v8/src/isolate.cc
svenpanne@chromium.org bf345f022e Revert "Add flags to force or prevent setting of isolate.is_memory_constrained."
It introduces static initializers for the new "MAYBE_BOOL" kind of
flags, which is a no-no for Chrome. This has to be done differently.

TBR=danno@chromium.org

Review URL: https://codereview.chromium.org/23621044

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@16736 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-09-16 14:09:22 +00:00

2531 lines
84 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "v8.h"
#include "allocation-inl.h"
#include "ast.h"
#include "bootstrapper.h"
#include "codegen.h"
#include "compilation-cache.h"
#include "cpu-profiler.h"
#include "debug.h"
#include "deoptimizer.h"
#include "heap-profiler.h"
#include "hydrogen.h"
#include "isolate-inl.h"
#include "lithium-allocator.h"
#include "log.h"
#include "marking-thread.h"
#include "messages.h"
#include "platform.h"
#include "regexp-stack.h"
#include "runtime-profiler.h"
#include "sampler.h"
#include "scopeinfo.h"
#include "serialize.h"
#include "simulator.h"
#include "spaces.h"
#include "stub-cache.h"
#include "sweeper-thread.h"
#include "utils/random-number-generator.h"
#include "version.h"
#include "vm-state-inl.h"
namespace v8 {
namespace internal {
Atomic32 ThreadId::highest_thread_id_ = 0;
int ThreadId::AllocateThreadId() {
int new_id = NoBarrier_AtomicIncrement(&highest_thread_id_, 1);
return new_id;
}
int ThreadId::GetCurrentThreadId() {
int thread_id = Thread::GetThreadLocalInt(Isolate::thread_id_key_);
if (thread_id == 0) {
thread_id = AllocateThreadId();
Thread::SetThreadLocalInt(Isolate::thread_id_key_, thread_id);
}
return thread_id;
}
ThreadLocalTop::ThreadLocalTop() {
InitializeInternal();
// This flag may be set using v8::V8::IgnoreOutOfMemoryException()
// before an isolate is initialized. The initialize methods below do
// not touch it to preserve its value.
ignore_out_of_memory_ = false;
}
void ThreadLocalTop::InitializeInternal() {
c_entry_fp_ = 0;
handler_ = 0;
#ifdef USE_SIMULATOR
simulator_ = NULL;
#endif
js_entry_sp_ = NULL;
external_callback_scope_ = NULL;
current_vm_state_ = EXTERNAL;
try_catch_handler_address_ = NULL;
context_ = NULL;
thread_id_ = ThreadId::Invalid();
external_caught_exception_ = false;
failed_access_check_callback_ = NULL;
save_context_ = NULL;
catcher_ = NULL;
top_lookup_result_ = NULL;
// These members are re-initialized later after deserialization
// is complete.
pending_exception_ = NULL;
has_pending_message_ = false;
rethrowing_message_ = false;
pending_message_obj_ = NULL;
pending_message_script_ = NULL;
scheduled_exception_ = NULL;
}
void ThreadLocalTop::Initialize() {
InitializeInternal();
#ifdef USE_SIMULATOR
#if V8_TARGET_ARCH_ARM
simulator_ = Simulator::current(isolate_);
#elif V8_TARGET_ARCH_MIPS
simulator_ = Simulator::current(isolate_);
#endif
#endif
thread_id_ = ThreadId::Current();
}
v8::TryCatch* ThreadLocalTop::TryCatchHandler() {
return TRY_CATCH_FROM_ADDRESS(try_catch_handler_address());
}
int SystemThreadManager::NumberOfParallelSystemThreads(
ParallelSystemComponent type) {
int number_of_threads = Min(CPU::NumberOfProcessorsOnline(), kMaxThreads);
ASSERT(number_of_threads > 0);
if (number_of_threads == 1) {
return 0;
}
if (type == PARALLEL_SWEEPING) {
return number_of_threads;
} else if (type == CONCURRENT_SWEEPING) {
return number_of_threads - 1;
} else if (type == PARALLEL_MARKING) {
return number_of_threads;
}
return 1;
}
// Create a dummy thread that will wait forever on a semaphore. The only
// purpose for this thread is to have some stack area to save essential data
// into for use by a stacks only core dump (aka minidump).
class PreallocatedMemoryThread: public Thread {
public:
char* data() {
if (data_ready_semaphore_ != NULL) {
// Initial access is guarded until the data has been published.
data_ready_semaphore_->Wait();
delete data_ready_semaphore_;
data_ready_semaphore_ = NULL;
}
return data_;
}
unsigned length() {
if (data_ready_semaphore_ != NULL) {
// Initial access is guarded until the data has been published.
data_ready_semaphore_->Wait();
delete data_ready_semaphore_;
data_ready_semaphore_ = NULL;
}
return length_;
}
// Stop the PreallocatedMemoryThread and release its resources.
void StopThread() {
keep_running_ = false;
wait_for_ever_semaphore_->Signal();
// Wait for the thread to terminate.
Join();
if (data_ready_semaphore_ != NULL) {
delete data_ready_semaphore_;
data_ready_semaphore_ = NULL;
}
delete wait_for_ever_semaphore_;
wait_for_ever_semaphore_ = NULL;
}
protected:
// When the thread starts running it will allocate a fixed number of bytes
// on the stack and publish the location of this memory for others to use.
void Run() {
EmbeddedVector<char, 15 * 1024> local_buffer;
// Initialize the buffer with a known good value.
OS::StrNCpy(local_buffer, "Trace data was not generated.\n",
local_buffer.length());
// Publish the local buffer and signal its availability.
data_ = local_buffer.start();
length_ = local_buffer.length();
data_ready_semaphore_->Signal();
while (keep_running_) {
// This thread will wait here until the end of time.
wait_for_ever_semaphore_->Wait();
}
// Make sure we access the buffer after the wait to remove all possibility
// of it being optimized away.
OS::StrNCpy(local_buffer, "PreallocatedMemoryThread shutting down.\n",
local_buffer.length());
}
private:
PreallocatedMemoryThread()
: Thread("v8:PreallocMem"),
keep_running_(true),
wait_for_ever_semaphore_(new Semaphore(0)),
data_ready_semaphore_(new Semaphore(0)),
data_(NULL),
length_(0) {
}
// Used to make sure that the thread keeps looping even for spurious wakeups.
bool keep_running_;
// This semaphore is used by the PreallocatedMemoryThread to wait for ever.
Semaphore* wait_for_ever_semaphore_;
// Semaphore to signal that the data has been initialized.
Semaphore* data_ready_semaphore_;
// Location and size of the preallocated memory block.
char* data_;
unsigned length_;
friend class Isolate;
DISALLOW_COPY_AND_ASSIGN(PreallocatedMemoryThread);
};
void Isolate::PreallocatedMemoryThreadStart() {
if (preallocated_memory_thread_ != NULL) return;
preallocated_memory_thread_ = new PreallocatedMemoryThread();
preallocated_memory_thread_->Start();
}
void Isolate::PreallocatedMemoryThreadStop() {
if (preallocated_memory_thread_ == NULL) return;
preallocated_memory_thread_->StopThread();
// Done with the thread entirely.
delete preallocated_memory_thread_;
preallocated_memory_thread_ = NULL;
}
void Isolate::PreallocatedStorageInit(size_t size) {
ASSERT(free_list_.next_ == &free_list_);
ASSERT(free_list_.previous_ == &free_list_);
PreallocatedStorage* free_chunk =
reinterpret_cast<PreallocatedStorage*>(new char[size]);
free_list_.next_ = free_list_.previous_ = free_chunk;
free_chunk->next_ = free_chunk->previous_ = &free_list_;
free_chunk->size_ = size - sizeof(PreallocatedStorage);
preallocated_storage_preallocated_ = true;
}
void* Isolate::PreallocatedStorageNew(size_t size) {
if (!preallocated_storage_preallocated_) {
return FreeStoreAllocationPolicy().New(size);
}
ASSERT(free_list_.next_ != &free_list_);
ASSERT(free_list_.previous_ != &free_list_);
size = (size + kPointerSize - 1) & ~(kPointerSize - 1);
// Search for exact fit.
for (PreallocatedStorage* storage = free_list_.next_;
storage != &free_list_;
storage = storage->next_) {
if (storage->size_ == size) {
storage->Unlink();
storage->LinkTo(&in_use_list_);
return reinterpret_cast<void*>(storage + 1);
}
}
// Search for first fit.
for (PreallocatedStorage* storage = free_list_.next_;
storage != &free_list_;
storage = storage->next_) {
if (storage->size_ >= size + sizeof(PreallocatedStorage)) {
storage->Unlink();
storage->LinkTo(&in_use_list_);
PreallocatedStorage* left_over =
reinterpret_cast<PreallocatedStorage*>(
reinterpret_cast<char*>(storage + 1) + size);
left_over->size_ = storage->size_ - size - sizeof(PreallocatedStorage);
ASSERT(size + left_over->size_ + sizeof(PreallocatedStorage) ==
storage->size_);
storage->size_ = size;
left_over->LinkTo(&free_list_);
return reinterpret_cast<void*>(storage + 1);
}
}
// Allocation failure.
