().next_code_link(), mortal->code());
|
|
code_chain_length_before = GetCodeChainLength(immortal->code());
|
|
// Keep the immortal code and let the mortal code die.
|
|
code = scope.CloseAndEscape(Handle<Code>(immortal->code(), isolate));
|
|
CompileRun("mortal = null; immortal = null;");
|
|
}
|
|
CcTest::CollectAllAvailableGarbage();
|
|
// Now mortal code should be dead.
|
|
code_chain_length_after = GetCodeChainLength(*code);
|
|
CHECK_EQ(code_chain_length_before - 1, code_chain_length_after);
|
|
}
|
|
|
|
TEST(NextCodeLinkInCodeDataContainerIsCleared) {
|
|
FLAG_always_opt = false;
|
|
FLAG_allow_natives_syntax = true;
|
|
FLAG_turbo_nci = false; // Additional compile tasks muck with test logic.
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
v8::internal::Heap* heap = CcTest::heap();
|
|
|
|
if (!isolate->use_optimizer()) return;
|
|
HandleScope outer_scope(heap->isolate());
|
|
Handle<CodeDataContainer> code_data_container;
|
|
{
|
|
HandleScope scope(heap->isolate());
|
|
Handle<JSFunction> mortal1 =
|
|
OptimizeDummyFunction(CcTest::isolate(), "mortal1");
|
|
Handle<JSFunction> mortal2 =
|
|
OptimizeDummyFunction(CcTest::isolate(), "mortal2");
|
|
CHECK_EQ(mortal2->code().next_code_link(), mortal1->code());
|
|
code_data_container = scope.CloseAndEscape(Handle<CodeDataContainer>(
|
|
mortal2->code().code_data_container(), isolate));
|
|
CompileRun("mortal1 = null; mortal2 = null;");
|
|
}
|
|
CcTest::CollectAllAvailableGarbage();
|
|
CHECK(code_data_container->next_code_link().IsUndefined(isolate));
|
|
}
|
|
|
|
static Handle<Code> DummyOptimizedCode(Isolate* isolate) {
|
|
i::byte buffer[i::Assembler::kDefaultBufferSize];
|
|
MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes,
|
|
ExternalAssemblerBuffer(buffer, sizeof(buffer)));
|
|
CodeDesc desc;
|
|
masm.Push(isolate->factory()->undefined_value());
|
|
masm.Push(isolate->factory()->undefined_value());
|
|
masm.Drop(2);
|
|
masm.GetCode(isolate, &desc);
|
|
Handle<Code> code =
|
|
Factory::CodeBuilder(isolate, desc, CodeKind::OPTIMIZED_FUNCTION)
|
|
.set_self_reference(masm.CodeObject())
|
|
.Build();
|
|
CHECK(code->IsCode());
|
|
return code;
|
|
}
|
|
|
|
|
|
TEST(NextCodeLinkIsWeak2) {
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
v8::internal::Heap* heap = CcTest::heap();
|
|
|
|
if (!isolate->use_optimizer()) return;
|
|
HandleScope outer_scope(heap->isolate());
|
|
CcTest::CollectAllAvailableGarbage();
|
|
Handle<Context> context(Context::cast(heap->native_contexts_list()), isolate);
|
|
Handle<Code> new_head;
|
|
Handle<Object> old_head(context->get(Context::OPTIMIZED_CODE_LIST), isolate);
|
|
{
|
|
HandleScope scope(heap->isolate());
|
|
Handle<Code> immortal = DummyOptimizedCode(isolate);
|
|
Handle<Code> mortal = DummyOptimizedCode(isolate);
|
|
mortal->set_next_code_link(*old_head);
|
|
immortal->set_next_code_link(*mortal);
|
|
context->set(Context::OPTIMIZED_CODE_LIST, *immortal);
|
|
new_head = scope.CloseAndEscape(immortal);
|
|
}
|
|
CcTest::CollectAllAvailableGarbage();
|
|
// Now mortal code should be dead.
|
|
CHECK_EQ(*old_head, new_head->next_code_link());
|
|
}
|
|
|
|
|
|
static bool weak_ic_cleared = false;
|
|
|
|
static void ClearWeakIC(
|
|
const v8::WeakCallbackInfo<v8::Persistent<v8::Object>>& data) {
|
|
printf("clear weak is called\n");
|
|
weak_ic_cleared = true;
|
|
data.GetParameter()->Reset();
|
|
}
|
|
|
|
|
|
TEST(WeakFunctionInConstructor) {
|
|
if (FLAG_always_opt) return;
|
|
FLAG_stress_compaction = false;
|
|
FLAG_stress_incremental_marking = false;
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
LocalContext env;
|
|
v8::HandleScope scope(isolate);
|
|
CompileRun(
|
|
"function createObj(obj) {"
|
|
" return new obj();"
|
|
"}");
|
|
i::Handle<JSFunction> createObj = Handle<JSFunction>::cast(
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Function>::Cast(
|
|
CcTest::global()
|
|
->Get(env.local(), v8_str("createObj"))
|
|
.ToLocalChecked())));
|
|
|
|
v8::Persistent<v8::Object> garbage;
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
const char* source =
|
|
" (function() {"
|
|
" function hat() { this.x = 5; }"
|
|
" %EnsureFeedbackVectorForFunction(hat);"
|
|
" %EnsureFeedbackVectorForFunction(createObj);"
|
|
" createObj(hat);"
|
|
" createObj(hat);"
|
|
" return hat;"
|
|
" })();";
|
|
garbage.Reset(isolate, CompileRun(env.local(), source)
|
|
.ToLocalChecked()
|
|
->ToObject(env.local())
|
|
.ToLocalChecked());
|
|
}
|
|
weak_ic_cleared = false;
|
|
garbage.SetWeak(&garbage, &ClearWeakIC, v8::WeakCallbackType::kParameter);
|
|
CcTest::CollectAllGarbage();
|
|
CHECK(weak_ic_cleared);
|
|
|
|
// We've determined the constructor in createObj has had it's weak cell
|
|
// cleared. Now, verify that one additional call with a new function
|
|
// allows monomorphicity.
|
|
Handle<FeedbackVector> feedback_vector =
|
|
Handle<FeedbackVector>(createObj->feedback_vector(), CcTest::i_isolate());
|
|
for (int i = 0; i < 20; i++) {
|
|
MaybeObject slot_value = feedback_vector->Get(FeedbackSlot(0));
|
|
CHECK(slot_value->IsWeakOrCleared());
|
|
if (slot_value->IsCleared()) break;
|
|
CcTest::CollectAllGarbage();
|
|
}
|
|
|
|
MaybeObject slot_value = feedback_vector->Get(FeedbackSlot(0));
|
|
CHECK(slot_value->IsCleared());
|
|
CompileRun(
|
|
"function coat() { this.x = 6; }"
|
|
"createObj(coat);");
|
|
slot_value = feedback_vector->Get(FeedbackSlot(0));
|
|
CHECK(slot_value->IsWeak());
|
|
}
|
|
|
|
|
|
// Checks that the value returned by execution of the source is weak.
|
|
void CheckWeakness(const char* source) {
|
|
FLAG_stress_compaction = false;
|
|
FLAG_stress_incremental_marking = false;
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
LocalContext env;
|
|
v8::HandleScope scope(isolate);
|
|
v8::Persistent<v8::Object> garbage;
|
|
{
|
|
v8::HandleScope scope(isolate);
|
|
garbage.Reset(isolate, CompileRun(env.local(), source)
|
|
.ToLocalChecked()
|
|
->ToObject(env.local())
|
|
.ToLocalChecked());
|
|
}
|
|
weak_ic_cleared = false;
|
|
garbage.SetWeak(&garbage, &ClearWeakIC, v8::WeakCallbackType::kParameter);
|
|
CcTest::CollectAllGarbage();
|
|
CHECK(weak_ic_cleared);
|
|
}
|
|
|
|
|
|
// Each of the following "weak IC" tests creates an IC that embeds a map with
|
|
// the prototype pointing to _proto_ and checks that the _proto_ dies on GC.
|
|
TEST(WeakMapInMonomorphicLoadIC) {
|
|
CheckWeakness(
|
|
"function loadIC(obj) {"
|
|
" return obj.name;"
|
|
"}"
|
|
"%EnsureFeedbackVectorForFunction(loadIC);"
|
|
" (function() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" loadIC(obj);"
|
|
" loadIC(obj);"
|
|
" loadIC(obj);"
|
|
" return proto;"
|
|
" })();");
|
|
}
|
|
|
|
|
|
TEST(WeakMapInPolymorphicLoadIC) {
|
|
CheckWeakness(
|
|
"function loadIC(obj) {"
|
|
" return obj.name;"
|
|
"}"
|
|
"%EnsureFeedbackVectorForFunction(loadIC);"
|
|
" (function() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" loadIC(obj);"
|
|
" loadIC(obj);"
|
|
" loadIC(obj);"
|
|
" var poly = Object.create(proto);"
|
|
" poly.x = true;"
|
|
" loadIC(poly);"
|
|
" return proto;"
|
|
" })();");
|
|
}
|
|
|
|
|
|
TEST(WeakMapInMonomorphicKeyedLoadIC) {
|
|
CheckWeakness(
|
|
"function keyedLoadIC(obj, field) {"
|
|
" return obj[field];"
|
|
"}"
|
|
"%EnsureFeedbackVectorForFunction(keyedLoadIC);"
|
|
" (function() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" keyedLoadIC(obj, 'name');"
|
|
" keyedLoadIC(obj, 'name');"
|
|
" keyedLoadIC(obj, 'name');"
|
|
" return proto;"
|
|
" })();");
|
|
}
|
|
|
|
|
|
TEST(WeakMapInPolymorphicKeyedLoadIC) {
|
|
CheckWeakness(
|
|
"function keyedLoadIC(obj, field) {"
|
|
" return obj[field];"
|
|
"}"
|
|
"%EnsureFeedbackVectorForFunction(keyedLoadIC);"
|
|
" (function() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" keyedLoadIC(obj, 'name');"
|
|
" keyedLoadIC(obj, 'name');"
|
|
" keyedLoadIC(obj, 'name');"
|
|
" var poly = Object.create(proto);"
|
|
" poly.x = true;"
|
|
" keyedLoadIC(poly, 'name');"
|
|
" return proto;"
|
|
" })();");
|
|
}
|
|
|
|
|
|
TEST(WeakMapInMonomorphicStoreIC) {
|
|
CheckWeakness(
|
|
"function storeIC(obj, value) {"
|
|
" obj.name = value;"
|
|
"}"
|
|
"%EnsureFeedbackVectorForFunction(storeIC);"
|
|
" (function() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" storeIC(obj, 'x');"
|
|
" storeIC(obj, 'x');"
|
|
" storeIC(obj, 'x');"
|
|
" return proto;"
|
|
" })();");
|
|
}
|
|
|
|
|
|
TEST(WeakMapInPolymorphicStoreIC) {
|
|
CheckWeakness(
|
|
"function storeIC(obj, value) {"
|
|
" obj.name = value;"
|
|
"}"
|
|
"%EnsureFeedbackVectorForFunction(storeIC);"
|
|
" (function() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" storeIC(obj, 'x');"
|
|
" storeIC(obj, 'x');"
|
|
" storeIC(obj, 'x');"
|
|
" var poly = Object.create(proto);"
|
|
" poly.x = true;"
|
|
" storeIC(poly, 'x');"
|
|
" return proto;"
|
|
" })();");
|
|
}
|
|
|
|
|
|
TEST(WeakMapInMonomorphicKeyedStoreIC) {
|
|
CheckWeakness(
|
|
"function keyedStoreIC(obj, field, value) {"
|
|
" obj[field] = value;"
|
|
"}"
|
|
"%EnsureFeedbackVectorForFunction(keyedStoreIC);"
|
|
" (function() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" keyedStoreIC(obj, 'x');"
|
|
" keyedStoreIC(obj, 'x');"
|
|
" keyedStoreIC(obj, 'x');"
|
|
" return proto;"
|
|
" })();");
|
|
}
|
|
|
|
|
|
TEST(WeakMapInPolymorphicKeyedStoreIC) {
|
|
CheckWeakness(
|
|
"function keyedStoreIC(obj, field, value) {"
|
|
" obj[field] = value;"
|
|
"}"
|
|
"%EnsureFeedbackVectorForFunction(keyedStoreIC);"
|
|
" (function() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" keyedStoreIC(obj, 'x');"
|
|
" keyedStoreIC(obj, 'x');"
|
|
" keyedStoreIC(obj, 'x');"
|
|
" var poly = Object.create(proto);"
|
|
" poly.x = true;"
|
|
" keyedStoreIC(poly, 'x');"
|
|
" return proto;"
|
|
" })();");
|
|
}
|
|
|
|
|
|
TEST(WeakMapInMonomorphicCompareNilIC) {
|
|
FLAG_allow_natives_syntax = true;
|
|
CheckWeakness(
|
|
"function compareNilIC(obj) {"
|
|
" return obj == null;"
|
|
"}"
|
|
"%EnsureFeedbackVectorForFunction(compareNilIC);"
|
|
" (function() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" compareNilIC(obj);"
|
|
" compareNilIC(obj);"
|
|
" compareNilIC(obj);"
|
|
" return proto;"
|
|
" })();");
|
|
}
|
|
|
|
|
|
Handle<JSFunction> GetFunctionByName(Isolate* isolate, const char* name) {
|
|
Handle<String> str = isolate->factory()->InternalizeUtf8String(name);
|
|
Handle<Object> obj =
|
|
Object::GetProperty(isolate, isolate->global_object(), str)
|
|
.ToHandleChecked();
|
|
return Handle<JSFunction>::cast(obj);
|
|
}
|
|
|
|
void CheckIC(Handle<JSFunction> function, int slot_index,
|
|
InlineCacheState state) {
|
|
FeedbackVector vector = function->feedback_vector();
|
|
FeedbackSlot slot(slot_index);
|
|
FeedbackNexus nexus(vector, slot);
|
|
CHECK_EQ(nexus.ic_state(), state);
|
|
}
|
|
|
|
TEST(MonomorphicStaysMonomorphicAfterGC) {
|
|
if (!FLAG_use_ic) return;
|
|
if (FLAG_always_opt) return;
|
|
ManualGCScope manual_gc_scope;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
FLAG_allow_natives_syntax = true;
|
|
CompileRun(
|
|
"function loadIC(obj) {"
|
|
" return obj.name;"
|
|
"}"
|
|
"%EnsureFeedbackVectorForFunction(loadIC);"
|
|
"function testIC() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" loadIC(obj);"
|
|
" loadIC(obj);"
|
|
" loadIC(obj);"
|
|
" return proto;"
|
|
"};");
|
|
Handle<JSFunction> loadIC = GetFunctionByName(isolate, "loadIC");
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun("(testIC())");
|
|
}
|
|
CcTest::CollectAllGarbage();
|
|
CheckIC(loadIC, 0, MONOMORPHIC);
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun("(testIC())");
|
|
}
|
|
CheckIC(loadIC, 0, MONOMORPHIC);
|
|
}
|
|
|
|
|
|
TEST(PolymorphicStaysPolymorphicAfterGC) {
|
|
if (!FLAG_use_ic) return;
|
|
if (FLAG_always_opt) return;
|
|
ManualGCScope manual_gc_scope;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
FLAG_allow_natives_syntax = true;
|
|
CompileRun(
|
|
"function loadIC(obj) {"
|
|
" return obj.name;"
|
|
"}"
|
|
"%EnsureFeedbackVectorForFunction(loadIC);"
|
|
"function testIC() {"
|
|
" var proto = {'name' : 'weak'};"
|
|
" var obj = Object.create(proto);"
|
|
" loadIC(obj);"
|
|
" loadIC(obj);"
|
|
" loadIC(obj);"
|
|
" var poly = Object.create(proto);"
|
|
" poly.x = true;"
|
|
" loadIC(poly);"
|
|
" return proto;"
|
|
"};");
|
|
Handle<JSFunction> loadIC = GetFunctionByName(isolate, "loadIC");
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun("(testIC())");
|
|
}
|
|
CcTest::CollectAllGarbage();
|
|
CheckIC(loadIC, 0, POLYMORPHIC);
|
|
{
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CompileRun("(testIC())");
|
|
}
|
|
CheckIC(loadIC, 0, POLYMORPHIC);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
TEST(AddInstructionChangesNewSpacePromotion) {
|
|
FLAG_allow_natives_syntax = true;
|
|
FLAG_expose_gc = true;
|
|
FLAG_stress_compaction = true;
|
|
FLAG_gc_interval = 1000;
|
|
CcTest::InitializeVM();
|
|
if (!FLAG_allocation_site_pretenuring) return;
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
LocalContext env;
|
|
CompileRun(
|
|
"function add(a, b) {"
|
|
" return a + b;"
|
|
"}"
|
|
"add(1, 2);"
|
|
"add(\"a\", \"b\");"
|
|
"var oldSpaceObject;"
|
|
"gc();"
|
|
"function crash(x) {"
|
|
" var object = {a: null, b: null};"
|
|
" var result = add(1.5, x | 0);"
|
|
" object.a = result;"
|
|
" oldSpaceObject = object;"
|
|
" return object;"
|
|
"}"
|
|
"%PrepareFunctionForOptimization(crash);"
|
|
"crash(1);"
|
|
"crash(1);"
|
|
"%OptimizeFunctionOnNextCall(crash);"
|
|
"crash(1);");
|
|
|
|
v8::Local<v8::Object> global = CcTest::global();
|
|
v8::Local<v8::Function> g = v8::Local<v8::Function>::Cast(
|
|
global->Get(env.local(), v8_str("crash")).ToLocalChecked());
|
|
v8::Local<v8::Value> args1[] = {v8_num(1)};
|
|
heap->DisableInlineAllocation();
|
|
heap->set_allocation_timeout(1);
|
|
g->Call(env.local(), global, 1, args1).ToLocalChecked();
|
|
CcTest::CollectAllGarbage();
|
|
}
|
|
|
|
|
|
void OnFatalErrorExpectOOM(const char* location, const char* message) {
|
|
// Exit with 0 if the location matches our expectation.