ASSERT(false);
return NULL;
}
// We don't attempt to coalesce.
void Isolate::PreallocatedStorageDelete(void* p) {
if (p == NULL) {
return;
}
if (!preallocated_storage_preallocated_) {
FreeStoreAllocationPolicy::Delete(p);
return;
}
PreallocatedStorage* storage = reinterpret_cast<PreallocatedStorage*>(p) - 1;
ASSERT(storage->next_->previous_ == storage);
ASSERT(storage->previous_->next_ == storage);
storage->Unlink();
storage->LinkTo(&free_list_);
}
Isolate* Isolate::default_isolate_ = NULL;
Thread::LocalStorageKey Isolate::isolate_key_;
Thread::LocalStorageKey Isolate::thread_id_key_;
Thread::LocalStorageKey Isolate::per_isolate_thread_data_key_;
#ifdef DEBUG
Thread::LocalStorageKey PerThreadAssertScopeBase::thread_local_key;
#endif // DEBUG
Mutex Isolate::process_wide_mutex_;
Isolate::ThreadDataTable* Isolate::thread_data_table_ = NULL;
Atomic32 Isolate::isolate_counter_ = 0;
Isolate::PerIsolateThreadData*
Isolate::FindOrAllocatePerThreadDataForThisThread() {
ThreadId thread_id = ThreadId::Current();
PerIsolateThreadData* per_thread = NULL;
{
LockGuard<Mutex> lock_guard(&process_wide_mutex_);
per_thread = thread_data_table_->Lookup(this, thread_id);
if (per_thread == NULL) {
per_thread = new PerIsolateThreadData(this, thread_id);
thread_data_table_->Insert(per_thread);
}
}
ASSERT(thread_data_table_->Lookup(this, thread_id) == per_thread);
return per_thread;
}
Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThisThread() {
ThreadId thread_id = ThreadId::Current();
return FindPerThreadDataForThread(thread_id);
}
Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThread(
ThreadId thread_id) {
PerIsolateThreadData* per_thread = NULL;
{
LockGuard<Mutex> lock_guard(&process_wide_mutex_);
per_thread = thread_data_table_->Lookup(this, thread_id);
}
return per_thread;
}
void Isolate::EnsureDefaultIsolate() {
LockGuard<Mutex> lock_guard(&process_wide_mutex_);
if (default_isolate_ == NULL) {
isolate_key_ = Thread::CreateThreadLocalKey();
thread_id_key_ = Thread::CreateThreadLocalKey();
per_isolate_thread_data_key_ = Thread::CreateThreadLocalKey();
#ifdef DEBUG
PerThreadAssertScopeBase::thread_local_key = Thread::CreateThreadLocalKey();
#endif // DEBUG
thread_data_table_ = new Isolate::ThreadDataTable();
default_isolate_ = new Isolate();
}
// Can't use SetIsolateThreadLocals(default_isolate_, NULL) here
// because a non-null thread data may be already set.
if (Thread::GetThreadLocal(isolate_key_) == NULL) {
Thread::SetThreadLocal(isolate_key_, default_isolate_);
}
}
struct StaticInitializer {
StaticInitializer() {
Isolate::EnsureDefaultIsolate();
}
} static_initializer;
#ifdef ENABLE_DEBUGGER_SUPPORT
Debugger* Isolate::GetDefaultIsolateDebugger() {
EnsureDefaultIsolate();
return default_isolate_->debugger();
}
#endif
StackGuard* Isolate::GetDefaultIsolateStackGuard() {
EnsureDefaultIsolate();
return default_isolate_->stack_guard();
}
void Isolate::EnterDefaultIsolate() {
EnsureDefaultIsolate();
ASSERT(default_isolate_ != NULL);
PerIsolateThreadData* data = CurrentPerIsolateThreadData();
// If not yet in default isolate - enter it.
if (data == NULL || data->isolate() != default_isolate_) {
default_isolate_->Enter();
}
}
v8::Isolate* Isolate::GetDefaultIsolateForLocking() {
EnsureDefaultIsolate();
return reinterpret_cast<v8::Isolate*>(default_isolate_);
}
Address Isolate::get_address_from_id(Isolate::AddressId id) {
return isolate_addresses_[id];
}
char* Isolate::Iterate(ObjectVisitor* v, char* thread_storage) {
ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(thread_storage);
Iterate(v, thread);
return thread_storage + sizeof(ThreadLocalTop);
}
void Isolate::IterateThread(ThreadVisitor* v, char* t) {
ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(t);
v->VisitThread(this, thread);
}
void Isolate::Iterate(ObjectVisitor* v, ThreadLocalTop* thread) {
// Visit the roots from the top for a given thread.
Object* pending;
// The pending exception can sometimes be a failure. We can't show
// that to the GC, which only understands objects.
if (thread->pending_exception_->ToObject(&pending)) {
v->VisitPointer(&pending);
thread->pending_exception_ = pending; // In case GC updated it.
}
v->VisitPointer(&(thread->pending_message_obj_));
v->VisitPointer(BitCast<Object**>(&(thread->pending_message_script_)));
v->VisitPointer(BitCast<Object**>(&(thread->context_)));
Object* scheduled;
if (thread->scheduled_exception_->ToObject(&scheduled)) {
v->VisitPointer(&scheduled);
thread->scheduled_exception_ = scheduled;
}
for (v8::TryCatch* block = thread->TryCatchHandler();
block != NULL;
block = TRY_CATCH_FROM_ADDRESS(block->next_)) {
v->VisitPointer(BitCast<Object**>(&(block->exception_)));
v->VisitPointer(BitCast<Object**>(&(block->message_obj_)));
v->VisitPointer(BitCast<Object**>(&(block->message_script_)));
}
// Iterate over pointers on native execution stack.
for (StackFrameIterator it(this, thread); !it.done(); it.Advance()) {
it.frame()->Iterate(v);
}
// Iterate pointers in live lookup results.
thread->top_lookup_result_->Iterate(v);
}
void Isolate::Iterate(ObjectVisitor* v) {
ThreadLocalTop* current_t = thread_local_top();
Iterate(v, current_t);
}
void Isolate::IterateDeferredHandles(ObjectVisitor* visitor) {
for (DeferredHandles* deferred = deferred_handles_head_;
deferred != NULL;
deferred = deferred->next_) {
deferred->Iterate(visitor);
}
}
#ifdef DEBUG
bool Isolate::IsDeferredHandle(Object** handle) {
// Each DeferredHandles instance keeps the handles to one job in the
// concurrent recompilation queue, containing a list of blocks. Each block
// contains kHandleBlockSize handles except for the first block, which may
// not be fully filled.
// We iterate through all the blocks to see whether the argument handle
// belongs to one of the blocks. If so, it is deferred.
for (DeferredHandles* deferred = deferred_handles_head_;
deferred != NULL;
deferred = deferred->next_) {
List<Object**>* blocks = &deferred->blocks_;
for (int i = 0; i < blocks->length(); i++) {
Object** block_limit = (i == 0) ? deferred->first_block_limit_
: blocks->at(i) + kHandleBlockSize;
if (blocks->at(i) <= handle && handle < block_limit) return true;
}
}
return false;
}
#endif // DEBUG
void Isolate::RegisterTryCatchHandler(v8::TryCatch* that) {
// The ARM simulator has a separate JS stack. We therefore register
// the C++ try catch handler with the simulator and get back an
// address that can be used for comparisons with addresses into the
// JS stack. When running without the simulator, the address
// returned will be the address of the C++ try catch handler itself.
Address address = reinterpret_cast<Address>(
SimulatorStack::RegisterCTryCatch(reinterpret_cast<uintptr_t>(that)));
thread_local_top()->set_try_catch_handler_address(address);
}
void Isolate::UnregisterTryCatchHandler(v8::TryCatch* that) {
ASSERT(thread_local_top()->TryCatchHandler() == that);
thread_local_top()->set_try_catch_handler_address(
reinterpret_cast<Address>(that->next_));
thread_local_top()->catcher_ = NULL;
SimulatorStack::UnregisterCTryCatch();
}
Handle<String> Isolate::StackTraceString() {
if (stack_trace_nesting_level_ == 0) {
stack_trace_nesting_level_++;
HeapStringAllocator allocator;
StringStream::ClearMentionedObjectCache(this);
StringStream accumulator(&allocator);
incomplete_message_ = &accumulator;
PrintStack(&accumulator);
Handle<String> stack_trace = accumulator.ToString(this);
incomplete_message_ = NULL;
stack_trace_nesting_level_ = 0;
return stack_trace;
} else if (stack_trace_nesting_level_ == 1) {
stack_trace_nesting_level_++;
OS::PrintError(
"\n\nAttempt to print stack while printing stack (double fault)\n");
OS::PrintError(
"If you are lucky you may find a partial stack dump on stdout.\n\n");
incomplete_message_->OutputToStdOut();
return factory()->empty_string();
} else {
OS::Abort();
// Unreachable
return factory()->empty_string();
}
}
void Isolate::PushStackTraceAndDie(unsigned int magic,
Object* object,
Map* map,
unsigned int magic2) {
const int kMaxStackTraceSize = 8192;
Handle<String> trace = StackTraceString();
uint8_t buffer[kMaxStackTraceSize];
int length = Min(kMaxStackTraceSize - 1, trace->length());
String::WriteToFlat(*trace, buffer, 0, length);
buffer[length] = '\0';
// TODO(dcarney): convert buffer to utf8?
OS::PrintError("Stacktrace (%x-%x) %p %p: %s\n",
magic, magic2,
static_cast<void*>(object), static_cast<void*>(map),
reinterpret_cast<char*>(buffer));
OS::Abort();
}
// Determines whether the given stack frame should be displayed in
// a stack trace. The caller is the error constructor that asked
// for the stack trace to be collected. The first time a construct
// call to this function is encountered it is skipped. The seen_caller
// in/out parameter is used to remember if the caller has been seen
// yet.
static bool IsVisibleInStackTrace(StackFrame* raw_frame,
Object* caller,
bool* seen_caller) {
// Only display JS frames.
if (!raw_frame->is_java_script()) return false;
JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame);
JSFunction* fun = frame->function();
if ((fun == caller) && !(*seen_caller)) {
*seen_caller = true;
return false;
}
// Skip all frames until we've seen the caller.
if (!(*seen_caller)) return false;
// Also, skip non-visible built-in functions and any call with the builtins
// object as receiver, so as to not reveal either the builtins object or
// an internal function.
// The --builtins-in-stack-traces command line flag allows including
// internal call sites in the stack trace for debugging purposes.
if (!FLAG_builtins_in_stack_traces) {
if (frame->receiver()->IsJSBuiltinsObject() ||
(fun->IsBuiltin() && !fun->shared()->native())) {
return false;
}
}
return true;
}
Handle<JSArray> Isolate::CaptureSimpleStackTrace(Handle<JSObject> error_object,
Handle<Object> caller,
int limit) {
limit = Max(limit, 0); // Ensure that limit is not negative.
int initial_size = Min(limit, 10);
Handle<FixedArray> elements =
factory()->NewFixedArrayWithHoles(initial_size * 4 + 1);
// If the caller parameter is a function we skip frames until we're
// under it before starting to collect.
bool seen_caller = !caller->IsJSFunction();
// First element is reserved to store the number of non-strict frames.
int cursor = 1;
int frames_seen = 0;
int non_strict_frames = 0;
bool encountered_strict_function = false;
for (StackFrameIterator iter(this);
!iter.done() && frames_seen < limit;
iter.Advance()) {
StackFrame* raw_frame = iter.frame();
if (IsVisibleInStackTrace(raw_frame, *caller, &seen_caller)) {
frames_seen++;
JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame);
// Set initial size to the maximum inlining level + 1 for the outermost
// function.
List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
frame->Summarize(&frames);
for (int i = frames.length() - 1; i >= 0; i--) {
if (cursor + 4 > elements->length()) {
int new_capacity = JSObject::NewElementsCapacity(elements->length());
Handle<FixedArray> new_elements =
factory()->NewFixedArrayWithHoles(new_capacity);
for (int i = 0; i < cursor; i++) {
new_elements->set(i, elements->get(i));
}
elements = new_elements;
}
ASSERT(cursor + 4 <= elements->length());
Handle<Object> recv = frames[i].receiver();
Handle<JSFunction> fun = frames[i].function();
Handle<Code> code = frames[i].code();
Handle<Smi> offset(Smi::FromInt(frames[i].offset()), this);
// The stack trace API should not expose receivers and function
// objects on frames deeper than the top-most one with a strict
// mode function. The number of non-strict frames is stored as
// first element in the result array.
if (!encountered_strict_function) {
if (!fun->shared()->is_classic_mode()) {
encountered_strict_function = true;
} else {
non_strict_frames++;
}
}
elements->set(cursor++, *recv);
elements->set(cursor++, *fun);
elements->set(cursor++, *code);
elements->set(cursor++, *offset);
}
}
}
elements->set(0, Smi::FromInt(non_strict_frames));
Handle<JSArray> result = factory()->NewJSArrayWithElements(elements);
result->set_length(Smi::FromInt(cursor));
return result;
}
void Isolate::CaptureAndSetDetailedStackTrace(Handle<JSObject> error_object) {
if (capture_stack_trace_for_uncaught_exceptions_) {
// Capture stack trace for a detailed exception message.
Handle<String> key = factory()->hidden_stack_trace_string();
Handle<JSArray> stack_trace = CaptureCurrentStackTrace(
stack_trace_for_uncaught_exceptions_frame_limit_,
stack_trace_for_uncaught_exceptions_options_);
JSObject::SetHiddenProperty(error_object, key, stack_trace);
}
}
Handle<JSArray> Isolate::CaptureCurrentStackTrace(
int frame_limit, StackTrace::StackTraceOptions options) {
// Ensure no negative values.
int limit = Max(frame_limit, 0);
Handle<JSArray> stack_trace = factory()->NewJSArray(frame_limit);
Handle<String> column_key =
factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("column"));
Handle<String> line_key =
factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("lineNumber"));
Handle<String> script_id_key =
factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("scriptId"));
Handle<String> script_name_key =
factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("scriptName"));
Handle<String> script_name_or_source_url_key =
factory()->InternalizeOneByteString(
STATIC_ASCII_VECTOR("scriptNameOrSourceURL"));
Handle<String> function_key =
factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("functionName"));
Handle<String> eval_key =
factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("isEval"));
Handle<String> constructor_key =
factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("isConstructor"));
StackTraceFrameIterator it(this);
int frames_seen = 0;
while (!it.done() && (frames_seen < limit)) {
JavaScriptFrame* frame = it.frame();
// Set initial size to the maximum inlining level + 1 for the outermost
// function.
List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
frame->Summarize(&frames);
for (int i = frames.length() - 1; i >= 0 && frames_seen < limit; i--) {
// Create a JSObject to hold the information for the StackFrame.
Handle<JSObject> stack_frame = factory()->NewJSObject(object_function());
Handle<JSFunction> fun = frames[i].function();
Handle<Script> script(Script::cast(fun->shared()->script()));
if (options & StackTrace::kLineNumber) {
int script_line_offset = script->line_offset()->value();
int position = frames[i].code()->SourcePosition(frames[i].pc());
int line_number = GetScriptLineNumber(script, position);
// line_number is already shifted by the script_line_offset.
int relative_line_number = line_number - script_line_offset;
if (options & StackTrace::kColumnOffset && relative_line_number >= 0) {
Handle<FixedArray> line_ends(FixedArray::cast(script->line_ends()));
int start = (relative_line_number == 0) ? 0 :
Smi::cast(line_ends->get(relative_line_number - 1))->value() + 1;
int column_offset = position - start;
if (relative_line_number == 0) {
// For the case where the code is on the same line as the script
// tag.
column_offset += script->column_offset()->value();
}
CHECK_NOT_EMPTY_HANDLE(
this,
JSObject::SetLocalPropertyIgnoreAttributes(
stack_frame, column_key,
Handle<Smi>(Smi::FromInt(column_offset + 1), this), NONE));
}
CHECK_NOT_EMPTY_HANDLE(
this,
JSObject::SetLocalPropertyIgnoreAttributes(
stack_frame, line_key,
Handle<Smi>(Smi::FromInt(line_number + 1), this), NONE));
}
if (options & StackTrace::kScriptId) {
Handle<Smi> script_id(script->id(), this);
CHECK_NOT_EMPTY_HANDLE(this,
JSObject::SetLocalPropertyIgnoreAttributes(
stack_frame, script_id_key, script_id,
NONE));
}
if (options & StackTrace::kScriptName) {
Handle<Object> script_name(script->name(), this);
CHECK_NOT_EMPTY_HANDLE(this,
JSObject::SetLocalPropertyIgnoreAttributes(
stack_frame, script_name_key, script_name,
NONE));
}
if (options & StackTrace::kScriptNameOrSourceURL) {
Handle<Object> result = GetScriptNameOrSourceURL(script);
CHECK_NOT_EMPTY_HANDLE(this,
JSObject::SetLocalPropertyIgnoreAttributes(
stack_frame, script_name_or_source_url_key,
result, NONE));
}
if (options & StackTrace::kFunctionName) {
Handle<Object> fun_name(fun->shared()->name(), this);
if (!fun_name->BooleanValue()) {
fun_name = Handle<Object>(fun->shared()->inferred_name(), this);
}
CHECK_NOT_EMPTY_HANDLE(this,
JSObject::SetLocalPropertyIgnoreAttributes(
stack_frame, function_key, fun_name, NONE));
}
if (options & StackTrace::kIsEval) {
Handle<Object> is_eval =
script->compilation_type() == Script::COMPILATION_TYPE_EVAL ?
factory()->true_value() : factory()->false_value();
CHECK_NOT_EMPTY_HANDLE(this,
JSObject::SetLocalPropertyIgnoreAttributes(
stack_frame, eval_key, is_eval, NONE));
}
if (options & StackTrace::kIsConstructor) {
Handle<Object> is_constructor = (frames[i].is_constructor()) ?
factory()->true_value() : factory()->false_value();
CHECK_NOT_EMPTY_HANDLE(this,
JSObject::SetLocalPropertyIgnoreAttributes(
stack_frame, constructor_key,
is_constructor, NONE));
}
FixedArray::cast(stack_trace->elements())->set(frames_seen, *stack_frame);
frames_seen++;
}
it.Advance();
}
stack_trace->set_length(Smi::FromInt(frames_seen));
return stack_trace;
}
void Isolate::PrintStack() {
PrintStack(stdout);
}
void Isolate::PrintStack(FILE* out) {
if (stack_trace_nesting_level_ == 0) {
stack_trace_nesting_level_++;
StringAllocator* allocator;
if (preallocated_message_space_ == NULL) {
allocator = new HeapStringAllocator();
} else {
allocator = preallocated_message_space_;
}
StringStream::ClearMentionedObjectCache(this);
StringStream accumulator(allocator);
incomplete_message_ = &accumulator;
PrintStack(&accumulator);
accumulator.OutputToFile(out);
InitializeLoggingAndCounters();
accumulator.Log(this);
incomplete_message_ = NULL;
stack_trace_nesting_level_ = 0;
if (preallocated_message_space_ == NULL) {
// Remove the HeapStringAllocator created above.
delete allocator;
}
} else if (stack_trace_nesting_level_ == 1) {
stack_trace_nesting_level_++;
OS::PrintError(
"\n\nAttempt to print stack while printing stack (double fault)\n");
OS::PrintError(
"If you are lucky you may find a partial stack dump on stdout.\n\n");
incomplete_message_->OutputToFile(out);
}
}
static void PrintFrames(Isolate* isolate,
StringStream* accumulator,
StackFrame::PrintMode mode) {
StackFrameIterator it(isolate);
for (int i = 0; !it.done(); it.Advance()) {
it.frame()->Print(accumulator, mode, i++);
}
}
void Isolate::PrintStack(StringStream* accumulator) {
if (!IsInitialized()) {
accumulator->Add(
"\n==== JS stack trace is not available =======================\n\n");
accumulator->Add(
"\n==== Isolate for the thread is not initialized =============\n\n");
return;
}
// The MentionedObjectCache is not GC-proof at the moment.
DisallowHeapAllocation no_gc;
ASSERT(StringStream::IsMentionedObjectCacheClear(this));
// Avoid printing anything if there are no frames.
if (c_entry_fp(thread_local_top()) == 0) return;
accumulator->Add(
"\n==== JS stack trace =========================================\n\n");
PrintFrames(this, accumulator, StackFrame::OVERVIEW);
accumulator->Add(
"\n==== Details ================================================\n\n");
PrintFrames(this, accumulator, StackFrame::DETAILS);
accumulator->PrintMentionedObjectCache(this);
accumulator->Add("=====================\n\n");
}
void Isolate::SetFailedAccessCheckCallback(
v8::FailedAccessCheckCallback callback) {
thread_local_top()->failed_access_check_callback_ = callback;
}
void Isolate::ReportFailedAccessCheck(JSObject* receiver, v8::AccessType type) {
if (!thread_local_top()->failed_access_check_callback_) return;
ASSERT(receiver->IsAccessCheckNeeded());
ASSERT(context());
// Get the data object from access check info.
JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
if (!constructor->shared()->IsApiFunction()) return;
Object* data_obj =
constructor->shared()->get_api_func_data()->access_check_info();
if (data_obj == heap_.undefined_value()) return;
HandleScope scope(this);
Handle<JSObject> receiver_handle(receiver);
Handle<Object> data(AccessCheckInfo::cast(data_obj)->data(), this);
{ VMState<EXTERNAL> state(this);
thread_local_top()->failed_access_check_callback_(
v8::Utils::ToLocal(receiver_handle),
type,
v8::Utils::ToLocal(data));
}
}
enum MayAccessDecision {
YES, NO, UNKNOWN
};
static MayAccessDecision MayAccessPreCheck(Isolate* isolate,
JSObject* receiver,
v8::AccessType type) {
// During bootstrapping, callback functions are not enabled yet.
if (isolate->bootstrapper()->IsActive()) return YES;
if (receiver->IsJSGlobalProxy()) {
Object* receiver_context = JSGlobalProxy::cast(receiver)->native_context();
if (!receiver_context->IsContext()) return NO;
// Get the native context of current top context.
// avoid using Isolate::native_context() because it uses Handle.
Context* native_context =
isolate->context()->global_object()->native_context();
if (receiver_context == native_context) return YES;
if (Context::cast(receiver_context)->security_token() ==
native_context->security_token())
return YES;
}
return UNKNOWN;
}
bool Isolate::MayNamedAccess(JSObject* receiver, Object* key,
v8::AccessType type) {
ASSERT(receiver->IsAccessCheckNeeded());
// The callers of this method are not expecting a GC.
DisallowHeapAllocation no_gc;
// Skip checks for hidden properties access. Note, we do not
// require existence of a context in this case.
if (key == heap_.hidden_string()) return true;
// Check for compatibility between the security tokens in the
// current lexical context and the accessed object.
ASSERT(context());
MayAccessDecision decision = MayAccessPreCheck(this, receiver, type);
if (decision != UNKNOWN) return decision == YES;
// Get named access check callback
JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
if (!constructor->shared()->IsApiFunction()) return false;
Object* data_obj =
constructor->shared()->get_api_func_data()->access_check_info();
if (data_obj == heap_.undefined_value()) return false;
Object* fun_obj = AccessCheckInfo::cast(data_obj)->named_callback();
v8::NamedSecurityCallback callback =
v8::ToCData<v8::NamedSecurityCallback>(fun_obj);
if (!callback) return false;
HandleScope scope(this);
Handle<JSObject> receiver_handle(receiver, this);
Handle<Object> key_handle(key, this);
Handle<Object> data(AccessCheckInfo::cast(data_obj)->data(), this);
LOG(this, ApiNamedSecurityCheck(key));
bool result = false;
{
// Leaving JavaScript.
VMState<EXTERNAL> state(this);
result = callback(v8::Utils::ToLocal(receiver_handle),
v8::Utils::ToLocal(key_handle),
type,
v8::Utils::ToLocal(data));
}
return result;
}
bool Isolate::MayIndexedAccess(JSObject* receiver,
uint32_t index,
v8::AccessType type) {
ASSERT(receiver->IsAccessCheckNeeded());
// Check for compatibility between the security tokens in the
// current lexical context and the accessed object.
ASSERT(context());
MayAccessDecision decision = MayAccessPreCheck(this, receiver, type);
if (decision != UNKNOWN) return decision == YES;
// Get indexed access check callback
JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
if (!constructor->shared()->IsApiFunction()) return false;
Object* data_obj =
constructor->shared()->get_api_func_data()->access_check_info();
if (data_obj == heap_.undefined_value()) return false;
Object* fun_obj = AccessCheckInfo::cast(data_obj)->indexed_callback();
v8::IndexedSecurityCallback callback =
v8::ToCData<v8::IndexedSecurityCallback>(fun_obj);
if (!callback) return false;
HandleScope scope(this);
Handle<JSObject> receiver_handle(receiver, this);
Handle<Object> data(AccessCheckInfo::cast(data_obj)->data(), this);
LOG(this, ApiIndexedSecurityCheck(index));
bool result = false;
{
// Leaving JavaScript.
VMState<EXTERNAL> state(this);
result = callback(v8::Utils::ToLocal(receiver_handle),
index,
type,
v8::Utils::ToLocal(data));
}
return result;
}
const char* const Isolate::kStackOverflowMessage =
"Uncaught RangeError: Maximum call stack size exceeded";
Failure* Isolate::StackOverflow() {
HandleScope scope(this);
// At this point we cannot create an Error object using its javascript
// constructor. Instead, we copy the pre-constructed boilerplate and
// attach the stack trace as a hidden property.
Handle<String> key = factory()->stack_overflow_string();
Handle<JSObject> boilerplate =
Handle<JSObject>::cast(GetProperty(this, js_builtins_object(), key));
Handle<JSObject> exception = JSObject::Copy(boilerplate);
DoThrow(*exception, NULL);
// Get stack trace limit.
Handle<Object> error = GetProperty(js_builtins_object(), "$Error");
if (!error->IsJSObject()) return Failure::Exception();
Handle<Object> stack_trace_limit =
GetProperty(Handle<JSObject>::cast(error), "stackTraceLimit");
if (!stack_trace_limit->IsNumber()) return Failure::Exception();
double dlimit = stack_trace_limit->Number();
int limit = std::isnan(dlimit) ? 0 : static_cast<int>(dlimit);
Handle<JSArray> stack_trace = CaptureSimpleStackTrace(
exception, factory()->undefined_value(), limit);
JSObject::SetHiddenProperty(exception,
factory()->hidden_stack_trace_string(),
stack_trace);
return Failure::Exception();
}
Failure* Isolate::TerminateExecution() {
DoThrow(heap_.termination_exception(), NULL);
return Failure::Exception();
}
void Isolate::CancelTerminateExecution() {
if (try_catch_handler()) {
try_catch_handler()->has_terminated_ = false;
}
if (has_pending_exception() &&
pending_exception() == heap_.termination_exception()) {
thread_local_top()->external_caught_exception_ = false;
clear_pending_exception();
}
if (has_scheduled_exception() &&
scheduled_exception() == heap_.termination_exception()) {
thread_local_top()->external_caught_exception_ = false;
clear_scheduled_exception();
}
}
Failure* Isolate::Throw(Object* exception, MessageLocation* location) {
DoThrow(exception, location);
return Failure::Exception();
}
Failure* Isolate::ReThrow(MaybeObject* exception) {
bool can_be_caught_externally = false;
bool catchable_by_javascript = is_catchable_by_javascript(exception);
ShouldReportException(&can_be_caught_externally, catchable_by_javascript);
thread_local_top()->catcher_ = can_be_caught_externally ?
try_catch_handler() : NULL;
// Set the exception being re-thrown.
set_pending_exception(exception);
if (exception->IsFailure()) return exception->ToFailureUnchecked();
return Failure::Exception();
}
Failure* Isolate::ThrowIllegalOperation() {
return Throw(heap_.illegal_access_string());
}
void Isolate::ScheduleThrow(Object* exception) {
// When scheduling a throw we first throw the exception to get the
// error reporting if it is uncaught before rescheduling it.
Throw(exception);
PropagatePendingExceptionToExternalTryCatch();
if (has_pending_exception()) {
thread_local_top()->scheduled_exception_ = pending_exception();
thread_local_top()->external_caught_exception_ = false;
clear_pending_exception();
}
}
void Isolate::RestorePendingMessageFromTryCatch(v8::TryCatch* handler) {
ASSERT(handler == try_catch_handler());
ASSERT(handler->HasCaught());
ASSERT(handler->rethrow_);
ASSERT(handler->capture_message_);
Object* message = reinterpret_cast<Object*>(handler->message_obj_);
Object* script = reinterpret_cast<Object*>(handler->message_script_);
ASSERT(message->IsJSMessageObject() || message->IsTheHole());
ASSERT(script->IsScript() || script->IsTheHole());
thread_local_top()->pending_message_obj_ = message;
thread_local_top()->pending_message_script_ = script;
thread_local_top()->pending_message_start_pos_ = handler->message_start_pos_;
thread_local_top()->pending_message_end_pos_ = handler->message_end_pos_;
}
Failure* Isolate::PromoteScheduledException() {
MaybeObject* thrown = scheduled_exception();
clear_scheduled_exception();
// Re-throw the exception to avoid getting repeated error reporting.
return ReThrow(thrown);
}
void Isolate::PrintCurrentStackTrace(FILE* out) {
StackTraceFrameIterator it(this);
while (!it.done()) {
HandleScope scope(this);
// Find code position if recorded in relocation info.
JavaScriptFrame* frame = it.frame();
int pos = frame->LookupCode()->SourcePosition(frame->pc());
Handle<Object> pos_obj(Smi::FromInt(pos), this);
// Fetch function and receiver.
Handle<JSFunction> fun(frame->function());
Handle<Object> recv(frame->receiver(), this);
// Advance to the next JavaScript frame and determine if the
// current frame is the top-level frame.
it.Advance();
Handle<Object> is_top_level = it.done()
? factory()->true_value()
: factory()->false_value();
// Generate and print stack trace line.
Handle<String> line =
Execution::GetStackTraceLine(recv, fun, pos_obj, is_top_level);
if (line->length() > 0) {
line->PrintOn(out);
PrintF(out, "\n");
}
}
}
void Isolate::ComputeLocation(MessageLocation* target) {
*target = MessageLocation(Handle<Script>(heap_.empty_script()), -1, -1);
StackTraceFrameIterator it(this);
if (!it.done()) {
JavaScriptFrame* frame = it.frame();
JSFunction* fun = frame->function();
Object* script = fun->shared()->script();
if (script->IsScript() &&
!(Script::cast(script)->source()->IsUndefined())) {
int pos = frame->LookupCode()->SourcePosition(frame->pc());
// Compute the location from the function and the reloc info.
Handle<Script> casted_script(Script::cast(script));
*target = MessageLocation(casted_script, pos, pos + 1);
}
}
}
bool Isolate::ShouldReportException(bool* can_be_caught_externally,
bool catchable_by_javascript) {
// Find the top-most try-catch handler.
StackHandler* handler =
StackHandler::FromAddress(Isolate::handler(thread_local_top()));
while (handler != NULL && !handler->is_catch()) {
handler = handler->next();
}
// Get the address of the external handler so we can compare the address to
// determine which one is closer to the top of the stack.
Address external_handler_address =
thread_local_top()->try_catch_handler_address();
// The exception has been externally caught if and only if there is
// an external handler which is on top of the top-most try-catch
// handler.