|
|
exit(strcmp(location, "CALL_AND_RETRY_LAST"));
|
|
}
|
|
|
|
|
|
TEST(CEntryStubOOM) {
|
|
FLAG_allow_natives_syntax = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CcTest::isolate()->SetFatalErrorHandler(OnFatalErrorExpectOOM);
|
|
|
|
v8::Local<v8::Value> result = CompileRun(
|
|
"%SetAllocationTimeout(1, 1);"
|
|
"var a = [];"
|
|
"a.__proto__ = [];"
|
|
"a.unshift(1)");
|
|
|
|
CHECK(result->IsNumber());
|
|
}
|
|
|
|
#endif // DEBUG
|
|
|
|
|
|
static void InterruptCallback357137(v8::Isolate* isolate, void* data) { }
|
|
|
|
|
|
static void RequestInterrupt(const v8::FunctionCallbackInfo<v8::Value>& args) {
|
|
CcTest::isolate()->RequestInterrupt(&InterruptCallback357137, nullptr);
|
|
}
|
|
|
|
HEAP_TEST(Regress538257) {
|
|
ManualGCScope manual_gc_scope;
|
|
FLAG_manual_evacuation_candidates_selection = true;
|
|
v8::Isolate::CreateParams create_params;
|
|
// Set heap limits.
|
|
create_params.constraints.set_max_young_generation_size_in_bytes(3 * MB);
|
|
#ifdef DEBUG
|
|
create_params.constraints.set_max_old_generation_size_in_bytes(20 * MB);
|
|
#else
|
|
create_params.constraints.set_max_old_generation_size_in_bytes(6 * MB);
|
|
#endif
|
|
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
|
|
v8::Isolate* isolate = v8::Isolate::New(create_params);
|
|
isolate->Enter();
|
|
{
|
|
i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
|
|
Heap* heap = i_isolate->heap();
|
|
HandleScope handle_scope(i_isolate);
|
|
PagedSpace* old_space = heap->old_space();
|
|
const int kMaxObjects = 10000;
|
|
const int kFixedArrayLen = 512;
|
|
Handle<FixedArray> objects[kMaxObjects];
|
|
for (int i = 0; (i < kMaxObjects) &&
|
|
heap->CanExpandOldGeneration(old_space->AreaSize());
|
|
i++) {
|
|
objects[i] = i_isolate->factory()->NewFixedArray(kFixedArrayLen,
|
|
AllocationType::kOld);
|
|
heap::ForceEvacuationCandidate(Page::FromHeapObject(*objects[i]));
|
|
}
|
|
heap::SimulateFullSpace(old_space);
|
|
CcTest::CollectAllGarbage();
|
|
// If we get this far, we've successfully aborted compaction. Any further
|
|
// allocations might trigger OOM.
|
|
}
|
|
isolate->Exit();
|
|
isolate->Dispose();
|
|
}
|
|
|
|
|
|
TEST(Regress357137) {
|
|
CcTest::InitializeVM();
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
v8::HandleScope hscope(isolate);
|
|
v8::Local<v8::ObjectTemplate> global = v8::ObjectTemplate::New(isolate);
|
|
global->Set(isolate, "interrupt",
|
|
v8::FunctionTemplate::New(isolate, RequestInterrupt));
|
|
v8::Local<v8::Context> context = v8::Context::New(isolate, nullptr, global);
|
|
CHECK(!context.IsEmpty());
|
|
v8::Context::Scope cscope(context);
|
|
|
|
v8::Local<v8::Value> result = CompileRun(
|
|
"var locals = '';"
|
|
"for (var i = 0; i < 512; i++) locals += 'var v' + i + '= 42;';"
|
|
"eval('function f() {' + locals + 'return function() { return v0; }; }');"
|
|
"interrupt();" // This triggers a fake stack overflow in f.
|
|
"f()()");
|
|
CHECK_EQ(42.0, result->ToNumber(context).ToLocalChecked()->Value());
|
|
}
|
|
|
|
|
|
TEST(Regress507979) {
|
|
const int kFixedArrayLen = 10;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
HandleScope handle_scope(isolate);
|
|
|
|
Handle<FixedArray> o1 = isolate->factory()->NewFixedArray(kFixedArrayLen);
|
|
Handle<FixedArray> o2 = isolate->factory()->NewFixedArray(kFixedArrayLen);
|
|
CHECK(InCorrectGeneration(*o1));
|
|
CHECK(InCorrectGeneration(*o2));
|
|
|
|
HeapObjectIterator it(isolate->heap(),
|
|
i::HeapObjectIterator::kFilterUnreachable);
|
|
|
|
// Replace parts of an object placed before a live object with a filler. This
|
|
// way the filler object shares the mark bits with the following live object.
|
|
o1->Shrink(isolate, kFixedArrayLen - 1);
|
|
|
|
for (HeapObject obj = it.Next(); !obj.is_null(); obj = it.Next()) {
|
|
// Let's not optimize the loop away.
|
|
CHECK_NE(obj.address(), kNullAddress);
|
|
}
|
|
}
|
|
|
|
TEST(Regress388880) {
|
|
if (!FLAG_incremental_marking) return;
|
|
FLAG_stress_incremental_marking = false;
|
|
FLAG_expose_gc = true;
|
|
FLAG_stress_concurrent_allocation = false; // For SimulateFullSpace.
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
Heap* heap = isolate->heap();
|
|
|
|
Handle<Map> map1 = Map::Create(isolate, 1);
|
|
Handle<String> name = factory->NewStringFromStaticChars("foo");
|
|
name = factory->InternalizeString(name);
|
|
Handle<Map> map2 =
|
|
Map::CopyWithField(isolate, map1, name, FieldType::Any(isolate), NONE,
|
|
PropertyConstness::kMutable, Representation::Tagged(),
|
|
OMIT_TRANSITION)
|
|
.ToHandleChecked();
|
|
|
|
size_t desired_offset = Page::kPageSize - map1->instance_size();
|
|
|
|
// Allocate padding objects in old pointer space so, that object allocated
|
|
// afterwards would end at the end of the page.
|
|
heap::SimulateFullSpace(heap->old_space());
|
|
size_t padding_size =
|
|
desired_offset - MemoryChunkLayout::ObjectStartOffsetInDataPage();
|
|
heap::CreatePadding(heap, static_cast<int>(padding_size),
|
|
AllocationType::kOld);
|
|
|
|
Handle<JSObject> o = factory->NewJSObjectFromMap(map1, AllocationType::kOld);
|
|
o->set_raw_properties_or_hash(*factory->empty_fixed_array());
|
|
|
|
// Ensure that the object allocated where we need it.
|
|
Page* page = Page::FromHeapObject(*o);
|
|
CHECK_EQ(desired_offset, page->Offset(o->address()));
|
|
|
|
// Now we have an object right at the end of the page.
|
|
|
|
// Enable incremental marking to trigger actions in Heap::AdjustLiveBytes()
|
|
// that would cause crash.
|
|
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
|
|
marking->Stop();
|
|
CcTest::heap()->StartIncrementalMarking(i::Heap::kNoGCFlags,
|
|
i::GarbageCollectionReason::kTesting);
|
|
CHECK(marking->IsMarking());
|
|
|
|
// Now everything is set up for crashing in JSObject::MigrateFastToFast()
|
|
// when it calls heap->AdjustLiveBytes(...).
|
|
JSObject::MigrateToMap(isolate, o, map2);
|
|
}
|
|
|
|
|
|
TEST(Regress3631) {
|
|
if (!FLAG_incremental_marking) return;
|
|
FLAG_expose_gc = true;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
IncrementalMarking* marking = CcTest::heap()->incremental_marking();
|
|
v8::Local<v8::Value> result = CompileRun(
|
|
"var weak_map = new WeakMap();"
|
|
"var future_keys = [];"
|
|
"for (var i = 0; i < 50; i++) {"
|
|
" var key = {'k' : i + 0.1};"
|
|
" weak_map.set(key, 1);"
|
|
" future_keys.push({'x' : i + 0.2});"
|
|
"}"
|
|
"weak_map");
|
|
if (marking->IsStopped()) {
|
|
CcTest::heap()->StartIncrementalMarking(
|
|
i::Heap::kNoGCFlags, i::GarbageCollectionReason::kTesting);
|
|
}
|
|
// Incrementally mark the backing store.
|
|
Handle<JSReceiver> obj =
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(result));
|
|
Handle<JSWeakCollection> weak_map(JSWeakCollection::cast(*obj), isolate);
|
|
SimulateIncrementalMarking(heap);
|
|
// Stash the backing store in a handle.
|
|
Handle<Object> save(weak_map->table(), isolate);
|
|
// The following line will update the backing store.
|
|
CompileRun(
|
|
"for (var i = 0; i < 50; i++) {"
|
|
" weak_map.set(future_keys[i], i);"
|
|
"}");
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
}
|
|
|
|
|
|
TEST(Regress442710) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
|
|
HandleScope sc(isolate);
|
|
Handle<JSGlobalObject> global(CcTest::i_isolate()->context().global_object(),
|
|
isolate);
|
|
Handle<JSArray> array = factory->NewJSArray(2);
|
|
|
|
Handle<String> name = factory->InternalizeUtf8String("testArray");
|
|
Object::SetProperty(isolate, global, name, array).Check();
|
|
CompileRun("testArray[0] = 1; testArray[1] = 2; testArray.shift();");
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
}
|
|
|
|
|
|
HEAP_TEST(NumberStringCacheSize) {
|
|
// Test that the number-string cache has not been resized in the snapshot.
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
if (!isolate->snapshot_available()) return;
|
|
Heap* heap = isolate->heap();
|
|
CHECK_EQ(Heap::kInitialNumberStringCacheSize * 2,
|
|
heap->number_string_cache().length());
|
|
}
|
|
|
|
|
|
TEST(Regress3877) {
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
HandleScope scope(isolate);
|
|
CompileRun("function cls() { this.x = 10; }");
|
|
Handle<WeakFixedArray> weak_prototype_holder = factory->NewWeakFixedArray(1);
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
v8::Local<v8::Value> result = CompileRun("cls.prototype");
|
|
Handle<JSReceiver> proto =
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(result));
|
|
weak_prototype_holder->Set(0, HeapObjectReference::Weak(*proto));
|
|
}
|
|
CHECK(!weak_prototype_holder->Get(0)->IsCleared());
|
|
CompileRun(
|
|
"var a = { };"
|
|
"a.x = new cls();"
|
|
"cls.prototype = null;");
|
|
for (int i = 0; i < 4; i++) {
|
|
CcTest::CollectAllGarbage();
|
|
}
|
|
// The map of a.x keeps prototype alive
|
|
CHECK(!weak_prototype_holder->Get(0)->IsCleared());
|
|
// Change the map of a.x and make the previous map garbage collectable.
|
|
CompileRun("a.x.__proto__ = {};");
|
|
for (int i = 0; i < 4; i++) {
|
|
CcTest::CollectAllGarbage();
|
|
}
|
|
CHECK(weak_prototype_holder->Get(0)->IsCleared());
|
|
}
|
|
|
|
Handle<WeakFixedArray> AddRetainedMap(Isolate* isolate,
|
|
Handle<NativeContext> context) {
|
|
HandleScope inner_scope(isolate);
|
|
Handle<Map> map = Map::Create(isolate, 1);
|
|
v8::Local<v8::Value> result =
|
|
CompileRun("(function () { return {x : 10}; })();");
|
|
Handle<JSReceiver> proto =
|
|
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(result));
|
|
Map::SetPrototype(isolate, map, proto);
|
|
isolate->heap()->AddRetainedMap(context, map);
|
|
Handle<WeakFixedArray> array = isolate->factory()->NewWeakFixedArray(1);
|
|
array->Set(0, HeapObjectReference::Weak(*map));
|
|
return inner_scope.CloseAndEscape(array);
|
|
}
|
|
|
|
void CheckMapRetainingFor(int n) {
|
|
FLAG_retain_maps_for_n_gc = n;
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
v8::Local<v8::Context> ctx = v8::Context::New(CcTest::isolate());
|
|
Handle<Context> context = Utils::OpenHandle(*ctx);
|
|
CHECK(context->IsNativeContext());
|
|
Handle<NativeContext> native_context = Handle<NativeContext>::cast(context);
|
|
|
|
ctx->Enter();
|
|
Handle<WeakFixedArray> array_with_map =
|
|
AddRetainedMap(isolate, native_context);
|
|
CHECK(array_with_map->Get(0)->IsWeak());
|
|
for (int i = 0; i < n; i++) {
|
|
heap::SimulateIncrementalMarking(heap);
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
}
|
|
CHECK(array_with_map->Get(0)->IsWeak());
|
|
heap::SimulateIncrementalMarking(heap);
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
CHECK(array_with_map->Get(0)->IsCleared());
|
|
|
|
ctx->Exit();
|
|
}
|
|
|
|
|
|
TEST(MapRetaining) {
|
|
if (!FLAG_incremental_marking) return;
|
|
ManualGCScope manual_gc_scope;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
CheckMapRetainingFor(FLAG_retain_maps_for_n_gc);
|
|
CheckMapRetainingFor(0);
|
|
CheckMapRetainingFor(1);
|
|
CheckMapRetainingFor(7);
|
|
}
|
|
|
|
TEST(RetainedMapsCleanup) {
|
|
if (!FLAG_incremental_marking) return;
|
|
ManualGCScope manual_gc_scope;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
v8::Local<v8::Context> ctx = v8::Context::New(CcTest::isolate());
|
|
Handle<Context> context = Utils::OpenHandle(*ctx);
|
|
CHECK(context->IsNativeContext());
|
|
Handle<NativeContext> native_context = Handle<NativeContext>::cast(context);
|
|
|
|
ctx->Enter();
|
|
Handle<WeakFixedArray> array_with_map =
|
|
AddRetainedMap(isolate, native_context);
|
|
CHECK(array_with_map->Get(0)->IsWeak());
|
|
heap->NotifyContextDisposed(true);
|
|
CcTest::CollectAllGarbage();
|
|
ctx->Exit();
|
|
|
|
CHECK_EQ(ReadOnlyRoots(heap).empty_weak_array_list(),
|
|
native_context->retained_maps());
|
|
}
|
|
|
|
TEST(PreprocessStackTrace) {
|
|
// Do not automatically trigger early GC.
|
|
FLAG_gc_interval = -1;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
v8::TryCatch try_catch(CcTest::isolate());
|
|
CompileRun("throw new Error();");
|
|
CHECK(try_catch.HasCaught());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Handle<Object> exception = v8::Utils::OpenHandle(*try_catch.Exception());
|
|
Handle<Name> key = isolate->factory()->stack_trace_symbol();
|
|
Handle<Object> stack_trace =
|
|
Object::GetProperty(isolate, exception, key).ToHandleChecked();
|
|
Handle<Object> code =
|
|
Object::GetElement(isolate, stack_trace, 3).ToHandleChecked();
|
|
CHECK(code->IsCode());
|
|
|
|
CcTest::CollectAllAvailableGarbage();
|
|
|
|
Handle<Object> pos =
|
|
Object::GetElement(isolate, stack_trace, 3).ToHandleChecked();
|
|
CHECK(pos->IsSmi());
|
|
|
|
Handle<FrameArray> frame_array = Handle<FrameArray>::cast(stack_trace);
|
|
int array_length = frame_array->FrameCount();
|
|
for (int i = 0; i < array_length; i++) {
|
|
Handle<Object> element =
|
|
Object::GetElement(isolate, stack_trace, i).ToHandleChecked();
|
|
CHECK(!element->IsCode());
|
|
}
|
|
}
|
|
|
|
|
|
void AllocateInSpace(Isolate* isolate, size_t bytes, AllocationSpace space) {
|
|
CHECK_LE(FixedArray::kHeaderSize, bytes);
|
|
CHECK(IsAligned(bytes, kTaggedSize));
|
|
Factory* factory = isolate->factory();
|
|
HandleScope scope(isolate);
|
|
AlwaysAllocateScopeForTesting always_allocate(isolate->heap());
|
|
int elements =
|
|
static_cast<int>((bytes - FixedArray::kHeaderSize) / kTaggedSize);
|
|
Handle<FixedArray> array = factory->NewFixedArray(
|
|
elements,
|
|
space == NEW_SPACE ? AllocationType::kYoung : AllocationType::kOld);
|
|
CHECK((space == NEW_SPACE) == Heap::InYoungGeneration(*array));
|
|
CHECK_EQ(bytes, static_cast<size_t>(array->Size()));
|
|
}
|
|
|
|
|
|
TEST(NewSpaceAllocationCounter) {
|
|
if (FLAG_single_generation) return;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
size_t counter1 = heap->NewSpaceAllocationCounter();
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
CcTest::CollectGarbage(NEW_SPACE); // Ensure new space is empty.
|
|
const size_t kSize = 1024;
|
|
AllocateInSpace(isolate, kSize, NEW_SPACE);
|
|
size_t counter2 = heap->NewSpaceAllocationCounter();
|
|
CHECK_EQ(kSize, counter2 - counter1);
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
size_t counter3 = heap->NewSpaceAllocationCounter();
|
|
CHECK_EQ(0U, counter3 - counter2);
|
|
// Test counter overflow.
|
|
size_t max_counter = static_cast<size_t>(-1);
|
|
heap->set_new_space_allocation_counter(max_counter - 10 * kSize);
|
|
size_t start = heap->NewSpaceAllocationCounter();
|
|
for (int i = 0; i < 20; i++) {
|
|
AllocateInSpace(isolate, kSize, NEW_SPACE);
|
|
size_t counter = heap->NewSpaceAllocationCounter();
|
|
CHECK_EQ(kSize, counter - start);
|
|
start = counter;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(OldSpaceAllocationCounter) {
|
|
ManualGCScope manual_gc_scope;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
// Disable LAB, such that calculations with SizeOfObjects() and object size
|
|
// are correct.
|
|
heap->DisableInlineAllocation();
|
|
size_t counter1 = heap->OldGenerationAllocationCounter();
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
const size_t kSize = 1024;
|
|
AllocateInSpace(isolate, kSize, OLD_SPACE);
|
|
size_t counter2 = heap->OldGenerationAllocationCounter();
|
|
// TODO(ulan): replace all CHECK_LE with CHECK_EQ after v8:4148 is fixed.
|
|
CHECK_LE(kSize, counter2 - counter1);
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
size_t counter3 = heap->OldGenerationAllocationCounter();
|
|
CHECK_EQ(0u, counter3 - counter2);
|
|
AllocateInSpace(isolate, kSize, OLD_SPACE);
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
size_t counter4 = heap->OldGenerationAllocationCounter();
|
|
CHECK_LE(kSize, counter4 - counter3);
|
|
// Test counter overflow.
|
|
size_t max_counter = static_cast<size_t>(-1);
|
|
heap->set_old_generation_allocation_counter_at_last_gc(max_counter -
|
|
10 * kSize);
|
|
size_t start = heap->OldGenerationAllocationCounter();
|
|
for (int i = 0; i < 20; i++) {
|
|
AllocateInSpace(isolate, kSize, OLD_SPACE);
|
|
size_t counter = heap->OldGenerationAllocationCounter();
|
|
CHECK_LE(kSize, counter - start);
|
|
start = counter;
|
|
}
|
|
}
|
|
|
|
|
|
static void CheckLeak(const v8::FunctionCallbackInfo<v8::Value>& args) {
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Object message(
|
|
*reinterpret_cast<Address*>(isolate->pending_message_obj_address()));
|
|
CHECK(message.IsTheHole(isolate));
|
|
}
|
|
|
|
|
|
TEST(MessageObjectLeak) {
|
|
CcTest::InitializeVM();
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
v8::HandleScope scope(isolate);
|
|
v8::Local<v8::ObjectTemplate> global = v8::ObjectTemplate::New(isolate);
|
|
global->Set(isolate, "check", v8::FunctionTemplate::New(isolate, CheckLeak));
|
|
v8::Local<v8::Context> context = v8::Context::New(isolate, nullptr, global);
|
|
v8::Context::Scope cscope(context);
|
|
|
|
const char* test =
|
|
"try {"
|
|
" throw 'message 1';"
|
|
"} catch (e) {"
|
|
"}"
|
|
"check();"
|
|
"L: try {"
|
|
" throw 'message 2';"
|
|
"} finally {"
|
|
" break L;"
|
|
"}"
|
|
"check();";
|
|
CompileRun(test);
|
|
|
|
const char* flag = "--turbo-filter=*";
|
|
FlagList::SetFlagsFromString(flag, strlen(flag));
|
|
FLAG_always_opt = true;
|
|
|
|
CompileRun(test);
|
|
}
|
|
|
|
|
|
static void CheckEqualSharedFunctionInfos(
|
|
const v8::FunctionCallbackInfo<v8::Value>& args) {
|
|
Handle<Object> obj1 = v8::Utils::OpenHandle(*args[0]);
|
|
Handle<Object> obj2 = v8::Utils::OpenHandle(*args[1]);
|
|
Handle<JSFunction> fun1 = Handle<JSFunction>::cast(obj1);
|
|
Handle<JSFunction> fun2 = Handle<JSFunction>::cast(obj2);
|
|
CHECK(fun1->shared() == fun2->shared());
|
|
}
|
|
|
|
|
|
static void RemoveCodeAndGC(const v8::FunctionCallbackInfo<v8::Value>& args) {
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Handle<Object> obj = v8::Utils::OpenHandle(*args[0]);
|
|
Handle<JSFunction> fun = Handle<JSFunction>::cast(obj);
|
|
// Bytecode is code too.
|
|
SharedFunctionInfo::DiscardCompiled(isolate, handle(fun->shared(), isolate));
|
|
fun->set_code(*BUILTIN_CODE(isolate, CompileLazy));
|
|
CcTest::CollectAllAvailableGarbage();
|
|
}
|
|
|
|
|
|
TEST(CanonicalSharedFunctionInfo) {
|
|
CcTest::InitializeVM();
|
|
v8::Isolate* isolate = CcTest::isolate();
|
|
v8::HandleScope scope(isolate);
|
|
v8::Local<v8::ObjectTemplate> global = v8::ObjectTemplate::New(isolate);
|
|
global->Set(
|
|
isolate, "check",
|
|
v8::FunctionTemplate::New(isolate, CheckEqualSharedFunctionInfos));
|
|
global->Set(isolate, "remove",
|
|
v8::FunctionTemplate::New(isolate, RemoveCodeAndGC));
|
|
v8::Local<v8::Context> context = v8::Context::New(isolate, nullptr, global);
|
|
v8::Context::Scope cscope(context);
|
|
CompileRun(
|
|
"function f() { return function g() {}; }"
|
|
"var g1 = f();"
|
|
"remove(f);"
|
|
"var g2 = f();"
|
|
"check(g1, g2);");
|
|
|
|
CompileRun(
|
|
"function f() { return (function() { return function g() {}; })(); }"
|
|
"var g1 = f();"
|
|
"remove(f);"
|
|
"var g2 = f();"
|
|
"check(g1, g2);");
|
|
}
|
|
|
|
|
|
TEST(ScriptIterator) {
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = CcTest::heap();
|
|
LocalContext context;
|
|
|
|
CcTest::CollectAllGarbage();
|
|
|
|
int script_count = 0;
|
|
{
|
|
HeapObjectIterator it(heap);
|
|
for (HeapObject obj = it.Next(); !obj.is_null(); obj = it.Next()) {
|
|
if (obj.IsScript()) script_count++;
|
|
}
|
|
}
|
|
|
|
{
|
|
Script::Iterator iterator(isolate);
|
|
for (Script script = iterator.Next(); !script.is_null();
|
|
script = iterator.Next()) {
|
|
script_count--;
|
|
}
|
|
}
|
|
|
|
CHECK_EQ(0, script_count);
|
|
}
|
|
|
|
// This is the same as Factory::NewByteArray, except it doesn't retry on
|
|
// allocation failure.
|
|
AllocationResult HeapTester::AllocateByteArrayForTest(
|
|
Heap* heap, int length, AllocationType allocation_type) {
|
|
DCHECK(length >= 0 && length <= ByteArray::kMaxLength);
|
|
int size = ByteArray::SizeFor(length);
|
|
HeapObject result;
|
|
{
|
|
AllocationResult allocation = heap->AllocateRaw(size, allocation_type);
|
|
if (!allocation.To(&result)) return allocation;
|
|
}
|
|
|
|
result.set_map_after_allocation(ReadOnlyRoots(heap).byte_array_map(),
|
|
SKIP_WRITE_BARRIER);
|
|
ByteArray::cast(result).set_length(length);
|
|
ByteArray::cast(result).clear_padding();
|
|
return result;
|
|
}
|
|
|
|
bool HeapTester::CodeEnsureLinearAllocationArea(Heap* heap, int size_in_bytes) {
|
|
bool result = heap->code_space()->EnsureLabMain(size_in_bytes,
|
|
AllocationOrigin::kRuntime);
|
|
heap->code_space()->UpdateInlineAllocationLimit(0);
|
|
return result;
|
|
}
|
|
|
|
HEAP_TEST(Regress587004) {
|
|
if (FLAG_single_generation) return;
|
|
ManualGCScope manual_gc_scope;
|
|
#ifdef VERIFY_HEAP
|
|
FLAG_verify_heap = false;
|
|
#endif
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
const int N =
|
|
(kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) / kTaggedSize;
|
|
Handle<FixedArray> array = factory->NewFixedArray(N, AllocationType::kOld);
|
|
CHECK(heap->old_space()->Contains(*array));
|
|
Handle<Object> number = factory->NewHeapNumber(1.0);
|
|
CHECK(Heap::InYoungGeneration(*number));
|
|
for (int i = 0; i < N; i++) {
|
|
array->set(i, *number);
|
|
}
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
heap::SimulateFullSpace(heap->old_space());
|
|
heap->RightTrimFixedArray(*array, N - 1);
|
|
heap->mark_compact_collector()->EnsureSweepingCompleted();
|
|
ByteArray byte_array;
|
|
const int M = 256;
|
|
// Don't allow old space expansion. The test works without this flag too,
|
|
// but becomes very slow.
|
|
heap->set_force_oom(true);
|
|
while (
|
|
AllocateByteArrayForTest(heap, M, AllocationType::kOld).To(&byte_array)) {
|
|
for (int j = 0; j < M; j++) {
|
|
byte_array.set(j, 0x31);
|
|
}
|
|
}
|
|
// Re-enable old space expansion to avoid OOM crash.
|
|
heap->set_force_oom(false);
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
}
|
|
|
|
HEAP_TEST(Regress589413) {
|
|
if (!FLAG_incremental_marking || FLAG_stress_concurrent_allocation) return;
|
|
FLAG_stress_compaction = true;
|
|
FLAG_manual_evacuation_candidates_selection = true;
|
|
FLAG_parallel_compaction = false;
|
|
ManualGCScope manual_gc_scope;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
// Get the heap in clean state.