*can_be_caught_externally = external_handler_address != NULL &&
(handler == NULL || handler->address() > external_handler_address ||
!catchable_by_javascript);
if (*can_be_caught_externally) {
// Only report the exception if the external handler is verbose.
return try_catch_handler()->is_verbose_;
} else {
// Report the exception if it isn't caught by JavaScript code.
return handler == NULL;
}
}
bool Isolate::IsErrorObject(Handle<Object> obj) {
if (!obj->IsJSObject()) return false;
String* error_key =
*(factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("$Error")));
Object* error_constructor =
js_builtins_object()->GetPropertyNoExceptionThrown(error_key);
for (Object* prototype = *obj; !prototype->IsNull();
prototype = prototype->GetPrototype(this)) {
if (!prototype->IsJSObject()) return false;
if (JSObject::cast(prototype)->map()->constructor() == error_constructor) {
return true;
}
}
return false;
}
static int fatal_exception_depth = 0;
void Isolate::DoThrow(Object* exception, MessageLocation* location) {
ASSERT(!has_pending_exception());
HandleScope scope(this);
Handle<Object> exception_handle(exception, this);
// Determine reporting and whether the exception is caught externally.
bool catchable_by_javascript = is_catchable_by_javascript(exception);
bool can_be_caught_externally = false;
bool should_report_exception =
ShouldReportException(&can_be_caught_externally, catchable_by_javascript);
bool report_exception = catchable_by_javascript && should_report_exception;
bool try_catch_needs_message =
can_be_caught_externally && try_catch_handler()->capture_message_ &&
!thread_local_top()->rethrowing_message_;
bool bootstrapping = bootstrapper()->IsActive();
thread_local_top()->rethrowing_message_ = false;
#ifdef ENABLE_DEBUGGER_SUPPORT
// Notify debugger of exception.
if (catchable_by_javascript) {
debugger_->OnException(exception_handle, report_exception);
}
#endif
// Generate the message if required.
if (report_exception || try_catch_needs_message) {
MessageLocation potential_computed_location;
if (location == NULL) {
// If no location was specified we use a computed one instead.
ComputeLocation(&potential_computed_location);
location = &potential_computed_location;
}
// It's not safe to try to make message objects or collect stack traces
// while the bootstrapper is active since the infrastructure may not have
// been properly initialized.
if (!bootstrapping) {
Handle<String> stack_trace;
if (FLAG_trace_exception) stack_trace = StackTraceString();
Handle<JSArray> stack_trace_object;
if (capture_stack_trace_for_uncaught_exceptions_) {
if (IsErrorObject(exception_handle)) {
// We fetch the stack trace that corresponds to this error object.
String* key = heap()->hidden_stack_trace_string();
Object* stack_property =
JSObject::cast(*exception_handle)->GetHiddenProperty(key);
// Property lookup may have failed. In this case it's probably not
// a valid Error object.
if (stack_property->IsJSArray()) {
stack_trace_object = Handle<JSArray>(JSArray::cast(stack_property));
}
}
if (stack_trace_object.is_null()) {
// Not an error object, we capture at throw site.
stack_trace_object = CaptureCurrentStackTrace(
stack_trace_for_uncaught_exceptions_frame_limit_,
stack_trace_for_uncaught_exceptions_options_);
}
}
Handle<Object> exception_arg = exception_handle;
// If the exception argument is a custom object, turn it into a string
// before throwing as uncaught exception. Note that the pending
// exception object to be set later must not be turned into a string.
if (exception_arg->IsJSObject() && !IsErrorObject(exception_arg)) {
bool failed = false;
exception_arg =
Execution::ToDetailString(this, exception_arg, &failed);
if (failed) {
exception_arg = factory()->InternalizeOneByteString(
STATIC_ASCII_VECTOR("exception"));
}
}
Handle<Object> message_obj = MessageHandler::MakeMessageObject(
this,
"uncaught_exception",
location,
HandleVector<Object>(&exception_arg, 1),
stack_trace,
stack_trace_object);
thread_local_top()->pending_message_obj_ = *message_obj;
if (location != NULL) {
thread_local_top()->pending_message_script_ = *location->script();
thread_local_top()->pending_message_start_pos_ = location->start_pos();
thread_local_top()->pending_message_end_pos_ = location->end_pos();
}
// If the abort-on-uncaught-exception flag is specified, abort on any
// exception not caught by JavaScript, even when an external handler is
// present. This flag is intended for use by JavaScript developers, so
// print a user-friendly stack trace (not an internal one).
if (fatal_exception_depth == 0 &&
FLAG_abort_on_uncaught_exception &&
(report_exception || can_be_caught_externally)) {
fatal_exception_depth++;
PrintF(stderr,
"%s\n\nFROM\n",
*MessageHandler::GetLocalizedMessage(this, message_obj));
PrintCurrentStackTrace(stderr);
OS::Abort();
}
} else if (location != NULL && !location->script().is_null()) {
// We are bootstrapping and caught an error where the location is set
// and we have a script for the location.
// In this case we could have an extension (or an internal error
// somewhere) and we print out the line number at which the error occured
// to the console for easier debugging.
int line_number = GetScriptLineNumberSafe(location->script(),
location->start_pos());
if (exception->IsString() && location->script()->name()->IsString()) {
OS::PrintError(
"Extension or internal compilation error: %s in %s at line %d.\n",
*String::cast(exception)->ToCString(),
*String::cast(location->script()->name())->ToCString(),
line_number + 1);
} else if (location->script()->name()->IsString()) {
OS::PrintError(
"Extension or internal compilation error in %s at line %d.\n",
*String::cast(location->script()->name())->ToCString(),
line_number + 1);
} else {
OS::PrintError("Extension or internal compilation error.\n");
}
}
}
// Save the message for reporting if the the exception remains uncaught.
thread_local_top()->has_pending_message_ = report_exception;
// Do not forget to clean catcher_ if currently thrown exception cannot
// be caught. If necessary, ReThrow will update the catcher.
thread_local_top()->catcher_ = can_be_caught_externally ?
try_catch_handler() : NULL;
set_pending_exception(*exception_handle);
}
bool Isolate::IsExternallyCaught() {
ASSERT(has_pending_exception());
if ((thread_local_top()->catcher_ == NULL) ||
(try_catch_handler() != thread_local_top()->catcher_)) {
// When throwing the exception, we found no v8::TryCatch
// which should care about this exception.
return false;
}
if (!is_catchable_by_javascript(pending_exception())) {
return true;
}
// Get the address of the external handler so we can compare the address to
// determine which one is closer to the top of the stack.
Address external_handler_address =
thread_local_top()->try_catch_handler_address();
ASSERT(external_handler_address != NULL);
// The exception has been externally caught if and only if there is
// an external handler which is on top of the top-most try-finally
// handler.
// There should be no try-catch blocks as they would prohibit us from
// finding external catcher in the first place (see catcher_ check above).
//
// Note, that finally clause would rethrow an exception unless it's
// aborted by jumps in control flow like return, break, etc. and we'll
// have another chances to set proper v8::TryCatch.
StackHandler* handler =
StackHandler::FromAddress(Isolate::handler(thread_local_top()));
while (handler != NULL && handler->address() < external_handler_address) {
ASSERT(!handler->is_catch());
if (handler->is_finally()) return false;
handler = handler->next();
}
return true;
}
void Isolate::ReportPendingMessages() {
ASSERT(has_pending_exception());
PropagatePendingExceptionToExternalTryCatch();
// If the pending exception is OutOfMemoryException set out_of_memory in
// the native context. Note: We have to mark the native context here
// since the GenerateThrowOutOfMemory stub cannot make a RuntimeCall to
// set it.
HandleScope scope(this);
if (thread_local_top_.pending_exception_->IsOutOfMemory()) {
context()->mark_out_of_memory();
} else if (thread_local_top_.pending_exception_ ==
heap()->termination_exception()) {
// Do nothing: if needed, the exception has been already propagated to
// v8::TryCatch.
} else {
if (thread_local_top_.has_pending_message_) {
thread_local_top_.has_pending_message_ = false;
if (!thread_local_top_.pending_message_obj_->IsTheHole()) {
HandleScope scope(this);
Handle<Object> message_obj(thread_local_top_.pending_message_obj_,
this);
if (!thread_local_top_.pending_message_script_->IsTheHole()) {
Handle<Script> script(
Script::cast(thread_local_top_.pending_message_script_));
int start_pos = thread_local_top_.pending_message_start_pos_;
int end_pos = thread_local_top_.pending_message_end_pos_;
MessageLocation location(script, start_pos, end_pos);
MessageHandler::ReportMessage(this, &location, message_obj);
} else {
MessageHandler::ReportMessage(this, NULL, message_obj);
}
}
}
}
clear_pending_message();
}
MessageLocation Isolate::GetMessageLocation() {
ASSERT(has_pending_exception());
if (!thread_local_top_.pending_exception_->IsOutOfMemory() &&
thread_local_top_.pending_exception_ != heap()->termination_exception() &&
thread_local_top_.has_pending_message_ &&
!thread_local_top_.pending_message_obj_->IsTheHole() &&
!thread_local_top_.pending_message_obj_->IsTheHole()) {
Handle<Script> script(
Script::cast(thread_local_top_.pending_message_script_));
int start_pos = thread_local_top_.pending_message_start_pos_;
int end_pos = thread_local_top_.pending_message_end_pos_;
return MessageLocation(script, start_pos, end_pos);
}
return MessageLocation();
}
void Isolate::TraceException(bool flag) {
FLAG_trace_exception = flag; // TODO(isolates): This is an unfortunate use.
}
bool Isolate::OptionalRescheduleException(bool is_bottom_call) {
ASSERT(has_pending_exception());
PropagatePendingExceptionToExternalTryCatch();
// Always reschedule out of memory exceptions.
if (!is_out_of_memory()) {
bool is_termination_exception =
pending_exception() == heap_.termination_exception();
// Do not reschedule the exception if this is the bottom call.
bool clear_exception = is_bottom_call;
if (is_termination_exception) {
if (is_bottom_call) {
thread_local_top()->external_caught_exception_ = false;
clear_pending_exception();
return false;
}
} else if (thread_local_top()->external_caught_exception_) {
// If the exception is externally caught, clear it if there are no
// JavaScript frames on the way to the C++ frame that has the
// external handler.