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
// Fill the new space with byte arrays with elements looking like pointers.
|
|
const int M = 256;
|
|
ByteArray byte_array;
|
|
Page* young_page = nullptr;
|
|
while (AllocateByteArrayForTest(heap, M, AllocationType::kYoung)
|
|
.To(&byte_array)) {
|
|
// Only allocate objects on one young page as a rough estimate on
|
|
// how much memory can be promoted into the old generation.
|
|
// Otherwise we would crash when forcing promotion of all young
|
|
// live objects.
|
|
if (!young_page) young_page = Page::FromHeapObject(byte_array);
|
|
if (Page::FromHeapObject(byte_array) != young_page) break;
|
|
|
|
for (int j = 0; j < M; j++) {
|
|
byte_array.set(j, 0x31);
|
|
}
|
|
// Add the array in root set.
|
|
handle(byte_array, isolate);
|
|
}
|
|
|
|
{
|
|
// Ensure that incremental marking is not started unexpectedly.
|
|
AlwaysAllocateScopeForTesting always_allocate(isolate->heap());
|
|
|
|
// Make sure the byte arrays will be promoted on the next GC.
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
// This number is close to large free list category threshold.
|
|
const int N = 0x3EEE;
|
|
|
|
std::vector<FixedArray> arrays;
|
|
std::set<Page*> pages;
|
|
FixedArray array;
|
|
// Fill all pages with fixed arrays.
|
|
heap->set_force_oom(true);
|
|
while (
|
|
AllocateFixedArrayForTest(heap, N, AllocationType::kOld).To(&array)) {
|
|
arrays.push_back(array);
|
|
pages.insert(Page::FromHeapObject(array));
|
|
// Add the array in root set.
|
|
handle(array, isolate);
|
|
}
|
|
heap->set_force_oom(false);
|
|
size_t initial_pages = pages.size();
|
|
// Expand and fill two pages with fixed array to ensure enough space both
|
|
// the young objects and the evacuation candidate pages.
|
|
while (
|
|
AllocateFixedArrayForTest(heap, N, AllocationType::kOld).To(&array)) {
|
|
arrays.push_back(array);
|
|
pages.insert(Page::FromHeapObject(array));
|
|
// Add the array in root set.
|
|
handle(array, isolate);
|
|
// Do not expand anymore.
|
|
if (pages.size() - initial_pages == 2) {
|
|
heap->set_force_oom(true);
|
|
}
|
|
}
|
|
// Expand and mark the new page as evacuation candidate.
|
|
heap->set_force_oom(false);
|
|
{
|
|
Handle<HeapObject> ec_obj =
|
|
factory->NewFixedArray(5000, AllocationType::kOld);
|
|
Page* ec_page = Page::FromHeapObject(*ec_obj);
|
|
heap::ForceEvacuationCandidate(ec_page);
|
|
// Make all arrays point to evacuation candidate so that
|
|
// slots are recorded for them.
|
|
for (size_t j = 0; j < arrays.size(); j++) {
|
|
array = arrays[j];
|
|
for (int i = 0; i < N; i++) {
|
|
array.set(i, *ec_obj);
|
|
}
|
|
}
|
|
}
|
|
CHECK(heap->incremental_marking()->IsStopped());
|
|
heap::SimulateIncrementalMarking(heap);
|
|
for (size_t j = 0; j < arrays.size(); j++) {
|
|
heap->RightTrimFixedArray(arrays[j], N - 1);
|
|
}
|
|
}
|
|
|
|
// Force allocation from the free list.
|
|
heap->set_force_oom(true);
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
}
|
|
|
|
TEST(Regress598319) {
|
|
if (!FLAG_incremental_marking) return;
|
|
ManualGCScope manual_gc_scope;
|
|
// This test ensures that no white objects can cross the progress bar of large
|
|
// objects during incremental marking. It checks this by using Shift() during
|
|
// incremental marking.
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
Isolate* isolate = heap->isolate();
|
|
|
|
// The size of the array should be larger than kProgressBarScanningChunk.
|
|
const int kNumberOfObjects = Max(FixedArray::kMaxRegularLength + 1, 128 * KB);
|
|
|
|
struct Arr {
|
|
Arr(Isolate* isolate, int number_of_objects) {
|
|
root = isolate->factory()->NewFixedArray(1, AllocationType::kOld);
|
|
{
|
|
// Temporary scope to avoid getting any other objects into the root set.
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Handle<FixedArray> tmp = isolate->factory()->NewFixedArray(
|
|
number_of_objects, AllocationType::kOld);
|
|
root->set(0, *tmp);
|
|
for (int i = 0; i < get().length(); i++) {
|
|
tmp = isolate->factory()->NewFixedArray(100, AllocationType::kOld);
|
|
get().set(i, *tmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
FixedArray get() { return FixedArray::cast(root->get(0)); }
|
|
|
|
Handle<FixedArray> root;
|
|
} arr(isolate, kNumberOfObjects);
|
|
|
|
CHECK_EQ(arr.get().length(), kNumberOfObjects);
|
|
CHECK(heap->lo_space()->Contains(arr.get()));
|
|
LargePage* page = LargePage::FromHeapObject(arr.get());
|
|
CHECK_NOT_NULL(page);
|
|
|
|
// GC to cleanup state
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
MarkCompactCollector* collector = heap->mark_compact_collector();
|
|
if (collector->sweeping_in_progress()) {
|
|
collector->EnsureSweepingCompleted();
|
|
}
|
|
|
|
CHECK(heap->lo_space()->Contains(arr.get()));
|
|
IncrementalMarking* marking = heap->incremental_marking();
|
|
IncrementalMarking::MarkingState* marking_state = marking->marking_state();
|
|
CHECK(marking_state->IsWhite(arr.get()));
|
|
for (int i = 0; i < arr.get().length(); i++) {
|
|
HeapObject arr_value = HeapObject::cast(arr.get().get(i));
|
|
CHECK(marking_state->IsWhite(arr_value));
|
|
}
|
|
|
|
// Start incremental marking.
|
|
CHECK(marking->IsMarking() || marking->IsStopped());
|
|
if (marking->IsStopped()) {
|
|
heap->StartIncrementalMarking(i::Heap::kNoGCFlags,
|
|
i::GarbageCollectionReason::kTesting);
|
|
}
|
|
CHECK(marking->IsMarking());
|
|
|
|
// Check that we have not marked the interesting array during root scanning.
|
|
for (int i = 0; i < arr.get().length(); i++) {
|
|
HeapObject arr_value = HeapObject::cast(arr.get().get(i));
|
|
CHECK(marking_state->IsWhite(arr_value));
|
|
}
|
|
|
|
// Now we search for a state where we are in incremental marking and have
|
|
// only partially marked the large object.
|
|
const double kSmallStepSizeInMs = 0.1;
|
|
while (!marking->IsComplete()) {
|
|
marking->Step(kSmallStepSizeInMs,
|
|
i::IncrementalMarking::NO_GC_VIA_STACK_GUARD,
|
|
StepOrigin::kV8);
|
|
if (page->IsFlagSet(Page::HAS_PROGRESS_BAR) && page->ProgressBar() > 0) {
|
|
CHECK_NE(page->ProgressBar(), arr.get().Size());
|
|
{
|
|
// Shift by 1, effectively moving one white object across the progress
|
|
// bar, meaning that we will miss marking it.
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Handle<JSArray> js_array = isolate->factory()->NewJSArrayWithElements(
|
|
Handle<FixedArray>(arr.get(), isolate));
|
|
js_array->GetElementsAccessor()->Shift(js_array);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Finish marking with bigger steps to speed up test.
|
|
const double kLargeStepSizeInMs = 1000;
|
|
while (!marking->IsComplete()) {
|
|
marking->Step(kLargeStepSizeInMs,
|
|
i::IncrementalMarking::NO_GC_VIA_STACK_GUARD,
|
|
StepOrigin::kV8);
|
|
if (marking->IsReadyToOverApproximateWeakClosure()) {
|
|
SafepointScope scope(heap);
|
|
marking->FinalizeIncrementally();
|
|
}
|
|
}
|
|
CHECK(marking->IsComplete());
|
|
|
|
// All objects need to be black after marking. If a white object crossed the
|
|
// progress bar, we would fail here.
|
|
for (int i = 0; i < arr.get().length(); i++) {
|
|
HeapObject arr_value = HeapObject::cast(arr.get().get(i));
|
|
CHECK(marking_state->IsBlack(arr_value));
|
|
}
|
|
}
|
|
|
|
Handle<FixedArray> ShrinkArrayAndCheckSize(Heap* heap, int length) {
|
|
// Make sure there is no garbage and the compilation cache is empty.
|
|
for (int i = 0; i < 5; i++) {
|
|
CcTest::CollectAllGarbage();
|
|
}
|
|
heap->mark_compact_collector()->EnsureSweepingCompleted();
|
|
// Disable LAB, such that calculations with SizeOfObjects() and object size
|
|
// are correct.
|
|
heap->DisableInlineAllocation();
|
|
size_t size_before_allocation = heap->SizeOfObjects();
|
|
Handle<FixedArray> array =
|
|
heap->isolate()->factory()->NewFixedArray(length, AllocationType::kOld);
|
|
size_t size_after_allocation = heap->SizeOfObjects();
|
|
CHECK_EQ(size_after_allocation, size_before_allocation + array->Size());
|
|
array->Shrink(heap->isolate(), 1);
|
|
size_t size_after_shrinking = heap->SizeOfObjects();
|
|
// Shrinking does not change the space size immediately.
|
|
CHECK_EQ(size_after_allocation, size_after_shrinking);
|
|
// GC and sweeping updates the size to acccount for shrinking.
|
|
CcTest::CollectAllGarbage();
|
|
heap->mark_compact_collector()->EnsureSweepingCompleted();
|
|
intptr_t size_after_gc = heap->SizeOfObjects();
|
|
CHECK_EQ(size_after_gc, size_before_allocation + array->Size());
|
|
return array;
|
|
}
|
|
|
|
TEST(Regress609761) {
|
|
ManualGCScope manual_gc_scope;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
int length = kMaxRegularHeapObjectSize / kTaggedSize + 1;
|
|
Handle<FixedArray> array = ShrinkArrayAndCheckSize(heap, length);
|
|
CHECK(heap->lo_space()->Contains(*array));
|
|
}
|
|
|
|
TEST(LiveBytes) {
|
|
ManualGCScope manual_gc_scope;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
Handle<FixedArray> array = ShrinkArrayAndCheckSize(heap, 2000);
|
|
CHECK(heap->old_space()->Contains(*array));
|
|
}
|
|
|
|
TEST(Regress615489) {
|
|
if (!FLAG_incremental_marking) return;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
Isolate* isolate = heap->isolate();
|
|
CcTest::CollectAllGarbage();
|
|
|
|
i::MarkCompactCollector* collector = heap->mark_compact_collector();
|
|
i::IncrementalMarking* marking = heap->incremental_marking();
|
|
if (collector->sweeping_in_progress()) {
|
|
collector->EnsureSweepingCompleted();
|
|
}
|
|
CHECK(marking->IsMarking() || marking->IsStopped());
|
|
if (marking->IsStopped()) {
|
|
heap->StartIncrementalMarking(i::Heap::kNoGCFlags,
|
|
i::GarbageCollectionReason::kTesting);
|
|
}
|
|
CHECK(marking->IsMarking());
|
|
marking->StartBlackAllocationForTesting();
|
|
{
|
|
AlwaysAllocateScopeForTesting always_allocate(heap);
|
|
v8::HandleScope inner(CcTest::isolate());
|
|
isolate->factory()->NewFixedArray(500, AllocationType::kOld)->Size();
|
|
}
|
|
const double kStepSizeInMs = 100;
|
|
while (!marking->IsComplete()) {
|
|
marking->Step(kStepSizeInMs, i::IncrementalMarking::NO_GC_VIA_STACK_GUARD,
|
|
StepOrigin::kV8);
|
|
if (marking->IsReadyToOverApproximateWeakClosure()) {
|
|
SafepointScope scope(heap);
|
|
marking->FinalizeIncrementally();
|
|
}
|
|
}
|
|
CHECK(marking->IsComplete());
|
|
intptr_t size_before = heap->SizeOfObjects();
|
|
CcTest::CollectAllGarbage();
|
|
intptr_t size_after = heap->SizeOfObjects();
|
|
// Live size does not increase after garbage collection.
|
|
CHECK_LE(size_after, size_before);
|
|
}
|
|
|
|
class StaticOneByteResource : public v8::String::ExternalOneByteStringResource {
|
|
public:
|
|
explicit StaticOneByteResource(const char* data) : data_(data) {}
|
|
|
|
~StaticOneByteResource() override = default;
|
|
|
|
const char* data() const override { return data_; }
|
|
|
|
size_t length() const override { return strlen(data_); }
|
|
|
|
private:
|
|
const char* data_;
|
|
};
|
|
|
|
TEST(Regress631969) {
|
|
if (!FLAG_incremental_marking) return;
|
|
FLAG_manual_evacuation_candidates_selection = true;
|
|
FLAG_parallel_compaction = false;
|
|
ManualGCScope manual_gc_scope;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
// Get the heap in clean state.
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
// Allocate two strings in a fresh page and mark the page as evacuation
|
|
// candidate.
|
|
heap::SimulateFullSpace(heap->old_space());
|
|
Handle<String> s1 =
|
|
factory->NewStringFromStaticChars("123456789", AllocationType::kOld);
|
|
Handle<String> s2 =
|
|
factory->NewStringFromStaticChars("01234", AllocationType::kOld);
|
|
heap::ForceEvacuationCandidate(Page::FromHeapObject(*s1));
|
|
|
|
heap::SimulateIncrementalMarking(heap, false);
|
|
|
|
// Allocate a cons string and promote it to a fresh page in the old space.
|
|
heap::SimulateFullSpace(heap->old_space());
|
|
Handle<String> s3 = factory->NewConsString(s1, s2).ToHandleChecked();
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
|
|
// Finish incremental marking.
|
|
const double kStepSizeInMs = 100;
|
|
IncrementalMarking* marking = heap->incremental_marking();
|
|
while (!marking->IsComplete()) {
|
|
marking->Step(kStepSizeInMs, i::IncrementalMarking::NO_GC_VIA_STACK_GUARD,
|
|
StepOrigin::kV8);
|
|
if (marking->IsReadyToOverApproximateWeakClosure()) {
|
|
SafepointScope scope(heap);
|
|
marking->FinalizeIncrementally();
|
|
}
|
|
}
|
|
|
|
{
|
|
StaticOneByteResource external_string("12345678901234");
|
|
s3->MakeExternal(&external_string);
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
// This avoids the GC from trying to free stack allocated resources.
|
|
i::Handle<i::ExternalOneByteString>::cast(s3)->SetResource(isolate,
|
|
nullptr);
|
|
}
|
|
}
|
|
|
|
TEST(LeftTrimFixedArrayInBlackArea) {
|
|
if (!FLAG_incremental_marking) return;
|
|
FLAG_stress_concurrent_allocation = false; // For SimulateFullSpace.
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
Isolate* isolate = heap->isolate();
|
|
CcTest::CollectAllGarbage();
|
|
|
|
i::MarkCompactCollector* collector = heap->mark_compact_collector();
|
|
i::IncrementalMarking* marking = heap->incremental_marking();
|
|
if (collector->sweeping_in_progress()) {
|
|
collector->EnsureSweepingCompleted();
|
|
}
|
|
CHECK(marking->IsMarking() || marking->IsStopped());
|
|
if (marking->IsStopped()) {
|
|
heap->StartIncrementalMarking(i::Heap::kNoGCFlags,
|
|
i::GarbageCollectionReason::kTesting);
|
|
}
|
|
CHECK(marking->IsMarking());
|
|
marking->StartBlackAllocationForTesting();
|
|
|
|
// Ensure that we allocate a new page, set up a bump pointer area, and
|
|
// perform the allocation in a black area.
|
|
heap::SimulateFullSpace(heap->old_space());
|
|
isolate->factory()->NewFixedArray(4, AllocationType::kOld);
|
|
Handle<FixedArray> array =
|
|
isolate->factory()->NewFixedArray(50, AllocationType::kOld);
|
|
CHECK(heap->old_space()->Contains(*array));
|
|
IncrementalMarking::MarkingState* marking_state = marking->marking_state();
|
|
CHECK(marking_state->IsBlack(*array));
|
|
|
|
// Now left trim the allocated black area. A filler has to be installed
|
|
// for the trimmed area and all mark bits of the trimmed area have to be
|
|
// cleared.
|
|
FixedArrayBase trimmed = heap->LeftTrimFixedArray(*array, 10);
|
|
CHECK(marking_state->IsBlack(trimmed));
|
|
|
|
heap::GcAndSweep(heap, OLD_SPACE);
|
|
}
|
|
|
|
TEST(ContinuousLeftTrimFixedArrayInBlackArea) {
|
|
if (!FLAG_incremental_marking) return;
|
|
FLAG_stress_concurrent_allocation = false; // For SimulateFullSpace.
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
Isolate* isolate = heap->isolate();
|
|
CcTest::CollectAllGarbage();
|
|
|
|
i::MarkCompactCollector* collector = heap->mark_compact_collector();
|
|
i::IncrementalMarking* marking = heap->incremental_marking();
|
|
if (collector->sweeping_in_progress()) {
|
|
collector->EnsureSweepingCompleted();
|
|
}
|
|
CHECK(marking->IsMarking() || marking->IsStopped());
|
|
if (marking->IsStopped()) {
|
|
heap->StartIncrementalMarking(i::Heap::kNoGCFlags,
|
|
i::GarbageCollectionReason::kTesting);
|
|
}
|
|
CHECK(marking->IsMarking());
|
|
marking->StartBlackAllocationForTesting();
|
|
|
|
// Ensure that we allocate a new page, set up a bump pointer area, and
|
|
// perform the allocation in a black area.
|
|
heap::SimulateFullSpace(heap->old_space());
|
|
isolate->factory()->NewFixedArray(10, AllocationType::kOld);
|
|
|
|
// Allocate the fixed array that will be trimmed later.
|
|
Handle<FixedArray> array =
|
|
isolate->factory()->NewFixedArray(100, AllocationType::kOld);
|
|
Address start_address = array->address();
|
|
Address end_address = start_address + array->Size();
|
|
Page* page = Page::FromAddress(start_address);
|
|
IncrementalMarking::NonAtomicMarkingState* marking_state =
|
|
marking->non_atomic_marking_state();
|
|
CHECK(marking_state->IsBlack(*array));
|
|
CHECK(marking_state->bitmap(page)->AllBitsSetInRange(
|
|
page->AddressToMarkbitIndex(start_address),
|
|
page->AddressToMarkbitIndex(end_address)));
|
|
CHECK(heap->old_space()->Contains(*array));
|
|
|
|
FixedArrayBase previous = *array;
|
|
FixedArrayBase trimmed;
|
|
|
|
// First trim in one word steps.
|
|
for (int i = 0; i < 10; i++) {
|
|
trimmed = heap->LeftTrimFixedArray(previous, 1);
|
|
HeapObject filler = HeapObject::FromAddress(previous.address());
|
|
CHECK(filler.IsFreeSpaceOrFiller());
|
|
CHECK(marking_state->IsBlack(trimmed));
|
|
CHECK(marking_state->IsBlack(previous));
|
|
previous = trimmed;
|
|
}
|
|
|
|
// Then trim in two and three word steps.
|
|
for (int i = 2; i <= 3; i++) {
|
|
for (int j = 0; j < 10; j++) {
|
|
trimmed = heap->LeftTrimFixedArray(previous, i);
|
|
HeapObject filler = HeapObject::FromAddress(previous.address());
|
|
CHECK(filler.IsFreeSpaceOrFiller());
|
|
CHECK(marking_state->IsBlack(trimmed));
|
|
CHECK(marking_state->IsBlack(previous));
|
|
previous = trimmed;
|
|
}
|
|
}
|
|
|
|
heap::GcAndSweep(heap, OLD_SPACE);
|
|
}
|
|
|
|
TEST(ContinuousRightTrimFixedArrayInBlackArea) {
|
|
if (!FLAG_incremental_marking) return;
|
|
FLAG_stress_concurrent_allocation = false; // For SimulateFullSpace.
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
CcTest::CollectAllGarbage();
|
|
|
|
i::MarkCompactCollector* collector = heap->mark_compact_collector();
|
|
i::IncrementalMarking* marking = heap->incremental_marking();
|
|
if (collector->sweeping_in_progress()) {
|
|
collector->EnsureSweepingCompleted();
|
|
}
|
|
CHECK(marking->IsMarking() || marking->IsStopped());
|
|
if (marking->IsStopped()) {
|
|
heap->StartIncrementalMarking(i::Heap::kNoGCFlags,
|
|
i::GarbageCollectionReason::kTesting);
|
|
}
|
|
CHECK(marking->IsMarking());
|
|
marking->StartBlackAllocationForTesting();
|
|
|
|
// Ensure that we allocate a new page, set up a bump pointer area, and
|
|
// perform the allocation in a black area.
|
|
heap::SimulateFullSpace(heap->old_space());
|
|
isolate->factory()->NewFixedArray(10, AllocationType::kOld);
|
|
|
|
// Allocate the fixed array that will be trimmed later.
|
|
Handle<FixedArray> array =
|
|
CcTest::i_isolate()->factory()->NewFixedArray(100, AllocationType::kOld);
|
|
Address start_address = array->address();
|
|
Address end_address = start_address + array->Size();
|
|
Page* page = Page::FromAddress(start_address);
|
|
IncrementalMarking::NonAtomicMarkingState* marking_state =
|
|
marking->non_atomic_marking_state();
|
|
CHECK(marking_state->IsBlack(*array));
|
|
|
|
CHECK(marking_state->bitmap(page)->AllBitsSetInRange(
|
|
page->AddressToMarkbitIndex(start_address),
|
|
page->AddressToMarkbitIndex(end_address)));
|
|
CHECK(heap->old_space()->Contains(*array));
|
|
|
|
// Trim it once by one word to make checking for white marking color uniform.
|
|
Address previous = end_address - kTaggedSize;
|
|
isolate->heap()->RightTrimFixedArray(*array, 1);
|
|
|
|
HeapObject filler = HeapObject::FromAddress(previous);
|
|
CHECK(filler.IsFreeSpaceOrFiller());
|
|
CHECK(marking_state->IsImpossible(filler));
|
|
|
|
// Trim 10 times by one, two, and three word.
|
|
for (int i = 1; i <= 3; i++) {
|
|
for (int j = 0; j < 10; j++) {
|
|
previous -= kTaggedSize * i;
|
|
isolate->heap()->RightTrimFixedArray(*array, i);
|
|
HeapObject filler = HeapObject::FromAddress(previous);
|
|
CHECK(filler.IsFreeSpaceOrFiller());
|
|
CHECK(marking_state->IsWhite(filler));
|
|
}
|
|
}
|
|
|
|
heap::GcAndSweep(heap, OLD_SPACE);
|
|
}
|
|
|
|
TEST(Regress618958) {
|
|
if (!FLAG_incremental_marking) return;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
bool isolate_is_locked = true;
|
|
CcTest::isolate()->AdjustAmountOfExternalAllocatedMemory(100 * MB);
|
|
int mark_sweep_count_before = heap->ms_count();
|
|
heap->MemoryPressureNotification(MemoryPressureLevel::kCritical,
|
|
isolate_is_locked);
|
|
int mark_sweep_count_after = heap->ms_count();
|
|
int mark_sweeps_performed = mark_sweep_count_after - mark_sweep_count_before;
|
|
// The memory pressuer handler either performed two GCs or performed one and
|
|
// started incremental marking.
|
|
CHECK(mark_sweeps_performed == 2 ||
|
|
(mark_sweeps_performed == 1 &&
|
|
!heap->incremental_marking()->IsStopped()));
|
|
}
|
|
|
|
TEST(YoungGenerationLargeObjectAllocationScavenge) {
|
|
if (FLAG_minor_mc) return;
|
|
if (!FLAG_young_generation_large_objects) return;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
Isolate* isolate = heap->isolate();
|
|
if (!isolate->serializer_enabled()) return;
|
|
|
|
// TODO(hpayer): Update the test as soon as we have a tenure limit for LO.
|
|
Handle<FixedArray> array_small = isolate->factory()->NewFixedArray(200000);
|
|
MemoryChunk* chunk = MemoryChunk::FromHeapObject(*array_small);
|
|
CHECK_EQ(NEW_LO_SPACE, chunk->owner_identity());
|
|
CHECK(chunk->IsFlagSet(MemoryChunk::LARGE_PAGE));
|
|
CHECK(chunk->IsFlagSet(MemoryChunk::TO_PAGE));
|
|
|
|
Handle<Object> number = isolate->factory()->NewHeapNumber(123.456);
|
|
array_small->set(0, *number);
|
|
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
|
|
// After the first young generation GC array_small will be in the old
|
|
// generation large object space.
|
|
chunk = MemoryChunk::FromHeapObject(*array_small);
|
|
CHECK_EQ(LO_SPACE, chunk->owner_identity());
|
|
CHECK(!chunk->InYoungGeneration());
|
|
|
|
CcTest::CollectAllAvailableGarbage();
|
|
}
|
|
|
|
TEST(YoungGenerationLargeObjectAllocationMarkCompact) {
|
|
if (FLAG_minor_mc) return;
|
|
if (!FLAG_young_generation_large_objects) return;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
Isolate* isolate = heap->isolate();
|
|
if (!isolate->serializer_enabled()) return;
|
|
|
|
// TODO(hpayer): Update the test as soon as we have a tenure limit for LO.
|
|
Handle<FixedArray> array_small = isolate->factory()->NewFixedArray(200000);
|
|
MemoryChunk* chunk = MemoryChunk::FromHeapObject(*array_small);
|
|
CHECK_EQ(NEW_LO_SPACE, chunk->owner_identity());
|
|
CHECK(chunk->IsFlagSet(MemoryChunk::LARGE_PAGE));
|
|
CHECK(chunk->IsFlagSet(MemoryChunk::TO_PAGE));
|
|
|
|
Handle<Object> number = isolate->factory()->NewHeapNumber(123.456);
|
|
array_small->set(0, *number);
|
|
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
|
|
// After the first full GC array_small will be in the old generation
|
|
// large object space.
|
|
chunk = MemoryChunk::FromHeapObject(*array_small);
|
|
CHECK_EQ(LO_SPACE, chunk->owner_identity());
|
|
CHECK(!chunk->InYoungGeneration());
|
|
|
|
CcTest::CollectAllAvailableGarbage();
|
|
}
|
|
|
|
TEST(YoungGenerationLargeObjectAllocationReleaseScavenger) {
|
|
if (FLAG_minor_mc) return;
|
|
if (!FLAG_young_generation_large_objects) return;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
Isolate* isolate = heap->isolate();
|
|
if (!isolate->serializer_enabled()) return;
|
|
|
|
{
|
|
HandleScope scope(isolate);
|
|
for (int i = 0; i < 10; i++) {
|
|
Handle<FixedArray> array_small = isolate->factory()->NewFixedArray(20000);
|
|
MemoryChunk* chunk = MemoryChunk::FromHeapObject(*array_small);
|
|
CHECK_EQ(NEW_LO_SPACE, chunk->owner_identity());
|
|
CHECK(chunk->IsFlagSet(MemoryChunk::TO_PAGE));
|
|
}
|
|
}
|
|
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
CHECK(isolate->heap()->new_lo_space()->IsEmpty());
|
|
CHECK_EQ(0, isolate->heap()->new_lo_space()->Size());
|
|
CHECK_EQ(0, isolate->heap()->new_lo_space()->SizeOfObjects());
|
|
CHECK(isolate->heap()->lo_space()->IsEmpty());
|
|
CHECK_EQ(0, isolate->heap()->lo_space()->Size());
|
|
CHECK_EQ(0, isolate->heap()->lo_space()->SizeOfObjects());
|
|
}
|
|
|
|
TEST(UncommitUnusedLargeObjectMemory) {
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
Isolate* isolate = heap->isolate();
|
|
|
|
Handle<FixedArray> array =
|
|
isolate->factory()->NewFixedArray(200000, AllocationType::kOld);
|
|
MemoryChunk* chunk = MemoryChunk::FromHeapObject(*array);
|
|
CHECK(chunk->owner_identity() == LO_SPACE);
|
|
|
|
intptr_t size_before = array->Size();
|
|
size_t committed_memory_before = chunk->CommittedPhysicalMemory();
|
|
|
|
array->Shrink(isolate, 1);
|
|
CHECK(array->Size() < size_before);
|
|
|
|
CcTest::CollectAllGarbage();
|
|
CHECK(chunk->CommittedPhysicalMemory() < committed_memory_before);
|
|
size_t shrinked_size = RoundUp(
|
|
(array->address() - chunk->address()) + array->Size(), CommitPageSize());
|
|
CHECK_EQ(shrinked_size, chunk->CommittedPhysicalMemory());
|
|
}
|
|
|
|
template <RememberedSetType direction>
|
|
static size_t GetRememberedSetSize(HeapObject obj) {
|
|
size_t count = 0;
|
|
auto chunk = MemoryChunk::FromHeapObject(obj);
|
|
RememberedSet<direction>::Iterate(
|
|
chunk,
|
|
[&count](MaybeObjectSlot slot) {
|
|
count++;
|
|
return KEEP_SLOT;
|
|
},
|
|
SlotSet::KEEP_EMPTY_BUCKETS);
|
|
return count;
|
|
}
|
|
|
|
TEST(RememberedSet_InsertOnWriteBarrier) {
|
|
if (FLAG_single_generation) return;
|
|
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
Heap* heap = isolate->heap();
|
|
heap::SealCurrentObjects(heap);
|
|
HandleScope scope(isolate);
|
|
|
|
// Allocate an object in old space.
|
|
Handle<FixedArray> arr = factory->NewFixedArray(3, AllocationType::kOld);
|
|
|
|
// Add into 'arr' references to young objects.