ASSERT(thread_local_top()->try_catch_handler_address() != NULL);
Address external_handler_address =
thread_local_top()->try_catch_handler_address();
JavaScriptFrameIterator it(this);
if (it.done() || (it.frame()->sp() > external_handler_address)) {
clear_exception = true;
}
}
// Clear the exception if needed.
if (clear_exception) {
thread_local_top()->external_caught_exception_ = false;
clear_pending_exception();
return false;
}
}
// Reschedule the exception.
thread_local_top()->scheduled_exception_ = pending_exception();
clear_pending_exception();
return true;
}
void Isolate::SetCaptureStackTraceForUncaughtExceptions(
bool capture,
int frame_limit,
StackTrace::StackTraceOptions options) {
capture_stack_trace_for_uncaught_exceptions_ = capture;
stack_trace_for_uncaught_exceptions_frame_limit_ = frame_limit;
stack_trace_for_uncaught_exceptions_options_ = options;
}
bool Isolate::is_out_of_memory() {
if (has_pending_exception()) {
MaybeObject* e = pending_exception();
if (e->IsFailure() && Failure::cast(e)->IsOutOfMemoryException()) {
return true;
}
}
if (has_scheduled_exception()) {
MaybeObject* e = scheduled_exception();
if (e->IsFailure() && Failure::cast(e)->IsOutOfMemoryException()) {
return true;
}
}
return false;
}
Handle<Context> Isolate::native_context() {
return Handle<Context>(context()->global_object()->native_context());
}
Handle<Context> Isolate::global_context() {
return Handle<Context>(context()->global_object()->global_context());
}
Handle<Context> Isolate::GetCallingNativeContext() {
JavaScriptFrameIterator it(this);
#ifdef ENABLE_DEBUGGER_SUPPORT
if (debug_->InDebugger()) {
while (!it.done()) {
JavaScriptFrame* frame = it.frame();
Context* context = Context::cast(frame->context());
if (context->native_context() == *debug_->debug_context()) {
it.Advance();
} else {
break;
}
}
}
#endif // ENABLE_DEBUGGER_SUPPORT
if (it.done()) return Handle<Context>::null();
JavaScriptFrame* frame = it.frame();
Context* context = Context::cast(frame->context());
return Handle<Context>(context->native_context());
}
char* Isolate::ArchiveThread(char* to) {
OS::MemCopy(to, reinterpret_cast<char*>(thread_local_top()),
sizeof(ThreadLocalTop));
InitializeThreadLocal();
clear_pending_exception();
clear_pending_message();
clear_scheduled_exception();
return to + sizeof(ThreadLocalTop);
}
char* Isolate::RestoreThread(char* from) {
OS::MemCopy(reinterpret_cast<char*>(thread_local_top()), from,
sizeof(ThreadLocalTop));
// This might be just paranoia, but it seems to be needed in case a
// thread_local_top_ is restored on a separate OS thread.
#ifdef USE_SIMULATOR
#if V8_TARGET_ARCH_ARM
thread_local_top()->simulator_ = Simulator::current(this);
#elif V8_TARGET_ARCH_MIPS
thread_local_top()->simulator_ = Simulator::current(this);
#endif
#endif
ASSERT(context() == NULL || context()->IsContext());
return from + sizeof(ThreadLocalTop);
}
Isolate::ThreadDataTable::ThreadDataTable()
: list_(NULL) {
}
Isolate::ThreadDataTable::~ThreadDataTable() {
// TODO(svenpanne) The assertion below would fire if an embedder does not
// cleanly dispose all Isolates before disposing v8, so we are conservative
// and leave it out for now.
// ASSERT_EQ(NULL, list_);
}
Isolate::PerIsolateThreadData*
Isolate::ThreadDataTable::Lookup(Isolate* isolate,
ThreadId thread_id) {
for (PerIsolateThreadData* data = list_; data != NULL; data = data->next_) {
if (data->Matches(isolate, thread_id)) return data;
}
return NULL;
}
void Isolate::ThreadDataTable::Insert(Isolate::PerIsolateThreadData* data) {
if (list_ != NULL) list_->prev_ = data;
data->next_ = list_;
list_ = data;
}
void Isolate::ThreadDataTable::Remove(PerIsolateThreadData* data) {
if (list_ == data) list_ = data->next_;
if (data->next_ != NULL) data->next_->prev_ = data->prev_;
if (data->prev_ != NULL) data->prev_->next_ = data->next_;
delete data;
}
void Isolate::ThreadDataTable::RemoveAllThreads(Isolate* isolate) {
PerIsolateThreadData* data = list_;
while (data != NULL) {
PerIsolateThreadData* next = data->next_;
if (data->isolate() == isolate) Remove(data);
data = next;
}
}
#ifdef DEBUG
#define TRACE_ISOLATE(tag) \
do { \
if (FLAG_trace_isolates) { \
PrintF("Isolate %p (id %d)" #tag "\n", \
reinterpret_cast<void*>(this), id()); \
} \
} while (false)
#else
#define TRACE_ISOLATE(tag)
#endif
Isolate::Isolate()
: state_(UNINITIALIZED),
embedder_data_(NULL),
entry_stack_(NULL),
stack_trace_nesting_level_(0),
incomplete_message_(NULL),
preallocated_memory_thread_(NULL),
preallocated_message_space_(NULL),
bootstrapper_(NULL),
runtime_profiler_(NULL),
compilation_cache_(NULL),
counters_(NULL),
code_range_(NULL),
debugger_initialized_(false),
logger_(NULL),
stats_table_(NULL),
stub_cache_(NULL),
deoptimizer_data_(NULL),
capture_stack_trace_for_uncaught_exceptions_(false),
stack_trace_for_uncaught_exceptions_frame_limit_(0),
stack_trace_for_uncaught_exceptions_options_(StackTrace::kOverview),
transcendental_cache_(NULL),
memory_allocator_(NULL),
keyed_lookup_cache_(NULL),
context_slot_cache_(NULL),
descriptor_lookup_cache_(NULL),
handle_scope_implementer_(NULL),
unicode_cache_(NULL),
runtime_zone_(this),
in_use_list_(0),
free_list_(0),
preallocated_storage_preallocated_(false),
inner_pointer_to_code_cache_(NULL),
write_iterator_(NULL),
global_handles_(NULL),
eternal_handles_(NULL),
context_switcher_(NULL),
thread_manager_(NULL),
fp_stubs_generated_(false),
has_installed_extensions_(false),
string_tracker_(NULL),
regexp_stack_(NULL),
date_cache_(NULL),
code_stub_interface_descriptors_(NULL),
// TODO(bmeurer) Initialized lazily because it depends on flags; can
// be fixed once the default isolate cleanup is done.
random_number_generator_(NULL),
is_memory_constrained_(false),
has_fatal_error_(false),
use_crankshaft_(true),
initialized_from_snapshot_(false),
cpu_profiler_(NULL),
heap_profiler_(NULL),
function_entry_hook_(NULL),
deferred_handles_head_(NULL),
optimizing_compiler_thread_(this),
marking_thread_(NULL),
sweeper_thread_(NULL),
stress_deopt_count_(0) {
id_ = NoBarrier_AtomicIncrement(&isolate_counter_, 1);
TRACE_ISOLATE(constructor);
memset(isolate_addresses_, 0,
sizeof(isolate_addresses_[0]) * (kIsolateAddressCount + 1));
heap_.isolate_ = this;
stack_guard_.isolate_ = this;
// ThreadManager is initialized early to support locking an isolate
// before it is entered.
thread_manager_ = new ThreadManager();
thread_manager_->isolate_ = this;
#if V8_TARGET_ARCH_ARM && !defined(__arm__) || \
V8_TARGET_ARCH_MIPS && !defined(__mips__)
simulator_initialized_ = false;
simulator_i_cache_ = NULL;
simulator_redirection_ = NULL;
#endif
#ifdef DEBUG
// heap_histograms_ initializes itself.
memset(&js_spill_information_, 0, sizeof(js_spill_information_));
memset(code_kind_statistics_, 0,
sizeof(code_kind_statistics_[0]) * Code::NUMBER_OF_KINDS);
#endif
#ifdef ENABLE_DEBUGGER_SUPPORT
debug_ = NULL;
debugger_ = NULL;
#endif
handle_scope_data_.Initialize();
#define ISOLATE_INIT_EXECUTE(type, name, initial_value) \
name##_ = (initial_value);
ISOLATE_INIT_LIST(ISOLATE_INIT_EXECUTE)
#undef ISOLATE_INIT_EXECUTE
#define ISOLATE_INIT_ARRAY_EXECUTE(type, name, length) \
memset(name##_, 0, sizeof(type) * length);
ISOLATE_INIT_ARRAY_LIST(ISOLATE_INIT_ARRAY_EXECUTE)
#undef ISOLATE_INIT_ARRAY_EXECUTE
}
void Isolate::TearDown() {
TRACE_ISOLATE(tear_down);
// Temporarily set this isolate as current so that various parts of
// the isolate can access it in their destructors without having a
// direct pointer. We don't use Enter/Exit here to avoid
// initializing the thread data.
PerIsolateThreadData* saved_data = CurrentPerIsolateThreadData();
Isolate* saved_isolate = UncheckedCurrent();
SetIsolateThreadLocals(this, NULL);
Deinit();
{ LockGuard<Mutex> lock_guard(&process_wide_mutex_);
thread_data_table_->RemoveAllThreads(this);
}
if (serialize_partial_snapshot_cache_ != NULL) {
delete[] serialize_partial_snapshot_cache_;
serialize_partial_snapshot_cache_ = NULL;
}
if (!IsDefaultIsolate()) {
delete this;
}
// Restore the previous current isolate.
SetIsolateThreadLocals(saved_isolate, saved_data);
}
void Isolate::GlobalTearDown() {
delete thread_data_table_;
}
void Isolate::Deinit() {
if (state_ == INITIALIZED) {
TRACE_ISOLATE(deinit);
#ifdef ENABLE_DEBUGGER_SUPPORT
debugger()->UnloadDebugger();
#endif
if (FLAG_concurrent_recompilation) optimizing_compiler_thread_.Stop();
if (FLAG_sweeper_threads > 0) {
for (int i = 0; i < FLAG_sweeper_threads; i++) {
sweeper_thread_[i]->Stop();
delete sweeper_thread_[i];
}
delete[] sweeper_thread_;
}
if (FLAG_marking_threads > 0) {
for (int i = 0; i < FLAG_marking_threads; i++) {
marking_thread_[i]->Stop();
delete marking_thread_[i];
}
delete[] marking_thread_;
}
if (FLAG_hydrogen_stats) GetHStatistics()->Print();
if (FLAG_print_deopt_stress) {
PrintF(stdout, "=== Stress deopt counter: %u\n", stress_deopt_count_);
}
// We must stop the logger before we tear down other components.