|
|
{
|
|
HandleScope scope_inner(isolate);
|
|
Handle<Object> number = factory->NewHeapNumber(42);
|
|
arr->set(0, *number);
|
|
arr->set(1, *number);
|
|
arr->set(2, *number);
|
|
Handle<Object> number_other = factory->NewHeapNumber(24);
|
|
arr->set(2, *number_other);
|
|
}
|
|
// Remembered sets track *slots* pages with cross-generational pointers, so
|
|
// must have recorded three of them each exactly once.
|
|
CHECK_EQ(3, GetRememberedSetSize<OLD_TO_NEW>(*arr));
|
|
}
|
|
|
|
TEST(RememberedSet_InsertInLargePage) {
|
|
if (FLAG_single_generation) return;
|
|
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
Heap* heap = isolate->heap();
|
|
heap::SealCurrentObjects(heap);
|
|
HandleScope scope(isolate);
|
|
|
|
// Allocate an object in Large space.
|
|
const int count = Max(FixedArray::kMaxRegularLength + 1, 128 * KB);
|
|
Handle<FixedArray> arr = factory->NewFixedArray(count, AllocationType::kOld);
|
|
CHECK(heap->lo_space()->Contains(*arr));
|
|
CHECK_EQ(0, GetRememberedSetSize<OLD_TO_NEW>(*arr));
|
|
|
|
// Create OLD_TO_NEW references from the large object so that the
|
|
// corresponding slots end up in different SlotSets.
|
|
{
|
|
HandleScope short_lived(isolate);
|
|
Handle<Object> number = factory->NewHeapNumber(42);
|
|
arr->set(0, *number);
|
|
arr->set(count - 1, *number);
|
|
}
|
|
CHECK_EQ(2, GetRememberedSetSize<OLD_TO_NEW>(*arr));
|
|
}
|
|
|
|
TEST(RememberedSet_InsertOnPromotingObjectToOld) {
|
|
if (FLAG_single_generation) return;
|
|
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
Heap* heap = isolate->heap();
|
|
heap::SealCurrentObjects(heap);
|
|
HandleScope scope(isolate);
|
|
|
|
// Create a young object and age it one generation inside the new space.
|
|
Handle<FixedArray> arr = factory->NewFixedArray(1);
|
|
CcTest::CollectGarbage(i::NEW_SPACE);
|
|
CHECK(Heap::InYoungGeneration(*arr));
|
|
|
|
// Add into 'arr' a reference to an object one generation younger.
|
|
{
|
|
HandleScope scope_inner(isolate);
|
|
Handle<Object> number = factory->NewHeapNumber(42);
|
|
arr->set(0, *number);
|
|
}
|
|
|
|
// Promote 'arr' into old, its element is still in new, the old to new
|
|
// refs are inserted into the remembered sets during GC.
|
|
CcTest::CollectGarbage(i::NEW_SPACE);
|
|
|
|
CHECK(heap->InOldSpace(*arr));
|
|
CHECK_EQ(1, GetRememberedSetSize<OLD_TO_NEW>(*arr));
|
|
}
|
|
|
|
TEST(RememberedSet_RemoveStaleOnScavenge) {
|
|
if (FLAG_single_generation) return;
|
|
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
Heap* heap = isolate->heap();
|
|
heap::SealCurrentObjects(heap);
|
|
HandleScope scope(isolate);
|
|
|
|
// Allocate an object in old space and add into it references to young.
|
|
Handle<FixedArray> arr = factory->NewFixedArray(3, AllocationType::kOld);
|
|
{
|
|
HandleScope scope_inner(isolate);
|
|
Handle<Object> number = factory->NewHeapNumber(42);
|
|
arr->set(0, *number); // will be trimmed away
|
|
arr->set(1, *number); // will be replaced with #undefined
|
|
arr->set(2, *number); // will be promoted into old
|
|
}
|
|
CHECK_EQ(3, GetRememberedSetSize<OLD_TO_NEW>(*arr));
|
|
|
|
// Run scavenger once so the young object becomes ready for promotion on the
|
|
// next pass.
|
|
CcTest::CollectGarbage(i::NEW_SPACE);
|
|
arr->set(1, ReadOnlyRoots(CcTest::heap()).undefined_value());
|
|
Handle<FixedArrayBase> tail =
|
|
Handle<FixedArrayBase>(heap->LeftTrimFixedArray(*arr, 1), isolate);
|
|
|
|
// None of the actions above should have updated the remembered set.
|
|
CHECK_EQ(3, GetRememberedSetSize<OLD_TO_NEW>(*tail));
|
|
|
|
// Run GC to promote the remaining young object and fixup the stale entries in
|
|
// the remembered set.
|
|
CcTest::CollectGarbage(i::NEW_SPACE);
|
|
CHECK_EQ(0, GetRememberedSetSize<OLD_TO_NEW>(*tail));
|
|
}
|
|
|
|
// The OLD_TO_OLD remembered set is created temporary by GC and is cleared at
|
|
// the end of the pass. There is no way to observe it so the test only checks
|
|
// that compaction has happened and otherwise relies on code's self-validation.
|
|
TEST(RememberedSet_OldToOld) {
|
|
if (FLAG_stress_incremental_marking) return;
|
|
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Factory* factory = isolate->factory();
|
|
Heap* heap = isolate->heap();
|
|
heap::SealCurrentObjects(heap);
|
|
HandleScope scope(isolate);
|
|
|
|
Handle<FixedArray> arr = factory->NewFixedArray(10, AllocationType::kOld);
|
|
{
|
|
HandleScope short_lived(isolate);
|
|
factory->NewFixedArray(100, AllocationType::kOld);
|
|
}
|
|
Handle<Object> ref = factory->NewFixedArray(100, AllocationType::kOld);
|
|
arr->set(0, *ref);
|
|
|
|
// To force compaction of the old space, fill it with garbage and start a new
|
|
// page (so that the page with 'arr' becomes subject to compaction).
|
|
{
|
|
HandleScope short_lived(isolate);
|
|
heap::SimulateFullSpace(heap->old_space());
|
|
factory->NewFixedArray(100, AllocationType::kOld);
|
|
}
|
|
|
|
FLAG_manual_evacuation_candidates_selection = true;
|
|
heap::ForceEvacuationCandidate(Page::FromHeapObject(*arr));
|
|
const auto prev_location = *arr;
|
|
|
|
// This GC pass will evacuate the page with 'arr'/'ref' so it will have to
|
|
// create OLD_TO_OLD remembered set to track the reference.
|
|
CcTest::CollectAllGarbage();
|
|
CHECK_NE(prev_location, *arr);
|
|
}
|
|
|
|
TEST(RememberedSetRemoveRange) {
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
Isolate* isolate = heap->isolate();
|
|
|
|
Handle<FixedArray> array = isolate->factory()->NewFixedArray(
|
|
Page::kPageSize / kTaggedSize, AllocationType::kOld);
|
|
MemoryChunk* chunk = MemoryChunk::FromHeapObject(*array);
|
|
CHECK(chunk->owner_identity() == LO_SPACE);
|
|
Address start = array->address();
|
|
// Maps slot to boolean indicator of whether the slot should be in the set.
|
|
std::map<Address, bool> slots;
|
|
slots[start + 0] = true;
|
|
slots[start + kTaggedSize] = true;
|
|
slots[start + Page::kPageSize - kTaggedSize] = true;
|
|
slots[start + Page::kPageSize] = true;
|
|
slots[start + Page::kPageSize + kTaggedSize] = true;
|
|
slots[chunk->area_end() - kTaggedSize] = true;
|
|
|
|
for (auto x : slots) {
|
|
RememberedSet<OLD_TO_NEW>::Insert<AccessMode::ATOMIC>(chunk, x.first);
|
|
}
|
|
|
|
RememberedSet<OLD_TO_NEW>::Iterate(
|
|
chunk,
|
|
[&slots](MaybeObjectSlot slot) {
|
|
CHECK(slots[slot.address()]);
|
|
return KEEP_SLOT;
|
|
},
|
|
SlotSet::FREE_EMPTY_BUCKETS);
|
|
|
|
RememberedSet<OLD_TO_NEW>::RemoveRange(chunk, start, start + kTaggedSize,
|
|
SlotSet::FREE_EMPTY_BUCKETS);
|
|
slots[start] = false;
|
|
RememberedSet<OLD_TO_NEW>::Iterate(
|
|
chunk,
|
|
[&slots](MaybeObjectSlot slot) {
|
|
CHECK(slots[slot.address()]);
|
|
return KEEP_SLOT;
|
|
},
|
|
SlotSet::FREE_EMPTY_BUCKETS);
|
|
|
|
RememberedSet<OLD_TO_NEW>::RemoveRange(chunk, start + kTaggedSize,
|
|
start + Page::kPageSize,
|
|
SlotSet::FREE_EMPTY_BUCKETS);
|
|
slots[start + kTaggedSize] = false;
|
|
slots[start + Page::kPageSize - kTaggedSize] = false;
|
|
RememberedSet<OLD_TO_NEW>::Iterate(
|
|
chunk,
|
|
[&slots](MaybeObjectSlot slot) {
|
|
CHECK(slots[slot.address()]);
|
|
return KEEP_SLOT;
|
|
},
|
|
SlotSet::FREE_EMPTY_BUCKETS);
|
|
|
|
RememberedSet<OLD_TO_NEW>::RemoveRange(chunk, start,
|
|
start + Page::kPageSize + kTaggedSize,
|
|
SlotSet::FREE_EMPTY_BUCKETS);
|
|
slots[start + Page::kPageSize] = false;
|
|
RememberedSet<OLD_TO_NEW>::Iterate(
|
|
chunk,
|
|
[&slots](MaybeObjectSlot slot) {
|
|
CHECK(slots[slot.address()]);
|
|
return KEEP_SLOT;
|
|
},
|
|
SlotSet::FREE_EMPTY_BUCKETS);
|
|
|
|
RememberedSet<OLD_TO_NEW>::RemoveRange(chunk, chunk->area_end() - kTaggedSize,
|
|
chunk->area_end(),
|
|
SlotSet::FREE_EMPTY_BUCKETS);
|
|
slots[chunk->area_end() - kTaggedSize] = false;
|
|
RememberedSet<OLD_TO_NEW>::Iterate(
|
|
chunk,
|
|
[&slots](MaybeObjectSlot slot) {
|
|
CHECK(slots[slot.address()]);
|
|
return KEEP_SLOT;
|
|
},
|
|
SlotSet::FREE_EMPTY_BUCKETS);
|
|
}
|
|
|
|
HEAP_TEST(Regress670675) {
|
|
if (!FLAG_incremental_marking) return;
|
|
ManualGCScope manual_gc_scope;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
Isolate* isolate = heap->isolate();
|
|
i::MarkCompactCollector* collector = heap->mark_compact_collector();
|
|
CcTest::CollectAllGarbage();
|
|
|
|
if (collector->sweeping_in_progress()) {
|
|
collector->EnsureSweepingCompleted();
|
|
}
|
|
i::IncrementalMarking* marking = CcTest::heap()->incremental_marking();
|
|
if (marking->IsStopped()) {
|
|
SafepointScope scope(heap);
|
|
marking->Start(i::GarbageCollectionReason::kTesting);
|
|
}
|
|
size_t array_length = 128 * KB;
|
|
size_t n = heap->OldGenerationSpaceAvailable() / array_length;
|
|
for (size_t i = 0; i < n + 40; i++) {
|
|
{
|
|
HandleScope inner_scope(isolate);
|
|
isolate->factory()->NewFixedArray(static_cast<int>(array_length),
|
|
AllocationType::kOld);
|
|
}
|
|
if (marking->IsStopped()) break;
|
|
double deadline = heap->MonotonicallyIncreasingTimeInMs() + 1;
|
|
marking->AdvanceWithDeadline(
|
|
deadline, IncrementalMarking::GC_VIA_STACK_GUARD, StepOrigin::kV8);
|
|
}
|
|
DCHECK(marking->IsStopped());
|
|
}
|
|
|
|
namespace {
|
|
Handle<Code> GenerateDummyImmovableCode(Isolate* isolate) {
|
|
Assembler assm(AssemblerOptions{});
|
|
|
|
const int kNumberOfNops = 1 << 10;
|
|
for (int i = 0; i < kNumberOfNops; i++) {
|
|
assm.nop(); // supported on all architectures
|
|
}
|
|
|
|
CodeDesc desc;
|
|
assm.GetCode(isolate, &desc);
|
|
Handle<Code> code = Factory::CodeBuilder(isolate, desc, CodeKind::STUB)
|
|
.set_immovable()
|
|
.Build();
|
|
CHECK(code->IsCode());
|
|
|
|
return code;
|
|
}
|
|
} // namespace
|
|
|
|
HEAP_TEST(Regress5831) {
|
|
CcTest::InitializeVM();
|
|
Heap* heap = CcTest::heap();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
HandleScope handle_scope(isolate);
|
|
|
|
// Used to ensure that the generated code is not collected.
|
|
const int kInitialSize = 32;
|
|
Handle<FixedArray> array = isolate->factory()->NewFixedArray(kInitialSize);
|
|
|
|
// Ensure that all immovable code space pages are full and we overflow into
|
|
// LO_SPACE.
|
|
const int kMaxIterations = 1 << 16;
|
|
bool overflowed_into_lospace = false;
|
|
for (int i = 0; i < kMaxIterations; i++) {
|
|
Handle<Code> code = GenerateDummyImmovableCode(isolate);
|
|
array = FixedArray::SetAndGrow(isolate, array, i, code);
|
|
CHECK(heap->code_space()->Contains(*code) ||
|
|
heap->code_lo_space()->Contains(*code));
|
|
if (heap->code_lo_space()->Contains(*code)) {
|
|
overflowed_into_lospace = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
CHECK(overflowed_into_lospace);
|
|
|
|
// Fake a serializer run.
|
|
isolate->serializer_enabled_ = true;
|
|
|
|
// Generate the code.
|
|
Handle<Code> code = GenerateDummyImmovableCode(isolate);
|
|
CHECK_GE(i::kMaxRegularHeapObjectSize, code->Size());
|
|
CHECK(!heap->code_space()->first_page()->Contains(code->address()));
|
|
|
|
// Ensure it's not in large object space.
|
|
MemoryChunk* chunk = MemoryChunk::FromHeapObject(*code);
|
|
CHECK(chunk->owner_identity() != LO_SPACE);
|
|
CHECK(chunk->NeverEvacuate());
|
|
}
|
|
|
|
HEAP_TEST(RegressMissingWriteBarrierInAllocate) {
|
|
if (!FLAG_incremental_marking) return;
|
|
ManualGCScope manual_gc_scope;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
Isolate* isolate = heap->isolate();
|
|
CcTest::CollectAllGarbage();
|
|
heap::SimulateIncrementalMarking(heap, false);
|
|
Handle<Map> map;
|
|
{
|
|
AlwaysAllocateScopeForTesting always_allocate(heap);
|
|
map = isolate->factory()->NewMap(HEAP_NUMBER_TYPE, HeapNumber::kSize);
|
|
}
|
|
heap->incremental_marking()->StartBlackAllocationForTesting();
|
|
Handle<HeapObject> object;
|
|
{
|
|
AlwaysAllocateScopeForTesting always_allocate(heap);
|
|
object = handle(isolate->factory()->NewForTest(map, AllocationType::kOld),
|
|
isolate);
|
|
}
|
|
// The object is black. If Factory::New sets the map without write-barrier,
|
|
// then the map is white and will be freed prematurely.
|
|
heap::SimulateIncrementalMarking(heap, true);
|
|
CcTest::CollectAllGarbage();
|
|
MarkCompactCollector* collector = heap->mark_compact_collector();
|
|
if (collector->sweeping_in_progress()) {
|
|
collector->EnsureSweepingCompleted();
|
|
}
|
|
CHECK(object->map().IsMap());
|
|
}
|
|
|
|
HEAP_TEST(MarkCompactEpochCounter) {
|
|
ManualGCScope manual_gc_scope;
|
|
CcTest::InitializeVM();
|
|
v8::HandleScope scope(CcTest::isolate());
|
|
Heap* heap = CcTest::heap();
|
|
unsigned epoch0 = heap->mark_compact_collector()->epoch();
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
unsigned epoch1 = heap->mark_compact_collector()->epoch();
|
|
CHECK_EQ(epoch0 + 1, epoch1);
|
|
heap::SimulateIncrementalMarking(heap, true);
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
unsigned epoch2 = heap->mark_compact_collector()->epoch();
|
|
CHECK_EQ(epoch1 + 1, epoch2);
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
unsigned epoch3 = heap->mark_compact_collector()->epoch();
|
|
CHECK_EQ(epoch2, epoch3);
|
|
}
|
|
|
|
UNINITIALIZED_TEST(ReinitializeStringHashSeed) {
|
|
// Enable rehashing and create an isolate and context.
|
|
i::FLAG_rehash_snapshot = true;
|
|
for (int i = 1; i < 3; i++) {
|
|
i::FLAG_hash_seed = 1337 * i;
|
|
v8::Isolate::CreateParams create_params;
|
|
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
|
|
v8::Isolate* isolate = v8::Isolate::New(create_params);
|
|
{
|
|
v8::Isolate::Scope isolate_scope(isolate);
|
|
CHECK_EQ(static_cast<uint64_t>(1337 * i),
|
|
HashSeed(reinterpret_cast<i::Isolate*>(isolate)));
|
|
v8::HandleScope handle_scope(isolate);
|
|
v8::Local<v8::Context> context = v8::Context::New(isolate);
|
|
CHECK(!context.IsEmpty());
|
|
v8::Context::Scope context_scope(context);
|
|
}
|
|
isolate->Dispose();
|
|
}
|
|
}
|
|
|
|
const int kHeapLimit = 100 * MB;
|
|
Isolate* oom_isolate = nullptr;
|
|
|
|
void OOMCallback(const char* location, bool is_heap_oom) {
|
|
Heap* heap = oom_isolate->heap();
|
|
size_t kSlack = heap->new_space()->Capacity();
|
|
CHECK_LE(heap->OldGenerationCapacity(), kHeapLimit + kSlack);
|
|
CHECK_LE(heap->memory_allocator()->Size(), heap->MaxReserved() + kSlack);
|
|
base::OS::ExitProcess(0);
|
|
}
|
|
|
|
UNINITIALIZED_TEST(OutOfMemory) {
|
|
if (FLAG_stress_incremental_marking) return;
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap) return;
|
|
#endif
|
|
FLAG_max_old_space_size = kHeapLimit / MB;
|
|
v8::Isolate::CreateParams create_params;
|
|
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
|
|
v8::Isolate* isolate = v8::Isolate::New(create_params);
|
|
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
|
|
oom_isolate = i_isolate;
|
|
isolate->SetOOMErrorHandler(OOMCallback);
|
|
{
|
|
Factory* factory = i_isolate->factory();
|
|
HandleScope handle_scope(i_isolate);
|
|
while (true) {
|
|
factory->NewFixedArray(100);
|
|
}
|
|
}
|
|
}
|
|
|
|
UNINITIALIZED_TEST(OutOfMemoryIneffectiveGC) {
|
|
if (!FLAG_detect_ineffective_gcs_near_heap_limit) return;
|
|
if (FLAG_stress_incremental_marking || FLAG_stress_concurrent_allocation)
|
|
return;
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap) return;
|
|
#endif
|
|
|
|
FLAG_max_old_space_size = kHeapLimit / MB;
|
|
v8::Isolate::CreateParams create_params;
|
|
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
|
|
v8::Isolate* isolate = v8::Isolate::New(create_params);
|
|
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
|
|
oom_isolate = i_isolate;
|
|
isolate->SetOOMErrorHandler(OOMCallback);
|
|
Factory* factory = i_isolate->factory();
|
|
Heap* heap = i_isolate->heap();
|
|
heap->CollectAllGarbage(Heap::kNoGCFlags, GarbageCollectionReason::kTesting);
|
|
{
|
|
HandleScope scope(i_isolate);
|
|
while (heap->OldGenerationSizeOfObjects() <
|
|
heap->MaxOldGenerationSize() * 0.9) {
|
|
factory->NewFixedArray(100, AllocationType::kOld);
|
|
}
|
|
{
|
|
int initial_ms_count = heap->ms_count();
|
|
int ineffective_ms_start = initial_ms_count;
|
|
while (heap->ms_count() < initial_ms_count + 10) {
|
|
HandleScope inner_scope(i_isolate);
|
|
factory->NewFixedArray(30000, AllocationType::kOld);
|
|
if (heap->tracer()->AverageMarkCompactMutatorUtilization() >= 0.3) {
|
|
ineffective_ms_start = heap->ms_count() + 1;
|
|
}
|
|
}
|
|
int consecutive_ineffective_ms = heap->ms_count() - ineffective_ms_start;
|
|
CHECK_IMPLIES(
|
|
consecutive_ineffective_ms >= 4,
|
|
heap->tracer()->AverageMarkCompactMutatorUtilization() >= 0.3);
|
|
}
|
|
}
|
|
isolate->Dispose();
|
|
}
|
|
|
|
UNINITIALIZED_TEST(OutOfMemoryIneffectiveGCRunningJS) {
|
|
if (!FLAG_detect_ineffective_gcs_near_heap_limit) return;
|
|
if (FLAG_stress_incremental_marking) return;
|
|
|
|
FLAG_max_old_space_size = 5;
|
|
v8::Isolate::CreateParams create_params;
|
|
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
|
|
v8::Isolate* isolate = v8::Isolate::New(create_params);
|
|
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
|
|
oom_isolate = i_isolate;
|
|
|
|
isolate->SetOOMErrorHandler(OOMCallback);
|
|
|
|
v8::Isolate::Scope isolate_scope(isolate);
|
|
v8::HandleScope handle_scope(isolate);
|
|
v8::Context::New(isolate)->Enter();
|
|
|
|
// Test that source positions are not collected as part of a failing GC, which
|
|
// will fail as allocation is disallowed. If the test works, this should call
|
|
// OOMCallback and terminate without crashing.
|
|
CompileRun(R"javascript(
|
|
var array = [];
|
|
for(var i = 20000; i < 40000; ++i) {
|
|
array.push(new Array(i));
|
|
}
|
|
)javascript");
|
|
|
|
FATAL("Should not get here as OOMCallback should be called");
|
|
}
|
|
|
|
HEAP_TEST(Regress779503) {
|
|
// The following regression test ensures that the Scavenger does not allocate
|
|
// over invalid slots. More specific, the Scavenger should not sweep a page
|
|
// that it currently processes because it might allocate over the currently
|
|
// processed slot.
|
|
if (FLAG_single_generation) return;
|
|
FLAG_stress_concurrent_allocation = false; // For SealCurrentObjects.
|
|
const int kArraySize = 2048;
|
|
CcTest::InitializeVM();
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = CcTest::heap();
|
|
heap::SealCurrentObjects(heap);
|
|
{
|
|
HandleScope handle_scope(isolate);
|
|
// The byte array filled with kHeapObjectTag ensures that we cannot read
|
|
// from the slot again and interpret it as heap value. Doing so will crash.
|
|
Handle<ByteArray> byte_array = isolate->factory()->NewByteArray(kArraySize);
|
|
CHECK(Heap::InYoungGeneration(*byte_array));
|
|
for (int i = 0; i < kArraySize; i++) {
|
|
byte_array->set(i, kHeapObjectTag);
|
|
}
|
|
|
|
{
|
|
HandleScope handle_scope(isolate);
|
|
// The FixedArray in old space serves as space for slots.
|
|
Handle<FixedArray> fixed_array =
|
|
isolate->factory()->NewFixedArray(kArraySize, AllocationType::kOld);
|
|
CHECK(!Heap::InYoungGeneration(*fixed_array));
|
|
for (int i = 0; i < kArraySize; i++) {
|
|
fixed_array->set(i, *byte_array);
|
|
}
|
|
}
|
|
// Delay sweeper tasks to allow the scavenger to sweep the page it is
|
|
// currently scavenging.
|
|
heap->delay_sweeper_tasks_for_testing_ = true;
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
CHECK(FLAG_always_promote_young_mc ? !Heap::InYoungGeneration(*byte_array)
|
|
: Heap::InYoungGeneration(*byte_array));
|
|
}
|
|
// Scavenging and sweeping the same page will crash as slots will be
|
|
// overridden.
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
heap->delay_sweeper_tasks_for_testing_ = false;
|
|
}
|
|
|
|
struct OutOfMemoryState {
|
|
Heap* heap;
|
|
bool oom_triggered;
|
|
size_t old_generation_capacity_at_oom;
|
|
size_t memory_allocator_size_at_oom;
|
|
size_t new_space_capacity_at_oom;
|
|
size_t new_lo_space_size_at_oom;
|
|
size_t current_heap_limit;
|
|
size_t initial_heap_limit;
|
|
};
|
|
|
|
size_t NearHeapLimitCallback(void* raw_state, size_t current_heap_limit,
|
|
size_t initial_heap_limit) {
|
|
OutOfMemoryState* state = static_cast<OutOfMemoryState*>(raw_state);
|
|
Heap* heap = state->heap;
|
|
state->oom_triggered = true;
|
|
state->old_generation_capacity_at_oom = heap->OldGenerationCapacity();
|
|
state->memory_allocator_size_at_oom = heap->memory_allocator()->Size();
|
|
state->new_space_capacity_at_oom = heap->new_space()->Capacity();
|
|
state->new_lo_space_size_at_oom = heap->new_lo_space()->Size();
|
|
state->current_heap_limit = current_heap_limit;
|
|
state->initial_heap_limit = initial_heap_limit;
|
|
return initial_heap_limit + 100 * MB;
|
|
}
|
|
|
|
size_t MemoryAllocatorSizeFromHeapCapacity(size_t capacity) {
|
|
// Size to capacity factor.
|
|
double factor =
|
|
Page::kPageSize * 1.0 / MemoryChunkLayout::AllocatableMemoryInDataPage();
|
|
// Some tables (e.g. deoptimization table) are allocated directly with the
|
|
// memory allocator. Allow some slack to account for them.
|
|
size_t slack = 5 * MB;
|
|
return static_cast<size_t>(capacity * factor) + slack;
|
|
}
|
|
|
|
UNINITIALIZED_TEST(OutOfMemorySmallObjects) {
|
|
if (FLAG_stress_incremental_marking) return;
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap) return;
|
|
#endif
|
|
const size_t kOldGenerationLimit = 50 * MB;
|
|
FLAG_max_old_space_size = kOldGenerationLimit / MB;
|
|
v8::Isolate::CreateParams create_params;
|
|
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
|
|
Isolate* isolate =
|
|
reinterpret_cast<Isolate*>(v8::Isolate::New(create_params));
|
|
Heap* heap = isolate->heap();
|
|
Factory* factory = isolate->factory();
|
|
OutOfMemoryState state;
|
|
state.heap = heap;
|
|
state.oom_triggered = false;
|
|
heap->AddNearHeapLimitCallback(NearHeapLimitCallback, &state);
|
|
{
|
|
HandleScope handle_scope(isolate);
|
|
while (!state.oom_triggered) {
|
|
factory->NewFixedArray(100);
|
|
}
|
|
}
|
|
CHECK_LE(state.old_generation_capacity_at_oom,
|
|
kOldGenerationLimit + state.new_space_capacity_at_oom);
|
|
CHECK_LE(kOldGenerationLimit, state.old_generation_capacity_at_oom +
|
|
state.new_space_capacity_at_oom);
|
|
CHECK_LE(
|
|
state.memory_allocator_size_at_oom,
|
|
MemoryAllocatorSizeFromHeapCapacity(state.old_generation_capacity_at_oom +
|
|
2 * state.new_space_capacity_at_oom));
|
|
reinterpret_cast<v8::Isolate*>(isolate)->Dispose();
|
|
}
|
|
|
|
UNINITIALIZED_TEST(OutOfMemoryLargeObjects) {
|
|
if (FLAG_stress_incremental_marking) return;
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap) return;
|
|
#endif
|
|
const size_t kOldGenerationLimit = 50 * MB;
|
|
FLAG_max_old_space_size = kOldGenerationLimit / MB;
|
|
v8::Isolate::CreateParams create_params;
|
|
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
|
|
Isolate* isolate =
|
|
reinterpret_cast<Isolate*>(v8::Isolate::New(create_params));
|
|
Heap* heap = isolate->heap();
|
|
Factory* factory = isolate->factory();
|
|
OutOfMemoryState state;
|
|
state.heap = heap;
|
|
state.oom_triggered = false;
|
|
heap->AddNearHeapLimitCallback(NearHeapLimitCallback, &state);
|
|
const int kFixedArrayLength = 1000000;
|
|
{
|
|
HandleScope handle_scope(isolate);
|
|
while (!state.oom_triggered) {
|
|
factory->NewFixedArray(kFixedArrayLength);
|
|
}
|
|
}
|
|
CHECK_LE(state.old_generation_capacity_at_oom, kOldGenerationLimit);
|
|
CHECK_LE(kOldGenerationLimit, state.old_generation_capacity_at_oom +
|
|
state.new_space_capacity_at_oom +
|
|
state.new_lo_space_size_at_oom +
|
|
FixedArray::SizeFor(kFixedArrayLength));
|
|
CHECK_LE(
|
|
state.memory_allocator_size_at_oom,
|
|
MemoryAllocatorSizeFromHeapCapacity(state.old_generation_capacity_at_oom +
|
|
2 * state.new_space_capacity_at_oom +
|
|
state.new_lo_space_size_at_oom));
|
|
reinterpret_cast<v8::Isolate*>(isolate)->Dispose();
|
|
}
|
|
|
|
UNINITIALIZED_TEST(RestoreHeapLimit) {
|
|
if (FLAG_stress_incremental_marking) return;
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap) return;
|
|
#endif
|
|
ManualGCScope manual_gc_scope;
|
|
const size_t kOldGenerationLimit = 50 * MB;
|
|
FLAG_max_old_space_size = kOldGenerationLimit / MB;
|
|
v8::Isolate::CreateParams create_params;
|
|
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
|
|
Isolate* isolate =
|
|
reinterpret_cast<Isolate*>(v8::Isolate::New(create_params));
|
|
Heap* heap = isolate->heap();
|
|
Factory* factory = isolate->factory();
|
|
OutOfMemoryState state;
|
|
state.heap = heap;
|
|
state.oom_triggered = false;
|
|
heap->AddNearHeapLimitCallback(NearHeapLimitCallback, &state);
|
|
heap->AutomaticallyRestoreInitialHeapLimit(0.5);
|
|
const int kFixedArrayLength = 1000000;
|
|
{
|
|
HandleScope handle_scope(isolate);
|
|
while (!state.oom_triggered) {
|
|
factory->NewFixedArray(kFixedArrayLength);
|
|
}
|
|
}
|
|
heap->MemoryPressureNotification(MemoryPressureLevel::kCritical, true);
|
|
state.oom_triggered = false;
|
|
{
|
|
HandleScope handle_scope(isolate);
|
|
while (!state.oom_triggered) {
|
|
factory->NewFixedArray(kFixedArrayLength);
|
|
}
|
|
}
|
|
CHECK_EQ(state.current_heap_limit, state.initial_heap_limit);
|
|
reinterpret_cast<v8::Isolate*>(isolate)->Dispose();
|
|
}
|
|
|
|
void HeapTester::UncommitFromSpace(Heap* heap) {
|
|
heap->UncommitFromSpace();
|
|
heap->memory_allocator()->unmapper()->EnsureUnmappingCompleted();
|
|
}
|
|
|
|
class DeleteNative {
|
|
public:
|
|
static void Deleter(void* arg) {
|
|
delete reinterpret_cast<DeleteNative*>(arg);
|
|
}
|
|
};
|
|
|
|
TEST(Regress8014) {
|
|
Isolate* isolate = CcTest::InitIsolateOnce();
|
|
Heap* heap = isolate->heap();
|
|
{
|
|
HandleScope scope(isolate);
|
|
for (int i = 0; i < 10000; i++) {
|
|
auto handle = Managed<DeleteNative>::FromRawPtr(isolate, 1000000,
|
|
new DeleteNative());
|
|
USE(handle);
|
|
}
|
|
}
|
|
int ms_count = heap->ms_count();
|
|
heap->MemoryPressureNotification(MemoryPressureLevel::kCritical, true);
|
|
// Several GCs can be triggred by the above call.