Sampler* sampler = logger_->sampler();
if (sampler && sampler->IsActive()) sampler->Stop();
delete deoptimizer_data_;
deoptimizer_data_ = NULL;
if (FLAG_preemption) {
v8::Locker locker(reinterpret_cast<v8::Isolate*>(this));
v8::Locker::StopPreemption();
}
builtins_.TearDown();
bootstrapper_->TearDown();
// Remove the external reference to the preallocated stack memory.
delete preallocated_message_space_;
preallocated_message_space_ = NULL;
PreallocatedMemoryThreadStop();
if (runtime_profiler_ != NULL) {
runtime_profiler_->TearDown();
delete runtime_profiler_;
runtime_profiler_ = NULL;
}
heap_.TearDown();
logger_->TearDown();
delete heap_profiler_;
heap_profiler_ = NULL;
delete cpu_profiler_;
cpu_profiler_ = NULL;
// The default isolate is re-initializable due to legacy API.
state_ = UNINITIALIZED;
}
}
void Isolate::PushToPartialSnapshotCache(Object* obj) {
int length = serialize_partial_snapshot_cache_length();
int capacity = serialize_partial_snapshot_cache_capacity();
if (length >= capacity) {
int new_capacity = static_cast<int>((capacity + 10) * 1.2);
Object** new_array = new Object*[new_capacity];
for (int i = 0; i < length; i++) {
new_array[i] = serialize_partial_snapshot_cache()[i];
}
if (capacity != 0) delete[] serialize_partial_snapshot_cache();
set_serialize_partial_snapshot_cache(new_array);
set_serialize_partial_snapshot_cache_capacity(new_capacity);
}
serialize_partial_snapshot_cache()[length] = obj;
set_serialize_partial_snapshot_cache_length(length + 1);
}
void Isolate::SetIsolateThreadLocals(Isolate* isolate,
PerIsolateThreadData* data) {
Thread::SetThreadLocal(isolate_key_, isolate);
Thread::SetThreadLocal(per_isolate_thread_data_key_, data);
}
Isolate::~Isolate() {
TRACE_ISOLATE(destructor);
// Has to be called while counters_ are still alive
runtime_zone_.DeleteKeptSegment();
// The entry stack must be empty when we get here,
// except for the default isolate, where it can
// still contain up to one entry stack item
ASSERT(entry_stack_ == NULL || this == default_isolate_);
ASSERT(entry_stack_ == NULL || entry_stack_->previous_item == NULL);
delete entry_stack_;
entry_stack_ = NULL;
delete[] assembler_spare_buffer_;
assembler_spare_buffer_ = NULL;
delete unicode_cache_;
unicode_cache_ = NULL;
delete date_cache_;
date_cache_ = NULL;
delete[] code_stub_interface_descriptors_;
code_stub_interface_descriptors_ = NULL;
delete regexp_stack_;
regexp_stack_ = NULL;
delete descriptor_lookup_cache_;
descriptor_lookup_cache_ = NULL;
delete context_slot_cache_;
context_slot_cache_ = NULL;
delete keyed_lookup_cache_;
keyed_lookup_cache_ = NULL;
delete transcendental_cache_;
transcendental_cache_ = NULL;
delete stub_cache_;
stub_cache_ = NULL;
delete stats_table_;
stats_table_ = NULL;
delete logger_;
logger_ = NULL;
delete counters_;
counters_ = NULL;
delete handle_scope_implementer_;
handle_scope_implementer_ = NULL;
delete compilation_cache_;
compilation_cache_ = NULL;
delete bootstrapper_;
bootstrapper_ = NULL;
delete inner_pointer_to_code_cache_;
inner_pointer_to_code_cache_ = NULL;
delete write_iterator_;
write_iterator_ = NULL;
delete context_switcher_;
context_switcher_ = NULL;
delete thread_manager_;
thread_manager_ = NULL;
delete string_tracker_;
string_tracker_ = NULL;
delete memory_allocator_;
memory_allocator_ = NULL;
delete code_range_;
code_range_ = NULL;
delete global_handles_;
global_handles_ = NULL;
delete eternal_handles_;
eternal_handles_ = NULL;
delete string_stream_debug_object_cache_;
string_stream_debug_object_cache_ = NULL;
delete external_reference_table_;
external_reference_table_ = NULL;
delete random_number_generator_;
random_number_generator_ = NULL;
#ifdef ENABLE_DEBUGGER_SUPPORT
delete debugger_;
debugger_ = NULL;
delete debug_;
debug_ = NULL;
#endif
}
void Isolate::InitializeThreadLocal() {
thread_local_top_.isolate_ = this;
thread_local_top_.Initialize();
}
void Isolate::PropagatePendingExceptionToExternalTryCatch() {
ASSERT(has_pending_exception());
bool external_caught = IsExternallyCaught();
thread_local_top_.external_caught_exception_ = external_caught;
if (!external_caught) return;
if (thread_local_top_.pending_exception_->IsOutOfMemory()) {
// Do not propagate OOM exception: we should kill VM asap.
} else if (thread_local_top_.pending_exception_ ==
heap()->termination_exception()) {
try_catch_handler()->can_continue_ = false;
try_catch_handler()->has_terminated_ = true;
try_catch_handler()->exception_ = heap()->null_value();
} else {
v8::TryCatch* handler = try_catch_handler();
// At this point all non-object (failure) exceptions have
// been dealt with so this shouldn't fail.
ASSERT(!pending_exception()->IsFailure());
ASSERT(thread_local_top_.pending_message_obj_->IsJSMessageObject() ||
thread_local_top_.pending_message_obj_->IsTheHole());
ASSERT(thread_local_top_.pending_message_script_->IsScript() ||
thread_local_top_.pending_message_script_->IsTheHole());
handler->can_continue_ = true;
handler->has_terminated_ = false;
handler->exception_ = pending_exception();
// Propagate to the external try-catch only if we got an actual message.
if (thread_local_top_.pending_message_obj_->IsTheHole()) return;
handler->message_obj_ = thread_local_top_.pending_message_obj_;
handler->message_script_ = thread_local_top_.pending_message_script_;
handler->message_start_pos_ = thread_local_top_.pending_message_start_pos_;
handler->message_end_pos_ = thread_local_top_.pending_message_end_pos_;
}
}
void Isolate::InitializeLoggingAndCounters() {
if (logger_ == NULL) {
logger_ = new Logger(this);
}
if (counters_ == NULL) {
counters_ = new Counters(this);
}
}
void Isolate::InitializeDebugger() {
#ifdef ENABLE_DEBUGGER_SUPPORT
LockGuard<RecursiveMutex> lock_guard(debugger_access());
if (NoBarrier_Load(&debugger_initialized_)) return;
InitializeLoggingAndCounters();
debug_ = new Debug(this);
debugger_ = new Debugger(this);
Release_Store(&debugger_initialized_, true);
#endif
}
bool Isolate::Init(Deserializer* des) {
ASSERT(state_ != INITIALIZED);
TRACE_ISOLATE(init);
stress_deopt_count_ = FLAG_deopt_every_n_times;
has_fatal_error_ = false;
use_crankshaft_ = FLAG_crankshaft
&& !Serializer::enabled()
&& CPU::SupportsCrankshaft();
if (function_entry_hook() != NULL) {
// When function entry hooking is in effect, we have to create the code
// stubs from scratch to get entry hooks, rather than loading the previously
// generated stubs from disk.
// If this assert fires, the initialization path has regressed.
ASSERT(des == NULL);
}
// The initialization process does not handle memory exhaustion.
DisallowAllocationFailure disallow_allocation_failure;
InitializeLoggingAndCounters();
InitializeDebugger();
memory_allocator_ = new MemoryAllocator(this);
code_range_ = new CodeRange(this);
// Safe after setting Heap::isolate_, and initializing StackGuard
heap_.SetStackLimits();
#define ASSIGN_ELEMENT(CamelName, hacker_name) \
isolate_addresses_[Isolate::k##CamelName##Address] = \
reinterpret_cast<Address>(hacker_name##_address());
FOR_EACH_ISOLATE_ADDRESS_NAME(ASSIGN_ELEMENT)
#undef ASSIGN_ELEMENT
string_tracker_ = new StringTracker();
string_tracker_->isolate_ = this;
compilation_cache_ = new CompilationCache(this);
transcendental_cache_ = new TranscendentalCache(this);
keyed_lookup_cache_ = new KeyedLookupCache();
context_slot_cache_ = new ContextSlotCache();
descriptor_lookup_cache_ = new DescriptorLookupCache();
unicode_cache_ = new UnicodeCache();
inner_pointer_to_code_cache_ = new InnerPointerToCodeCache(this);
write_iterator_ = new ConsStringIteratorOp();
global_handles_ = new GlobalHandles(this);
eternal_handles_ = new EternalHandles();
bootstrapper_ = new Bootstrapper(this);
handle_scope_implementer_ = new HandleScopeImplementer(this);
stub_cache_ = new StubCache(this);
regexp_stack_ = new RegExpStack();
regexp_stack_->isolate_ = this;
date_cache_ = new DateCache();
code_stub_interface_descriptors_ =
new CodeStubInterfaceDescriptor[CodeStub::NUMBER_OF_IDS];
cpu_profiler_ = new CpuProfiler(this);
heap_profiler_ = new HeapProfiler(heap());
// Enable logging before setting up the heap
logger_->SetUp(this);
// Initialize other runtime facilities
#if defined(USE_SIMULATOR)
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_MIPS
Simulator::Initialize(this);
#endif
#endif
{ // NOLINT
// Ensure that the thread has a valid stack guard. The v8::Locker object
// will ensure this too, but we don't have to use lockers if we are only
// using one thread.
ExecutionAccess lock(this);
stack_guard_.InitThread(lock);
}
// SetUp the object heap.
ASSERT(!heap_.HasBeenSetUp());
if (!heap_.SetUp()) {
V8::FatalProcessOutOfMemory("heap setup");
return false;
}
deoptimizer_data_ = new DeoptimizerData(memory_allocator_);
const bool create_heap_objects = (des == NULL);
if (create_heap_objects && !heap_.CreateHeapObjects()) {
V8::FatalProcessOutOfMemory("heap object creation");
return false;
}
if (create_heap_objects) {
// Terminate the cache array with the sentinel so we can iterate.
PushToPartialSnapshotCache(heap_.undefined_value());
}
InitializeThreadLocal();
bootstrapper_->Initialize(create_heap_objects);
builtins_.SetUp(this, create_heap_objects);
// Only preallocate on the first initialization.
if (FLAG_preallocate_message_memory && preallocated_message_space_ == NULL) {
// Start the thread which will set aside some memory.
PreallocatedMemoryThreadStart();
preallocated_message_space_ =
new NoAllocationStringAllocator(
preallocated_memory_thread_->data(),
preallocated_memory_thread_->length());
PreallocatedStorageInit(preallocated_memory_thread_->length() / 4);
}
if (FLAG_preemption) {
v8::Locker locker(reinterpret_cast<v8::Isolate*>(this));
v8::Locker::StartPreemption(100);
}
#ifdef ENABLE_DEBUGGER_SUPPORT
debug_->SetUp(create_heap_objects);
#endif
// If we are deserializing, read the state into the now-empty heap.
if (!create_heap_objects) {
des->Deserialize(this);
}
stub_cache_->Initialize();
// Finish initialization of ThreadLocal after deserialization is done.
clear_pending_exception();
clear_pending_message();
clear_scheduled_exception();
// Deserializing may put strange things in the root array's copy of the
// stack guard.
heap_.SetStackLimits();
// Quiet the heap NaN if needed on target platform.
if (!create_heap_objects) Assembler::QuietNaN(heap_.nan_value());
runtime_profiler_ = new RuntimeProfiler(this);
runtime_profiler_->SetUp();
// If we are deserializing, log non-function code objects and compiled
// functions found in the snapshot.
if (!create_heap_objects &&
(FLAG_log_code || FLAG_ll_prof || logger_->is_logging_code_events())) {
HandleScope scope(this);
LOG(this, LogCodeObjects());
LOG(this, LogCompiledFunctions());
}
CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, embedder_data_)),
Internals::kIsolateEmbedderDataOffset);
CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, heap_.roots_)),
Internals::kIsolateRootsOffset);
state_ = INITIALIZED;
time_millis_at_init_ = OS::TimeCurrentMillis();
if (!create_heap_objects) {
// Now that the heap is consistent, it's OK to generate the code for the
// deopt entry table that might have been referred to by optimized code in
// the snapshot.
HandleScope scope(this);
Deoptimizer::EnsureCodeForDeoptimizationEntry(
this,
Deoptimizer::LAZY,
kDeoptTableSerializeEntryCount - 1);
}
if (!Serializer::enabled()) {
// Ensure that all stubs which need to be generated ahead of time, but
// cannot be serialized into the snapshot have been generated.
HandleScope scope(this);
CodeStub::GenerateFPStubs(this);
StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(this);
StubFailureTrampolineStub::GenerateAheadOfTime(this);
// TODO(mstarzinger): The following is an ugly hack to make sure the
// interface descriptor is initialized even when stubs have been
// deserialized out of the snapshot without the graph builder.
FastCloneShallowArrayStub stub(FastCloneShallowArrayStub::CLONE_ELEMENTS,
DONT_TRACK_ALLOCATION_SITE, 0);
stub.InitializeInterfaceDescriptor(
this, code_stub_interface_descriptor(CodeStub::FastCloneShallowArray));
CompareNilICStub::InitializeForIsolate(this);
ToBooleanStub::InitializeForIsolate(this);
ArrayConstructorStubBase::InstallDescriptors(this);
InternalArrayConstructorStubBase::InstallDescriptors(this);
FastNewClosureStub::InstallDescriptors(this);
}
if (FLAG_concurrent_recompilation) optimizing_compiler_thread_.Start();
if (FLAG_marking_threads > 0) {
marking_thread_ = new MarkingThread*[FLAG_marking_threads];
for (int i = 0; i < FLAG_marking_threads; i++) {
marking_thread_[i] = new MarkingThread(this);
marking_thread_[i]->Start();
}
}
if (FLAG_sweeper_threads > 0) {
sweeper_thread_ = new SweeperThread*[FLAG_sweeper_threads];
for (int i = 0; i < FLAG_sweeper_threads; i++) {
sweeper_thread_[i] = new SweeperThread(this);
sweeper_thread_[i]->Start();
}
}
initialized_from_snapshot_ = (des != NULL);
return true;
}
// Initialized lazily to allow early
// v8::V8::SetAddHistogramSampleFunction calls.
StatsTable* Isolate::stats_table() {
if (stats_table_ == NULL) {
stats_table_ = new StatsTable;
}
return stats_table_;
}
void Isolate::Enter() {
Isolate* current_isolate = NULL;
PerIsolateThreadData* current_data = CurrentPerIsolateThreadData();
if (current_data != NULL) {
current_isolate = current_data->isolate_;
ASSERT(current_isolate != NULL);
if (current_isolate == this) {
ASSERT(Current() == this);
ASSERT(entry_stack_ != NULL);
ASSERT(entry_stack_->previous_thread_data == NULL ||
entry_stack_->previous_thread_data->thread_id().Equals(
ThreadId::Current()));
// Same thread re-enters the isolate, no need to re-init anything.
entry_stack_->entry_count++;
return;
}
}
// Threads can have default isolate set into TLS as Current but not yet have
// PerIsolateThreadData for it, as it requires more advanced phase of the
// initialization. For example, a thread might be the one that system used for
// static initializers - in this case the default isolate is set in TLS but
// the thread did not yet Enter the isolate. If PerisolateThreadData is not
// there, use the isolate set in TLS.
if (current_isolate == NULL) {
current_isolate = Isolate::UncheckedCurrent();
}
PerIsolateThreadData* data = FindOrAllocatePerThreadDataForThisThread();
ASSERT(data != NULL);
ASSERT(data->isolate_ == this);
EntryStackItem* item = new EntryStackItem(current_data,
current_isolate,
entry_stack_);
entry_stack_ = item;
SetIsolateThreadLocals(this, data);
// In case it's the first time some thread enters the isolate.
set_thread_id(data->thread_id());
}
void Isolate::Exit() {
ASSERT(entry_stack_ != NULL);
ASSERT(entry_stack_->previous_thread_data == NULL ||
entry_stack_->previous_thread_data->thread_id().Equals(
ThreadId::Current()));
if (--entry_stack_->entry_count > 0) return;
ASSERT(CurrentPerIsolateThreadData() != NULL);
ASSERT(CurrentPerIsolateThreadData()->isolate_ == this);
// Pop the stack.
EntryStackItem* item = entry_stack_;
entry_stack_ = item->previous_item;
PerIsolateThreadData* previous_thread_data = item->previous_thread_data;
Isolate* previous_isolate = item->previous_isolate;
delete item;
// Reinit the current thread for the isolate it was running before this one.
SetIsolateThreadLocals(previous_isolate, previous_thread_data);
}
void Isolate::LinkDeferredHandles(DeferredHandles* deferred) {
deferred->next_ = deferred_handles_head_;
if (deferred_handles_head_ != NULL) {
deferred_handles_head_->previous_ = deferred;
}
deferred_handles_head_ = deferred;
}
void Isolate::UnlinkDeferredHandles(DeferredHandles* deferred) {
#ifdef DEBUG
// In debug mode assert that the linked list is well-formed.
DeferredHandles* deferred_iterator = deferred;
while (deferred_iterator->previous_ != NULL) {
deferred_iterator = deferred_iterator->previous_;
}
ASSERT(deferred_handles_head_ == deferred_iterator);
#endif
if (deferred_handles_head_ == deferred) {
deferred_handles_head_ = deferred_handles_head_->next_;
}
if (deferred->next_ != NULL) {
deferred->next_->previous_ = deferred->previous_;
}
if (deferred->previous_ != NULL) {
deferred->previous_->next_ = deferred->next_;
}
}
HStatistics* Isolate::GetHStatistics() {
if (hstatistics() == NULL) set_hstatistics(new HStatistics());
return hstatistics();
}
HTracer* Isolate::GetHTracer() {
if (htracer() == NULL) set_htracer(new HTracer(id()));
return htracer();
}
Map* Isolate::get_initial_js_array_map(ElementsKind kind) {
Context* native_context = context()->native_context();
Object* maybe_map_array = native_context->js_array_maps();
if (!maybe_map_array->IsUndefined()) {
Object* maybe_transitioned_map =
FixedArray::cast(maybe_map_array)->get(kind);
if (!maybe_transitioned_map->IsUndefined()) {
return Map::cast(maybe_transitioned_map);
}
}
return NULL;
}
bool Isolate::IsFastArrayConstructorPrototypeChainIntact() {
Map* root_array_map =
get_initial_js_array_map(GetInitialFastElementsKind());
ASSERT(root_array_map != NULL);
JSObject* initial_array_proto = JSObject::cast(*initial_array_prototype());
// Check that the array prototype hasn't been altered WRT empty elements.
if (root_array_map->prototype() != initial_array_proto) return false;
if (initial_array_proto->elements() != heap()->empty_fixed_array()) {
return false;
}
// Check that the object prototype hasn't been altered WRT empty elements.
JSObject* initial_object_proto = JSObject::cast(*initial_object_prototype());
Object* root_array_map_proto = initial_array_proto->GetPrototype();
if (root_array_map_proto != initial_object_proto) return false;
if (initial_object_proto->elements() != heap()->empty_fixed_array()) {
return false;
}
return initial_object_proto->GetPrototype()->IsNull();
}
CodeStubInterfaceDescriptor*
Isolate::code_stub_interface_descriptor(int index) {
return code_stub_interface_descriptors_ + index;
}
Object* Isolate::FindCodeObject(Address a) {
return inner_pointer_to_code_cache()->GcSafeFindCodeForInnerPointer(a);
}
#ifdef DEBUG
#define ISOLATE_FIELD_OFFSET(type, name, ignored) \
const intptr_t Isolate::name##_debug_offset_ = OFFSET_OF(Isolate, name##_);
ISOLATE_INIT_LIST(ISOLATE_FIELD_OFFSET)
ISOLATE_INIT_ARRAY_LIST(ISOLATE_FIELD_OFFSET)
#undef ISOLATE_FIELD_OFFSET
#endif
} } // namespace v8::internal