|
|
// The bad case triggers 10000 GCs.
|
|
CHECK_LE(heap->ms_count(), ms_count + 10);
|
|
}
|
|
|
|
TEST(Regress8617) {
|
|
ManualGCScope manual_gc_scope;
|
|
FLAG_manual_evacuation_candidates_selection = true;
|
|
LocalContext env;
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
HandleScope scope(isolate);
|
|
heap::SimulateFullSpace(heap->old_space());
|
|
// Step 1. Create a function and ensure that it is in the old space.
|
|
Handle<Object> foo =
|
|
v8::Utils::OpenHandle(*CompileRun("function foo() { return 42; };"
|
|
"foo;"));
|
|
if (heap->InYoungGeneration(*foo)) {
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
}
|
|
// Step 2. Create an object with a reference to foo in the descriptor array.
|
|
CompileRun(
|
|
"var obj = {};"
|
|
"obj.method = foo;"
|
|
"obj;");
|
|
// Step 3. Make sure that foo moves during Mark-Compact.
|
|
Page* ec_page = Page::FromAddress(foo->ptr());
|
|
heap::ForceEvacuationCandidate(ec_page);
|
|
// Step 4. Start incremental marking.
|
|
heap::SimulateIncrementalMarking(heap, false);
|
|
CHECK(ec_page->IsEvacuationCandidate());
|
|
// Step 5. Install a new descriptor array on the map of the object.
|
|
// This runs the marking barrier for the descriptor array.
|
|
// In the bad case it sets the number of marked descriptors but does not
|
|
// change the color of the descriptor array.
|
|
CompileRun("obj.bar = 10;");
|
|
// Step 6. Promote the descriptor array to old space. During promotion
|
|
// the Scavenger will not record the slot of foo in the descriptor array.
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
// Step 7. Complete the Mark-Compact.
|
|
CcTest::CollectAllGarbage();
|
|
// Step 8. Use the descriptor for foo, which contains a stale pointer.
|
|
CompileRun("obj.method()");
|
|
}
|
|
|
|
HEAP_TEST(MemoryReducerActivationForSmallHeaps) {
|
|
ManualGCScope manual_gc_scope;
|
|
LocalContext env;
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
CHECK_EQ(heap->memory_reducer()->state_.action, MemoryReducer::Action::kDone);
|
|
HandleScope scope(isolate);
|
|
const size_t kActivationThreshold = 1 * MB;
|
|
size_t initial_capacity = heap->OldGenerationCapacity();
|
|
while (heap->OldGenerationCapacity() <
|
|
initial_capacity + kActivationThreshold) {
|
|
isolate->factory()->NewFixedArray(1 * KB, AllocationType::kOld);
|
|
}
|
|
CHECK_EQ(heap->memory_reducer()->state_.action, MemoryReducer::Action::kWait);
|
|
}
|
|
|
|
TEST(AllocateExternalBackingStore) {
|
|
ManualGCScope manual_gc_scope;
|
|
LocalContext env;
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
int initial_ms_count = heap->ms_count();
|
|
void* result =
|
|
heap->AllocateExternalBackingStore([](size_t) { return nullptr; }, 10);
|
|
CHECK_NULL(result);
|
|
// At least two GCs should happen.
|
|
CHECK_LE(2, heap->ms_count() - initial_ms_count);
|
|
}
|
|
|
|
TEST(CodeObjectRegistry) {
|
|
// We turn off compaction to ensure that code is not moving.
|
|
FLAG_never_compact = true;
|
|
|
|
Isolate* isolate = CcTest::i_isolate();
|
|
Heap* heap = isolate->heap();
|
|
|
|
Handle<Code> code1;
|
|
HandleScope outer_scope(heap->isolate());
|
|
Address code2_address;
|
|
{
|
|
// Ensure that both code objects end up on the same page.
|
|
CHECK(HeapTester::CodeEnsureLinearAllocationArea(
|
|
heap, kMaxRegularHeapObjectSize));
|
|
code1 = DummyOptimizedCode(isolate);
|
|
Handle<Code> code2 = DummyOptimizedCode(isolate);
|
|
code2_address = code2->address();
|
|
|
|
CHECK_EQ(MemoryChunk::FromHeapObject(*code1),
|
|
MemoryChunk::FromHeapObject(*code2));
|
|
CHECK(MemoryChunk::FromHeapObject(*code1)->Contains(code1->address()));
|
|
CHECK(MemoryChunk::FromHeapObject(*code2)->Contains(code2->address()));
|
|
}
|
|
CcTest::CollectAllAvailableGarbage();
|
|
CHECK(MemoryChunk::FromHeapObject(*code1)->Contains(code1->address()));
|
|
CHECK(MemoryChunk::FromAddress(code2_address)->Contains(code2_address));
|
|
}
|
|
|
|
TEST(Regress9701) {
|
|
ManualGCScope manual_gc_scope;
|
|
if (!FLAG_incremental_marking) return;
|
|
CcTest::InitializeVM();
|
|
Heap* heap = CcTest::heap();
|
|
// Start with an empty new space.
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
|
|
int mark_sweep_count_before = heap->ms_count();
|
|
// Allocate many short living array buffers.
|
|
for (int i = 0; i < 1000; i++) {
|
|
HandleScope scope(heap->isolate());
|
|
CcTest::i_isolate()->factory()->NewJSArrayBufferAndBackingStore(
|
|
64 * KB, InitializedFlag::kZeroInitialized);
|
|
}
|
|
int mark_sweep_count_after = heap->ms_count();
|
|
// We expect only scavenges, no full GCs.
|
|
CHECK_EQ(mark_sweep_count_before, mark_sweep_count_after);
|
|
}
|
|
|
|
#if defined(V8_TARGET_ARCH_64_BIT) && !defined(V8_OS_ANDROID)
|
|
UNINITIALIZED_TEST(HugeHeapLimit) {
|
|
uint64_t kMemoryGB = 16;
|
|
v8::Isolate::CreateParams create_params;
|
|
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
|
|
create_params.constraints.ConfigureDefaults(kMemoryGB * GB, kMemoryGB * GB);
|
|
v8::Isolate* isolate = v8::Isolate::New(create_params);
|
|
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
|
|
#ifdef V8_COMPRESS_POINTERS
|
|
size_t kExpectedHeapLimit = Heap::AllocatorLimitOnMaxOldGenerationSize();
|
|
#else
|
|
size_t kExpectedHeapLimit = size_t{4} * GB;
|
|
#endif
|
|
CHECK_EQ(kExpectedHeapLimit, i_isolate->heap()->MaxOldGenerationSize());
|
|
CHECK_LT(size_t{3} * GB, i_isolate->heap()->MaxOldGenerationSize());
|
|
isolate->Dispose();
|
|
}
|
|
#endif
|
|
|
|
UNINITIALIZED_TEST(HeapLimit) {
|
|
uint64_t kMemoryGB = 15;
|
|
v8::Isolate::CreateParams create_params;
|
|
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
|
|
create_params.constraints.ConfigureDefaults(kMemoryGB * GB, kMemoryGB * GB);
|
|
v8::Isolate* isolate = v8::Isolate::New(create_params);
|
|
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
|
|
#if defined(V8_TARGET_ARCH_64_BIT) && !defined(V8_OS_ANDROID)
|
|
size_t kExpectedHeapLimit = size_t{2} * GB;
|
|
#else
|
|
size_t kExpectedHeapLimit = size_t{1} * GB;
|
|
#endif
|
|
CHECK_EQ(kExpectedHeapLimit, i_isolate->heap()->MaxOldGenerationSize());
|
|
isolate->Dispose();
|
|
}
|
|
|
|
TEST(NoCodeRangeInJitlessMode) {
|
|
if (!FLAG_jitless) return;
|
|
CcTest::InitializeVM();
|
|
CHECK(
|
|
CcTest::i_isolate()->heap()->memory_allocator()->code_range().is_empty());
|
|
}
|
|
|
|
TEST(Regress978156) {
|
|
if (!FLAG_incremental_marking) return;
|
|
if (FLAG_single_generation) return;
|
|
ManualGCScope manual_gc_scope;
|
|
CcTest::InitializeVM();
|
|
|
|
HandleScope handle_scope(CcTest::i_isolate());
|
|
Heap* heap = CcTest::i_isolate()->heap();
|
|
|
|
// 1. Ensure that the new space is empty.
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
CcTest::CollectGarbage(NEW_SPACE);
|
|
// 2. Fill the first page of the new space with FixedArrays.
|
|
std::vector<Handle<FixedArray>> arrays;
|
|
i::heap::FillCurrentPage(heap->new_space(), &arrays);
|
|
// 3. Trim the last array by one word thus creating a one-word filler.
|
|
Handle<FixedArray> last = arrays.back();
|
|
CHECK_GT(last->length(), 0);
|
|
heap->RightTrimFixedArray(*last, 1);
|
|
// 4. Get the last filler on the page.
|
|
HeapObject filler = HeapObject::FromAddress(
|
|
MemoryChunk::FromHeapObject(*last)->area_end() - kTaggedSize);
|
|
HeapObject::FromAddress(last->address() + last->Size());
|
|
CHECK(filler.IsFiller());
|
|
// 5. Start incremental marking.
|
|
i::IncrementalMarking* marking = heap->incremental_marking();
|
|
if (marking->IsStopped()) {
|
|
SafepointScope scope(heap);
|
|
marking->Start(i::GarbageCollectionReason::kTesting);
|
|
}
|
|
IncrementalMarking::MarkingState* marking_state = marking->marking_state();
|
|
// 6. Mark the filler black to access its two markbits. This triggers
|
|
// an out-of-bounds access of the marking bitmap in a bad case.
|
|
marking_state->WhiteToGrey(filler);
|
|
marking_state->GreyToBlack(filler);
|
|
}
|
|
|
|
TEST(GarbageCollectionWithLocalHeap) {
|
|
FLAG_local_heaps = true;
|
|
ManualGCScope manual_gc_scope;
|
|
CcTest::InitializeVM();
|
|
|
|
Heap* heap = CcTest::i_isolate()->heap();
|
|
|
|
LocalHeap local_heap(heap);
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
{ ParkedScope parked_scope(&local_heap); }
|
|
CcTest::CollectGarbage(OLD_SPACE);
|
|
}
|
|
|
|
TEST(Regress10698) {
|
|
CcTest::InitializeVM();
|
|
Heap* heap = CcTest::i_isolate()->heap();
|
|
Factory* factory = CcTest::i_isolate()->factory();
|
|
HandleScope handle_scope(CcTest::i_isolate());
|
|
// This is modeled after the manual allocation folding of heap numbers in
|
|
// JSON parser (See commit ba7b25e).
|
|
// Step 1. Allocate a byte array in the old space.
|
|
Handle<ByteArray> array =
|
|
factory->NewByteArray(kTaggedSize, AllocationType::kOld);
|
|
// Step 2. Start incremental marking.
|
|
SimulateIncrementalMarking(heap, false);
|
|
// Step 3. Allocate another byte array. It will be black.
|
|
factory->NewByteArray(kTaggedSize, AllocationType::kOld);
|
|
Address address = reinterpret_cast<Address>(array->GetDataStartAddress());
|
|
HeapObject filler = HeapObject::FromAddress(address);
|
|
// Step 4. Set the filler at the end of the first array.
|
|
// It will have an impossible markbit pattern because the second markbit
|
|
// will be taken from the second array.
|
|
filler.set_map_after_allocation(*factory->one_pointer_filler_map());
|
|
}
|
|
|
|
class TestAllocationTracker : public HeapObjectAllocationTracker {
|
|
public:
|
|
explicit TestAllocationTracker(int expected_size)
|
|
: expected_size_(expected_size) {}
|
|
|
|
void AllocationEvent(Address addr, int size) {
|
|
CHECK(expected_size_ == size);
|
|
address_ = addr;
|
|
}
|
|
|
|
Address address() { return address_; }
|
|
|
|
private:
|
|
int expected_size_;
|
|
Address address_;
|
|
};
|
|
|
|
HEAP_TEST(CodeLargeObjectSpace) {
|
|
Heap* heap = CcTest::heap();
|
|
int size_in_bytes = kMaxRegularHeapObjectSize + kSystemPointerSize;
|
|
TestAllocationTracker allocation_tracker{size_in_bytes};
|
|
heap->AddHeapObjectAllocationTracker(&allocation_tracker);
|
|
|
|
AllocationResult allocation = heap->AllocateRaw(
|
|
size_in_bytes, AllocationType::kCode, AllocationOrigin::kGeneratedCode,
|
|
AllocationAlignment::kCodeAligned);
|
|
|
|
CHECK(allocation.ToAddress() == allocation_tracker.address());
|
|
heap->CreateFillerObjectAt(allocation.ToAddress(), size_in_bytes,
|
|
ClearRecordedSlots::kNo);
|
|
heap->RemoveHeapObjectAllocationTracker(&allocation_tracker);
|
|
}
|
|
|
|
} // namespace heap
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
#undef __
|